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Abstract

The connection between Fredholm determinants and Painleve’ equations was observed in statistical
mechanics and its most famous example is the Tracy-Widom distribution, connecting the distribution of
the largest eigenvalue of a random matrix and the second Painleve’ equation. | will briefly put into
historical perspective the classification of ODEs of Painleve’ and show how Fredholm determinants for
matrix symbols are connected to a noncommutative version of the second Painleve’' equation and a
special solution which is pole free.
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http://arxiv.org/pdf/1101.3997
http://arxiv.org/pdf/1104.4940

e Gap probabilities for random processes and Fredholm determinants
@ Relation between F; and F» (Tracy-Widom)

e Convolution operators and their squares
e Fredholm (regularized) determinants
e Equivalence of determinants and resolvent operators

e Noncommutative Painlevé Il and its pole free solutions

e Airy process
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Gaps

GUE gap probability

Consider an N x N Hermitean matrix with normal iid entries

N
1
du(M) = gooxp | =N o IM P ][ dMs ][ dRMi;ASM; o (1)
N 1<i<G<N i=1 1<i<j<N

Here are some plots of the density of eigenvalues for different sizes of the random
matrix M:

N=6 N=14
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Gaps

Gap probability

Tracy and Widom showed that the probability for the maximum eigenvalue Ay, qz

Fn(z) == P(Apmaz < T) (2)
has the following limit
Fa(s) := lun FN (\f—i— \[S) =det (Id — K 4;,5) 3)

where Kj ; is the integral operator with kernel

Ai{z + s)Ai'(y + s) — Ai(y + s)Ai'(z + s)

Kai,s(z,y) = (LA(Ry) O (4)
=Yy
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Figure: Comparison between the actual density and the Airy’density (in red ) 4/



Gaps

Gap probabilities and Painlevé.

GUE gap probability — Fx(s) [Tracy-Widom '94];
Fy(s) = det(Id — Kass) on L*(Ry, dz) (5)
Tracy and Widom showed that

Fy(s) =exp <f Lx‘(x — s)u(x)2dx> , u?(s) = —0% In Fa(s) (6)

u”(s) = 2u(s)® + su(s), wu(s)~ Ai(s), s— +o0. (7)
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Gaps

Gap probabilities and Painlevé.

GUE gap probability — Fx(s) [Tracy-Widom '94];
Fy(s) = det(Id — Kass) on L*(Ry, dz) (5)

Tracy and Widom showed that

Fy(s) =exp <f ji(x — s)u(x)2dx> , u?(s) = —0% In Fa(s) (6)

s

u”(s) = 2u(s)® + su(s), wu(s)~ Ai(s), s— +o0. (7)

This special solution to Painlevé Il was studied by Hastings and McLeod and has the
essential property that

The HMcL solution to PII has no poles on the real axis s € R. J

Namely, the Fredholm determinant F»(s) never vanishes (is positive) for real
values of s.
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The kernel has the alternative representation
Kais(z,y) = J Ai(z + z + $)Al{y + z + s)dz (8)
Ry

which shows it to be the square of the following convolution operator
Ais: L?(Ry) - L2(Ry)
f0) = (Aisf)(a) = [ AiGe+y +297(0) dy (©)
+

Kais = Aid (10)J
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Gaps
°

GOE and Painlevé XXXIV

A similar procedure for real-symmetric matrices produces the GOE gap probability
— Fi(s): the original definition is in terms of Fredholm determinant of a matrix
operator; [Ferrari and Spohn '05] showed that

Fi(s) = det(Id — Aigjs) on L*(Ry, dz) (11)
It was known since the work of Tracy and Widom that
1 [® 1
Fi(s) = exp (75 J u(m)d:v) (Pas))? (12)

A similar representation for F yields

Fi(s) = exp (_ r(m - s)w(m)dz) . w(s)=—mFi(s)  (13)

s

and now w(s) solves a derivative version of Painlevé XXXIV [Clarkson et al. '99]

w”(s) = 12w(s)w'(s) + 2w(s) + sw'(s), w(s) ~ 7%Ai’(s), s —> +0o0. (14)

Miura transformation
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Convol.

Convolution operators and their squares

We thus see that given a convolution operator Cs : £2((s, 0)), there is a relationship

det[Id+Cs] YR get[1d — 2] (16)
(KdV) (mKdV)

@ To relate any convolution operator on L?(R4.) (with matrix symbol) and its
square to an appropriate Riemann—Hilbert problem
(Its-l1zergin-Korepin-Slavnov).

@ Relate the two Fredholm determinants in eq. (16) via a noncommutative version
of Miura's transformation.

