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1 Introduction

Causal perturbation theory is based on ideas of Stückelberg and Bogoliubov [2] which were rigorously
worked out in the seminal paper of Epstein and Glaser (EG) [9]. It was further developed mainly by
R. Stora (e.g., [15, 16, 20]) and the groups of G. Scharf [18] and K. Fredenhagen [3, 4, 6, 7]. Causal
perturbation theory is a rigorous perturbative approach to Quantum Field Theory (QFT) – winning
by its conceptual clarity. The latter relies on the following properties:

� The time-ordered product (T -product), which is the main building stone of a perturbative QFT,
is defined by axioms, the most important being Causality.

� The interaction is adiabatically switched off. By this, the infrared (IR) problem is separated
from the ultraviolet (UV) problem. The adiabatic limit (i.e., the limit which removes this un-
physical switching of the interaction – this is the IR problem) is performed only at the end of
the construction; typically it exists only for observable quantities, e.g., inclusive cross sections,
and not for the individual S-matrix elements. However, local, algebraic properties of the observ-
ables can be obtained without performing the adiabatic limit, see Sect. 4.5. After performing
the adiabtic limit, the results agree with what comes out from more conventional versions of
perturbative QFT, e.g., BPHZ-renormalization or dimensional regularization.

� The T -product T = (Tn)n∈N is constructed in position space, by induction on the number n of
factors. Due to this, renormalization (i.e., the UV-problem) is the mathematically well-defined
problem of extending inductively known distributions from D′(Mn \∆n) to D′(Mn), where M
is the space-time manifold and ∆n is the thin diagonal in Mn, see (4.15). As long as one does
not consider the adiabatic limit, in each step, all quantities are mathematically well-defined.

� The observables are constructed as formal power series in the coupling constant and in ~ –
questions concerning the convergence of this series are not touched.

� The EG-construction yields all solutions of the axioms. By the Main Theorem (Thm. 4.9) the
set of solutions is the orbit of the Stückelberg–Petermann renormalization group (Def. 4.8) when
acting on a particular solution (any solution may be chosen as starting point).

Further advantages of the EG-construction of the T -product are:

� Since it proceeds in position space, it is well suited for perturbative QFT on a globally hyperbolic,
curved space-time manifold M [4, 11] – see the next article in this encyclopedia. For simplicity,
in this article, we choose M to be the d-dimensional Minkowski space. EG-renormalization has
been worked out also in Euclidean space [14].

� Overlapping divergences (which caused a lot of troubles in the history of pertrubative renormal-
ization) do not appear, due to the inductive procedure in the construction of the T -product.

� It applies also to nonrenormalizable interactions, e.g. perturbative quantum gravity (see e.g. [5,
18]): In each order in the coupling constant it yields a well-defined result.

In most formulations of perturbative QFT (also in the work of EG [9]) the free quantum field is
a Fock space operator. That is, it is an “on-shell field”, since it obeys the free field equation. In this
article, (classical and quantum) fields are functionals on the classical configuration space, which is
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C∞(M,R) in case of a real scalar field. That is, our fields are “off-shell”, since they are not restricted
by any field equation. The algebra of classical fields is given by the pointwise product of functionals.
Quantization of the free theory is obtained by deformation of this product, where the propagator of
the resulting star product (i.e., the two-point function) contains the information that we are dealing
with the free theory (see (3.1)). Working with off-shell fields is more flexible than the Fock space
formalism; this is advantagous for various purposes – see [8, Preface].

Main references is the latter book, which for the most parts relies on [3, 4, 6, 7]. In the following,
solely references differing from the just mentioned ones are given.

2 Fields as functionals on the configuration space

Space of fields. For brevity we study the model of one real scalar field with mass m ≥ 0. For the
pertinent configuration space we choose C := C∞(M,R). The partial derivative ∂a (where1 a ∈ Nd)
of the basic field ϕ(x) is the functional

∂aϕ(x) :

{
C −→ R
h 7−→ ∂aϕ(x)[h] = ∂ah(x) .

(2.1)

For simplicity, we study only fields which are polynomials in the basic field ϕ (and its derivatives).

Definition 2.1. The space of (classical and quantum) fields F is defined as the vector space of
functionals F ≡ F (ϕ) : C −→ C of the form

F (ϕ) = f0 +

N∑
n=1

∫
ddx1 · · · ddxn ϕ(x1) · · ·ϕ(xn) fn(x1, . . . , xn) =:

N∑
n=0

〈fn, ϕ⊗n〉 (2.2)

with N < ∞, where F (ϕ)[h] := F (h). Here f0 ∈ C is a constant and, for n ≥ 1, fn is a distribution
(i.e., fn ∈ D′(Mn,C)) with compact support. In addition, each fn is required to satisfy the wave
front set property:

WF(fn) ⊆ { (x1, . . . , xn; k1, . . . , kn)
∣∣ (k1, . . . , kn) /∈ V ×n+ ∪ V ×n− } , (2.3)

where V± denotes the forward/backward light cone. Convergence in F is understood in the pointwise
sense: limn→∞ Fn = F iff limn→∞ Fn[h] = F [h] , ∀h ∈ C.

The purpose of the wave front set condition is to ensure the existence of pointwise products of
distributions which appear in our definition of the Poisson bracket (2.9) and, more generally, of the
star product (see Sect. 3).

An important example is given by

fn(x1, . . . , xn) := (−1)
∑

j |aj |
∫
dx g(x) ∂a1δ(x1 − x) · · · ∂anδ(xn − x) , g ∈ D(M,C) ,

and fk = 0 for k 6= n, that is,

F (ϕ) =

∫
dx g(x) ∂a1ϕ(x) · · · ∂anϕ(x) ∈ F . (2.4)

The support of F ∈ F is defined as

suppF := supp
δF

δϕ(·)
.

Algebra of classical fields. Introducing the pointwise product

F ·G ≡ FG : h 7−→ F [h]G[h] ∈ F, (2.5)

and the “∗-operation”

F =

N∑
n=0

〈fn, ϕ⊗n〉 7−→ F ∗ =

N∑
n=0

〈fn, ϕ⊗n〉 ∈ F (2.6)

we obtain a commutative ∗-algebra – this is the algebra of classical fields.

