Large scale geometry of actions on compact spaces

Damian Sawicki

Institute of Mathematics Polish Academy of Sciences

14 April 2016

Partly based on joint work with Piotr W. Nowak.

•
$$\Gamma = \langle S
angle$$
, $|S| < \infty$

• $\Gamma \curvearrowright X$ (by bijections)

Schreier graph for the action $\Gamma \frown X$

$$V = X$$
$$E = \{\{x, sx\} \mid x \in X, s \in S\}$$

•
$$\Gamma = \langle S \rangle$$
, $|S| < \infty$

• $\Gamma \curvearrowright X$ (by bijections)

Schreier graph for the action $\Gamma \frown X$

$$V = X$$
$$E = \{\{x, sx\} \mid x \in X, s \in S\}$$

 \implies metric d_{Sch} on X.

•
$$\Gamma = \langle S \rangle$$
, $|S| < \infty$

• $\Gamma \curvearrowright X$ (by bijections)

Schreier graph for the action $\Gamma \frown X$

$$V = X$$
$$E = \{\{x, sx\} \mid x \in X, s \in S\}$$

 \implies metric d_{Sch} on X. For $X = \Gamma$ we obtain $Cay(\Gamma, S)$ with the *right*-invariant metric.

•
$$\Gamma = \langle S \rangle$$
, $|S| < \infty$

• $\Gamma \curvearrowright X$ (by bijections)

Schreier graph for the action $\Gamma \frown X$

$$V = X$$
$$E = \{\{x, sx\} \mid x \in X, s \in S\}$$

 \implies metric d_{Sch} on X. For $X = \Gamma$ we obtain $Cay(\Gamma, S)$ with the *right*-invariant metric.

 Assume X is a metric space (X, d) (and the action is by homeomorphisms).

Definition (Roe, 2005)

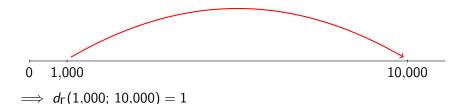
Warped metric d_{Γ} is the largest metric satisfying:

 $d_{\Gamma} \leq \min(d, d_{Sch}).$

- (X, d) geodesic space
- For each pair of points {*x*, *sx*} glue an interval of length 1 between *x* and *sx*.
- Calculate the path metric in the space with all the extra intervals.
- Its restriction to X is the warped metric d_{Γ} !

Let $X = \mathbb{R}_+$ and $\Gamma = \langle s \rangle = \mathbb{Z} \cap \mathbb{R}_+$ s.t. $sx = 10 \cdot x$.

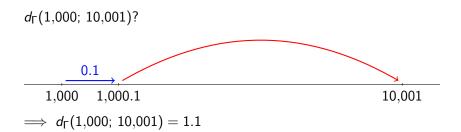
Let $X = \mathbb{R}_+$ and $\Gamma = \langle s \rangle = \mathbb{Z} \curvearrowright \mathbb{R}_+$ s.t. $sx = 10 \cdot x$.



Let $X = \mathbb{R}_+$ and $\Gamma = \langle s \rangle = \mathbb{Z} \frown \mathbb{R}_+$ s.t. $sx = 10 \cdot x$.

 $d_{\Gamma}(1,000; 10,001)?$

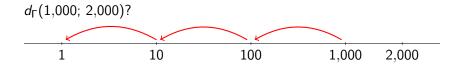
Let $X = \mathbb{R}_+$ and $\Gamma = \langle s \rangle = \mathbb{Z} \cap \mathbb{R}_+$ s.t. $sx = 10 \cdot x$.



Let $X = \mathbb{R}_+$ and $\Gamma = \langle s \rangle = \mathbb{Z} \frown \mathbb{R}_+$ s.t. $sx = 10 \cdot x$.

 $d_{\Gamma}(1,000; 2,000)?$

Let $X = \mathbb{R}_+$ and $\Gamma = \langle s \rangle = \mathbb{Z} \frown \mathbb{R}_+$ s.t. $sx = 10 \cdot x$.



