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Elements in the Milnor group

Jerzy Browkin

In this lecture we present some results of Urbanowicz given in his paper [U] concer-

ning elements in the Milnor group K2(Λ) of a ring Λ with 1. Basic properties of this

group are given in the books by Milnor [M] and Steinberg [St].

Main result presented here (Theorem 6.1) concerns presentation of elements of order

n in K2(Λ), where Λ is a field, as products of transfers of cyclotomic elements in the

Milnor group of some extensions of Λ.

1. An example.
Example 1. The symmetric group S3 can be defined by generators σ = (1, 2) and

τ = (1, 2, 3), and relations σ2 = τ3 = στστ = 1.

Suppose that we know only the relations σ2 = τ3 = 1, and we are looking for further

relations defining the group S3.

Equivalently, we consider the group

St = 〈x, y : x2 = y3 = 1〉,

and canonical surjective homomorphism

ϕ : St → S3, ϕ(x) = σ, ϕ(y) = τ.

Then the nontrivial elements of the group K2 := kerϕ give relations in S3 independent

of σ2 = τ3 = 1.

Thus we have an exact sequence

1 −−−−→ K2 −−−−→ St
ϕ−−−−→ S3 −−−−→ 1.

We shall describe the group K2 and find its generators.

The group St is the free product of the cyclic groups 〈x〉 of order 2, and 〈y〉 of order

3. Hence every element of St can be written uniquely in the form

xyα1xyα2 ... or yα1xyα2x...,

where every αj equals 1 or 2.
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Proposition 1. The group K2 is the free group with two generators u = xyxy and
v = yxyx.

Proof. We verify directly that the elements

x, y, xy, xy2, xyx, yxy, yxy2

do not belong to kerϕ. Then the same property have their inverses:

x, y2, y2x, yx, xy2x, y2xy2, yxy2.

Next we verify that elements u = xyxy and v = yxyx belong to kerϕ. Then also

u−1 = y2xy2x and v−1 = xy2xy2 belong to kerϕ.

We shall prove inductively (with respect to the number of factors x or y of an

element) that every element of K2 = ker ϕ belongs to the group 〈u, v〉 generated by u

and v.

Let w ∈ K2, w 6= 1, Assume that

w = xyα1xyα2x....

Then

w = (xyα1xyα1)(yα2−α1x...),

and the first factor in brackets equals u or v−1 and the second factor is shorter than

w. Hence, by the inductive assumption, the second factor belongs to the group 〈u, v〉.
Then w ∈ 〈u, v〉.

If w = yα1xyα2xyα3 ..., then we consider two cases:

10 α1 = α2. Then

w = (yα1xyα1x)(yα3 ...),

and the first factor in brackets equals v or u−1, and the second factor is shorter than

w. Similarly as above we conclude that w ∈ 〈u, v〉.
20 α1 6= α2. then α2 ≡ 2α1 (mod 3). Hence

w = (yα1xyα1x)(xyα1xyα3 ...).

The first factor in brackets equals v or u−1, and the second factor is shorter that w.

Therefore w ∈ 〈u, v〉, by the same argument as above.

Thus we have proved that K2 = 〈u, v〉.
To prove that u, v are free generators of K2 it is sufficient to prove that every

element w ∈ K2 can be writen uniquely as the product of factors u, v, u−1, v−1 (with

no cancellation between them).
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Let us observe that in all possible products of two factors:

uu, uv, uv−1, vu, vv, vu−1, u−1u−1, u−1v, u−1v−1, v−1u, v−1u−1, v−1v−1

at most one cancellation holds, namely if the first factor ends with x, and the second

begins with x. Then there is no further cancellation.

Therefore after all cancellations the first three terms of the product of any elements

u, v, u−1, v−1 are the same as the first three terms of the first factor of the product.

Since all the elements

u = xyxy, v = yxyx, u−1 = y2xy2x, v−1 = xy2xy2

have three first terms different, we conclude that the first factor of an element w ∈ K2 is

determined uniquely. Then we proceed inductively, and conclude that the representation

of w as the product of elements u, v, u−1 and v−1 is unique. ¤

Let us observe that v = yxyx = x(xyxy)x−1 = xux−1. Thus the subgroup K2

with two generators u, v considered as a normal divisor of St has only one generator,

e.g. u. Elements in K2, which are conjugate in St give the same relation in S3.

Consequently the complete set of relations in S3 is σ2 = τ3 = στστ = 1.