1We use the French convention that 0 ∈ N.
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Local fields. The example (2.4) is a local functional in the sense of the following definition:

Definition 2.2. The space Floc of local fields is following subspace of F: Let P be the space of
polynomials in the variables {∂aϕ | a ∈ Nd} with real coefficients (“field polynomials”); then

Floc :=

{ K∑
i=1

Ai(gi) :=

K∑
i=1

∫
dx Ai(x) gi(x)

∣∣∣Ai ∈ P, gi ∈ D(M,C), K <∞
}
. (2.7)

Given F =
∑K
i=1Ai(gi) ∈ Floc, the pairs (Ai, gi)

K
i=1 are not uniquely determined by F , since∫

dx ∂µ
(
A(x)g(x)

)
= 0 for any A ∈ P and g ∈ D(M). This non-uniqueness can be removed in the

following way:

Proposition 2.3. There exists a subspace Pbal of P (the space of “ balanced fields”) with the following
properties:

(a) Every 0 6= A ∈ P can uniquely be written as a finite sum of type

A =
∑
a∈Nd

∂aBa , where Ba ∈ Pbal and Ba|ϕ=0 = 0 ∀a 6= 0 . (2.8)

(b) For each F ∈ Floc, there exists a unique f ∈ D(M,Pbal) such that

F − F [0] =

∫
dx f(x) and also f(x)|ϕ=0 = 0 ∀x ∈M .

For example, ϕ∂µϕ cannot be a balanced field, since ϕ∂µϕ = ∂µ( 1
2 ϕ

2). In part (b), F [0] ∈ C
must be excluded, since there are infinitely many f̃ ∈ D(M,C) fulfilling F (0) =

∫
dx f̃(x). It is an

easy exercise to prove that part (a) implies part (b). Part (a) has been proved by giving an explicit
construction of Pbal.

Poisson bracket. Let −∆ret
m ∈ D′(Rd) be the retarded Green’ function of the Klein–Gordon oper-

ator and let ∆m(x) := ∆ret
m (x)−∆ret

m (−x) be the commutator function.

Definition 2.4. The Poisson bracket of the free theory is the bilinear map F × F −→ F given by

{F,G} :=

∫
dx dy

δF

δϕ(x)
∆m(x− y)

δG

δϕ(y)
. (2.9)

One proves: Since F and G satisfy the wave front set property (2.3) the pointwise product of
distributions in (2.9) exists, and {F,G} again satisfies this wave front set property, hence {F,G} ∈ F.
Obviously, it holds that {G,F} = −{F,G}; and one verifies that the bracket (2.9) fulfills the Leibniz
rule and the Jacobi identity, hence, it is indeed a Poisson bracket.

3 Deformation quantization of the free theory

Deformation quantization is mainly due to [1]. Wheras that work deals with quantum mechanics (i.e.,
finite dimensional systems), we apply it here to QFT.

Definition and properties of the star product. Let F~ be the space of formal polynomials in
~ with coefficients in F. The star product ? ≡ ?~ : F~ × F~ −→ F~ is a deformation of the classical
product (2.5) with deformation parameter ~, which is required to be

(a) bilinear in its arguments;

(b) associative; and, for F,G ∼ ~0; should satisfy:

(c) F ?~ G→ F ·G (the classical product) as ~→ 0; and

(d) (F ?~ G−G ?~ F )/i~→ {F,G} (the Poisson bracket of the free theory) as ~→ 0.
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Definition 3.1. Given a suitable two-point function H ∈ D′(Rd), the star product is defined by

F ?~ G :=

∞∑
n=0

~n

n!

∫
dx1 · · · dxn dy1 · · · dyn

δnF

δϕ(x1) · · · δϕ(xn)

n∏
l=1

H(xl − yl)
δnG

δϕ(y1) · · · δϕ(yn)
. (3.1)

Note that the sum over n is finite since F,G ∈ F~ are polynomials in ϕ.

The two-point function H ∈ D′(Rd) should satisfy the following properties:

(i) The wave front set of H should be such that the pointwise products of distributions appearing
in (3.1) exist for all F,G ∈ F~;

(ii) the above requirement (d) is satisfied iff the antisymmetric part of H is given by 1
i

(
H(z) −

H(−z)
)

= ∆m(z) ; we also require

(iii) Lorentz invariance, H(Λz) = H(z) for all Λ ∈ L
↑
+,

(iv) that H is a solution of the free field equation, (� +m2)H = 0,

(v) and that H(x) = H(−x), which is equivalent to (F ? G)∗ = G∗ ? F ∗.

Due to (ii) and (iv), H ≡ Hm depends on the mass m ≥ 0 appearing in the free field equation;
hence, this holds also for the star product – sometimes we signify this by writing ?m (instead of ? or
?~). The above requirements (a) and (c) are obviously satisfied and, with some effort, one can prove
associativity [21].

The most obvious solution of the above requirements on H is the Wightman two-point function,
Hm = ∆+

m. However, in even dimensions d, ∆+
m is not smooth in m ≥ 0. The latter property can be

reached using a Hadamard function instead, that is,

Hm(x) = Hµ
m(x) = ∆+

m(x)−md−2 fd(m
2x2) log(m2/µ2) , (3.2)

where µ > 0 is a mass parameter and fd : R → R is a certain analytic function (depending on the
dimension d), hence WF(Hµ

m) = WF(∆+
m). Since, in addition, (�x+m2)fd(m

2x2) = 0, Hµ
m solves also

the above requirements (ii)-(v). Note that ∆+
m scales homogeneously, i.e., ρd−2∆+

m/ρ(ρx) = ∆+
m(x),

but Hµ
m scales only almost homogeneously, i.e., homogeneously up to logarithmic terms – see Def. 4.1.

States. By definition, a state ω on the algebra (F~, ?) is a functional ω : (F~, ?) −→ C which is
linear, real (i.e., ω(F ∗) = ω(F )), positive (i.e., ω(F ∗ ? F ) ≥ 0) and normalized (i.e., ω(1) = 1). Note
that ω itself may be a formal polynomial in ~; but, in ω(F ) (with F ∈ F~) the sum over the powers
of ~ is an ordinary sum, in order that ω(F ) is a complex number (depending on ~).

A simple, but important, example is the vacuum state:

ω0(F ) := f0 where F = f0 +
∑
n≥1

〈fn, ϕ⊗n〉 . (3.3)

For H = ∆+
m one can prove that ω0 is indeed positive, by using that

∫
dx dy h(x) ∆+

m(x− y)h(y) ≥ 0
for all h ∈ D(M); but the latter property may be violated for H = Hµ

m.