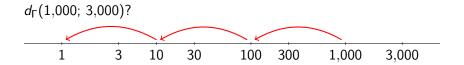
Let $X = \mathbb{R}_+$ and $\Gamma = \langle s \rangle = \mathbb{Z} \curvearrowright \mathbb{R}_+$ s.t. $sx = 10 \cdot x$.

 $\implies d_{\Gamma}(1,000; 2,000) = 7$

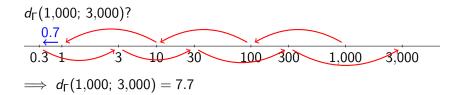
Let $X = \mathbb{R}_+$ and $\Gamma = \langle s \rangle = \mathbb{Z} \cap \mathbb{R}_+$ s.t. $sx = 10 \cdot x$.

 $d_{\Gamma}(1,000; 3,000)?$

Let $X = \mathbb{R}_+$ and $\Gamma = \langle s \rangle = \mathbb{Z} \frown \mathbb{R}_+$ s.t. $sx = 10 \cdot x$.



Let $X = \mathbb{R}_+$ and $\Gamma = \langle s \rangle = \mathbb{Z} \curvearrowright \mathbb{R}_+$ s.t. $sx = 10 \cdot x$.



- (X, d) geodesic space
- For each pair of points {*x*, *sx*} glue an interval of length 1 between *x* and *sx*.
- Calculate the path metric in the space with all the extra intervals.
- Its restriction to X is the warped metric d_{Γ} !
- Example √

- (X, d) geodesic space
- For each pair of points {*x*, *sx*} glue an interval of length 1 between *x* and *sx*.
- Calculate the path metric in the space with all the extra intervals.
- Its restriction to X is the warped metric d_{Γ} !
- Example √

Corollary

Being a quasi-geodesic space is preserved by warping.

- (X, d) geodesic space
- For each pair of points {*x*, *sx*} glue an interval of length 1 between *x* and *sx*.
- Calculate the path metric in the space with all the extra intervals.
- Its restriction to X is the warped metric d_{Γ} !
- Example √

Corollary

Being a quasi-geodesic space is preserved by warping.

Example (Hyun Jeong Kim, 2006)

 $X = \mathbb{R}^2$, $\Gamma = \mathbb{Z}$ acts by rotating by angle θ . There are infinitely many non-quasi-isometric warped planes $(\mathbb{R}^2, d_{\mathbb{Z}})$ depending on θ .

$d_{\Gamma}(x,sx) \leq 1$

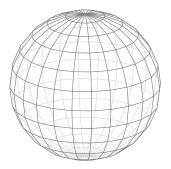
$d_{\Gamma}(x,sx) \leq 1$

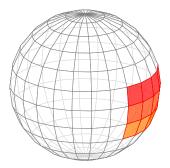
- $\implies \operatorname{dist}(\operatorname{id}_{(X,d_{\Gamma})},\gamma) \leq |\gamma|$
- \implies Rich Roe algebras.

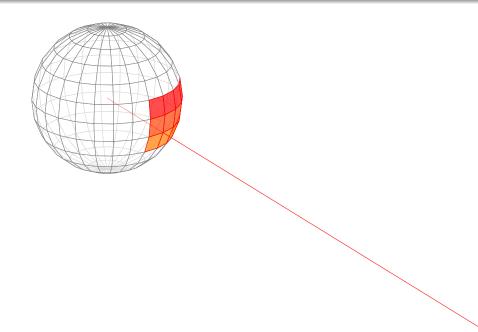
Conjecture (Druțu-Nowak, 2015; cf. Roe, 2005)

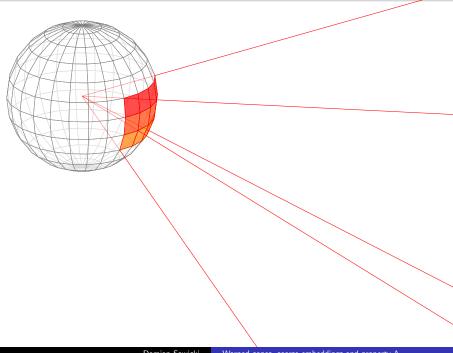
Warped cones over actions with a spectral gap violate the coarse Baum–Connes conjecture.

