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Abstract. We prove a conjecture of Druţu and Nowak that the coarse as-
sembly map is not surjective for warped cones over free actions with a spectral
gap. In particular, these warped cones provide new counterexamples to the
coarse Baum–Connes conjecture, which predicts that the assembly map is an
isomorphism.

Introduction

Let Γy(Y, d, µ) be a probability-measure-preserving action by Lipschitz home-
omorphisms of a finitely generated group Γ on a compact metric measure space
Y and assume that it has a spectral gap. Druţu and Nowak constructed a non-
compact projection in B(L2([1,∞) × Y ;λ × µ)), which is a norm-limit of finite
propagation operators if we equip [1,∞)× Y with the warped cone metric [3].

Similar projections, under additional technical assumptions, were used by Higson
to prove that certain Margulis-type expanders are counterexamples to the coarse
Baum–Connes conjecture, because these projections are not in the image of the
coarse assembly map, that is supposed (under the conjecture) to be an isomorphism.
Hence, Druţu and Nowak conjectured that warped cones they considered are also
counterexamples to surjectivity of the assembly map.

The goal of this note is to prove the conjecture of Druţu and Nowak. Let us first
recall the definition.

Definition 0.1 (Roe [10]). Let Y be a compact metric space of diameter at most 2.
Consider the infinite cone OY = [1,∞)× Y with the metric

d((s, y), (t, y′)) = |s− t|+ min(s, t) · d(y, y′),

where we use the same notation for the metric on OY and Y ⊆ OY . Consider a
continuous action of a finitely generated group ΓyY and extend this action to the
cone by γ(t, y) = (t, γy). Then, the warped cone OΓY is the same set [1,∞) × Y
equipped with the largest metric dΓ such that

dΓ ≤ d and d(γx, x) ≤ |γ|.
where |γ| is the word length of γ with respect to some fixed finite symmetric gen-
erating set S.

Our proof consists of three steps. First, checking if the projection of Druţu and
Nowak belongs to the Roe algebra, rather than only to the algebra of bounded
operators. It turns out to be false for technical reasons in the setting of [3], where
the Roe algebra is modelled on L2([1,∞)× Y ;λ× µ), but we manage to obtain it
for the analogous projection inside B(L2(N× Y ;m× µ)), where m is the counting
measure on N.

In the second step we introduce an asymptotically faithful covering for warped
cones (which requires the freeness assumption) constructed by Jianchao Wu and
the author in [15] and show that it has the operator norm localisation property of
Chen, Tessera, Wang, and Yu [2] if and only if Γ has property A.
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The last step is to prove that the K-theory class represented by the projection
is not in the image of the assembly map. To be able to mimic the methods of
Higson, we separate different levels of the warped cone by restricting our attention
to {2n}n∈N×Y ⊆ N×Y . This does not lose much information, because the warped
cone can be reconstructed from this subspace up to bi-Lipschitz equivalence (cf.
the proof of [12, Lemma 4.1]). Note that, differently than in some places in the
literature, growing but finite distances are sufficient for our purposes.

These three steps are divided between the first three sections of this note. The
fourth section contains some remarks, showing in particular that our main result
applies to spaces that are not coarsely equivalent to a family of graphs.

1. Kazhdan projection is in the Roe algebra

Consider a locally compact metric space X. An X-module is a separable Hilbert
space H equipped with a representation of C0(X). An operator T ∈ B(H) has
finite propagation if there exists S > 0 such that for φ, ψ ∈ C0(X) satisfying
d(suppφ, suppψ) ≥ S we have φTψ = 0 (the optimal S is then called the propa-
gation of T ). Further, T is locally compact if for every φ ∈ C0(X) both φT and Tφ
are compact operators. To make this requirement non-trivial we require that H is
ample as an X-module: every non-zero φ ∈ C0(X) gives a non-compact operator.

ForX = [1,∞)×Y with Y equipped with a probability measure µ of full support,
an example of an ampleX-module is the space L2([1,∞)×Y, λ×µ), where λ denotes
the Lebesgue measure. In such a setting, finite propagation of operator T means
that the support of Tξ is contained in the S-neighbourhood of the support of ξ.

The Roe algebra C*(X) of X is the norm-closure of the algebra C[X] of locally
compact, finite propagation operators on H. It does not depend on the choice of
an ample X-module H and is a coarse invariant of X.

The projection G of Druţu and Nowak is the orthogonal projection onto

L2([1,∞), λ) ⊆ L2([1,∞)× Y, λ× µ),

viewed as constant functions on every level {t} × Y .

Proposition 1.1. Projection G ∈ B(L2([1,∞)× Y, λ× µ)) does not belong to the
Roe algebra of the warped cone ([1,∞)× Y, dΓ).

Proof. Consider the isometric embedding

J : L2([1, 2], λ) ⊆ L2([1,∞), λ) ⊆ L2([1,∞)× Y, λ× µ).

Then J∗GJ is just the identity on L2([1, 2], λ).
Assume that G is a norm-limit of locally compact operators Tn. Hence, for any

φ ∈ C0(X) the composition Tnφ is compact. Choose φ ∈ C0(X) which is equal to 1
on [1, 2]× Y and observe that φJ = J . Then,

idL2 = J∗GJ = J∗GφJ = lim
n
J∗TnφJ,

that is, we obtained the identity on L2([1, 2], λ) as a norm-limit of compact opera-
tors, which is a contradiction. �

We will show that in order to guarantee that the projection of Druţu and Nowak
belongs to the Roe algebra it suffices to replace the halfline [1,∞) by N. Please note
that the embedding (N×Y, dΓ)→ ([1,∞)×Y, dΓ) is a quasi-isometry, in particular
the respective Roe algebras are isomorphic.

Definition 1.2. Let Γy(Y, µ) be a probability-measure-preserving action with
both Γ = 〈S〉 and Y infinite and µ of full support and let ρ : Γ → B(L2(Y, µ)) be
the induced unitary representation. Denote by L2

0(Y, µ) the orthogonal complement
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of constant functions. The action has a spectral gap if the norm of the Markov
operator M =

∑
s∈S ρ(s) restricted to L2

0(Y, µ) is strictly less than one.