On-shell fields. Introducing the space of solutions of the free field equation

C0 ≡ C
(m)
0 := {h ∈ C

∣∣ (� +m2)h(x) = 0 } ,

we define the space of on-shell fields to be

F
(m)
0 := {F0 := F

∣∣
C

(m)
0

∣∣F ∈ F } .

This definition is motivated by the fact that ϕ0(x) := ϕ(x)
∣∣
C0

satisfies the free field equation.

One verifies that the star product on F~ induces a well-defined product on

F
(m)
0,~ := F~

∣∣
C

(m)
S0

by setting F0 ? G0 := (F ? G)0 .

Quantizing with ∆+
m, on-shell fieds F0 ∈ F

(m)
0,~ may be identified with linear operators on Fock

space:
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Theorem 3.2. Let ϕop(x) be the free, real scalar field (for a given mass m) on the Fock space F.
Then the map

Φ: F
(m)
0,~ −→ Φ(F

(m)
0,~ ) ⊂ {linear operators on F} (3.4)

given by

F0 =

N∑
n=0

〈fn, ϕ⊗n0 〉 7−→ Φ(F0) =

N∑
n=0

∫
dx1 · · · dxn :ϕop(x1) · · ·ϕop(xn): fn(x1, . . . , xn)

(where :−: denotes normal ordering of Fock space operators) is an algebra isomorphism for the star
product on the left and the operator product on the right (i.e., Φ(F0 ? G0) = Φ(F0) Φ(G0)) and also
for the classical product on the left and the normally ordered product on the right (i.e., Φ(F0 ·G0) =
:Φ(F0) Φ(G0):). In addition, Φ respects the ∗-operation:〈

ψ1,Φ(F ∗0 )ψ2

〉
F

=
〈
Φ(F0)ψ1, ψ2

〉
F

∀F0 ∈ F
(m)
0,~ (3.5)

and for all ψ1, ψ2 in the domain of Φ(F0) or Φ(F ∗0 ), respectively.

4 Perturbative QFT

Let Lint =
∑∞
k=1 Lk κ

k ∈ P[[κ]] be the interaction Lagrangian, where κ is the coupling constant. With
that,

S ≡ S(g) :=

∫
dx

∞∑
k=1

(
g(x)κ

)k
Lk(x) ∈ Floc[[κ]] , g ∈ D(M) , (4.1)

is the adiabatically switched off interaction. The main aim is to construct the pertinent scattering
matrix (S-matrix), for which we make the ansatz

S(S) = 1 +

∞∑
n=1

in

n!~n
Tn(S⊗n) ∈ F[[κ]] , (4.2)

which is a formal Laurent series in ~, where Tn : (Floc)⊗n → F is the n-fold time-ordered product
defined axiomatically in the following section.

4.1 Axioms for the T -product

In view of the inductive construction of T = (Tn) we split the axioms into ‘basic axioms’ and ‘renor-
malization conditions’. The first basic axiom is

(1) Linearity: We require that
Tn : F⊗nloc −→ F be linear. (4.3)

Note that here both the arguments and the values of Tn are off-shell fields.

Our construction of the T -product is an inductive construction of the F-valued distributions
Tn
(
A1(x1), . . . , An(xn)

)
∈ D′(Mn,F) (for all A1, . . . , An ∈ P), which should be connected to the

maps Tn : F⊗nloc → F (4.3) by∫
dx1 · · · dxn Tn

(
A1(x1), . . . , An(xn)

)
g1(x1) · · · gn(xn) = Tn

(
A1(g1)⊗ · · · ⊗An(gn)

)
(4.4)

for all g1, . . . , gn ∈ D(M). But there is a problem with this fomula (4.4): Since
∫
dx ∂x

(
g(x)A(x)

)
= 0,

(4.4) and Linearity of Tn imply∫
dx
(

(∂g)(x)Tn
(
. . . , A(x), . . .

)
+ g(x)Tn

(
. . . , (∂A)(x), . . .

))
= 0 ;

hence the Action Ward Identity (AWI) must hold, that is,

AWI: ∂xl
Tn
(
. . . , A(xl), . . .

)
= Tn

(
. . . , ∂xl

A(xl), . . .
)
, ∀A ∈ P , 1 ≤ l ≤ n . (4.5)
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To define Tn
(
A1(x1), . . . , An(xn)

)
in terms of the map Tn : F⊗nloc → F in accordance with the AWI,

we use Prop. 2.3: For balanced fields B1, . . . , Bn ∈ Pbal we define Tn
(
B1(x1), . . . , Bn(xn)

)
by the

formula (4.4), and then, for arbitrary A1, . . . , An ∈ P, we define Tn
(
A1(x1), . . . , An(xn)

)
by first

writing Ai =
∑
ai
∂aiBiai where Biai ∈ Pbal and setting

Tn
(
A1(x1), . . . , An(xn)

)
:=

∑
a1,...,an

∂a1x1
· · · ∂anxn

Tn
(
B1a1(x1), . . . , Bnan(xn)

)
. (4.6)

One easily verifies that with this definition the AWI (4.5) holds for arbitrary A ∈ P and that also the
relation (4.4) holds for all A1, . . . , An ∈ P.

The further basic axioms are:

(2) Initial condition: T1(F ) = F for any F ∈ Floc ;

(3) Symmetry: Tn(Fπ(1) ⊗ · · · ⊗ Fπ(n)) = Tn(F1 ⊗ · · · ⊗ Fn) ∀F1, . . . , Fn ∈ Floc

and for all permutations π;

(4) Causality: For all A1, . . . , An ∈ P, Tn fulfills the causal factorization:

Tn
(
A1(x1), . . . , An(xn)

)
= Tk

(
A1(x1), . . . , Ak(xk)

)
?m Tn−k

(
Ak+1(xk+1), . . . , An(xn)

)
whenever {x1, . . . , xk} ∩

(
{xk+1, . . . , xn}+ V −

)
= ∅ ;

Assuming validity of axiom (3), one proves that axiom (4) is equivalent to the following causality
relation for the S-matrix:

S(H +G+ F ) = S(H +G) ? S(G)?−1 ? S(G+ F ) if suppH ∩ (suppF + V −) = ∅ , (4.7)

where (−)?−1 means the inverse w.r.t. the star product.
Due to the axioms (1) (Linearity) and (3) (Symmetry) it holds that

S(n) := S(n)(0) = in

n! Tn (nth derivative of S(F ) at F = 0), i.e., S(n)(F⊗n) = dn

dλn

∣∣
λ=0

S(λF ).