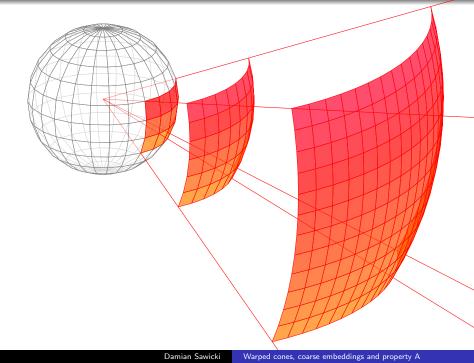
- $\Gamma \frown Y$ compact subset of $S^n \subseteq \mathbb{R}^{n+1}$
- X infinite cone over Y with the induced Γ action: $\{ty \mid t \in [0, \infty), y \in Y\} \subseteq (\mathbb{R}^{n+1}, d)$











- $\Gamma \frown Y$ compact subset of $S^n \subseteq \mathbb{R}^{n+1}$
- X infinite cone over Y with the induced Γ action: $\{ty \mid t \in [0, \infty), y \in Y\} \subseteq (\mathbb{R}^{n+1}, d)$

- $\Gamma \frown Y$ compact subset of $S^n \subseteq \mathbb{R}^{n+1}$
- X infinite cone over Y with the induced Γ action:

$$\{ty \mid t \in [0,\infty), y \in Y\} \subseteq (\mathbb{R}^{n+1},d)$$

• Notation: $\mathcal{O}Y := (X, d)$, $\mathcal{O}_{\Gamma}Y := (X, d_{\Gamma})$.

Non-example: the case of a finite Γ

If Γ is finite, then $\mathcal{O}_{\Gamma} Y \simeq \mathcal{O} Y / \Gamma$, e.g.:

- for the antipodal action $\mathbb{Z}_2 \cap S^n$: $\mathcal{O}_{\mathbb{Z}_2} S^n \simeq \mathcal{O} \mathbb{R} \mathsf{P}^n$;
- for rational θ : $\mathcal{O}_{\mathbb{Z}}S^1 = \mathcal{O}_{\mathbb{Z}_k}S^1 \simeq \mathcal{O}S^1/\mathbb{Z}_k \simeq \mathcal{O}S^1 = \mathbb{R}^2$.

Property A

 Γ is **amenable** if for each $\varepsilon > 0$ and finite $R \subseteq \Gamma$ there exists $\mu \in S(\ell_1(\Gamma))$ such that:

• $\|\mu - s\mu\| \le \varepsilon$ if $s \in R$; • supp μ is finite.

Definition (G. Yu, 2001)

(X, d) has **property A** if for each $\varepsilon > 0$ and $R < \infty$ there is a map $X \ni x \mapsto A_x \in S(\ell_1(X))$ and a constant $S < \infty$ such that:

•
$$||A_x - A_y|| \le \varepsilon$$
 if $d(x, y) \le R$;

• supp $A_x \subseteq B(x, S)$.

Amenability \implies property A

Putting $A_{\gamma} = \gamma \mu$, we get:

•
$$\operatorname{supp} A_{\gamma} = \gamma \operatorname{supp} \mu \subseteq \gamma B(e,S) = B(\gamma,S),$$

•
$$\|A_{\gamma} - A_{\gamma s}\| = \|\gamma \mu - \gamma s \mu\| = \|\mu - s \mu\| \le \varepsilon.$$

- For a group Γ:
 - $\Gamma \frown \beta \Gamma$ is amenable.
 - $C_r^*\Gamma$ is exact.
- For any (bounded geometry) metric space X:
 - ∃(k_n) positive definite kernels k_n: X × X → [-1, 1], with controlled support, converging to 1 uniformly on controlled sets.
 - All ghost operators in the uniform Roe algebra $C_u^*(X)$ are compact (Roe–Willett, 2013).

If $\Gamma \frown Y$ is amenable and Lipschitz, then $\mathcal{O}_{\Gamma}Y$ has property A.

If $\Gamma \frown Y$ is amenable and Lipschitz, then $\mathcal{O}_{\Gamma}Y$ has property A.

