Justyna Signerska
Institute of Mathematics Polish Academy of Sciences, Warszawa, Poland
Faculty of Applied Mathematics and Technical Physics, Gdańsk University of Technology, Gdańsk, Poland
e-mail: j.signerska@impan.pl
Wacław Marzantowicz
Faculty of Mathematics and Computer Sci., Adam Mickiewicz University of Poznań, Poznań, Poland
e-mail: marzan@amu.edu.pl

Firing map for integrate-and-fire models with almost periodic stimulus

In integrate-and-fire systems the sequence of consecutive spikes can be recovered via iterations of the so-called firing map. Until now analytical approaches mainly concentrated on models of the type $\dot{x}=f(t, x)$ when the function f was continuous and periodic in the time variable ([1],[2],[3]). We analyze firing maps and firing sequences for the class of integrate-and-fire models with the stimulus function almost periodic in time (either uniformly almost periodic or in a Stepanov sense) and prove that many required properties of the firing map still hold for leaky integrate-and fire $\dot{x}=-\sigma x+f(t)$ or Perfect Integrator $\dot{x}=f(t)$ models when the function f is only locally integrable. We prepare a formal framework for the study of discrete dynamics of the firing map arising from almost periodically driven integrate-andfire systems. In particular, results concerning almost periodic displacement of the firing map and regularity properties (semi-/almost periodicity) of the sequence of interspike intervals will be shown.

References

[1] R. Brette, Dynamics of one-dimensional spiking neuron model, J.Math.Biol., 48 (2004), 3856.
[2] H. Carrillo, F. A. Ongay, On the firing maps of a general class of forced integrate and fire neurons, Math. Biosci., 172 (2001), 33-53.
[3] S. Coombes, P. C. Bressloff, Mode locking and Arnold tongues in integrate-and-fire neural oscillators, Phys. Rev. E, 60 (1999), 2086-2096.
[4] W. Marzantowicz, J.Signerska, Firing map of an almost periodic input function, AIMS Proceedings 2011, in print.