This example can be generalized as follows. We have a group G with a set of

generators A = (gj)j∈J and some set R of relations satisfied by these generators. It

may happen that the set R does not define the group G, some further relations are

necessary.

We are going to extend the set R to get a set of relations defining the group G.

We consider the group St with generators (xj)j∈J , defined by relations R with every

gj replaced by xj . There is a canonical surjective homomorphism ϕ : St → G, satisfying

ϕ(xj) = gj for j ∈ J. Denote by K2 the kernel of ϕ. Let R′ be a set of generators of

the group K2, as a normal divisor of the group St. Then replacing every xj by gj in

every relation in R′ we get the set of relations R ∪R′ which defines the group G.

In general it is a nontrivial problem to determine a set of generators of the group

K2 in this situation.

2. The group of elementary matrices.
Let Λ be an associative ring with 1, but not necessarily commutative. For n ≥ 2

and 1 ≤ i, j ≤ n, i 6= j, let eij be the n×n matrix with 1 on the place (i, j) and 0 on

all other places. For λ ∈ Λ let eij(λ) = I +λeij , where I is the n×n unit matrix. The

group En(Λ) generated by all matrices eij(λ) we call the group of elementary matrices,

it is a subgroup of SLn(Λ).
It can be verified that the following relations hold, where λ, µ ∈ Λ :

eij(λ) eij(µ) = eij(λ + µ),

[eij(λ), ekl(µ)] =
{

eil(λµ), if j = k, i 6= l,

1, if j 6= k, i 6= l.

(1)
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Problem. Do the relations (1) define the group En(Λ), or some further relations are

necessary ?

The answer depends on the ring Λ. E.g. it is positive for Λ = Z[i], and negative for

Λ = Z.

To investigate this problem we proceed similarly as in Example 1. First we define

the (Steinberg) group St n(Λ) by generators xij(λ), 1 ≤ i, j ≤ n, i 6= j, λ ∈ Λ, and

relations analogous to (1) with λ, µ ∈ Λ :

xij(λ)xij(µ) = xij(λ + µ),

[xij(λ), xkl(µ)] =
{

xil(λµ), if j = k, i 6= l,

1, if j 6= k, i 6= l.

(2)

Then we consider the canonical surjective homomorphism

ϕn : St n(Λ) → En(Λ), ϕn(xij(λ)) = eij(λ).

The generators of the kernel K2,n(Λ) := ker(ϕn) give missing relations for the group

En(Λ).

For technical reasons it is more convenient not to fix the value of n, but consider

n →∞. We have canonical homomorphisms

En(Λ) → En+1(Λ), eij(λ) 7→ eij(λ) for 1 ≤ i, j ≤ n, i 6= j, λ ∈ Λ,

and

St n(Λ) → St n+1(Λ), xij(λ) 7→ xij(λ) for 1 ≤ i, j ≤ n, i 6= j, λ ∈ Λ,

Then we get a commutative diagram:

1 −−−−→ K2,n(Λ) −−−−→ St n(Λ)
ϕn−−−−→ En(Λ) −−−−→ 1

y
y

y
1 −−−−→ K2,n+1(Λ) −−−−→ St n+1(Λ)

ϕn+1−−−−→ En+1(Λ) −−−−→ 1

Taking direct limits

K2(Λ) = lim
→

K2,n(Λ), St (Λ) = lim
→

St n(Λ), E(Λ) = lim
→

St n(Λ),

we get the exact sequence

1 −−−−→ K2(Λ) −−−−→ St (Λ)
ϕ−−−−→ E(Λ) −−−−→ 1.

The group E(Λ) is generated by elements eij(λ), i 6= j, i, j ∈ N, λ ∈ Λ which satisfy

relations (1) for all values n ∈ N. Then generators of K2(Λ) give relations which should

be added to relations (1) to get the set of relations defining the group E(Λ).
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It follows that for a given ring Λ it is important to determine the group K2(Λ), or

at least to find some of its nontrivial elements.

3. Some elements of K2(Λ).
Example 2. Let us consider the following element of E2(Λ).

a = e12(1)e21(−1)e12(1) =
(

1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)
=

(
0 1
−1 0

)
.

It is the matrix of rotation by π/2. Therefore a4 = 1. It follows that

b :=
(
x12(1)x21(−1)x12(1)

)4

∈ K2(Λ).