Proof

$$\mathcal{O}Y$$
 has $A \implies (A_x^k) \in \operatorname{Prob}(\mathcal{O}Y)$ s.t. $||A_x^k - A_{x'}^k|| \le 1/k$ if $d(x, x') \le k$ for $x, x' \in \mathcal{O}Y$ and $\operatorname{supp} A_x^k \subseteq B(x, S_k)$.

If $\Gamma \frown Y$ is amenable and Lipschitz, then $\mathcal{O}_{\Gamma}Y$ has property A.

Proof

$$\mathcal{O}Y$$
 has $A \implies (A_x^k) \in \operatorname{Prob}(\mathcal{O}Y)$ s.t. $||A_x^k - A_{x'}^k|| \le 1/k$ if $d(x, x') \le k$ for $x, x' \in \mathcal{O}Y$ and $\operatorname{supp} A_x^k \subseteq B(x, S_k)$.
 $\mu_l \colon Y \to \operatorname{Prob}(\Gamma)$ s.t. $||\mu_l(y)s^{-1} - \mu_l(sy)||_{\operatorname{Prob}(\Gamma)} \le 1/l$.
Can assume $\mu_l(y) \in \operatorname{Prob}(B(1_{\Gamma}, C_l))$.

If $\Gamma \frown Y$ is amenable and Lipschitz, then $\mathcal{O}_{\Gamma}Y$ has property A.

Proof

$$\mathcal{O}Y$$
 has $A \implies (A_x^k) \in \operatorname{Prob}(\mathcal{O}Y)$ s.t. $||A_x^k - A_{x'}^k|| \le 1/k$ if $d(x, x') \le k$ for $x, x' \in \mathcal{O}Y$ and $\operatorname{supp} A_x^k \subseteq B(x, S_k)$.
 $\mu_l \colon Y \to \operatorname{Prob}(\Gamma)$ s.t. $||\mu_l(y)s^{-1} - \mu_l(sy)||_{\operatorname{Prob}(\Gamma)} \le 1/l$.
Can assume $\mu_l(y) \in \operatorname{Prob}(B(1_{\Gamma}, C_l))$.

$$B^m_{ty} = \sum_{\gamma \in B(1,C_l)} \mu_l(y)(\gamma) \cdot A^k_{\gamma ty}$$

If $\Gamma \frown Y$ is amenable and Lipschitz, then $\mathcal{O}_{\Gamma}Y$ has property A.

Proof

$$\begin{array}{l} \mathcal{O}Y \text{ has } A \implies (A_x^k) \in \operatorname{Prob}(\mathcal{O}Y) \text{ s.t. } \|A_x^k - A_{x'}^k\| \leq 1/k \text{ if } \\ d(x,x') \leq k \text{ for } x,x' \in \mathcal{O}Y \text{ and } \operatorname{supp} A_x^k \subseteq B(x,S_k). \\ \mu_I \colon Y \to \operatorname{Prob}(\Gamma) \text{ s.t. } \|\mu_I(y)s^{-1} - \mu_I(sy)\|_{\operatorname{Prob}(\Gamma)} \leq 1/I. \\ \text{Can assume } \mu_I(y) \in \operatorname{Prob}(B(1_{\Gamma},C_I)). \\ B_{ty}^m = \sum_{\gamma \in B(1,C_I)} \mu_I(y)(\gamma) \cdot A_{\gamma ty}^k \\ \|B_x^m - B_{sx}^m\| = \|\sum_{\gamma \in B(1,C_I)} (\mu_I(x)(\gamma) - \mu_I(sx)(\gamma s^{-1})) \cdot A_{\gamma x}^k\| \leq 1/k. \end{aligned}$$

 $\leq \|\mu_l(x) - \mu_l(sx)s\| \cdot 1 \leq 1/l$

 γ

Proof – another estimate

$$egin{aligned} &\|B^m_{ty}-B^m_{t'y'}\|\leq \sum_{\gamma}\mu_l(y)(\gamma)\cdot\|A^k_{\gamma ty}-A^k_{\gamma t'y'}\|+\ &+\sum_{\gamma}|\mu_l(y)(\gamma)-\mu_l(y')(\gamma)|\cdot1 \end{aligned}$$