© |Interesting (possibly!) example: noncommutative Painlevé Il and XXXIV.
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Dets

A short reminder about Fredholm determinants

Given an integral operator K : L?(X, dz) — L?(X, dz) then

(Kf)(x) = jX K@y)f)dy  (17)

det(Id — 2K) = 1 + Z )

det [K (zj, xy)]
xXn

jk<n dT1. .. dzn. (18)

The series defines an entire function of z as long as C is trace-class. For sufficiently
small z (less than the spectral radius of KC) then the following can be used equivalently

O _n
Indet(Id — 2K) = — 3 ZTrk™ (19)
— n
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Dets

A short reminder about Fredholm determinants

Given an integral operator K : L?(X, dz) — L?(X, dz) then

(Kf)(x) = jX K@y)f)dy  (17)
(o)

)
n! X

o
det(Id — 2K) = 1+ ) det [K (2, 21)]; j<p do1 ... dzn. (18)
n=1 " T

The series defines an entire function of z as long as C is trace-class. For sufficiently
small z (less than the spectral radius of KC) then the following can be used equivalently

O _n
Indet(Id — 2K) = — 3 ZTrk™ (19)
n
n=1

If K is not trace-class but Hilbert-Schmidt (or in some other trace-ideal [Simon]) then
one can define a regularized Fredholm determinant (Carleman determinant)

(=2)"
!

o0
det(ld —2K) = 1+ >, -

n=1

J det [(1— ;) K (s, 0], e dan ... dan. (20)
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Dets

IIKS (Its-1zergin-Korepin-Slavnov) theory in a nutshell

Let N : L2(3,C™) with kernel given by ("integrable form")

T (Ne(w)
A—p

N\, p) = fTMNg(\) =0, f,g:% - Mat(g x n) (21)
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Dets

IIKS (Its-1zergin-Korepin-Slavnov) theory in a nutshell

Let N : L2(3,C™) with kernel given by ("integrable form")

£ (N)g(w)

N\, p) = P

ffNg\) =0, f,g:% — Mat(qx n) (21)

The resolvent operator is also of integrable form:

fryeTe-" (wew)

R\, p) = No(ld—N)"t(\p) = p—

(22)

where O(\) is the ¢ x g matrix bounded solution of the following Riemann—Hilbert

problem
O+ = O()- (1, — 2imE (T (V)
o) =1, +0Z "), Ao w (23)
Furthermore the solution of the RHP (23) exists if and only if det(Id — N) # 0. J
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Why is this helpful?

@ The RHP typically has jumps which are conjugated to constant jumps by entire
matrices = the solution of the RHP solves an ODE with meromorphic
coefficients;

@ The deformation of the kernel w.r.t. parameters is (typically) isomonodromic
= use Jimobo-Miwa-Ueno theory of isomonodromic deformations;

@ the Fredholm determinant is (in interesting cases) the isomonodromc tau
function of JMU;

@ derive ODEs (PDEs) for the Fredholm determinant (Painlevé property).
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To show that Fredholm determinants of convolution (and possibly other) kernels
without integrable form are equal to Fred. dets. of integrable kernels. Derive
ODE/PDEs/Painlevé property, Lax representation etc.
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Equivalence of determinants

Let C be the matrix convolution operator on L2(R.) with symbol

C.(2):=C(z+s) = fif e, (1) du (24)
T+

r(u,s) = e"ro(u) ,  ro(w) = E1(p)E3 (u) (25)

2B (n) € L? o L (74, Mat(r x p)) (26)

Here 4 is a (collection of) contour(s) in the upper half plane.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
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Equiv.

Theorem (B.-Cafasso, 2011)

The two Fredholm determinants below (exist!) are equal
det [1d 2z, o) + Cs| = det [1dp2(, cny + Ko

with Ks : L2(v+,CP) %> having kernel

iA+p)s
£ BT () Ba ()

A+ p

’Cs(>\7 /J‘) = °

(27)

(28)

We shall study kernels of the form K.
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Sketch of Proof

By Paley—Wiener theorem, Fourier transform isomorphically maps
T:L*R4,CT) = HZ := H2@C" (29)
with H? the Hardy space of the upper half plane.

¥(z) = (Co)(z f Clo + y)o(y) dy = —i jo dy [ deet@HEr()p(y) =

T+

= —iv/2m | d€e™ r(€)(Tw)(6)

Y+

Then, Fourier transforming the function ...
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Sketch of Proof

By Paley—Wiener theorem, Fourier transform isomorphically maps
T:L*R4,CT) = HZ := H2@C" (29)

with H? the Hardy space of the upper half plane.