3.1. Steinberg symbols.
Generalizing Example 2 we define for an invertible element u ∈ Λ∗ an element in

St (Λ) as follows:

Put wij(u) := xij(u)xji(−u−1)xij(u), and hij(u) := wij(u)wij(−1). Next for

u, v ∈ Λ∗ satisfying uv = vu we define the Steinberg symbol

{u, v}ij := hij(uv)hij(u)−1hij(v)−1.

The corresponding matrices are (we assume for simplicity that i = 1, j = 2) :

ϕ(w12(u)) =

(
0 u

−u−1 0

)
and ϕ(h12(u)) =

(
u 0
0 u−1

)
. Hence

ϕ({u, v}12) =

(
uv 0
0 (uv)−1

) (
u 0
0 u−1

)−1 (
v 0
0 v−1

)−1

= I,

since u and v commute.

Therefore {u, v}ij ∈ K2(Λ). It can be verified that {u, v}ij does not depend on

i, j, so we omit the indices i, j. We call {u, v} the Steinberg symbol. It satisfies the

following relations:
{v, u} = {u, v}−1,

{u1u2, v} = {u1, v}{u2, v},
{u, v1v2} = {u, v1}{u, v2},
{u, v} = 1 if u + v = 0 or 1.

Theorem 3.1 (H. Matsumoto). If Λ is a field then K2(Λ) is generated by Steinberg
symbols.

More precisely, K2(Λ) = (Λ∗⊗Λ∗)/I, where I is the subgroup of Λ∗⊗Λ∗ generated
by all elements of the form u⊗ v, with u + v = 1.

For the ring of algebraic integers OF of a real quadratic number field F = Q(
√

d),
d > 0 squarefree, the group K2(OF ) is generated by symbols iff d = 2, 5 or 13.
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Therefore the Steinberg symbols do not suffice to describe all elements of K2(OF ), in

general.

For these three fields the group K2(OF ) = Z/2 × Z/2 is generated by symbols

{−1,−1} and {−1, ε}, where ε is the fundamental unit of OF .

3.2. Dennis-Stein symbols.
Now let a, b ∈ Λ satisfy u := 1− ab ∈ Λ∗. Define the following element in St (Λ) :

〈a, b〉ij := xji(−b/u)xij(−a)xji(b)xij(a/u)hij(u)−1.

Then (taking i = 1, j = 2) :

ϕ(xji(−b/u)xij(−a)xji(b)xij(a/u))

=
(

1 0
−b/u 1

)(
1 −a
0 1

)(
1 0
b 1

)(
1 a/u
0 1

)

=
(

1 0
−b/u 1

)(
u −a
b 1

)(
1 a/u
0 1

)

=
(

u −a
0 1 + ab/u

)(
1 a/u
0 1

)
=

(
u 0
0 1/u

)

and

ϕ(h12(u)) =
(

u 0
0 1/u

)
.

Consequently 〈a, b〉ij ∈ K2(Λ).
It can be proved that 〈a, b〉ij does not depend on i, j, therefore we omit these indices.

We call 〈a, b〉 the Dennis-Stein symbol. It has the following properties:

〈a, b〉 = 〈b, a〉−1

〈a, b〉〈a, c〉 = 〈a, b + c− abc〉
〈a, bc〉 = 〈ab, c〉〈ac, b〉
〈a, b〉 = {a, 1− ab} if a ∈ Λ∗

Examples (see [G]).

Let F = Q(
√

d), OF is the ring of algebraic integers in F.

For d = 3 we have K2(OF ) = Z/2 × Z/2 is generated by symbols {−1,−1} and

〈1 +
√

3, 1−√3〉.
For d = 6 we have K2(OF ) = Z/2×Z/2×Z/3 is generated by symbols {−1,−1},

〈2 +
√

6, 2−√6〉 and 〈2 +
√

6, 2〉 (of order 3).

For d = 17 we have K2(OF ) = Z/2×Z/2×Z/2 is generated by {−1,−1}, {−1, ε}
and 〈(3 +

√
17)/2, (3−√17)/2〉.

3.3. Cyclotomic elements.
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Let

Φn(x) =
n∏

j=1
(j,n)=1

(1− ζj
nx)

be the n-th cyclotomic polynomial. Equivalently,

Φ1(x) = 1− x, Φn(x) =
n∏

j=1
(j,n)=1

(x− ζj
n) for n ≥ 2.

Then

1− xn =
∏

d |n
Φd(x). (3)

For a ∈ Λ∗, such that Φn(a) ∈ Λ∗, we define the cyclotomic element

cn(a) := {a,Φn(a)} ∈ K2(Λ).