Note that M acts as the identity on constants, hence the spectral gap condition
implies that the spectrum of M acting on L2(Y, µ) is contained in [0, 1 − ε] ∪ {1}
for some ε > 0. Spectral gap is a strong form of ergodicity as it implies that the
only invariant vectors in L2(Y, µ) are constants.

Observe also that Definition 1.2 implies that L2(Y, µ) is ample as an Y -module.
Indeed, first note that the measure of a point y ∈ Y is zero. Otherwise, the orbit
of y would be a finite invariant subset of positive measure, and, by ergodicity,
it would have full measure, but we assumed that the support of µ is the infinite
space Y . By the assumption of full measure, we also know that the measure of
any ball B(y, ε) is positive and it follows that L2(B(y, ε), µ) is infinite dimensional
(since limε→0 µ(B(y, ε)) = µ({y}) = 0), which immediately implies that L2(Y, µ) is
ample.

Proposition 1.3. Projection G ∈ B(L2(N × Y,m × µ)) onto L2(N,m), where m
is the counting measure, belongs to the Roe algebra of the integral warped cone
(N× Y, dΓ) = OΓY if the action ΓyL2

0(Y, µ) has a spectral gap.

Proof. Let us cover OΓY by balls of of radius 1/2 and, by compactness of Y , choose
a subcover U = {U1, U2, . . .} which is finite when restricted to any level {n} × Y .
Let now the family V of Vi = Ui \

⋃
j<i Uj be a disjoint version of this covering and

define P ∈ B(L2(N × Y )) as the orthogonal projection onto functions constant on
every Vi. Note that the covering V refines the covering by level sets {n} × Y , so G
is a subprojection of P , thus PGP = G.

Recall that the Markov operator M0 =
∑
s∈S ρ(s) preserves the constants C ⊆

L2(Y ) and, by the spectral gap assumption, has norm strictly less than 1 on the
orthogonal complement L2

0(Y ), which is also preserved. Hence, its powers equal
identity on the constants and converge geometrically to the zero operator on the
complement. When tensored with the identity operator on L2(N), we conclude that
the powers of

M = idL2(N)⊗M0 ∈ B(L2(N)⊗ L2(Y )) = B(L2(N× Y ))

converge in norm to G, the projection onto L2(N)⊗ C.
Hence, we have G = PGP = limk PM

kP and it suffices to show that PMkP
is a locally compact operator of finite propagation. Note that for ξ ∈ L2(N × Y ),
the support of Pξ is contained in the sum of Vi’s non-empty intersecting supp ξ.
Since the diameter of Vi ⊆ Ui is at most 1, we conclude that the propagation of P
is at most 1. Also, by the definition of the warped metric, the propagation of M is
(bounded by) 1. Hence, the propagation of PMkP is at most k + 2.

Now, let φ ∈ C0(OΓY ) be a function of compact support. Hence, its range is
contained in L2({1, 2, . . . , l}×Y ) for some l and the same holds for the composition
PMkPφ. However, the range of P intersected with L2({1, 2, . . . , l} × Y ) is finite
dimensional – since we assumed that U is finite on every level {n}×Y – and hence
PMkPφ is finite rank, thus compact. Since a general ψ ∈ C0(OΓY ) is a norm-limit
of compactly supported ones, we conclude that PMkPψ is always compact. Now,
because PMkP is self-adjoint, it follows that also ψPMkP is compact, which ends
the proof. �

2. Operator norm localisation property for the covering

In order to disprove surjectivity of the coarse assembly map in Section 3, we will
need the following technical notion.
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Definition 2.1 (Chen, Tessera, Wang, Yu [2]). A metric space X has operator
norm localisation property (ONL) if there is a positive constant c > 0 such that
for every r < ∞ we have R < ∞ such that for every positive locally finite Borel
measure ν on X and every operator T ∈ B(L2(X, ν) ⊗ `2) of propagation at most
r, there exists a unit vector ξ ∈ L2(X, ν)⊗ `2 with diam(supp ξ) ≤ R on which the
norm of T is almost attained: c‖T‖ ≤ ‖Tξ‖.

Above, locally finite means finite on bounded sets. In most cases, we can skip
the coefficients `2 as shown by the following lemma. Before its statement, recall
that a subset Z ⊆ X of a metric space is called an M -net in X if every point in X
lies within a distance less than M from a point in Z. A set Z is C-separated if the
distance between every two distinct points of Z is at least C. Note that a maximal
C-separated subset is always a C-net.

Lemma 2.2. Let Z be a C-separated M -net in a proper metric space X. The space
X has ONL if and only if Z has ONL. If moreover L2(X,µ) is an ample X-module
for some locally finite µ, then these are also equivalent the fact that X has ONL
with respect to operators on L2(X,µ).

The lemma is essentially proved in [2], we include a short proof to give the reader
a better feeling for X-modules and the ONL.

Proof of Lemma 2.2. Let us recall from [2] that for locally compact metric spaces
it suffices to verify the definition of ONL for a fixed measure admitting R <∞ such
that all R-balls have positive measure. In our case, an example of such a measure
is the counting measure m on Z (which is locally finite by properness of X and for
which we can take R = M) and clearly the ONL of X with respect to operators on
L2(X,m)⊗ `2 is equivalent ONL of Z with respect to operators on L2(Z,m)⊗ `2,
because these are the same Hilbert space.

For the moreover part, if L2(X,µ) is ample, the subspace L2(W,µ) must be
infinite-dimensional for every subset W ⊆ X with non-empty interior. It is also
separable by the properness of X, hence isomorphic to `2. Let {Wz}z∈Z be a
measurable partition of X such that B(z, C/3) ⊆Wz ⊆ B(z,M). We have

L2(X,µ) =
⊕
z

L2(Wz, µ) '
⊕
z

`2 = L2(Z,m)⊗ `2.

Note that the above unitary isomorphism can alter the diameter of the support of a
function by at most 2M and the induced isomorphism of the algebras of operators
on these spaces can alter the propagation of an operator by at most 2M . Hence,
ONL of X with respect to operators on L2(X,µ) is equivalent to ONL of Z, which
by the above is equivalent to ONL of X. �

Definition 2.3. A discrete metric space has bounded geometry if there is a bound
on cardinalities of balls of any fixed radius. For general metric spaces, bounded
geometry means that there exists C <∞ such that for every R <∞ the cardinality
of any C-separated subset of any R-ball is uniformly bounded.