Proof – another estimate

$$\|B_{ty}^{m} - B_{t'y'}^{m}\| \leq \sum_{\gamma} \mu_{l}(y)(\gamma) \cdot \|A_{\gamma ty}^{k} - A_{\gamma t'y'}^{k}\| + \sum_{\gamma} |\mu_{l}(y)(\gamma) - \mu_{l}(y')(\gamma)| \cdot 1$$

(k > Lip(B(1, C_{l})) \cdot R) $\leq 1/k + \sup_{d(y,y') \leq R/t} \|\mu_{l}(y) - \mu_{l}(y')\|$

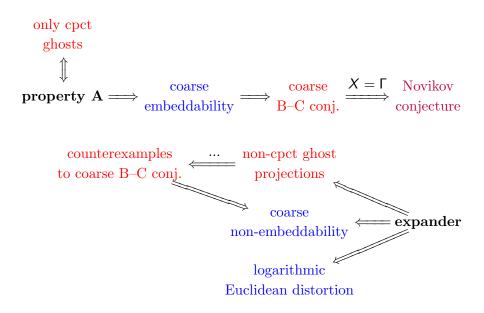
Proof – another estimate

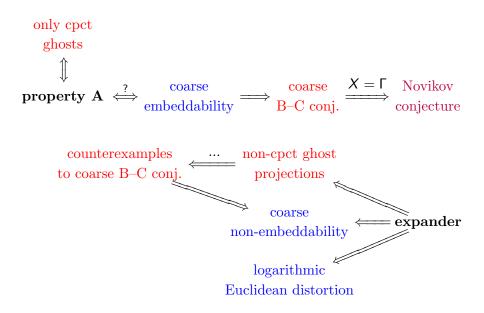
$$\begin{split} \|B_{ty}^{m} - B_{t'y'}^{m}\| &\leq \sum_{\gamma} \mu_{l}(y)(\gamma) \cdot \|A_{\gamma ty}^{k} - A_{\gamma t'y'}^{k}\| + \\ &+ \sum_{\gamma} |\mu_{l}(y)(\gamma) - \mu_{l}(y')(\gamma)| \cdot 1 \\ (k > Lip(B(1, C_{l})) \cdot R) &\leq 1/k + \sup_{d(y, y') \leq R/t} \|\mu_{l}(y) - \mu_{l}(y')\| \\ (\text{uniform continuity}) \quad \xrightarrow{t \to \infty} 1/k + 0 \end{split}$$

property A

expander

Damian Sawicki Large scale geometry of actions on compact spaces





Coarse embeddability \implies property A

Definition (Gromov)

 $f: X \to Y$ is a **coarse embedding** if for all sequences (x_n) , (x'_n)

 $d(x_n, x_n') \to \infty \iff d(f(x_n), f(x_n')) \to \infty.$

Coarse embeddability \implies property A

Definition (Gromov)

 $f: X \to Y$ is a **coarse embedding** if for all sequences (x_n) , (x'_n)

$$d(x_n, x'_n) \to \infty \iff d(f(x_n), f(x'_n)) \to \infty.$$

Examples

- $\coprod_n \mathbb{Z}_2^n$ (Nowak, 2007)
- $\prod_n G_n$ with $G_n = \Gamma/\Gamma_n$ such that:
 - ker $(G_{n+1} \rightarrow G_n) = \Gamma_n / \Gamma_{n+1} \simeq \mathbb{Z}_2^{k_n}$ (Arzhantseva–Guentner–Špakula, 2012; Ostrovskii, 2012)
 - ker $(G_{n+1} \rightarrow G_n) = \Gamma_n / \Gamma_{n+1} \simeq \mathbb{Z}_{m_n}^{k_n}$ (Khukhro, 2014)
 - permanence under:
 - $\Gamma \rtimes \Delta$ for amenable Δ (Khukhro, 2012)
 - $A \wr \Gamma$ for abelian A (Khukhro–Cave–Dreesen, 2015)

• Osajda monsters (2014).