Lemma 3.1. cn(a)n = 1.

Proof. We proceed by induction on n. For n = 1 we have Φ1(x) = 1 − x, hence

c1(a) = {a,Φ1(a)} = {a, 1− a} = 1, provided a 6= 1.

By (3) we have

1 = {an, 1− an} =
∏

d|n
{an, Φd(a)} =

∏

d|n
{ad, Φd(a)}n/d

= {a,Φn(a)}n ·
∏

d|n
d<n

({a,Φd(a)}d
)n/d

.
(4)

By the inductive assumption, {a,Φd(a)}d = 1 for d < n. Then from (4) we conclude

that {a,Φn(a)}n = 1. ¤
Urbanowicz proved (see [U]) that if n = 3 and Λ is a field of characteristic 6= 3, then

every element of order 3 in K2(Λ) is a cyclotomic element c3(a) = {a, a2 + a + 1} for

some a ∈ Λ such that a2 + a + 1 6= 0.

Problem. Is every element of order n in K2(Λ) a cyclotomic element cn(a) for

some a in Λ∗, or it is the product of cyclotomic elements ?

Some partial results for Λ a field and n = 2, 4, 6 and 12 are given in [B82]. For

n > 3 the answer is negative for many rings Λ, see e.g. [B07], [CXQ], [Guo], [Q94],

[Q99], [Q07], [X02], [X07], [XQ01a], [XQ01b], [XQ02], [XQ03], [XM], [XW], [ZL].

3.4. Transfer symbols.
Urbanowicz defined in [U] some elements 〈U, V 〉 ∈ K2(Λ) called the transfer sym-

bols, where U, V are invertible matrices over Λ satisfying UV = V U. They generalize

the Steinberg symbols and cyclotomic elements. In particular 〈U, Φn(U)〉n = 1 holds,

see below.

4. The change of rings.
The following general theorem holds
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Theorem 4.1. Let Γ, Λ be rings with 1. Then for every homomorphism Ψ : E(Γ) →
E(Λ) there is a unique homomorphism ΨS : St (Γ) → St (Λ) such that the following
diagram commutes:

1 −−−−→ K2(Γ) −−−−→ St (Γ) −−−−→ E(Γ) −−−−→ 1
yΨ′S

yΨS

yΨ

1 −−−−→ K2(Λ) −−−−→ St (Λ) −−−−→ E(Λ) −−−−→ 1

(5)

where Ψ′S = ΨS |K2(Γ).

We postpone the proof to Section 7 (Theorem 7.3). We apply this theorem to some

special rings Γ and Λ, and give direct proofs in these particular cases.

Let r ≥ 1 and let Γ = Mr(Λ) be the ring of r × r matrices over Λ. We define a

homomorphism Ψ : E(Mr(Λ)) → E(Λ) as follows.

For every n ≥ 1 there is a canonical isomorphism of rings

Ψ : Mn(Mr(Λ)) → Mnr(Λ).

Namely, it is sufficient in every matrix A ∈ Mn(Mr(Λ)), A = (Aij)1≤i,j≤n, where

Aij ∈ Mr(Λ), to replace every matrix Aij by the table of its elements. Then we get a

matrix in Mnr(Λ).
This mapping is 1–1 and it is a ring homomorphism.

Lemma 4.1. The mapping Ψ defined above maps E(Mr(Λ)) into E(Λ).

Proof. For a matrix A = (ast)1≤s,t≤r ∈ Mr(Λ) let

eij(A) =




I 0 · · · 0 · · · 0 · · · 0
0 I · · · 0 · · · 0 · · · 0

.. .. · · · I · · · A · · · 0

.. .. · · · 0 · · · I · · · 0

.. .. · · · 0 · · · 0 · · · I




n×n

∈ Mn(Mr(Λ))

be a generator of the group En(Mr(Λ)), where 1 ≤ i, j ≤ n, i 6= j. Then

Ψ(eij(A)) =




1 0 0 · · · · · · · · · · · · · · ·
0 1 0 · · · · · · · · · · · · · · ·

· · · · · · · · · · · · 1 · · · · · ·
a11 a12 · · · a1r

ar1 ar2 · · · arr

· · ·

· · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · 1




nr×nr
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It is sufficient to prove that Ψ(eij(A)) ∈ Enr(Λ).
In the matrix Ψ(eij(A)) the element ast, 1 ≤ s, t ≤ r is on the place ((i−1)r+s, (j−

1)r + t), which we denote simpler by vij +(s, t), where vij is the vector r(i− 1, j− 1).
Namely, the matrix A is shifted from the basic position by the vector vij .