In particular, in a metric space with bounded geometry, a C-separated subset is
a discrete metric space with bounded geometry. For all such spaces operator norm
localisation property is equivalent to property A of G. Yu [19] by a result of Sako.

Theorem 2.4 (Sako [11]). Let Z be a discrete bounded geometry metric space.
Then, it has property A if and only if it satisfies operator norm localisation property.

Corollary 2.5. The same holds for bounded geometry metric spaces.
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Proof. If suffices to observe that passing to a discrete net (and back to the original
space) preserves ONL (by Lemma 2.2) and property A (by [19]) and to use the
equivalence of the two properties in the discrete bounded geometry case. �

Consider the product Γ × OY with the quotient map π onto OΓY given by
(γ, x) 7→ γx. This is the quotient map under the Γ-action g(γ, x) = (γg−1, gx).
Equip Γ × OY with the largest metric d1 such that d1((γ, x), (ηγ, x)) ≤ |η| and
d1((γ, x), (γ, x′)) ≤ d(γx, γx′), where d denotes the metric on the infinite cone OY .
Jianchao Wu and the author [15] showed that the warped metric dΓ is the quotient
metric of d1 and, for free actions, the covering is asymptotically faithful, that is, for
every R <∞, the covering map is an isometry on R-balls outside an R-dependent
bounded subset of OΓY . We would like to obtain ONL for Γ×OY .

Lemma 2.6. If OY has bounded geometry and the action is Lipschitz, then the
space (Γ×OY, d1) has bounded geometry.

Proof. One can check that the ball of radius n about (γ, x) ∈ Γ×OY with respect
to d1 is contained in the sum

⋃
η∈B(γ,n){η}× η−1B(ηx, Ln ·n) (cf. [3, Lemma 6.2]),

where L is the Lipschitz constant for the action of generators of Γ and the balls in
OY are taken with respect to metric d. Using the inequality d1((γ, x), (γ, x′)) ≤
d(γx, γx′), we conclude that the cardinality of C-separated subsets in an n-ball in
(Γ × OY, d1) is at most |B(1, n)| times larger than the maximal cardinality of a
C-separated subset in an (Ln · n)-ball in OY . �

Hence, in order to obtain ONL for Γ×OY , it suffices to verify property A. We
will use the following characterisation of property A, equivalent to the original in
the bounded geometry case [10].

Definition 2.7. A metric space X has property A if for every n < ∞ and ε > 0
there exists a constant S <∞ and a map X 3 x 7→ Ax ∈ Prob(X) satisfying

suppAx ⊆ B(x, S) and ‖Ax −Ay‖ < ε for d(x, y) ≤ n.

Note that in [10] the map was additionally required to be weak-∗ continuous.
However, by a partition of unity argument, we can always improve an arbitrary map
as above to a norm-continuous one. Also, one can push these measures forward by
a quasi-isometric retraction X → Z onto a countable subset, so we will further
assume that Ax ∈ Prob(X) ∩ `1(X).

Lemma 2.8. Let Y be a manifold, simplicial complex or an ultrametric space with
a Lipschitz action of Γ. Then (Γ × OY, d1) has property A if and only if Γ has
property A.

Proof. For the “only if” part it suffices to observe that Γ embeds isometrically into
Γ×OY as Γ× {∗} and recall that property A is inherited by subspaces.

Let n <∞ and ε > 0. Let Γ 3 γ 7→ Aγ ∈ Prob(Γ) be a map from the definition
of property A for Γ such that

suppAγ ⊆ B(γ, S1) and ‖Aγ −Aη‖ <
ε

2n+ 1
for d(γ, η) ≤ n

for some constant S1 < ∞. Now, let L be the Lipschitz constant for the action of
elements of the ball B(1, S1) ⊆ Γ. Under our assumptions the infinite cone OY has
property A. (Indeed, for manifolds and complexes, OY is bi-Lipschitz equivalent to
a subspace of a Euclidean space, hence it inherits property A. In general, finiteness
of the Assouad–Nagata dimension of Y is equivalent to finitenes of the asymptotic
dimension of the infinite cone OY [14, Proposition 7.6], which in turn implies
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property A.) Hence, we have a map OY 3 x 7→ Bx ∈ Prob(OY ) ∩ `1(OY ) such
that

suppBx ⊆ B(x, S2) and ‖Bx −By‖ <
ε

2n+ 1
for d(x, y) ≤ Ln.

For (γ, x) define C(γ,x) ∈ Prob(Γ×OY ) ∩ `1(Γ×OY ) by the formula:

C(γ,x)(η, y) = Aγ(η) ·Bηx(ηy).

If this value is non-zero, then d(γ, η) < S1 and d(ηx, ηy) < S2, hence:

d1((γ, x), (η, y)) ≤ d1((γ, x), (η, x))+d1((η, x), (η, y)) ≤ d(γ, η)+d(ηx, ηy) < S1+S2,

which means that suppC(γ,x) ⊆ B((γ, x), S1 + S2).
Now, if d1((γ, x), (η, y)) ≤ n, then there exists a sequence of points (zi)

2n+1
i=0 in

Γ × OY such that z0 = (γ, x), z2n+1 = (η, y), zi differs from zi−1 at only one
coordinate (or they are equal) and such that we have

d1((γ, x), (η, y)) =

2n+1∑
i=1

ρ(zi−1, zi),

where ρ((gγ, x), (γ, x)) = |g| and ρ((γ, x), (γ, y)) = d(γx, γy) (cf. [10, Proposition
1.6]). In particular ρ(zi, zi−1) ≤ n. Hence, by the triangle inequality, it suffices
to show that for z, z′ ∈ Γ × OY differing at only one coordinate and satisfying
ρ(z, z′) ≤ n, we have ‖Cz − Cz′‖ ≤ ε/(2n+ 1).

Let us consider first the case when the first coordinates differ, that is, z = (gγ, x)
and z′ = (γ, x). The bound follows from the fact that for any f ∈ `∞(Γ×OY ):

|(Cz − Cz′)(f)| =

∣∣∣∣∣∣
∑
η∈Γ

(Agγ(η)−Aγ(η))
∑
y∈OY

Bηx(ηy)f(η, y)

∣∣∣∣∣∣
≤ ‖Agγ −Aγ‖1 · ‖f‖∞ ≤

ε

2n+ 1
· ‖f‖∞.