Coarse embeddability \implies property A

Examples

- $\coprod_n \mathbb{Z}_2^n$ (Nowak, 2007)
- $\prod_n G_n$ with $G_n = \Gamma / \Gamma_n$ such that:
 - ker $(G_{n+1} \rightarrow G_n) = \Gamma_n / \Gamma_{n+1} \simeq \mathbb{Z}_2^{k_n}$ (Arzhantseva-Guentner-Špakula, 2012; Ostrovskii, 2012)
 - ker $(G_{n+1} \rightarrow G_n) = \Gamma_n / \Gamma_{n+1} \simeq \mathbb{Z}_{m_n}^{k_n}$ (Khukhro, 2014)
 - permanence under:
 - $\Gamma \rtimes \Delta$ for amenable Δ (Khukhro, 2012)
 - $A \wr \Gamma$ for abelian A (Khukhro–Cave–Dreesen, 2015)

• Osajda monsters (2014).

Theorem (S, 2015)

For $Y = \lim_{n \to \infty} G_n$ with G_n as above, the warped cone $\mathcal{O}_{\Gamma} Y$ embeds coarsely into the Hilbert space but does not have property A.

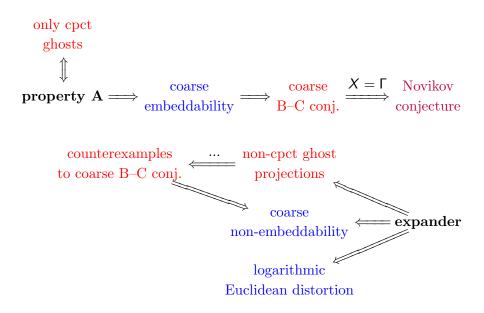
Theorem (S, 2015)

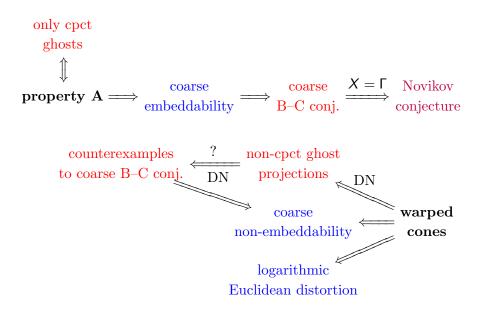
For $Y = \lim_{n \to \infty} G_n$ with G_n as above, the warped cone $\mathcal{O}_{\Gamma}Y$ embeds coarsely into the Hilbert space but does not have property A.

Theorem (Roe, 2005; S, 2015)

Let Γ act essentially free by pmp homeomorphisms on (Y, μ) . Then:

- if $\mathcal{O}_{\Gamma}Y$ has property A, then Γ is amenable;
- if O_ΓY embeds coarsely into a Hilbert space, then Γ has the Haagerup property.





 $f: X \to Y$ is a **coarse embedding** if there are non-decreasing functions $\rho_{-}, \rho_{+}: \mathbb{R}_{+} \to \mathbb{R}_{+}$ with $\lim_{r \to \infty} \rho_{\pm}(r) = \infty$ such that $\rho_{-}(d(x, x')) \leq d(f(x), f(x')) \leq \rho_{+}(d(x, x')).$

 $f: X \to Y$ is a **coarse embedding** if there are non-decreasing functions $\rho_{-}, \rho_{+}: \mathbb{R}_{+} \to \mathbb{R}_{+}$ with $\lim_{r \to \infty} \rho_{\pm}(r) = \infty$ such that $\rho_{-}(d(x, x')) \leq d(f(x), f(x')) \leq \rho_{+}(d(x, x')).$

Definition

The action of Γ on (Y, μ) has a spectral gap (in $L_2(Y, \mu)$) if there exists $\kappa > 0$ such that $\forall v \in L_2^0(Y, \mu)$:

$$\max_{s\in S} \|v - \pi(s)v\| \ge \kappa \|v\|.$$

 $f: X \to Y$ is a **coarse embedding** if there are non-decreasing functions $\rho_{-}, \rho_{+}: \mathbb{R}_{+} \to \mathbb{R}_{+}$ with $\lim_{r \to \infty} \rho_{\pm}(r) = \infty$ such that $\rho_{-}(d(x, x')) \leq d(f(x), f(x')) \leq \rho_{+}(d(x, x')).$