We turn to the renormalization conditions:

(5) Field independence: δTn/δϕ = 0 .

Performing a (finite) Taylor expansion of Tn
(
A1(x1), . . . , An(xn)

)
in ϕ with respect to ϕ = 0, one shows

that Field Independence is equivalent to the validity of the causal Wick expansion: For monomials
A1, . . . , An ∈ P it holds that

Tn
(
A1(x1), . . . , An(xn)

)
=
∑
Al⊆Al

ω0

(
Tn
(
A1(x1), . . . , An(xn)

))
A1(x1) · · ·An(xn), (4.8)

where each submonomial A of a given monomial A and its complementary submonomial A are defined
by

A :=
∂kA

∂(∂a1ϕ) · · · ∂(∂akϕ)
6= 0, A := Ca1...ak ∂

a1ϕ · · · ∂akϕ (4.9)

(no sum over a1, . . . , ak in the formula for A), with Ca1...ak being a certain combinatorial factor. The
range of the sum

∑
A⊆A are all k ∈ N and a1, . . . , ak ∈ Nd which yield a A 6= 0. (For k = 0 we

have A = A and A = 1.) The main message of the causal Wick expansion is that Tn
(
A1(x1), . . .

)
∈

D′(Mn,F) is uniquely determined by the C-valued distributions ω0

(
Tn
(
A1(x1), . . .

))
.

(6) Unitarity and field parity: In order that S(S) is unitary for real interactions (i.e., S = S∗),
we require

S(F )∗ = S(F ∗)?−1 ∀F ∈ Floc. (4.10)

Field parity is the condition

α ◦ Tn = Tn ◦ α⊗n, where α : F → F is defined by (αF )[h] := F [−h] ∀h ∈ F. (4.11)
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(7) Poincaré covariance: βΛ,a ◦ Tn = Tn ◦ β ⊗nΛ,a ∀(Λ, a) ∈ P
↑
+,

where βΛ,a : F → F is defined by

βΛ,a

∑
n

〈fn, ϕ⊗n〉 :=
∑
n

〈fn(x1, . . . , xn), ϕ(Λx1 + a)⊗ · · · ⊗ ϕ(Λxn + a)〉.

Considering only Translation covariance (i.e., Λ = 1), we conclude that the C-valued distributions

tn(A1, . . . , An)(x1 − xn, . . . , xn−1 − xn) := ω0

(
Tn
(
A1(x1), . . . , An(xn)

))
(4.12)

depend only on the relative coordinates, since ω0 ◦ βΛ,a = ω0. By using the causal Wick expansion
(4.8), one easily verifies that this property (4.12) is in fact equivalent to Translation covariance.

(8) Off-shell field equation:

Tn
(
ϕ(g)⊗F1 ⊗ · · · ⊗ Fn−1

)
= ϕ(g) Tn−1

(
F1 ⊗ · · · ⊗ Fn−1

)
(4.13)

+ ~
∫
dx dy g(x)HF

m(x− y)

n−1∑
k=1

Tn−1

(
F1 ⊗ · · · ⊗

δFk
δϕ(y)

⊗ · · · ⊗ Fn−1

)
,

where g ∈ D(M) and HF
m is the Feynman propagator belonging to the two-point function Hm,

that is, HF
m(x) := θ(x0)Hm(x) + θ(−x0)H(−x).

(9) Smoothness in the mass m ≥ 0: By the basic axioms, T ≡ T (m) depends on the mass m of
the free field equation via the star product ?m appearing in the Causality axiom. We require
that the distributions

t(m)
n (A1, . . . , An) (4.12) depend smoothly on m ≥ 0, for all A1, . . . , An ∈ P and all n.

This axiom excludes quantization with ∆+
m; hence, in the following we quantize with a Hadamard

function Hµ
m

The next axiom deals with the scaling behaviour of the T -product. For this and also in view of the
inductive construction of the T -product we introduce some notions:

Definition 4.1. Let f ∈ D′(Rk) or f ∈ D′(Rk \ {0}).

(a) We say that f scales almost homogeneously with degree D ∈ C and power N ∈ N iff(
Ek +D

)N+1

f(y1, . . . , yk) = 0 and
(
Ek +D

)N
f(y1, . . . , yk) 6= 0 , (4.14)

where Ek :=
∑k
r=1 yr ∂/∂yr is the Euler operator. When N = 0, we say there is homogeneous

scaling of degree D.

(b) For f(y) = f (m)(y) (where y ∈ Rk) being differentiable in the mass m ≥ 0, we say that f (m)(y)
scales almost homogeneously under (y,m) 7→ (ρy,m/ρ) with degree D ∈ C and power N ∈ N iff
the relations (4.14) hold for (E−m∂/∂m) in place of E.

(c) The scaling degree (with respect to the origin) of f is given by

sd(f) := inf{ r ∈ R
∣∣ lim
ρ↓0

ρr f(ρy) = 0 } ,

where inf ∅ :=∞ and inf R := −∞.

For example, ∂aδ(k) ∈ D′(Rk) scales homogeneously with degree D = k+ |a|. Obviously, a distribution
f scaling almost homogeneously with degree D ∈ C (and arbitrary power N) has scaling degree
sd(f) = ReD.

We also need the “mass dimension” of a monomial A ∈ P.
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Definition 4.2. The mass dimension of ∂aϕ ∈ P is defined by

dim ∂aϕ :=
d− 2

2
+ |a| for a ∈ Nd .

For monomials A1, A2 ∈ P, we agree that dim(A1A2) := dimA1 + dimA2.

Denoting by Pj the vector space spanned by all monomials A ∈ P with dimA = j we introduce
the set of “homogeneous” polynomials: Phom :=

⋃
j∈N/2 Pj .

(10) Scaling: For all monomials A1, . . . , An ∈ P and all n ≥ 2 we require that

t(m)
n (A1, . . . , An)(y) scales almost homogeneously under (y,m) 7→ (ρy,m/ρ) with degree

D =
∑n
l=1 dimAl and an arbitrary power N <∞ (where y ∈ Rd(n−1)).

(11) ~-dependence: For all monomials A1, . . . , An ∈ P fulfilling Aj ∼ ~0 ∀j and all n ≥ 2, we
require

tn(A1, . . . , An) ∼ ~
∑n

j=1 |Aj |/2 ,

where |A| is the degree of the monomial A, i.e., A(x)[λh] = λ|A|A(x)[h] for all h ∈ C, λ > 0.