In the second case we have z = (γ, x) and z′ = (γ, x′). From the fact that L
is the Lipschitz constant for B(1, S1), it follows that the inequality d(γx, γx′) =
ρ((γ, x), (γ, x′)) ≤ n implies that for any η ∈ B(γ, S1) we have d(ηx, ηx′) ≤ Ln.
We conclude:

|(Cz − Cz′)(f)| =

∣∣∣∣∣∑
η

Aγ(η)
∑
y

(Bηx(ηy)−Bηx′(ηy)) · f(η, y)

∣∣∣∣∣
≤
∑
η

Aγ(η)
∑
y

‖Bηx −Bηx′‖ · ‖f‖∞ ≤
ε

2n+ 1
· ‖f‖∞,

because it suffices to sum over η ∈ B(γ, S1). �

Let us also mention the following two facts following from [14, Proposition 7.2
item (2) with Proposition 7.6] and [2, Remark 3.2 with Proposition 4.1] respectively.

Lemma 2.9. Let Y be a manifold, finite complex or an ultrametric space (more
generally: any space with finite Assouad–Nagata dimension) with a Lipschitz action
of Γ. Then (Γ×OY, d1) has finite asymptotic dimension if and only if Γ has finite
asymptotic dimension.

Lemma 2.10. For any metric space, finiteness of the asymptotic dimension implies
operator norm localisation property.

The following corollary gathers results of the present section.

Corollary 2.11. For a Lipschitz action ΓyY on a compact space Y , the space
Γ×OY has ONL under any of the following assumptions:
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(1) Γ has property A and Y is a manifold or a simplicial complex (or any space
such that OY has property A and bounded geometry),

(2) the asymptotic dimension of Γ and the Assouad–Nagata dimension of Y
are finite.

Let us remark that for any continuous action ΓyY of a finitely generated Γ on
a compact metrisable Y of finite topological dimension, there exists a metric on
Y so that the assumptions of item (2) in Corollary 2.11 are satisfied, that is, the
action is Lipschitz and Y has finite Assouad–Nagata dimension [14, Lemma 8.9].
By (the proof of) [10, Proposition 1.10], the bounded geometry assumption of item
(1) is satisfied whenever Y admits an Ahlfors regular measure or is a subset of such
a space.

3. Kazhdan projection lies outside the image of the assembly map

In this section we restrict our attention to the subspace of the warped (respec-
tively, infinite) cone {2n : n ∈ N} × Y and we use the notation QΓY (respectively,
QY ) for it. Following Higson [5], we define R[∞] =

∏
n R/c0 and two functionals

τd, τ
u : K0(C*(QΓY ))→ R[∞], whose restrictions to the image of the assembly map

are the same, but aquire different values on G. Our argument follows the line of
[17], where Willett and Yu elaborated on the idea of Higson.

Because a finite propagation operator T ∈ C*(QΓY ) preserves L2({2n}×Y ) for n
sufficiently large, we can consider its restrictions Tn ∈ C*({2n}×Y ). The functional
τd will be induced by the composition of this restriction map with the product of
trace maps C*({2n}× Y )→ Z. For the second functional τu, we will use some lifts
T ′n ∈ C*(Γ× {2n} × Y )Γ and traces on C*(Γ× {2n} × Y )Γ.

3.1. Index downstairs. Let Pn be the characteristic function of {2n}×Y . Then,
for any operator T ∈ B(L2(QΓY )) of propagation at most 2n−1, we have PnT =
TPn and we can define Tn = PnTPn ∈ C*({2n} × Y ). The formula clearly makes
sense and defines a contractive operator on the whole Roe algebra. However, T 7→
Tn is multiplicative and ∗-preserving on operators of propagation at most 2n−1,
and hence the function

C*(QΓY ) 3 T 7→ (Tn) ∈
∏
n C*({2n} × Y )⊕
n C*({2n} × Y )

is multiplicative and ∗-preserving on all operators in C[QΓY ], so it yields a ∗-
homomorphism from the Roe algebra C*(QΓY ).

Now, observe that C*({2n}×Y ) is nothing but the algebra of compact operators
K(L2({2n}×Y )). By definition it is a closure of locally compact finite propagation
operators, but locally compact on a compact space means just compact and every
operator on a bounded space has finite propagation. Hence, every projection p ∈
C*({2n} × Y ) has finite rank, which we can formally calculate using the canonical
trace Tr on compact operators.

Finally, we define τd as the composition of the map

K0(C*(QΓY ))→ K0

(∏
n C*({2n} × Y )⊕
n C*({2n} × Y )

)
induced by T 7→ (Tn), the identification

K0

(∏
C*({2n} × Y )⊕
C*({2n} × Y )

)
=
K0

(∏
C*({2n} × Y )

)
K0

(⊕
C*({2n} × Y )

) =

∏
K0

(
C*({2n} × Y )

)⊕
K0

(
C*({2n} × Y )

)
(see [17, Section 6]), and eventually the trace

C*({2n} × Y ) 3 p 7→ Tr(p) ∈ Z ⊆ R.



8 DAMIAN SAWICKI

Clearly, for the Kazhdan projection G constructed by Druţu and Nowak, the
restriction Gn is the rank-one projection onto constant functions, hence

τd(G) = (1, 1, . . .).

3.2. Index upstairs. Recall that the quotient map π(γ, x) = γx from (Γ×QY, d1)
onto QΓY is asymptotically faithful [15]. Hence, for every T ∈ C*(QΓY ) with finite
propagation S and n sufficiently large (so that π is isometric on balls of radius 3S)
we can canonically define the lift T ′n ∈ C[Γ× {2n} × Y ]Γ of Tn = PnTPn.

Indeed, let us define T ′n on the dense subspace spanned by functions with support
of diameter at most S (in fact, the subspace does not depend on S). Let ξ, η be
two elements of L2(Γ × {2n} × Y ) with diameters of supports at most S. Then,
if d1(supp ξ, supp η) > S, we put 〈η, T ′nξ〉 = 0 and 〈η, T ′nξ〉 = 〈(η ◦ σ), Tn(ξ ◦ σ)〉
otherwise, where σ is the inverse of the restriction of π to the sum supp ξ ∪ supp η.
As declared, operator T ′n is invariant under conjugation:

〈γη, T ′n(γξ)〉 = 〈(γη ◦ σ1), Tn(γξ ◦ σ1)〉 = 〈(η ◦ σ2), Tn(ξ ◦ σ2)〉 = 〈η, T ′nξ〉,
where, as before, σ1 and σ2 are the respective local inverses of π and the inequality
follows from the fact that σ2 = γ−1 ◦ σ1.