Definition

The action of Γ on (Y, μ) has a spectral gap in $L_p(Y, \mu; E)$ if there exists $\kappa > 0$ such that $\forall v \in L_p^0(Y, \mu; E)$:

$$\max_{s\in S} \|v - \pi(s)v\| \ge \kappa \|v\|.$$

 $f: X \to Y$ is a **coarse embedding** if there are non-decreasing functions $\rho_{-}, \rho_{+}: \mathbb{R}_{+} \to \mathbb{R}_{+}$ with $\lim_{r \to \infty} \rho_{\pm}(r) = \infty$ such that $\rho_{-}(d(x, x')) \leq d(f(x), f(x')) \leq \rho_{+}(d(x, x')).$

Definition

The action of Γ on (Y, μ) has a spectral gap in $L_p(Y, \mu; E)$ if there exists $\kappa > 0$ such that $\forall v \in L_p^0(Y, \mu; E)$:

$$\max_{s\in S} \|v - \pi(s)v\| \ge \kappa \|v\|.$$

Theorem (Nowak–S, 2015)

If $\Gamma \curvearrowright Y$ has a spectral gap in $L_p(Y, \mu; E)$, then $\mathcal{O}_{\Gamma}Y$ does not embed coarsely into E.

Theorem (Nowak–S, 2015)

If $\Gamma \frown Y$ has a spectral gap in $L_p(Y, \mu; E)$, then $\mathcal{O}_{\Gamma}Y$ does not embed coarsely into E.

Theorem (Nowak–S, 2015)

If $\Gamma \frown Y$ has a spectral gap in $L_p(Y, \mu; E)$, then $\mathcal{O}_{\Gamma}Y$ does not embed coarsely into E.

Corollary 1

Warped cones over actions with a spectral gap do not embed coarsely into any $L_p(\Omega, \nu)$, $p \in [1, \infty)$.

Theorem (Nowak–S, 2015)

If $\Gamma \frown Y$ has a spectral gap in $L_p(Y, \mu; E)$, then $\mathcal{O}_{\Gamma}Y$ does not embed coarsely into E.

Corollary 1

Warped cones over actions with a spectral gap do not embed coarsely into any $L_p(\Omega, \nu)$, $p \in [1, \infty)$.

Corollary 2

Warped cones over ergodic actions of groups with Lafforgue's strong Banach property (T) with respect to Banach spaces of non-trivial type do not embed coarsely into such Banach spaces.

Warped cones over actions with spectral gaps - examples

Example: the following do not embed coarsely into any L_p

- $\mathcal{O}_{\mathsf{SL}_2(\mathbb{Z})}\mathbb{T}^2$;
- $\mathcal{O}_{\mathsf{SL}_k(\mathbb{Z})}\mathbb{T}^k$, $k \geq 3$;

Warped cones over actions with spectral gaps - examples

Example: the following do not embed coarsely into any L_p

• $\mathcal{O}_{\mathsf{SL}_2(\mathbb{Z})}\mathbb{T}^2$;

•
$$\mathcal{O}_{\mathsf{SL}_k(\mathbb{Z})}\mathbb{T}^k$$
, $k \geq 3$;

...into a large class of Banach spaces \mathcal{E}_4

•
$$\mathcal{O}_{SL_3(\mathbb{Z})}Y$$
.

Warped cones over actions with spectral gaps - examples

Example: the following do not embed coarsely into any L_p

• $\mathcal{O}_{\mathsf{SL}_2(\mathbb{Z})}\mathbb{T}^2$;

•
$$\mathcal{O}_{\mathsf{SL}_k(\mathbb{Z})}\mathbb{T}^k$$
, $k \geq 3$;

...into a large class of Banach spaces \mathcal{E}_4

•
$$\mathcal{O}_{SL_3(\mathbb{Z})}Y$$
.

Theorem (Bourgain–Gamburd, 2008)

There exist discrete free subgroups \mathbb{F}_k in SU(2) such that the action has a spectral gap.