We point out that in axiom (10) the degree D fulfills D ∈ N (also in odd dimensions d), and in axiom
(11) the power of ~ satisfies

∑n
j=1 |Aj |/2 ∈ N. Both statements rely on the observation that Field

parity (4.11) and ω0 ◦ α = ω0 imply that

tn(A1, . . . , An) = 0 if

n∑
j=1

|Aj | is odd;

and, for the statement about the degree, we also use that for A = c
∏J
j=1 ∂

ajϕ (c ∈ R) it holds that

dimA = J · dimϕ+
∑J
j=1 |aj | = |A| ·

d−2
2 +

∑J
j=1 |aj |.

4.2 Inductive construction of the T -product

The T -product T = (Tn) is constructed by induction on n, starting with axiom (2) (Initial condition).
Turning to the inductive step (n− 1)→ n we introduce the thin diagonal in Mn:

∆n := { (x1, . . . , xn) ∈Mn
∣∣x1 = . . . = xn } . (4.15)

Inductive step, off the thin diagonal ∆n. The axioms (4) (Causality) and (3) (Symmetry)
imply the following: For each point x ∈ Mn \ ∆n there exist a neighbouhood Ux ⊂ Mn of x, a
k ∈ {1, . . . , n− 1} and a permutation π such that

Tn
(
A1(x1), . . . , An(xn)

)
= Tk

(
Aπ(1)(xπ(1)), . . . , Aπ(k)(xπ(k))

)
? Tn−k

(
Aπ(k+1)(xπ(k+1)), . . . , Aπ(n)(xπ(n))

)
on D(Ux)

for all A1, . . . , An ∈ P; that is, Tn
(
A1(x1), . . .

)
|D(Ux) is uniquely determined in terms of the inductively

known (Tk)1≤k<n. This observation gives part (a) of the following Theorem.

Theorem 4.3. Let (Tk)1≤k<n be constructed.

(a) Uniqueness: If there exists some map Tn : P⊗n → D′(Mn,F) fulfilling the basic axioms, then
its image is uniquely determined on D(Mn \∆n).

(b) Existence: There exists a map T 0
n : P⊗n → D′(Mn \∆n,F) satisfying all axioms (1)-(11).

The proof of part (b) is constructive, using a partition of unity subordinate to an open cover of
Mn \∆n [4, 20].

Alternatively, the use of a partition of unity in the inductive construction of T 0
n can be avoided by

working with the distribution splitting method of Epstein and Glaser [9, 18], on the price of a more
complicated combinatorics.2

2Note that for the construction of T 0
n the distribution splitting can be done by multiplication with a Heaviside-

function. Hence, the distribution splitting problem in the Epstein–Glaser construction is an equivalent reformulation of
the extension problem T 0

n → Tn treated in the next paragraph.
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Extension to the thin diagonal ∆n. The extension of T 0
n (taking values in D′(Mn \ ∆n,F))

to a well-defined Tn (taking values in D′(Mn,F)) is non-unique and it corresponds to what is called
“renormalization” in conventional approaches. By part (a) of Thm. 4.3, the renormalization conditions
are not used for the construction of T 0

n , but they give guidance on how to do this extension and reduce
the non-uniqueness drastically.

Since we are constructing Tn : P⊗n → D′(Mn,F) (instead of Tn : F⊗nloc → F), the AWI plays the role
of an additional renormalization condition. We fulfil it by first constructing Tn

(
B1(x1), . . . , Bn(xn)

)
for all B1, . . . , Bn ∈ Pbal and then we define Tn

(
A1(x1), . . . , An(xn)

)
for arbitrary A1, . . . , An ∈ P by

(4.6).
By Linearity (axiom (1)), the causal Wick expansion (axiom (5)) and Translation covariance (axiom

(7)), the problem is simplified to the extension of

t0(y) ≡ t(m),0
n (B1, . . . , Bn)(y) := ω0

(
T (m),0
n

(
B1(x1), . . . , Bn(xn)

))
∈ D′(Rd(n−1) \ {0},C),

where y := (x1−xn, . . . , xn−1−xn) and B1, . . . , Bn ∈ Pbal∩Phom, to a distribution t ∈ D′(Rd(n−1),C).
In view of axiom (10) (Scaling) we require here and in the following that Bj ∈ Pbal ∩ Phom; this is
sufficient since there exists a basis of Pbal lying in Phom.

Obviously, any extension t ∈ D′(Rk) of a given t0 ∈ D′(Rk \ {0}) obeys sd(t) ≥ sd(t0). Looking
for extensions which do not increase the scaling degree, existence and uniqueness of this problem is
answered by the following [4]:

Theorem 4.4. Let t0 ∈ D′(Rk \ {0}). Then:

(a) If sd(t0) < k, there is a unique extension (called “direct extension”) t ∈ D′(Rk) fulfilling the
condition sd(t) = sd(t0).

(b) If k ≤ sd(t0) < ∞, there are several extensions t ∈ D′(Rk) satisfying the condition sd(t) =
sd(t0). In this case, given a particular solution t0, the general solution is of the form

t = t0 +
∑

|a|≤sd(t0)−k

Ca ∂
aδ(k) with Ca ∈ C. (4.16)

The proof is constructive, the idea of the construction is given in Sect. 4.3.
Turning to the maintenance of the axioms (9) (Smoothness in m ≥ 0) and (10) (Scaling) in the

extension t0 ≡ t(m),0
n (B1, . . . , Bn)→ t (whereB1, . . . , Bn ∈ Pbal∩Phom), we setD :=

∑n
j=1 dimBj ∈ N

and we first point out that in the case m = 0 we may apply the following [11,13,15]:

Proposition 4.5. Let t0 ∈ D′(Rk \ {0}) scale almost homogeneously with degree D ∈ C and power
N0 ∈ N. Then there exists an extension t ∈ D′(Rk) which scales also almost homogeneously with
degree D and power N ≥ N0:

(i) If D /∈ N + k, then t is unique and N = N0;

(ii) if D ∈ N + k, then t is non-unique and N = N0 or N = N0 + 1. In this case, given a particular
solution t0, the general solution is of the form

t = t0 +
∑

|a|=D−k

Ca ∂
aδ(k) with arbitrary Ca ∈ C. (4.17)

For the subcase ReD (= sd(t0)) < k of case (i), the unique t agrees with the direct extension of t0 of
part (a) of Thm. 4.4.