We should justify the following.

Lemma 3.1. The operator T ′n is bounded.

Proof. Note that (Γ× {2n} × Y, d1) is coarsely equivalent to Γ, in particular it has
bounded geometry – there exists a constant C <∞ such that for every R there is
a uniform bound on the cardinality of an R-ball intersected with any C-separated
set; in fact, by compactness of {1} × {2n} × Y , this condition holds for all C > 0.
Pick one such C < S/2 and choose a maximal C-separated set Z in Γ × QY and
a measurable partition U = {Uz : z ∈ Z} of Γ ×QY such that Uz ⊆ B(z, C). For
f ∈ L2(Γ × QY ) (from the dense subspace on which T ′ is defined) we denote its
restriction to Uz by fz and calculate

‖T ′nf‖2 =
∑
z

‖(T ′nf)z‖2 =
∑
z

∥∥∥∥∥∥
∑

y∈N(z)

(T ′nfy)z

∥∥∥∥∥∥
2

≤
∑
z

 ∑
y∈N(z)

‖(T ′nfy)z‖

2

≤ F ·
∑
z

∑
y∈N(z)

‖T ′nfy‖2

= F ·
∑
z

∑
y∈N(z)

‖Tn(fy ◦ σ)‖2 ≤ F ·
∑
z

∑
y∈N(z)

‖T‖2 · ‖fy‖2,

where N(z) = B(z, 2C + S) ∩ Z, F is the uniform bound on cardinality of such a
set, and σ = σ(y) is the appropriate local inverse of π. After changing the order of
summation we obtain ‖T ′nf‖2 ≤ F 2‖T‖2 · ‖f‖2. �

Lemma 3.2. Assume that Γ × QY has ONL. The association T 7→ (T ′n) gives
a continuous ∗-preserving homomorphism C[QΓY ] →

∏
n C*(Γ×{2n}×Y )Γ⊕
n C*(Γ×{2n}×Y )Γ , thus it

extends to the whole of C*(QΓY ).

Proof. By the ONL, there exists c > 0 such that for every S < ∞ there exists
R < ∞ such that for any operator T ′ ∈ B(L2(Γ×QY )) of propagation at most S
there exists a unit vector ξ such that ‖T ′ξ‖ ≥ c‖T ′‖ and diam(supp ξ) ≤ R. After
enlarging n if necessary we can assume that π is isometric at scale R + S, so that
‖Tn(ξ ◦ σ)‖ = ‖T ′nξ‖ and hence we can conclude

‖T‖ ≥ ‖Tn‖ ≥ ‖Tn(ξ ◦ σ)‖ = ‖T ′nξ‖ ≥ c‖T ′n‖,
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which means that our association is continuous. The algebraic part is clear. �

Consider the following bijection

(Γ×QY, d1) 3 (γ, x)
ι7→ (γ, γx) ∈ (Γ×QY, d′1),

where metric d′1 is induced by ι and can be described as the largest metric such that
d′1((γ, x), (γ, x′)) ≤ d(x, x′) and d′1((ηγ, ηx), (γ, x)) ≤ |η|. In these coordinates, the
action of Γ such that (QΓY, dΓ) is the quotient of (Γ×QY, d′1) under this action is
given by η(γ, x) = (γη−1, x), that is, it involves only the first coordinate, hence it
is easy to see that we have an isomorphism

(1) C*(Γ× ({2n} × Y ), d′1)Γ ' C*
r (Γ)⊗K(L2({2n} × Y )),

where C*
r (Γ) is represented by the left regular representation, cf. [17, Lemma 3.7].

Note that with this representation the propagation of γ ∈ Γ ⊆ C*
r (Γ) is not bounded

by |γ| – as it would be for the representation induced by the action γ(η, x) =
(γη, γx)) – but we can still bound it by |γ|+ diam({2n} × Y ).

Let τ be the trace on the left-hand side of (1) coming from the canonical traces
on both tensor factors of the right-hand side. Namely, it is given by the formula

τ(p) = Tr(χ1pχ1),

where χ1 is the characteristic function of {1}×({2n}×Y ) (belonging to C0(Γ×QY ))
and Tr is the canonical trace on compact operators on L2({1}×{2n}×Y ). Finally,
isometry ι induces an isomorphism of C*(Γ×({2n}×Y ), d′1)Γ and C*(Γ×({2n}×Y ))Γ

(where we use the initial metric d1), so we can pull trace τ back.
We define τu on C*(QΓY ) as the composition:

τu : K0(C*(QΓY ))→ K0

(∏
n C*(Γ× {2n} × Y )Γ⊕
n C*(Γ× {2n} × Y )Γ

)
=

∏
nK0(C*(Γ× {2n} × Y )Γ)⊕
nK0(C*(Γ× {2n} × Y )Γ)

→
∏

R
c0

,

where the first arrow is given by T 7→ (T ′n) and the second is the product of the
traces that we have just defined.

3.3. Comparison of both indices. By the following result, relying on the Atiyah
Γ-index theorem [1], maps τd and τu agree on the range of the coarse assembly
map. However, we will shortly see that τu(G) = 0, even though we have previously
observed that τd(G) = (1, 1, . . .).

Theorem 3.3 (Higson, Willett, Yu). Let X be a coarse disjoint sum of compact
metric spaces Xi with an asymptotically faithful sequence of Galois coverings X̃i

having operator norm localisation property in a uniform way.
Then, if p is a projection in C*(X) such that the class [p] ∈ K0(C*(X)) is in the

image of the coarse assembly map, then

τd([p]) = τu([p]) ∈
∏

R
c0

.

This result is first stated in [5, Proposition 5.6] and a detailed proof – which
carries over to above general setting by Lemma 3.2 and Section 4.2 – can be found
in [17, Lemma 6.5].

