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Schreier graph, warped metric

o =(S) |S| <
e '~ X (by bijections)

Schreier graph for the action I X
V=X
E={{x,sx} | xeX,seS}
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Schreier graph, warped metric

o =(S) |S| <
e '~ X (by bijections)

Schreier graph for the action I X
V=X
E={{x,sx} | xeX,seS}

= metric dsc, on X.
For X =T we obtain Cay(I',S) with the right-invariant metric.
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Schreier graph, warped metric

o [=(S), |S| <0
e '~ X (by bijections)

Schreier graph for the action I X
V=X
E={{x,sx} | xeX,seS}

= metric dsc, on X.
For X =T we obtain Cay(I',S) with the right-invariant metric.

@ Assume X is a metric space (X, d) (and the action is by
homeomorphisms).

Definition (Roe, 2005)

Warped metric dr is the largest metric satisfying:
dr < min (d, dSch)-
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Warped metric on a [-space: geometric construction

e (X, d) — geodesic space
@ For each pair of points {x, sx} glue an interval of length 1
between x and sx.

o Calculate the path metric in the space with all the extra
intervals.

@ lts restriction to X is the warped metric d!
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Let X =R, and I = (s) = Z~R, s.t. sx =10 x.
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Let X =R, and I = (s) = Z~R, s.t. sx =10 x.

T

0 1,000 10,000
— dr(1,000; 10,000) = 1
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Let X =R, and I = (s) = Z~R, s.t. sx =10 x.

dr(1,000; 10,001)?
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Let X =R, and I = (s) = Z~R, s.t. sx =10 x.

dr(1,000; 10,001)?

—

1,000 1,000.1 10,001
— dr(1,000; 10,001) = 1.1
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Let X =R, and I = (s) = Z~R, s.t. sx =10 x.

dr(1,000; 2,000)?



Let X =R, and I = (s) = Z~R, s.t. sx =10 x.

dr(1,000; 2,000)?

1 10 100 1,000 2,000




Let X =R, and I = (s) = Z~R, s.t. sx =10 x.

dr(1,000; 2,000)?

1 2>~ 10—20~_100—200~_1,000 _—2]000

— dr(1,000; 2,000) = 7
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Let X =R, and I = (s) = Z~R, s.t. sx =10 x.

dr(1,000; 3,000)?



Let X =R, and I = (s) = Z~R, s.t. sx =10 x.

dr(1,000; 3,000)?

1 3 10 30 100 300 1,000 3,000




Let X =R, and I = (s) = Z~R, s.t. sx =10 x.

dr(1,000; 3,000)?

0334 —"3>~—10—30~_100—300~__1,000 3,000

— dr(1,000; 3,000) = 7.7
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Warped metric on a [-space: geometric construction

e (X, d) — geodesic space
@ For each pair of points {x, sx} glue an interval of length 1
between x and sx.

o Calculate the path metric in the space with all the extra
intervals.

Its restriction to X is the warped metric df!

Example v/
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Warped metric on a [-space: geometric construction

e (X, d) — geodesic space
@ For each pair of points {x, sx} glue an interval of length 1
between x and sx.

o Calculate the path metric in the space with all the extra
intervals.

Its restriction to X is the warped metric df!

Example v/

Being a quasi-geodesic space is preserved by warping.
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Warped metric on a [-space: geometric construction

(X, d) — geodesic space

For each pair of points {x, sx} glue an interval of length 1
between x and sx.

o Calculate the path metric in the space with all the extra
intervals.

Its restriction to X is the warped metric df!

Example v/

Being a quasi-geodesic space is preserved by warping.

Example (Hyun Jeong Kim, 2006)

X =R?, T =7 acts by rotating by angle 6. There are infinitely
many non-quasi-isometric warped planes (R?, dz) depending on 6.
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Warping: general motivation

dr(x,sx) <1
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Warping: general motivation

dr(x,sx) <1
= dist(id(x,4-),7) < 1]
—> Rich Roe algebras.

Conjecture (Drutu—Nowak, 2015; cf. Roe, 2005)

Warped cones over actions with a spectral gap violate the coarse
Baum—Connes conjecture.
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e 'Y — compact subset of S” C R"+1

@ X — infinite cone over Y with the induced I action:

{ty [ t€[0,00), y € Y} C (R",d)
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Damian Sawicki Warped cones, coarse embeddings and property A
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Warped cones, coarse embeddings and property A
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e 'Y — compact subset of S” C R"+1

@ X — infinite cone over Y with the induced I action:

{ty [ t€[0,00), y € Y} C (R",d)
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e 'Y — compact subset of S” C R"+1

@ X — infinite cone over Y with the induced I action:
{ty | t €[0,00), y € Y} C (R",d)

e Notation: OY := (X, d), OrY = (X, dr).