For m > 0, Smoothness in m ≥ 0 of t(m),0 ∈ D′(Rd(n−1) \ {0},C) ensures the existence of the
Taylor expansion

t(m),0(y) =

D−d(n−1)∑
l=0

ml

l!
u0
l (y) +mD−d(n−1)+1t

(m),0
red (y) with u0

l (y) :=
∂lt(m),0(y)

∂ml

∣∣∣∣
m=0

. (4.18)
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Almost homogeneous scaling under (y,m) 7→ (ρy,m/ρ) of t(m),0 with degree D implies almost ho-
mogeneous scaling under y 7→ ρy of u0

l with degree D − l ∈ N + d(n − 1), hence we may apply

part (ii) of Prop. 4.5 for the extension u0
l → ul ∈ D′(Rd(n−1),C). Considering t

(m),0
red , one shows

that the validity of the axioms (9) and (10) for t(m),0 implies the validity of (9) for t
(m),0
red and that

sd(t
(m),0
red ) < d(n− 1). Hence, Thm. 4.4(a) (i.e., the direct extension) provides a unique extension t

(m)
red

with sd(t
(m)
red ) = sd(t

(m),0
red ) . The latter maintains smoothness in m ≥ 0 and one verifies that it also

maintains almost homogeneous scaling under (y,m) 7→ (ρy,m/ρ) with degree d(n− 1)− 1.
The construction given so far guarantees that the resulting Tn satisfies the renormalization con-

ditions AWI, Field independence, Translation covariance, Smoothness in m ≥ 0 and Scaling. How to
maintain the further renormalization conditions in the extension t0n → tn?

� For axiom (10) (~-dependence) this is reached by doing the extension in each order of ~ individ-
ually.

� Turning to the symmetries required in axiom (6) (Unitarity and Field parity) and (7) (Lorentz
covariance) we quote the following general result: Given a t0n scaling almost homogeneously
and being symmetric w.r.t. a certain group G, there exists an extension tn which scales also
almost homogeneously and is also G-symmetric, if all finite-dimensional representations of G are
completely reducible. This assumption is satisfied for Unitarity and Field parity (in both cases

G is the group ({−1, 1}, · ) and also for the Lorentz group L
↑
+.

The construction of a G-symmetric tn is an easy task for the Star-structure and the Field parity
(one starts with an extension satisfying all other renormalization conditions and symmetrizes it
w.r.t. G), but for Lorentz covariance this requires some effort. (See also [16,18]).

� The Off-shell field equation (axiom (8)) is satisfied by defining tn(ϕ,B1, . . . , Bn−1) (withB1, . . . , Bn−1 ∈
Pbal ∩Phom) in terms of tn−1 by the vacuum expectation value of the relation (4.13) (note, that
the first term on the r.h.s. of (4.13) does not contribute). The so defined tn(ϕ,B1, . . . , Bn−1)
is an extension of t0n(ϕ,B1, . . . , Bn−1) (because the latter fulfills (4.13)) and one verifies easily
that it satisfies all other renormalization conditions.

4.3 Techniques to renormalize

In this section we sketch main techniques to compute the extension D′(Rk \ {0}) 3 t0 → t ∈ D′(Rk).

Direct extension and W -extension. In the proof of Thm. 4.4 the extension t is constructed as
follows [4, 9]:

� For sd(t0) < k the (unique) “direct extension” is obtained by

〈t, h〉 := lim
ρ→∞

〈t0, χρh〉 ∀h ∈ D(Rk) , (4.19)

where χ ∈ C∞(Rk) is such that 0 ≤ χ(x) ≤ 1, χ(x) = 0 for |x| ≤ 1 and χ(x) = 1 for |x| ≥ 2
and we use the notation χρ(x) := χ(ρx). Since χρ(x)h(x) ∈ D(Rk \ {0}) for any ρ > 0, the
expression 〈t0, χρh〉 exists. One proves that the limit (4.19) exists and defines a distribution
t ∈ D′(Rk). Since for any h1 ∈ D(Rk \ {0}) it holds that χρh1 = h1 for ρ sufficiently large, this
t is indeed an extension of t0. In addition one shows that sd(t) = sd(t0).

For practical computations the formula (4.19) means that the direct extension t is given by the
same formula as t0.

� For sd(t0) ≥ k: Let ω := sd(t0)− k be the singular order of t0. Introducing the subspace of test
functions

Dω := Dω(Rk) := {h ∈ D(Rk)
∣∣ ∂ah(0) = 0 for |a| ≤ ω } , (4.20)

one proves that t0 has a unique extension tω to D′ω satisfying sd(tω) = sd(t0) – roughly speaking,
the direct extension applies also in this case:

〈tω, h〉 = lim
ρ→∞

〈t0, χρh〉 . (4.21)
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Each projector W : D(Rk) −→ Dω defines an extension tW ∈ D′(Rk) (called “W -extension”) by

〈tW , h〉 := 〈tω,Wh〉 , (4.22)

Since Wh = h for h ∈ D(Rk \ {0}), the relations

〈tW , h〉 = 〈tω,Wh〉 = 〈tω, h〉 = 〈t0, h〉

show that tW is indeed an extension of t0. More elaborate is the proof of sd(tW ) = sd(t0).

Any set of functions wa ∈ D(Rk) (where a ∈ Nk with |a| ≤ ω) satisfying

∂bwa(0) = δba ∀b ∈ Nk , |b| ≤ ω (4.23)

defines such a projector W by

Wh(x) := h(x)−
∑
|a|≤ω

∂ah(0)wa(x). (4.24)

One can prove that every extension t having sd(t) = sd(t0) is a W -extension (4.22) with the
projector W given in terms of a family of functions (wa) (4.23) by (4.24).

For practical computations, the W -extension has essential disadvantages: Firstly, for tW (given
by (4.22) and (4.24)) Lorentz covariance is at least not manifest, since there does not exist any
Lorentz covariant wa ∈ D(Rk). Secondly, to compute tW explicitly, one needs explicit formulas for
the functions (wa) which makes the computation unhandy.

Due to this and due to the Taylor expansion in m ≥ 0 of t0 (4.18), in praxis one is left with the
following problem: Given a distribution t0 ∈ D′(Rk \ {0}) which scales almost homogeneously with
degree D ∈ k+N, find an extension t ∈ D′(Rk) which scales also almost homogeneously with degree D.
We are going to sketch two techniques solving this problem.