Lemma 3.4. For the Kazhdan projection G, its lift (G′n) ∈
∏

n C*(Γ×{2n}×Y )Γ⊕
n C*(Γ×{2n}×Y )Γ

equals zero, in particular τu(G) = 0.
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Proof. Recall from the proof of Proposition 1.3 that we expressed G as a norm-limit
of operators PMkP , where P is a projection onto piecewise constant functions and
M is a Markov operator.

The requirement on pieces Vi involved in the definition of P was that they are
contained in a ball of radius 1/2 and such small balls in the cone metric d and in the
warped metric dΓ agree (and are isometric). Hence the quotient map π is isometric
over Vi: we note that π−1(Vi) =

⋃
{{γ} × γ−1Vi} and recall from the definition of

d1 that
d1((γ, γ−1x), (γ, γ−1x′)) ≤ d(x, x′);

but on sets Vi we also have the opposite inequality:

d(x, x′) = dΓ(x, x′) ≤ d1((γ, γ−1x), (γ, γ−1x′)),

because dΓ is the quotient metric of d1. Consequently, the lift of P to C*(Γ×QY )
is

P ′ =
⊕
γ

γ−1 ◦ P ◦ γ ∈ B

(⊕
γ

L2(QY )

)
,

that is, on level γ, we project onto functions constant on sets γ−1Vi ∈ γ−1V.
Now observe that the quotient map π is equivariant with respect to the Γ-

action g.(γ, x) = (gγ, x) in the domain and the standard action in the target.
Hence, if the quotient map is isometric at scale greater than the word length of
g, then the lift of the shift by g is the shift by g. Hence, for n sufficiently large
with respect to k, the nth lift of Mk ∈ B(L2(QΓY )) is just the Markov operator
(M ′)k on `2(Γ) ⊗ L2(QY ) ' L2(Γ × QY ), or, strictly speaking, its restriction to
`2(Γ)⊗L2({2n}× Y ). Summarising, for n large enough, we can lift (PMkP )n and
the lift is (P ′(M ′)kP ′)n.

However, as the action has a spectral gap, the group is non-amenable, and hence
the Markov operator on `2(Γ) has norm strictly smaller than 1. Hence, when k

goes to infinity, the sequence of lifts P ′(M ′)kP ′ ∈
∏

n C*(Γ×{2n}×Y )Γ⊕
n C*(Γ×{2n}×Y )Γ converges to 0

in norm, so (G′n)n equals zero and in particular τu(G) = 0. �

Hence, we have obtained the following.

Theorem 3.5. Let Γy(Y, d, µ) be a free Lipschitz action with a spectral gap on
a compact Y such that the assumptions of Corollary 2.11 are satisfied, e.g. Y is
a manifold and Γ has property A or Y is ultrametric and Γ has finite asymptotic
dimension.

Then, the warped cone QΓY does not satisfy the coarse Baum–Connes conjecture,
because projection G is an element in the Roe algebra, whose K-theory class does
not belong to the range of the coarse assembly map.

4. Final remarks

4.1. We formulated Theorem 3.5 for a measure-preserving action for the sake of
simplicity and because of the plethora of examples. However, one can also consider
non-singular actions Γy(Y, µ). In this case, let us say that the action has a spec-
tral gap if there is a sequence Mi of elements of C[Γ] such that for the induced
(non-unitary!) representation ρ : Γ→ B(L2(Y, µ)) and for the left regular represen-
tation λ the sequences (ρ(Mi)) and (λ(Mi)) converge to the respective orthogonal
projections onto constants. Strong property (T), introduced by V. Lafforgue [8],
is a property implying such behaviour (“strength” of property (T) corresponds to
“how non-unitary” representations one allows).

In order to adapt to this setting, one would “twist” the measure on Γ×QY like
we have already done for the metric, that is, the measure on {γ}×QY = {γ}×{2n :
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n ∈ N}×Y ' {2n : n ∈ N}×Y should be γ−1
∗ (m×µ) rather than simply m×µ (for

measure-preserving actions these are the same). Then, after replacing the powers
of Markov operators (M0)i by elements Mi, all our arguments remain valid.

4.2. Even though the Roe algebra is a coarse invariant, the standard formulation
of the coarse Baum–Connes conjecture requires that the considered metric space
is discrete. This allows a convenient usage of Rips complexes to define the source
of the assembly map and that approach is taken in the proof [17] of Theorem 3.3.
Below, we show how to adjust to this by passing to discrete subsets in a way that
does not affect our constructions.

Let C > 0, take a maximal C-separated subset Z of QY (note that the inter-
section of Z with {2n} × Y is finite by compactness of Y ), and choose a mea-
surable partition {Wz}z∈Z of QY such that every Wz has non-empty interior and
Wz ⊆ B(z, C). Then, we can write

(2) L2(QY ) = L2

(⋃
z∈Z

Wz

)
=
⊕
z∈Z

L2(Wz) '
⊕
z∈Z

`2.

Hence, the algebra of locally compact operators of finite propagation acting on
L2(QY ) is isometrically isomorphic to the algebra of locally compact operators of
finite propagation acting on

⊕
z∈Z `

2 = L2(Z; `2) (the propagation is preserved up
to an additive constant 2C). We can also partition Γ×QY byWγ,z = {γ}×γ−1Wz,
where γ ∈ Γ and z ∈ Z, and use the quotient map to identify

L2(Γ×QY ) =
⊕
Γ×Z

L2(Wγ,z) '
⊕
Γ×Z

L2(Wz) '
⊕
Γ×Z

`2 = L2(π−1(Z); `2).

Now, the quotient map π restricted to π−1(Z) remains an asymptotically faithful
quotient map and index constructions can be rewritten in this language, yielding
the same maps τd and τu (up to the isomorphism between C*(QΓY ) and C*(Z)
induced by (2), which in fact becomes canonical on the level of K-theory).

4.3. By a celebrated theorem of Yu [19], spaces admitting a coarse embedding
into the Hilbert space satisfy the coarse Baum–Connes conjecture. Technically, one
should not nowadays use the word “conjecture” for this falsified statement – how-
ever, due to historical reasons and analogy to other variants of the statement, which
remain conjectures, we stick to this wording. Later, the result [19] was extended
to more general Banach spaces. In the same article, Yu constructs counterexam-
ples to the conjecture – violating injectivity of the assembly map – which however
have unbounded geometry (no similar examples with bounded geometry have been
found).