Non-example: the case of a finite I

If T is finite, then OrY ~ O Y/T, e.g..
e for the antipodal action Zy~S": Oz7,5" ~ ORP",
e for rational 8: ©;S! = (’)ZkS1 ~ O SYZ ~ OS! = R2.
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Property A

[ is amenable if for each € > 0 and finite R C I there exists
w € S(¢1(T)) such that:

o |lp—sul| <eifseRr; @ supp  is finite.

Definition (G. Yu, 2001)

(X, d) has property A if for each € > 0 and R < oo there is a
map X 3 x — A, € S(¢1(X)) and a constant S < oo such that:

o [Ax— A/l <eifd(x,y) <R;
e supp Ax C B(x,S).

Amenability = property A

Putting A, = yu, we get:
o supp A, = ysuppp € vB(e,S) = B(7,S),
o [[Ay — Aysll = llvp — ysull = llp — spll < e.
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Property A — equivalent characterisations

@ For a group I':

o '™fl is amenable.

o CT is exact.

@ For any (bounded geometry) metric space X:

o J(k,) positive definite kernels k,: X x X — [—1,1], with
controlled support, converging to 1 uniformly on controlled
sets.

o All ghost operators in the uniform Roe algebra Cf(X) are
compact (Roe-Willett, 2013).

Damian Sawicki Large scale geometry of actions on compact spaces



Theorem (Roe, 2005)

If T~Y is amenable and Lipschitz, then OrY has property A.
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Theorem (Roe, 2005)
If T~Y is amenable and Lipschitz, then OrY has property A.

OY has A = (A%) € Prob(OY) s.t. || Ak — Ak || < 1/k if
d(x,x') < k for x,x' € OY and supp AK C B(x, Sk).

\
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Theorem (Roe, 2005)
If T™Y is amenable and Lipschitz, then OrY has property A.

Proof
OY has A = (A%) € Prob(OY) s.t. || Ak — Ak || < 1/k if
d(x,x') < k for x,x' € OY and supp AK C B(x, Sk).

prz Y — Prob(T) st [|u(y)s™ — pui(sy)llprob(ry < 1/1-
Can assume y(y) € Prob(B(1r, C)).

\
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Theorem (Roe, 2005)
If T™Y is amenable and Lipschitz, then OrY has property A.

Proof
OY has A = (A%) € Prob(OY) s.t. || Ak — Ak || < 1/k if
d(x,x') < k for x,x' € OY and supp AK C B(x, Sk).

prz Y — Prob(T) st [|u(y)s™ — pui(sy)llprob(ry < 1/1-
Can assume y(y) € Prob(B(1r, C)).

By = > wy))- AL
’YEB(].,C[)

\
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Theorem (Roe, 2005)
If T™Y is amenable and Lipschitz, then OrY has property A.

Proof

OY has A = (A%) € Prob(OY) s.t. || Ak — Ak || < 1/k if
d(x,x') < k for x,x' € OY and supp AK C B(x, Sk).

prz Y — Prob(T) st [|u(y)s™ — pui(sy)llprob(ry < 1/1-
Can assume y(y) € Prob(B(1r, C)).

By =Y wmy))- Ay,

WEB(]':C/)

1B = Bl = || > (ml)(n) = pu(sx)(ys™)) - Al <

< () = pi(s)s] -1 < 1/1

\
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Proof — another estimate

185 — BE, I <> m(y)(7) - A8y — Aloyll+
ol

+> u(y)() = mly) ()] -1
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Proof — another estimate

1By — Byl <ZM/ Al — Al +
+Z|MI YY) = m(y) ()] - 1

(k> Lip(B(1,G)) - R) < 1/k +  sup li(y) = m(y)ll
d(y.y)<R/t
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||Btg/7 - t’y ” <Z:U'/ '7) ”A'yty fyt’y ||+

