This series of 4 talks will be a minicourse on Banach spaces of continuous functions which have few operators, projections, injections etc. In particular they can be indecomposable and nonisomorphic with their hyperplanes. To obtain this linear operator level rigidity one needs to construct compact Ks which are not only rigid in the usual sense, i.e., in terms of continuous mappings on K. One needs to deal with weak* continuous functions from K into the space M(K) of Radon measures on K, so the combinatorics of the constructions needs stronger conditions than for endo-rigid Boolean algebras or strongly rigid compact spaces. We will present main arguments leading to C(K)s with the required properties but the proofs of many lemmas will be omitted. The talks should be accessible to everyone with general analytic and topological background.