ABSTRACT: The Clebsch model is one of the few classical examples of the dynamics of rigid bodies in the liquid where the equations of motion are integrable in the sense of Liouville. The explicit solution of the problem of the Hamilton-Jacobi separation of variables for this model is, however, particularly hard and has remained unsolved for more than a century. We have managed to solve this problem in several different ways. In this talk we will present two variable separations for the Clebsch model - symmetric and asymmetric ones. The asymmetric variable separation is very unusual: it is characterized by the quadratures containing differentials defined on two different curves of separation. In the case of symmetric SoV both curves of separation are the same. This case has a bonus: on a zero level set of one of the Casimir functions it yields the famous Weber-Neumann separated coordinates. We also find the explicit reconstruction formulae for the both sets of the constructed separated variables and explicitly write the corresponding Abel-type equations, completely resolving in such a way the long-standing problem of variable separation for the Clebsch model.