Amenability and coarse embeddings of warped cones

Damian Sawicki

Institute of Mathematics Polish Academy of Sciences

EPFL, 6 August 2015

Amenability and property A

A group Γ is **amenable** if for every finite set $S \subseteq \Gamma$ and $\varepsilon > 0$ there is a finitely supported probability measure $\mu \in \operatorname{Prob}(\Gamma) \subseteq \ell_1(\Gamma)$ such that

$$\forall s \in S \ \|\mu - s\mu\| < \varepsilon.$$

Fix some metric on Γ and let N be so large that supp $\mu \subseteq B(1, N)$. Then, the map $A \colon \Gamma \to \mathsf{Prob}(\Gamma)$ given by $A(\gamma) = \gamma \mu$ satisfies $\mathsf{supp}\, A(\gamma) \subseteq B(\gamma, N)$.

A (discrete) metric space (X,d) has **property A** if for every $R<\infty$ and $\varepsilon>0$ there is a map $A\colon X\to \operatorname{Prob}(X)$ and $N<\infty$ such that $\operatorname{supp} A(x)\subseteq B(x,N)$ and

$$\forall_{d(x,y)\leq R} \|A(x)-A(y)\|<\varepsilon.$$

Property A and coarse embeddings

Function $f:(X,d) \to \ell_1$ is a **coarse embedding** if for any sequence $(x_m,y_m) \in X^2$:

$$d(x_m, y_m) \to \infty \iff ||f(x_m) - f(y_m)|| \to \infty.$$

Let $A^{(n)}$ be a map from the definition of property A for R=n and $\varepsilon=2^{-n}$. Then the map $f:X\to\bigoplus_n\ell_1(X)\simeq\ell_1$ is a coarse embedding:

$$f(x) = \bigoplus_{n} A^{(n)}(x) - A^{(n)}(x_0)$$

(where x_0 is some fixed point).

Question

Does every metric space (finitely generated group) admitting a coarse embedding satisfy property A?

Property A and coarse embeddings

Question

Does every metric space (finitely generated group) admitting a coarse embedding satisfy property A?

Answer: No!

- For metric spaces: Nowak, 2007.
- For metric spaces with bounded geometry: Arzhantseva-Guentner-Špakula, 2012.
- For finitely generated groups:
 Arzhantseva-Osajda, Osajda (preprints, 2014).

Warped metric (Roe, 2005)

Data:

- Γ group generated by a finite set S
- (X, d) metric space with a continuous Γ -action

Assume for simplicity that X is a geodesic space.

For every $x \in X$ and $s \in S$ glue an interval between x and sx and declare its length to be one. Calculate the path metric in the new space – what we get is the **warped metric** d_{Γ} .

 d_{Γ} is the largest metric satisfying

$$d_{\Gamma}(x, x') \leq d(x, x'), \qquad d_{\Gamma}(x, sx) \leq 1 \ \forall s \in S.$$

Warped cone (Roe, 2005)

- Y compact metric Γ -space embedded as a subset of a sphere $S^{n-1} \subseteq \mathbb{R}^n$ with the Euclidean metric d
- $\mathcal{O}Y = \{ty \mid t \in [0, \infty), y \in Y\} \subseteq \mathbb{R}^n$ euclidean cone over Y

The warped cone $\mathcal{O}_{\Gamma}Y$ over Y with respect to a Γ -action is the metric space $(\mathcal{O}Y, d_{\Gamma})$.

Example

Let $\Gamma = \mathrm{SL}_n(\mathbb{Z})$ act on $Y = \mathbb{T}^n$, $n \geq 3$. Then, $\mathcal{O}_{\mathrm{SL}_n(\mathbb{Z})}\mathbb{T}^n$ contains isometrically embedded expanders.

Profinite completions

- Γ discrete group
- $\mathcal{F} = \{f_n \colon \Gamma \to F_n\}$ sequence of quotient maps onto finite groups (we require $\forall \gamma \in \Gamma \setminus \{1\} \ \exists n \ f_n(\gamma) \neq 1$)

Consider the product homomorphism $F \colon \Gamma \to \prod F_n$. The closure of its image is the **completion** $\widehat{\Gamma}(\mathcal{F})$ of Γ with respect to \mathcal{F} .

We endow the product $\prod F_n$ with the following metric:

$$d\left((g_n),(g_n')\right) = \max a_n \cdot d_{bin}(g_n,g_n'),$$

where $a_n \to 0$.

Warped cones over profinite completions

Theorem (Roe, 2005)

Let μ be a Γ -invariant measure on Y and assume that there exists a subset $P \subseteq Y$ of positive measure on which the action of Γ is free.

- **1** If $\mathcal{O}_{\Gamma}Y$ has property A, then Γ is amenable.
- **2** If $\mathcal{O}_{\Gamma}Y$ coarsely embeds into ℓ_1 , then Γ has the Haagerup property.

Theorem (S., 2015)

Let $\widehat{\Gamma}(\mathcal{F})$ be any completion of Γ . The warped cone $\mathcal{O}_{\Gamma}\widehat{\Gamma}(\mathcal{F})$ has property A if and only if Γ is amenable.

Embeddable warped cones without property A

Assume:

- Γ non-amenable group;
- $\mathcal{F} = \{f_n \colon \Gamma \to F_n\}$ sequence of quotient maps onto finite groups such that $\ker f_n \supseteq \ker f_{n+1}$;
- sequence F_n embeds coarsely into ℓ_1 .

Theorem / Example (S., 2015)

The warped cone $\mathcal{O}_{\Gamma}\widehat{\Gamma}(\mathcal{F})$ does not have property A but embeds coarsely into ℓ_1 .

Thank you!