Since the matrix vij + A is above (or below) the diagonal of the matrix eij(A), the

first coordinates of all the points vij + (s, t), 1 ≤ s, t ≤ r, are greater (respectively,

smaller) than the second coordinates of these points.

Consequently,

evij+(s,t) · evij+(s′,t′) = 0 for 1 ≤ s, t, s′, t′ ≤ r.

Therefore the matrices

e := evij+(s,t)(λ) = I + λevij+(s,t) and e′ := evij+(s′,t′)(λ′) = I + λ′evij+(s′,t′)

commute. More precisely,

e · e′ = I + λevij+(s,t) + λ′evij+(s′,t′). (6)

Hence, by (6),

Ψ(eij(A)) = I +
∑

1≤s,t≤r

astevij+(s,t) =
∏

1≤s,t≤r

evij+(s,t)(ast) ∈ Enr(Λ)

and the factors in the last product commute.

Thus we have proved that Ψ(eij(A)) ∈ E(Λ). ¤

Theorem 4.2. There is a unique homomorphism ΨS : St (Mr(Λ)) → St (Λ) such
that the following diagram commutes

St (Mr(Λ)) −−−−→ E(Mr(Λ)) −−−−→ 1
yΨS

yΨ

St (Λ) −−−−→ E(Λ) −−−−→ 1

where Ψ is the homomorphism defined above.

Proof. We apply the notation used in the proof of the last Lemma. Define the mapping

ΨS on generators xij(A), where i 6= j, A = (ast)1≤s,t≤r ∈ Mr(A), of the group

St (Mr(Λ)) by the formula

ΨS(xij(A)) :=
∏

1≤s,t≤r

xvij+(s,t)(ast). (7)

Similarly as in the proof of the Lemma above it can be observed that the factors in the

product (7) commute.
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To prove that the mapping ΨS is well defined, we should verify that it preserves the

relations (2) defining the Steinberg group St (Mr(Λ)).
We consider the first relation. Let A,B ∈ Mr(Λ), where A = (ast)1≤s,t≤r,

B = (bst)1≤s,t≤r. In St (Mr(Λ)) we have

xij(A)xij(B) = xij(A + B), where i 6= j.

Now

ΨS(xij(A)) ·ΨS(xij(B)) =
∏

1≤s,t≤r

xvij+(s,t)(ast) ·
∏

1≤s′,t′≤r

xvij+(s′,t′)(bs′t′) (8).

From i 6= j it follows that the first coordinates of all vectors vij + (s, t) are different

from the second coordinates of these vectors. Therefore all factors in both products on

the r.h.s. of (8) commute. We can rearrange them as follows∏

1≤s,t≤r

xvij+(s,t)(ast)xvij+(s,t)(bst) =
∏

1≤s,t≤r

xvij+(s,t)(ast +bst)) = ΨS(xij(A+B)).

The proof of the second relation in (2) is similar. ¤
Thus we get a commutative diagram

1 −−−−→ K2(Mr(Λ)) −−−−→ St (Mr(Λ)) −−−−→ E(Mr(Λ)) −−−−→ 1
yΨ′S

yΨS

yΨ

1 −−−−→ K2(Λ) −−−−→ St (Λ) −−−−→ E(Λ) −−−−→ 1

(9)

It can be applied to find some element in K2(Λ). E.g. if U, V are commuting matrices in

GLr(Λ) then the image by Ψ′S of the Steinberg symbol {U, V } in K2(Mr(Λ)) belongs

to K2(Λ).
It is the transfer symbol 〈U, V 〉 defined by Urbanowicz.

5. The transfer mapping.
If m : Γ → Mr(Λ) is a homomorphism of rings then there are canonical homomor-

phisms (where γ ∈ Γ, i 6= j) :

Φ : E(Γ) → E(Mr(Λ)), eij(γ) 7→ eij(m(γ)),

ΦS : St (Γ) → St (Mr(Λ)), xij(γ) 7→ xij(m(γ)),

such that the following diagram commutes:

1 −−−−→ K2(Γ) −−−−→ St (Γ) −−−−→ E(Γ) −−−−→ 1
yΦ′S

yΦS

yΦ

1 −−−−→ K2(Mr(Λ)) −−−−→ St (Mr(Λ)) −−−−→ E(Mr(Λ)) −−−−→ 1

(10)

where Φ′S = ΦS |K2(Γ).