To the best of our knowledge, all counterexamples to the surjectivity part of
the conjecture – even without the bounded geometry assumption, cf. [17] – known
until now have been families of expanding graphs – obtained as quotients of certain
groups [5,6] or having increasing girth [17]. Note that it is a difficult open problem
whether all expanders are counterexamples.

Hence, in order to support the conjecture of Drut̨u and Nowak, it was necessary
to know that warped cones over actions with a spectral gap do not allow coarse
embeddings into Banach spaces and it was also very intriguing if they are quasi-
isometric to expander graphs. Both statements are true – the former was proved
by Nowak and the author [9] and the latter by Vigolo [16] (Vigolo uses appropriate
additional assumptions and they cannot be avoided by Proposition 4.6 below; see
also [13]).
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4.4. If one specialises to a residually finite group Γ and considers a profinite action
Γy lim←−Γ/Γi =.. Y with a suitably metrised Y , Theorem 3.5 reproves the result of
Higson [5], because a chain of finite quotients Γ/Γi embeds as a subfamily of the
warped cone QΓY [12] (article [12] assumes that Γi are normal, but this is not
needed for this particular statement). Interestingly, the asymptotically faithful
coverings utilised in [5] and the present note differ.

Recall that [5] has not been published as it was a base for the paper [6] of Higson,
Lafforgue, and Skandalis, slightly more general than [5], because it proves (among
other things) non-surjectivity of the assembly map whenever Γ satisfies the strong
Novikov conjecture with coefficients (as opposed to Γ with ONL in [5]). Nonetheless,
while [5,6] apply only to Cayley (Schreier) graphs of groups, Theorem 3.5 is clearly
not limited to the corresponding profinite actions or to residually finite groups.

Example 4.1. In particular, Theorem 3.5 can by applied to an action of every
Kazhdan group with finite asymptotic dimension, as every (countably infinite)
group admits a continuous, free, measure preserving action on a Cantor set Y
[7] (the Lipschitzness assumption can always be satisfied by Lemma 4.4). This
includes all hyperbolic Kazhdan groups, for which residual finiteness remains an
open problem.

4.5. It is also worth mentioning that there exist warped cones satisfying the as-
sumptions of Theorem 3.5, which – as it will follow from Proposition 4.6 – are not
coarsely equivalent to any sequence of graphs, in particular they are essentially
different from the counterexamples of Higson, Lafforgue, and Skandalis [5, 6] and
of Willett and Yu [17]. For instance, this can be said about warped cones over
actions of hyperbolic groups as in Example 4.1, and, more concretely, the one over
the following action.

Example 4.2. Consider the action SL2(Z)y lim←−i SL2(Z/2iZ) =.. Y , where the
metric on Y ⊆

∏
i SL2(Z/2iZ) is given by the formula

d((gi), (hi)) = max{2−i | gi 6= hi}.
This action satisfies the assumptions of Theorem 3.5 and Proposition 4.6.

If Y is a geodesic space, then all levels (tY, dΓ) of the warped cone over any
action ΓyY are quasi-geodesic in a uniform way, that is, they are uniformly quasi-
isometric to a family of graphs. Consequently, in order to obtain warped cones
non–coarsely equivalent to graphs, it is natural to require Y to be the opposite of
geodesic, namely ultrametric. We will also need the following technical condition,
which in fact can be always satisfied by Corollary 4.5.

Definition 4.3. An action ΓyY is almost uniformly Lipschitz if there exists a
constant L < ∞ such that for every γ ∈ Γ there exists ε > 0 such that for all
y, y′ ∈ Y :

d(y, y′) ≤ ε =⇒ d(γy, γy′) ≤ L · d(y, y′).

The following lemma can be proved by a straightforward modification of the
argument in [14, Lemma 8.9].

Lemma 4.4. For every action Γy(Y, d) and a sequence of finite subsets (Si)i of Γ
there exists an equivalent metric of the form d′ = c◦d for some increasing function
c : [0,∞)→ [0,∞) (in particular, if d is an ultrametric then so is d′) such that for
every i ∈ N, γ ∈ Si, and y, y′ ∈ Y :

d(y, y′) ≥ 2−i =⇒ d(γy, γy′) ≥ 2−i−1.

We reach the abovementioned corollary.
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Corollary 4.5. Every action ΓyY admits a metric that makes it almost uniformly
Lipschitz.

Proof. Let Si be an increasing family of finite symmetric subsets of Γ such that⋃
i Si = Γ (one can take Si = B(1, i)). We apply the lemma. By contraposition we

deduce that d(γy, γy′) < 2−i−1 implies d(y, y′) < 2−i whenever γ ∈ Si. Since Si is
symmetric, it is equivalent to the implication

d(y, y′) < 2−i−1 =⇒ d(γy, γy′) < 2−i.

For j ∈ N, γ ∈ Sj and d(y, y′) < 2−j−1 we have some i ≥ j such that 2−i−2 ≤
d(y, y′) < 2−i−1 and, as γ ∈ Sj ⊆ Si, it follows from the last implication that
d(γy, γy′) < 2−i. Hence we can take L = 4 and ε = ε(γ) = 2−j−1. �

An unbounded subspace of QΓY is called a subfamily if it is a Cartesian product
T×Y , where T = {ti}i ⊆ [1,∞). We say that such a subfamily is coarsely equivalent
(respectively: quasi-isometric) to a family of graphs if there exists a sequence of
graphs (Gi)i such that {ti}×Y is coarsely equivalent (respectively: quasi-isometric)
to Gi with the respective constants not depending on i.

Proposition 4.6. Let ΓyY be an almost uniformly Lipschitz action on an ultra-
metric space Y , which is not finite. Then:

(1) the space QΓY is not coarsely equivalent to a family of graphs;
(2) there exists a subfamily of QΓY such that none of its sub-subfamilies is

quasi-isometric to a family of graphs;
(3) if there is a point y′ ∈ Y and a constant D <∞ such that for every θ ∈ [0, 1]

there exists y ∈ Y such that θ/D ≤ d(y, y′) ≤ θ, then no subfamily of QΓY
is coarsely equivalent to a family of graphs.