+Z i(y) () = iy ) ()] - 1

(k> Lip(B(1, C)) - <1/k+ sup  li(y) — (Yl
d(y,y')<R/t

(uniform continuity) s 1/k+0
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property A

expander
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only cpct

ghosts
‘o (jIrt A coarse coarse X =T Novikov
property embeddability B-C conj. conjecture

counterexamples .-~ non-cpct ghost
P

to coarse B-C con'.\ projections

coarse
<——— expander

non—embeddability/

logarithmic
Euclidean distortion
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only cpct
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P

to coarse B-C con'.\ projections

coarse
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Coarse embeddability =% property A

Definition (Gromov)

f: X = Y is a coarse embedding if for all sequences (x,), (x},)

d(xn,x5) — 00 <= d(f(xa), f(x})) = oo.
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Coarse embeddability =% property A

f:X— Y is a coarse embedding if for all sequences (x,), (x},)

d(xn,x5) — 00 <= d(f(xa), f(x})) = oo.

o [[,Z5 (Nowak, 2007)
o [[, G, with G, =T /I, such that:
o ker(Gni1 — Gp) =Tp/T o1 ~ Z&
(Arzhantseva—Guentner—Spakula, 2012; Ostrovskii, 2012)
o ker(Gni1 — Gp) = /Ty ~ Zf (Khukhro, 2014)
e permanence under:
o I x A for amenable A (Khukhro, 2012)
e AT for abelian A (Khukhro—Cave—Dreesen, 2015)

@ Osajda monsters (2014).
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Coarse embeddability =% property A

o [],Z5 (Nowak, 2007)
o [[, G, with G, =T /I, such that:
o ker(Gpy1 — Gp) =Tp/Thi1 = Zé‘"
(Arzhantseva-Guentner—Spakula, 2012; Ostrovskii, 2012)
o ker(Gpy1 — Gp) =T,/ i1 >~ ka"" (Khukhro, 2014)
e permanence under:
@ I x A for amenable A (Khukhro, 2012)
o AT for abelian A (Khukhro—Cave—Dreesen, 2015)

@ Osajda monsters (2014).

Theorem (S, 2015)

For Y = lim G, with G,, as above, the warped cone OrY embeds
coarsely into the Hilbert space but does not have property A.
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Coarse embeddablity =% property A

Theorem (S, 2015)

For Y = lim G,, with G,, as above, the warped cone OrY embeds
coarsely into the Hilbert space but does not have property A.

Theorem (Roe, 2005; S, 2015)

Let I act essentially free by pmp homeomorphisms on (Y, u).
Then:

@ if OrY has property A, then I' is amenable;

@ if OrY embeds coarsely into a Hilbert space, then I has the
Haagerup property.
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only cpct
ghosts

!

coarse coarse X =T Novikov
property A —

— —
embeddability B-C conj. conjecture

counterexamples ? non-cpct ghost
to coarse B—C Con& projections
coarse \ warped
non-embeddability cones
logarithmic

Euclidean distortion
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Warped cones over actions with spectral gaps

Definition (Gromov)

f: X — Y is a coarse embedding if there are non-decreasing
functions p_, p4+: Ry — R with lim,_, p+(r) = 0o such that

p—(d(x,x')) < d(f(x), f(x')) < pi(d(x,x)).
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Warped cones over actions with spectral gaps
Definition (Gromov)

f: X — Y is a coarse embedding if there are non-decreasing
functions p_, p4+: Ry — R with lim,_, p+(r) = 0o such that

p—(d(x,x')) < d(f(x), f(x')) < pi(d(x,x)).

v

The action of I' on (Y, 1) has a spectral gap (in Lo(Y, 1))
if there exists x > 0 such that Vv € L3(Y, u):

max ||v — 7(s)v|| > &l|v]|.
SES
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Warped cones over actions with spectral gaps
Definition (Gromov)

f: X — Y is a coarse embedding if there are non-decreasing
functions p_, p4+: Ry — R with lim,_, p+(r) = 0o such that

p—(d(x,x')) < d(f(x), f(x')) < pi(d(x,x)).

v

The action of [ on (Y, 1) has a spectral gap in L,(Y, u; E)
if there exists £ > 0 such that Vv € LY(Y, u; E):

max ||v — w(s)v|| > kl|v]|.
sES
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Warped cones over actions with spectral gaps
Definition (Gromov)

f: X — Y is a coarse embedding if there are non-decreasing
functions p_, p4+: Ry — R with lim,_, p+(r) = 0o such that

p—(d(x,x')) < d(f(x), f(x')) < pi(d(x,x)). )