Now let Λ be a field and F an extension of Λ of degree r.
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Lemma 5.1. There is a subring of the ring Mr(Λ) of matrices isomorphic with F.

Proof. We fix a basis b1, . . . , br of F over Λ. Then to every a ∈ F there corresponds

the Λ-linear mapping F → F, b 7→ ab.

Denote by m(a) the matrix corresponding to this linear map in the basis b1, . . . , br.

Let m(a) = (aij)1≤i,j≤r, then

abj =
r∑

i=1

aijbi, for j = 1, . . . , r.

The mapping m : F → Mr(Λ) is a homomorphism of rings which is a Λ-injection. An

element λ ∈ Λ is mapped by m on the scalar matrix λ Ir.

Taking Γ = F and Φ = m in the diagram (10), and joining it with the diagram (9)

we obtain the commutative diagram:

1 −−−−→ K2(F ) −−−−→ St (F ) −−−−→ E(F ) −−−−→ 1
yT ′S

yTS

yT

1 −−−−→ K2(Λ) −−−−→ St (Λ) −−−−→ E(Λ) −−−−→ 1

where T = Ψ ◦m, TS = ΨS ◦mS , T ′S = Ψ′S ◦m′
S .

The mapping T ′S is called the transfer TrF/Λ : K2(F ) → K2(Λ). It does not depend

on the basis b1, . . . , br chosen at the beginning.

Basic properties of the transfer are given in the paper by Rosset and Tate [RT].

In particular, there is given an algorithm which gives a representation of transfer of

the Steinberg symbols in K2(F ) as products of the Steinberg symbols in K2(Λ).

6. Main result.

Theorem 6.1. Let n > 2 be prime to ϕ(n) and to the characteristic of the field Λ.

Assume that the n-th cyclotomic polynomial Φn(x) is irreducible in Λ[x].
Then every element a ∈ K2(Λ) satisfying an = 1 has the form

a =
t∏

j=1

TrFj/Λ(cn(aj))

where elements aj are algebraic over Λ, Fj = Λ(aj), and cn(aj) = {aj , Φn(aj)} are
cyclotomic elements in K2(Fj).

Moreover
t∑

j=1

(Fj : Λ) < (Λ(ζn) : Λ) = ϕ(n). (12)

Remarks.
1. From the assumptions it follows that n is odd.
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2. If n = 3 then in (12) we have ϕ(3) = 2, hence t = 1 and (F1 : Λ) = 1.

Consequently a is a cyclotomic element in K2(Λ), a = c3(a1) = {a1, a
2
1 + a1 + 1} for

some a1 ∈ Λ.

3. We do not claim that the fields Fj are subfields of Λ(ζn).

Proof. 1. We prove that a belongs to TrF/Λ(K2(F )).
Let F = Λ(ζn) and let j : K2(Λ) → K2(F ) be the canonical homomorphism

induced by the inclusion of Λ into F.

It is known that (Tr ◦ j)(b) = b(F :Λ) for b ∈ K2(Λ). Here (F : Λ) = ϕ(n), since

Φn(x) is irreducible in Λ[x].
By assumption, (n, ϕ(n)) = 1, hence there exists d ∈ N such that dϕ(n) ≡ 1

(mod n). Therefore for the given element a ∈ K2(Λ) we have

TrF/Λ(j(ad)) = adϕ(n) = a, since an = 1. (13)

2. Now we define elements aj .

From an = 1 it follows that j(ad) ∈ K2(F ) satisfies (j(ad))n = 1. Since ζn ∈ F, by

theorems of Tate and Suslin (see [T] and [S]) we have

j(ad) = {ζn, b}F for some b ∈ F ∗. (14)

Then (13) and (14) imply that

a = TrF/Λ{ζn, b}F . (15)

Here b = f(ζn) for some polynomial f(x) ∈ Λ[x] of degree less than ϕ(n) = (F : Λ).
The polynomial f(x) is reducible in general. It can be written in the form

f(x) = c

t∏

j=1

fj(x), (16)

where fj(x) ∈ Λ[x] are monic and irreducible and c ∈ Λ∗. Choose a root aj of fj(x),
and let Fj = Λ(aj).