Note that we do not need any assumption on the action other than being almost
uniformly Lipschitz and that the condition from item (3) can always be imposed
by another change of metric.

Proof of Proposition 4.6. Ad (1). Note that in a graph for every pair of vertices
x, x′ at distance at most m there exists a sequence of vertices x = x0, x1, . . . , xm =
x′ such that the distance from xi to xi+1 is (at most) 1. Consequently, any space X
coarsely equivalent to a graph satisfies the following: there exists C <∞ such that
for every m ∈ N there is Sm ∈ N such that for every pair of points x, x′ ∈ X there
is a sequence x = x0, x1, . . . , xSm

= x′ ∈ X with d(xi, xi+1) ≤ C – in fact, it is a
characterisation of such spaces.

Let us now specialise to a subspace {Dn : n ∈ N} × Y of the warped cone for
some D > 1 (we defined QY as this space with D = 2). Let m ∈ N and fix y′ ∈ Y
which is not an isolated point. For every t0 > 0 there exists y ∈ Y sufficiently close
to y′ and n ∈ N such that for t = Dn we have t ≥ t0 and:

dΓ((t, y), (t, y′)) ≤ d((t, y), (t, y′)) ∈ [m/D,m].

Hence, we have a sequence (t, y) = x0, x1, . . . , xSm
= (t, y′) ∈ {t} × Y such that

dΓ(xi, xi+1) ≤ C (for t > CD/(D − 1) we can assume that every xi is of the form
(t, yi)). By [12, Proposition 2.1] there exist z0, . . . , zSm−1 such that zi = γixi for
some γi ∈ Γ of length at most C and d(zi, xi+1) ≤ lCC, where l ≥ 1 is the Lipschitz
constant for the action of generators.

For j ≥ i ∈ N let us denote γ̂ji ..= γ−1
i γ−1

i+1 · · · γ
−1
j and consider the sequence:

x0, γ̂
0
0x1, γ̂

1
0x2, . . . , γ̂

Sm−1
0 xSm ; γ̂Sm−1

1 xSm , γ̂
Sm−1
2 xSm , . . . , γ

Sm−1
Sm−1xSm , xSm .

Note that two consecutive elements in the “first half” of the sequence (up to the
semicolon), that is, γ̂i−1

0 xi and γ̂i0xi+1 are the image under γ̂i0 of the pair zi, xi+1.



14 DAMIAN SAWICKI

As the length of γ̂i0 is bounded by i ·C ≤ Sm ·C, there are boundedly many possible
choices of γ̂i0. Hence, by the assumption of almost uniform Lipschitness, there exists
ε > 0 such that – if lCC < ε · t and consequently d(zi, xi+1) ≤ lCC < ε · t – then
d(γ̂i−1

0 xi, γ̂
i
0xi+1) ≤ LlCC, where L is the universal constant from Definition 4.3.

We can assume that by requiring t0 to satisfy lCC < ε · t0.
Since (Y, d) is an ultrametric space, it follows from the strong triangle inequality

that d(x0, γ̂
Sn−1
0 xSm

) is at most LlCC. Hence, when m is so large that m/D >

LlCC, then, by the strong triangle inequality for the triple x0, γ̂
Sm−1
0 xSm

, xSm
,

we get d(γ̂Sm−1
0 xSm , xSm) = d(x0, xSm). However, recall that γ̂Sm−1

0 comes from
a bounded set (the closed ball of radius C · Sm), so there is a finite number of
possible distances of d(γ̂Sm−1

0 y′, y′) and – for sufficiently large t – we can assume
that td(γ̂Sm−1

0 y′, y′) never belongs to the interval [m/D,m], which is a contradic-
tion since td(γ̂Sm−1

0 y′, y′) is nothing but d(γ̂Sm−1
0 xSm , xSm), which in turn equals

d(x0, xSm
).

Summarising, for every C ∈ N, every m > DLlCC, Sm ∈ N, and a non-isolated
y′ ∈ Y , there is a sufficiently large t = Dn and a point y ∈ Y such that (t, y) and
(t, y′) cannot be connected by a chain of length Sm of points distant by at most C
in metric dΓ – even though d((t, y), (t, y′)) ≤ m.

Ad (2). Similarly, space X is quasi-isometric to a graph if (and only if) there
exists a constant C <∞ such that for every x, x′ ∈ X at distance at most m there
exists a sequence of points x = x0, x1, . . . , xm = x′ ∈ X such that the distance from
xi to xi+1 is at most C. As above, for every C ∈ N, a non-isolated y′ and sufficiently
largem ∈ N we can find y(m,C) ∈ Y and n(m,C) such that x = (Dn(m,C), y(m,C))
cannot be connected by such a sequence (xi)

m
i=0 to x′ = (Dn(m,C), y′). Hence, for

every C we can choose m(C) in such a way that that n(m(C), C) < n(m(C +
1), C + 1) and then the subfamily ({Dn(m(C),C) : C ∈ N} × Y, dΓ) satisfies the
desired conditions.

Ad (3). Finally, if there is a constant D and point y′ ∈ Y as in item (3), then
for every m ∈ N and t ≥ m there is y ∈ Y such that d((t, y), (t, y′)) ∈ [m/D,m],
so we can proceed as in item (1). The difference is that this fact now follows from
properties of the metric rather than from the fact that t ranges over all powers of
D as in item (1). Later in the proof of (1) we only used unboundedness of possible
values of t. �

4.6. In a very recent work [4] Fisher, Nguyen, and van Limbeek introduce the
notion of quasi-isometric disjointness, which, for two sequences of graphs, means
that they have no quasi-isometric subsequences. For two sequences of arbitrary
metric spaces, one can define analogously coarse disjointness, meaning that they
have no coarsely equivalent subsequences (for sequences of graphs the two notions of
“disjointness” are equivalent). In this language, items (2) and (3) of Proposition 4.6
provide warped cones coarsely disjoint with any sequence of graphs.

Fisher, Nguyen, and van Limbeek prove that there exist a continuum of pairwise
quasi-isometrically disjoint (equivalently: coarsely disjoint) warped cones that come
from different isometric free actions with a spectral gap of a group with property
A on a manifold. This family can be further enlarged by varying the group and the
manifold. By Theorem 3.5, this gives coarsely disjoint continua of counterexamples
to the coarse Baum–Connes conjecture.
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