Differential renormalization. The idea is to trace back the case D ≥ k to the simple case D < k,
in which the solution is unique and obtained by the direct extension (Prop. 4.5), in the following way:
Write t0 as a derivative of a distribution f0 ∈ D′(Rk \ {0}) which scales almost homogeneously with
degree D − l < k, where l ∈ N \ {0}; more precisely

t0 = Df0 with D =
∑
|a|=l

Ca∂
a , Ca ∈ C , and (Ek +D − l)N f0 = 0 (4.25)

for N ∈ N sufficiently large. Let f ∈ D′(Rk) be the direct extension of f0; it scales also almost
homogeneously with the same degree D − l and the same power. Then

t := Df (4.26)

exists in D′(Rk) and is an extension of t0, because for h ∈ D(Rk \ {0}) we get

〈t, h〉 = 〈Df, h〉 = (−1)l 〈f,Dh〉 = (−1)l 〈f0,Dh〉 = 〈Df0, h〉 = 〈t0, h〉 , (4.27)

and one easily verifies that (Ek +D)N t = 0
In praxis, the difficult step is to find a distribution f0 ∈ D′(Rk \ {0}) satisfying the conditions

(4.25). A general method to solve this problem is not known; however, differential renormalization
has been successfully applied to a wealth of concrete examples, see e.g. [10, 17].

Analytic renormalization. 3 Roughly, the idea is to solve the above given extension problem as
follows: One introduces a ζ-dependent “regularized” distribution tζ 0 ∈ D′(Rk\{0}) (where ζ ∈ C\{0}
and |ζ| sufficiently small), such that limζ→0 t

ζ 0 = t0 and that tζ 0 scales almost homogeneously with
a non-integer degree Dζ . From Prop. 4.5 we know that tζ 0 has a unique extension tζ ∈ D′(Rk) which

3Analytic renormalization was first applied to x-space Epstein–Glaser renormalization by Hollands [12]. Essentially,
we follow [7].
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scales almost homogeneously with the same degree Dζ . The explicit computation of tζ is generically
much simpler than the computation of a solution of the original extension task, mostly this can be
done by means of differential renormalization – this is the gain of the regularization. For the resulting
extension tζ one then removes the regularization, i.e., one performs the limit ζ → 0. In order that
this limit exists in D′(Rk), one has to subtract a suitable local term.

To explain this in detail, first note that almost homogeneous scaling of t0 implies that the above
introduced unique extension tω to D′ω(Rk) (4.20) (where ω := D−k) scales also almost homogeneously.

Definition 4.6 (Analytic regularization). With the given assumptions (see the above formulated
problem) and notations, a family of distributions {tζ}ζ∈Ω\{0}, t

ζ ∈ D′(Rk), with Ω ⊆ C a neighbour-
hood of the origin, is called a regularization of t0, if

lim
ζ→0
〈tζ , h〉 = 〈tω, h〉 ∀h ∈ Dω(Rk) , (4.28)

and if tζ scales almost homogeneously with degree Dζ = D + D1 ζ for some constant D1 ∈ C \ {0}.
The regularization {tζ} is called analytic, if for all h ∈ D(Rk) the map

Ω \ {0} 3 ζ 7−→ 〈tζ , h〉 (4.29)

is analytic with a pole of finite order at the origin.

Let {tζ} be an analytic regularization of t0 and let t be an almost homogeneous extension of t0.
As mentioned above, t can be written as a W -extension, that is, there exist functions (wa) (4.23) such
that

〈t, h〉 = 〈tW , h〉 = 〈tω,Wh〉 = lim
ζ→0
〈tζ ,Wh〉 = lim

ζ→0

(
〈tζ , h〉 −

∑
|a|≤ω

〈tζ , wa〉 ∂ah(0)
)
, (4.30)

by using (4.22), (4.28) and finally (4.24). In general, the limit of the individual terms on the right-
hand side might not exist. However, each term can be expanded in a Laurent series around ζ = 0,
and since the overall limit is finite, the principal parts (pp) of these Laurent series must cancel out:〈

pp(tζ), h
〉

:= pp
(
〈tζ , h〉

)
=
∑
|a|≤ω

pp
(
〈tζ , wa〉

)
∂ah(0) , ∀h ∈ D(Rk) . (4.31)

We conclude that

pp
(
tζ(x)

)
=

∑
|a|≤D−k

Ca(ζ) ∂aδ(x) , where Ca(ζ) = (−1)|a| pp
(
〈tζ , wa〉

)
. (4.32)

Proposition 4.7 (Minimal subtraction). (a) The sum in (4.32) runs only over |a| = D − k, that
is, the principal part pp(tζ) is a local distribution which scales homogeneously with degree D.

(b) The regular part rp(tζ) := tζ − pp(tζ) defines by

〈tMS, h〉 := lim
ζ→0

rp
(
〈tζ , h〉

)
, ∀h ∈ D(Rk) , (4.33)

a distinguished extension of t0 which scales almost homogeneously with degree D (“minimal
subtraction”).

That tMS is an extension of t0 with sd(tMS) = sd(t0), can be seen as follows: We compare tMS

with the initial extension t = tW . Using (4.30), (4.31) and the definition of tMS (4.33), we obtain

〈t, h〉 = lim
ζ→0

(
〈tζ , h〉 −

∑
|a|≤ω

(
pp
(
〈tζ , wa〉

)
+ rp

(
〈tζ , wa〉

))
∂ah(0)

)

= 〈tMS, h〉 −
∑
|a|≤ω

〈tMS, wa〉 ∂ah(0) , h ∈ D(Rk) . (4.34)

Hence, tMS differs from t by a term of the form tMS−t =
∑
|a|≤ω ba ∂

aδ , ba ∈ C . More involved is the

proof of the statements that pp(tζ) and tMS scale homogenously or almost homogenously, respectively,
with degree D.
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4.4 Stückelberg–Petermann renormalization group and Main Theorem

The Main Theorem is essentially the following statement: A change S 7→ Ŝ of the renormalization
prescription can equivalently be described by a renormalization of the interaction F 7→ Z(F ):

Ŝ(F ) = S
(
Z(F )

)
∀F ∈ Floc . (4.35)

The definition of the Stückelberg–Petermann renormalization group (RG) is such that the set of all

maps Z : Floc −→ Floc appearing in this relation, when (S, Ŝ) runs through all admissible pairs of S-
matrices, is precisely the Stückelberg–Petermann RG. Consequently, the definition of the Stückelberg–
Petermann RG depends on the set of renormalization conditions for the T -product. For brevity, we
use here only Field Independence and Translation covariance.