Then, by (15) and (16),

a = TrF/Λ{ζn, b}F = TrF/Λ{ζn, c}F

t∏

j=1

TrF/Λ{ζn, fj(ζn)}F . (17)

Since c ∈ Λ∗, we have

TrF/Λ{ζn, c}F = {NF/Λ(ζn), c}Λ = 1, (18)

since NF/Λ(ζn) = (−1)deg Φn(x) · Φn(0) = 1.

3. We apply the reciprocity law for K2-transfer.
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Reciprocity law. Let g, h ∈ Λ[x] be monic irreducible polynomials over a field Λ,

and let g(β) = h(α) = 0 for some α, β algebraic over Λ, where αβ 6= 0.

Then
TrΛ(α)/Λ{α, g(α)}Λ(α)

= {h(0), g(0)}Λ · {(−1)deg h, (−1)deg g}Λ · TrΛ(β)/Λ{β, h(β)}Λ(β)

(19)

Let us remark, that if deg g ≤ deg h, and h(x) = q(x)g(x) + r(x), with deg r(x) <

deg g(x), then h(β) = r(β).
Substitute in (19): α = ζn, β = aj , g(x) = fj(x), h(x) = Φn(x). Since deg Φn(x)

is even, and Φn(0) = 1, from (19) we get

TrF/Λ{ζn, fj(ζn)}F = TrFj/Λ{αj , Φn(αj)}Fj
(20)

Hence, by (17) and (18),

a = TrF/Λ{ζn, b}F =
t∏

j=1

TrF/Λ{ζn, fj(ζn)}F

=
t∏

j=1

TrFj/Λ{αj ,Φn(αj)}Fj

Thus we have proved that a is the product of transfers of cyclotomic elements cn(αj) =
{αj ,Φn(αj)}Fj .

4. We shall estimate the sum of degrees of the fields Fj .

Since fj ∈ Λ[x] are irreducible, and fj(aj) = 0, then (Fj : Λ) = deg fj . Therefore

from (16) we get

t∑

j=1

(Fj : Λ) =
t∑

j=1

deg fj(x) = deg f(x) < ϕ(n). ¤

7. Central extensions of groups.
Let us consider the exact sequence of groups:

1 −−−−→ K −−−−→ S −−−−→ G −−−−→ 1

Then we say that S is an extension of the group G by the group K. We say that the

extension S is central if K is contained in the center z(S) of the group S.

The central extension S is called universal if for every central extension S̃

1 −−−−→ K̃ −−−−→ S̃ −−−−→ G −−−−→ 1

of the group G there exists a unique homomorphism θ : S → S̃ such that the following

diagram is commutative:

1 −−−−→ K −−−−→ S −−−−→ G −−−−→ 1

θ′
y θ

y
∥∥∥

1 −−−−→ K̃ −−−−→ S̃ −−−−→ G −−−−→ 1
where θ′ = θ|K.
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Theorem 7.1. There are given two central extensions

1 −−−−→ K −−−−→ S
ϕ−−−−→ G −−−−→ 1

1 −−−−→ K∗ −−−−→ S∗
ϕ∗−−−−→ G∗ −−−−→ 1

(21)

of groups G and G∗, respectively. Assume that the first one is universal.
Then for every homomorphism Ψ : G → G∗ there exists a unique homomorphism

ΨS : S → S∗ such that the following diagram is commutative:

1 −−−−→ K −−−−→ S
ϕ−−−−→ G −−−−→ 1

Ψ′S

y ΨS

y Ψ

y

1 −−−−→ K∗ −−−−→ S∗
ϕ∗−−−−→ G∗ −−−−→ 1

where Ψ′S = ΨS |K.

Proof. First we consider the pullback H ⊆ G× S∗ :

H
π1−−−−→ G

π2

y Ψ

y

S∗
ϕ∗−−−−→ G∗ −−−−→ 1

(22)

where

H := {(g, s∗) : g ∈ G, s∗ ∈ S∗, Ψ(g) = ϕ(s∗)}
and

π1(g, s∗) = g, π2(g, s∗) = s∗, for (g, s∗) ∈ H.

The homomorphism π1 is surjective, since for every g ∈ G we can choose an s∗ ∈ S∗

such that ϕ∗(s∗) = Ψ(g), by the surjectivity of ϕ∗.
Next, kerπ1 ⊆ z(H). Namely, if (g, s∗) ∈ kerπ1, then g = π1(g, s∗) = 1. Conse-

quently from ϕ(g) = ϕ∗(s∗) we get ϕ∗(s∗) = 1, i.e. s∗ ∈ kerϕ∗ = K∗ ⊆ z(S∗).
Therefore (g, s∗) = (1, s∗) ∈ z(H), hence kerπ1 = 1×K∗ ⊆ z(H).
Thus we have proved that the extension H of the group G :

1 −−−−→ kerπ1 −−−−→ H
π1−−−−→ G −−−−→ 1

is central.