The action of [ on (Y, 1) has a spectral gap in L,(Y, u; E)
if there exists £ > 0 such that Vv € LY(Y, u; E):

max ||v — w(s)v|| > kl|v]|.
sES

Theorem (Nowak-S, 2015)

If T~Y has a spectral gap in Ly(Y, p; E), then OrY does not
embed coarsely into E.
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Warped cones over actions with spectral gaps — corollary

Theorem (Nowak-S, 2015)

If T~Y has a spectral gap in Ly(Y, p; E), then OrY does not
embed coarsely into E.
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Warped cones over actions with spectral gaps — corollary
Theorem (Nowak-S, 2015)

If T~Y has a spectral gap in Ly(Y, p; E), then OrY does not
embed coarsely into E.

Corollary 1

Warped cones over actions with a spectral gap do not embed
coarsely into any L,(2,v), p € [1,00).
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Warped cones over actions with spectral gaps — corollary
Theorem (Nowak-S, 2015)

If T~Y has a spectral gap in Ly(Y, p; E), then OrY does not
embed coarsely into E.

Corollary 1

Warped cones over actions with a spectral gap do not embed
coarsely into any L,(2,v), p € [1,00).

Corollary 2

Warped cones over ergodic actions of groups with Lafforgue’s
strong Banach property (T) with respect to Banach spaces of
non-trivial type do not embed coarsely into such Banach spaces.

<
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Warped cones over actions with spectral gaps — examples

Example: the following do not embed coarsely into any L,

4 OSLQ(Z)’]IQ;
o OSLk(Z)Tkv k Z 3;
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Warped cones over actions with spectral gaps — examples
Example: the following do not embed coarsely into any L,

4 OSLQ(Z)’]IQ;
o OSLk(Z)Tkv k Z 3;
...into a large class of Banach spaces &

(*] OSL3(Z) Y.
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Warped cones over actions with spectral gaps — examples
Example: the following do not embed coarsely into any L,

*] OSLQ(Z)’]IQ;
(*] OSLk(Z)Tkv k Z 3;

i
...into a large class of Banach spaces &

(*] OSL3(Z) Y.

Theorem (Bourgain—Gamburd, 2008)

There exist discrete free subgroups [y in SU(2) such that the
action has a spectral gap.

A\

e Op, SU(2).

S
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f — coarse embedding into E
p—(d(x,x")) < [If(x) = F(x')lle < p+(d(x, X))

fi: Y — E given by fi(y) = f(ty), f: € Lp(Y, i, E)

y
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Proof

f — coarse embedding into E
p—(d(x,x")) < [If(x) = F(x')lle < p+(d(x, X))

fi: Y — E given by fi(y) = f(ty), f: € Lp(Y, i, E)
Aim:

const > max ||fy — sft|| > k|| ]| —r00
seS

y
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Proof

f — coarse embedding into E
p—(d(x,x")) < [If(x) = F(x')lle < p+(d(x, X))

fi: Y — E given by fi(y) = f(ty), f: € Lp(Y, i, E)
Aim:

const > max ||fy — sft|| > k|| ]| —r00
seS

Ifi = shi|]P = /Y 16(y) = s )

< /YP+(1)p = p+(1)°

y
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Proof

f — coarse embedding into E
p—(d(x,x")) < [If(x) = F(x')lle < p+(d(x, X))

fi: Y — E given by fi(y) = f(ty), f: € Lp(Y, i, E)
Aim:

const > max ||fy — sft|| > k|| ]| —r00
seS

I — shllP = /Y 16(y) — (s~ 1)
< /YP+(1)p = p+(1)°

J e —amie <2t [ 1aelE +1R6)IP

f2P ‘fth

y
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Finishing lemma

t—o0

| — || == oo (the norm in Ly(Y x Y, x p, E)).

o Let O ={(x,y) [ x =y}

o uxu(0)=0
e Fact. For (x,y) € Y x Y\ O, we have dr(tx, ty) 2%
o Hence ||fi(x) — fi(y)|e == oo. 0
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Finishing lemma

t—o0

| — || == oo (the norm in Ly(Y x Y, x p, E)).

o Let O ={(x,y) [ x =y}

o uxu(0)=0
e Fact. For (x,y) € Y x Y\ O, we have dr(tx, ty) 2%
o Hence ||fi(x) — fi(y)|e == oo. 0

”
Corollary

A quantitative version of the Lemma (under some extra
assumptions) = the distortion of tY C OrY is Q(log t).
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Thank you!
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