Definition 4.8. The Stückelberg–Petermann RG is the set R of all maps
Z : Floc[[~, κ]] −→ Floc[[~, κ]] satisfying the following properties:

(1) Analyticity : Z is analytic in the sense that

Z(F ) =

∞∑
n=0

1

n!
Z(n)(F⊗n) , where Z(n) := Z(n)(0) : Floc[[~, κ]]⊗n −→ Floc[[~, κ]]

is the nth derivative of Z(F ) at F = 0 (i.e., Z(n) is linear, symmetrical in all factors and can be
computed by Z(n)(F⊗n) = dn

dλn

∣∣
λ=0

Z(λF )).

(2) Lowest orders: Z(0) ≡ Z(0) = 0, Z(1) = Id .

(3) Locality, Translation covariance: For all monomials A1, . . . . . . , An ∈ P the VEV

z(n)(A1, . . . , An)(x1 − xn, . . .) := ω0

(
Z(n)

(
A1(x1), . . . , An(xn)

))
(4.36)

depends only on the relative coordinates and is of the form

z(n)(A1, . . . , An)(x1 − xn, . . .) = Sn

∑
a∈Nd(n−1)

Ca(A1, . . . , An) ∂aδ(x1 − xn, . . . , xn−1 − xn) ,

with constant coefficients Ca(A1, . . . , An) and Sn denotes symmetrization in (A1, x1), . . . , (An, xn).

(4) Field independence: δZ/δϕ = 0.

The distributions Z(n)
(
A1(x1), . . . , An(xn)) ∈ D′(Mn,Floc) , A1, . . . , An ∈ P appearing in (4.36)

are defined analogously to Tn
(
A1(x1), . . . , An(xn)) (see (4.6)), hence, they also satisfy the AWI.

Similarly to the T -product, the Field independence property (4) for Z is equivalent to the validity
of the (causal) Wick expansion (4.8) for Z(n), ∀n ≥ 2.

In the framework of causal perturbation theory, a first version of the Main theorem was given by
Popineau and Stora [16]; we present here a more elaborated version.

Theorem 4.9 (Main Theorem). (a) Given two S-matrices S and Ŝ both fulfilling the axioms, there
exists an analytic map Z : Floc[[~, κ]] −→ Floc[[~, κ]] (i.e., Z satisfies the property (1) of Definition
4.8), which is uniquely determined by

Ŝ = S ◦ Z . (4.37)

This Z is an element of the Stückelberg–Petermann RG R.

(b) Conversely, given an S-matrix S fulfilling the axioms for the T -product and an arbitrary Z ∈ R,

the composition Ŝ := S ◦ Z also satisfies these axioms.

A corollary of this Theorem states that (R, ◦) is indeed a group.
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4.5 Interacting fields and the algebraic adiabatic limit

Interacting fields are obtained from the S-matrix by Bogoliubov’s definition [2]: for F ∈ Floc the
formal power series

FS :=
~
i

d

dλ

∣∣∣∣
λ=0

S(S)?−1 ? S(S + λF ) ∈ F[[~, κ]] (4.38)

is the interacting field belonging to the free field F (i.e., FS |κ=0 = F ) and to the interaction S. By
using only the basic axioms for T , one proves that the so defined interacting fields satisfy Causality,
that is,

FS+G = FS if suppG ∩ (suppF + V −) = ∅, (4.39)

and the Glaser-Lehmann-Zimmermann (GLZ) relation (which plays an important role in Steinmann’s
inductive construction of the perturbative interacting fields [19])

1

i~
[
GS , FS

]
?

=
d

dλ

∣∣∣
λ=0

(
FS+λG −GS+λF

)
, (4.40)

(where [ · , · ]? denotes the commutator w.r.t. the star product). Combining these two properties we
get spacelike commutativity:

[GS , FS ]? = 0 if (x− y)2 < 0 for all (x, y) ∈ suppG× suppF.

The validity of the renormalization conditions for T implies corresponding properties for the interacting
fields, e.g., unitarity (axiom (6)) implies (FS)∗ = (F ∗)S∗ and, as the name says, axiom (8) implies

(� +m2)ϕ(x)S = (� +m2)ϕ(x) +
( δS

δϕ(x)

)
S
.

In addition, axiom 11 (~-dependence) implies that, for S, F ∼ ~0, the interacting field FS is a
formal power series in ~; hence, its limit ~→ 0 exists and gives the pertinent (perturbative) classical
interacting field – however, the limit lim~→0 S(S) does not exist.

Algebraic adiabatic limit. To obtain scattering amplitudes contributing to inclusive cross sections,
one has to perform the (weak) adiabatic limit limg→1 ω0

(
F ? S(S(g)) ? G

)
for appropriate G,F ∈ F

describing the in- and out-state, respectively. In contrast, from the interacting fields one can extract
observable quantities without performing this limit; to wit, the local, algebraic structure of these fields
does not depend on the adiabatic switching of the interaction.

To explain this, let O be an open double cone (i.e., O = (x+V+)∩(y+V−) for some pair (x, y) ∈M2

fulfilling y ∈ (x + V+)) and let Floc(O) := {F ∈ Floc

∣∣ suppF ⊂ O }. We introduce the algebra of
interacting fields localized in O:

ALint
(O) :=

∨
?
{FS(g)

∣∣F ∈ Floc(O) } with g ∈ G(O) := { g ∈ D(M,R)
∣∣ g|O = 1 }, (4.41)

where
∨
? means the algebra, under the ?-product, generated by members of the indicated set and

S(g) is obtained from Lint by (4.1). A main problem is that FS(g) depends on the restriction of g to

O + V − (by causality, see (4.39)); but the algebra ALint(O) should rather be independent of g. This
is indeed the case [4].

Theorem 4.10. As an abstract algebra (4.41) is independent of the choice of g ∈ G(O). Concretely,
for any g1, g2 ∈ G(O), there is a unitary4 element Ug1,g2 ∈ F[[κ]] such that

Ug1,g2 ? FS(g1) ? (Ug1,g2)?−1 = FS(g2) , for all F ∈ Floc(O) . (4.42)

The proof uses only causality and unitarity of the S-matrix, i.e., (4.7) and (4.10).

4To say that U is unitary means that U∗ ? U = U ? U∗ = (1, 0, 0, . . . ) in F[[κ]].
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