By assumption the extension S of G is central universal. Therefore there is a unique

homomorphism θ such that the diagram

1 −−−−→ K −−−−→ S
ϕ−−−−→ G −−−−→ 1

θ′
y θ

y
∥∥∥

1 −−−−→ kerπ1 −−−−→ H
π1−−−−→ G −−−−→ 1
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where θ′ = θ|K, is commutative.

From diagram (22) we get

1 −−−−→ kerπ1 −−−−→ H
π1−−−−→ G −−−−→ 1

π′2

y π2

y Ψ

y

1 −−−−→ K∗ −−−−→ S∗
ϕ∗−−−−→ G∗ −−−−→ 1

where π′2 = π2| kerπ1. Since kerπ1 = 1×K∗, we get π′2(kerπ1) ⊆ K∗.
Joining last two diagrams we get a commutative diagram

1 −−−−→ K −−−−→ S
ϕ−−−−→ G −−−−→ 1

π′2θ′
y π2θ

y Ψ

y

1 −−−−→ K∗ −−−−→ S∗
ϕ∗−−−−→ G∗ −−−−→ 1

Thus it is sufficient to put ΨS = π2θ to get the first part of the theorem.

To prove the uniqueness of ΨS assume that there is a homomorphism ν : S → S∗

such that the following diagram is commutative:

1 −−−−→ K −−−−→ S
ϕ−−−−→ G −−−−→ 1

ν′
y ν

y Ψ

y

1 −−−−→ K∗ −−−−→ S∗
ϕ∗−−−−→ G∗ −−−−→ 1

(23)

where ν′ = ν|K.

We define the homomorphism λ : S → H, λ(s) := (ϕ(s), ν(s)) for s ∈ S. Then

ν = π2 ◦ λ. The image of λ belongs to the pullback H, since Ψ(ϕ(s)) = ϕ∗(ν(s)), by

the commutativity of the diagram (23).

We have proved above that H is a central extension of G. By the universality of the

central extension S of G, we conclude that the homomorphism λ satisfying the above

conditions is unique. Hence λ = θ.

Therefore ν = π2 ◦ λ = π2 ◦ θ = ΨS . ¤

Theorem 7.2. For an arbitrary ring Λ we have K2(Λ) = z(St (Λ)). Moreover,
St (Λ) is a universal central extension of E(Λ).

Proof. See [M]. ¤

Theorem 7.3. Assume that for some rings Γ and Λ there is a homomorphism
Ψ : E(Γ) → E(Λ). Then there is a unique homomorphism ΨS : St (Γ) → St (Λ),
such that ΨS(K2(Γ)) ⊆ K2(Λ) and the following diagram is commutative.

1 −−−−→ K2(Γ) −−−−→ St (Γ) −−−−→ E(Γ) −−−−→ 1

Ψ′S

y ΨS

y Ψ

y
1 −−−−→ K2(Λ) −−−−→ St (Λ) −−−−→ E(Λ) −−−−→ 1
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Proof. The theorem follows immediately from Theorem 7.1 and Theorem 7.2. ¤

8. Problems.
1. Let Λ be a commutative ring, and Hr the subgroup of K2(Λ) generated by the

transfer symbols 〈A,B〉, where A,B ∈ Ms(Λ)∗, s ≤ r, and AB = BA.

1.1) Does K2(Λ) = Hr hold for some r ≤ ∞?
1.2) Does H1 6= H2 hold for some Λ?
1.3) Is 〈A,B〉 the product of Steinberg symbols in K2(Λ)?

2. Let Λ be a commutative ring and Λ[ζn] be a free Λ-module of rank r.

2.1) Does every element in (K2(Λ))n have the form 〈U,A〉 for some A ∈ Mr(Λ)∗,
where U = m(ζn)?

3. Assume that Φn(x) is reducible over the field F. Let φ(x) be its monic irreducible

factor of degree r. Assume that n is prime to r and to the characteristic of F.

3.1) Is it true that 〈A, φ(A)〉n = 1 for every A ∈ Ms(Λ), where s < r, such that

φ(A) ∈ Ms(Λ)∗?
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