•
$$\mathcal{O}_{\mathbb{F}_k}$$
 SU(2).

f – coarse embedding into E

$$\rho_{-}(d(x,x')) \leq \|f(x) - f(x')\|_{E} \leq \rho_{+}(d(x,x'))$$

 $f_t \colon Y \to E$ given by $f_t(y) = f(ty)$, $f_t \in L_p(Y, \mu, E)$

f - coarse embedding into E $\rho_{-}(d(x, x')) \leq ||f(x) - f(x')||_{E} \leq \rho_{+}(d(x, x'))$ $f_{t} \colon Y \to E$ given by $f_{t}(y) = f(ty)$, $f_{t} \in L_{p}(Y, \mu, E)$ Aim:

$$const \ge \max_{s \in S} \|f_t - sf_t\| \ge \kappa \|f_t\| {\longrightarrow} \infty$$

f - coarse embedding into E $\rho_{-}(d(x, x')) \leq ||f(x) - f(x')||_{E} \leq \rho_{+}(d(x, x'))$ $f_{t} \colon Y \to E$ given by $f_{t}(y) = f(ty)$, $f_{t} \in L_{p}(Y, \mu, E)$ Aim:

$$const \ge \max_{s \in S} \|f_t - sf_t\| \ge \kappa \|f_t\| {\longrightarrow} \infty$$

$$egin{aligned} \|f_t - sf_t\|^p &= \int_Y \|f_t(y) - f_t(s^{-1}y)\|_E^p \ &\leq \int_Y
ho_+(1)^p &=
ho_+(1)^p \end{aligned}$$

f - coarse embedding into E $\rho_{-}(d(x, x')) \leq ||f(x) - f(x')||_{E} \leq \rho_{+}(d(x, x'))$ $f_{t} \colon Y \to E$ given by $f_{t}(y) = f(ty)$, $f_{t} \in L_{p}(Y, \mu, E)$ Aim:

$$const \geq \max_{s \in S} \|f_t - sf_t\| \geq \kappa \|f_t\| {\longrightarrow} \infty$$

$$egin{aligned} \|f_t - sf_t\|^p &= \int_Y \|f_t(y) - f_t(s^{-1}y)\|_E^p \ &\leq \int_Y
ho_+(1)^p &=
ho_+(1)^p \end{aligned}$$

$$\begin{split} \iint_{Y \times Y} \|f_t(x) - f_t(y)\|_E^p &\leq 2^{p-1} \iint_{Y \times Y} \|f_t(x)\|_E^p + \|f_t(y)\|^p \\ &= 2^p \|f_t\|^p. \end{split}$$

Lemma

$$\|f_t^{\mathsf{x}} - f_t^{\mathsf{y}}\| \stackrel{t \to \infty}{\longrightarrow} \infty$$
 (the norm in $L_p(Y \times Y, \mu \times \mu, E)$).

Proof

• Let
$$O = \{(x, y) \mid x = \gamma y\}.$$

•
$$\mu imes \mu(O) = 0$$

• Fact. For $(x, y) \in Y \times Y \setminus O$, we have $d_{\Gamma}(tx, ty) \stackrel{t \to \infty}{\longrightarrow} \infty$

• Hence
$$||f_t(x) - f_t(y)||_E \xrightarrow{t \to \infty} \infty$$
.

Lemma

$$\|f_t^{\mathsf{x}} - f_t^{\mathsf{y}}\| \stackrel{t \to \infty}{\longrightarrow} \infty$$
 (the norm in $L_{\rho}(\mathsf{Y} \times \mathsf{Y}, \mu \times \mu, \mathsf{E})$).

Proof

• Let
$$O = \{(x, y) \mid x = \gamma y\}.$$

•
$$\mu imes \mu(O) = 0$$

• Fact. For $(x, y) \in Y \times Y \setminus O$, we have $d_{\Gamma}(tx, ty) \stackrel{t \to \infty}{\longrightarrow} \infty$

• Hence
$$\|f_t(x) - f_t(y)\|_E \stackrel{t \to \infty}{\longrightarrow} \infty$$
.

Corollary

A quantitative version of the Lemma (under some extra assumptions) \implies the distortion of $tY \subseteq \mathcal{O}_{\Gamma}Y$ is $\Omega(\log t)$.

П

Thank you!