Samuel Handelman

MATHEMATICAL BIOSCIENCES INSTITUTE, THE OHIO STATE UNIVERSITY, COLUMBUS OH

e-mail: shandelman@mbi.osu.edu

J. S. Verducci

DEPARTMENT OF STATISTICS, THE OHIO STATE UNIVERSITY, COLUMBUS OH

J. J. Kwiek

THE CENTER FOR MICROBIAL INTERFACE BIOLOGY, OHIO STATE UNIVERSITY COLLEGE OF MEDICINE, COLUMBUS OH

S. B. Kumar

DEPARTMENT OF VETERINARY BIOSCIENCES, THE OHIO STATE UNIVERSITY, COLUMBUS OH

D. A. Janies

Department of Biomedical Informatics, Ohio State University College of Medicine, Columbus OH

GENPHEN: Genotype/Phenotype Association with Reference to Phylogeny

When genome sequences are obtained from organisms with different associated phenotypes, it should be possible to identify those sequence properties which confer a given phenotype. However, the evolutionary relationships between organisms lead to non-independence between the sequence properties. For example, the HIV-1 virus has a population structure reflecting both transmission between individuals and evolution of the HIV-1 quasispecies within each patient. This non-independence can introduce interdependence between unrelated mutations giving a false appearance of causation. These evolutionary relationships are an issue even in HIV-1 where recombination is rapid, and are pervasive in humans, where linkage disequilibrium is extensive. In human disease studies, this can sometimes be overcome by comparing siblings: alleles common only in sick siblings are likely true causative alleles. GENPHEN identifies, in a phylogenetic reconstruction, sibling lineages where the phenotype varies. Then, GENPHEN uses modified proportional hazard models to identify causal polymorphisms. GENPHENs advantages include: speed practical for high-throughput sequence data, estimates of relative strength or speed of different effects, and improved precision even vs. other tree-based methods: 50%-300% improvement in precision at same recall, either to predict experimental correlations (obtained from STRING: http://string-db.org/) or in simulations under biologically reasonable parameters on HIV quasispecies sequence trees.