¥(z) = (Co)(z f Clo + y)o(y) dy = —i j dy j dg e CHVER(£)p(y) =

= j de €S (€) (T o) (€)
T+

(TN = " () do = —i i "t e [ ageer@(Te =

.
v
G
- [ s ro© = [ aBimao . e
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(TN = 7= [ e wi)de = =i [ ave [ agetr©(To)© -

[ e x© _ o .,
= [ aesrreo = [ aEoae . e

We note that for a function in H2 like f(u) := T(p), the evaluation at a point
£ € C4 can be written as

= # auchy’s theorem
76) = | 1) 5=y (Cochy's theorem), (32)

which is Cauchy's theorem. Thus

T = gz [ 65T [ o (33)
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We shall thus define

KT =7 'cT (34)

1 v [ dp
TV =RITAM) = 5| a6 | —FoTon (39)

(the reason for the transposition is solely for later convenience) with kernel given by

e 21O )
SN i+ ©

Rr = f (36)
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KT =7 'cT (34)

1 v [ dp
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We shall thus define

KT =7 'cT (34)

_ 1 r(¢) dp
(TH)N) = KT (Te)() = i i€ g(Ty)( 1) (35)

(the reason for the transposition is solely for later convenience) with kernel given by

I‘T(ﬁ) _
RE0) = | an [ aeS T s (36)
We use the factorization of r:
o Ex(§) Ef (f (W) du
Kfiy=1[d d =Ca0C1f(N) . 37
F) JRH W+§/\_£ 2ir(u + €) 20C1f(N) (37)
Both C; are Hilbert Schmidt in L2(R U 4, C"*P) because
[ 14 f1an o (Ej©E©) .
— L < 40w
Y+ |§ i H/|2

Thus K : H2 — H?2 is trace class, so is C and their determinants are_the same.
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We now use

det (Idgy, + C20C1) = det (Idyy, +C10Ca) . (39)
with
BTG EA()f ()
(CroCaf)(w) = —1 IR de L+ D (40)
(Cauchy) = B1 o) [ ax =22 — ey (41)

T+

This ends the proof.
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Resolvents

We want to find the (kernels of the) resolvent operators

Si=-Ko(ldy, +K)7', R:=k%o(ldy, — k™! (42)

Theorem (B.-Cafasso 2011)

2‘“’[E%1(/\)70p><r]FT()\)I‘—T(“)[ Orxp ]

E
SO\, u) = R 200 (43)
=T =-T
RO p) = [T (), 0 =250 [ ol ] (+4)

where T'(\), E(\) are 2r x 2r matrix solutions of two (related) Riemann—Hilbert
problems on vy U y— (y— = —v+ ) described below.
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s f] r(), s) i= e E (NET (N

Problem 1 Problem 2
Iy = T_ (M)
24V 7__()\)M( y | TV= —11)11, mli, } (12' P > (45)
=) = Tar St roy| b —01) A0
—iAL, m

I'(A) = 610(=A)a1
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ldea of proof:

Reduce both K and K? to integrable form

T _ T
KO ) = E1(i)+i2(u) _ G u)é{x; Eo(p) (46)

so that it is of the IIKS form in the variable \?
For K2, setting y_ = —v4 and f(A) := f(—A):

K2 ) = BT (f EQ“)EW)E( )= (47)
vy

+ Q+OE+ )

7 T
= BT () (f mds> Ex(u) = (Go F)\p)  (48)

It is now manifested as the composition of two integrable kernels between
L2?(y=) <> L2(v4+). Then one uses the identity (need to verify both F, G of trace

class)
det(Id — G o F) = det (Id - { 0|7 D (49)
G| o
etc. etc. [
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Equiv.

Relationships between problems 1 and 2

Proposition (B.-Cafasso 2011)

e = exists = I' exists; moreovoer

1, 1,

I'(\) =
) —iAl, — 2081 Al — 20>

] E(\), 1 =01803+ f2®02 (50)

e = exists & I exists and

(51)

detT'11(0) # 0 where T'(\) := { T | Tia() ]

T21(A) | Ta2(N)
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Equiv.

Relationships between problems 1 and 2

Proposition (B.-Cafasso 2011)

e = exists = I' exists; moreovoer

1, 1,

L(\) =
) —iXl, — 281 AL, — 25,

] E(\), 1 =01803+ f2®02 (50)
e = exists & I exists and

(51)

detT'11(0) 5 0 where T'()\) := { T | Tia() ]

T21(A) | Ta2(N)

The logic behind the proposition
= exists iff det(Id — IC2) # 0, but

det(Id — K?) = det(Id — K) det(Id + K) (52)

and thus = may fail to exist because either determinants det(Id + ) = 0. On the
other hand for the existence of I it is sufficient det(Id + K) # 0
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Matrix Miura relation

The two solutions have expansions

V(s)®os + U(s)o2

=\, 8) = 12, + X o (53)
r(\) = [ ﬂklr mllr ] (12,. + Q(‘S)% + ) (54)
sV (s) = —2iU%(s) Q(s) = V(s) —iU(s) (55)

Matrix Miura relation

0sQ = —2iU?(s) — idsU(s) . (56)
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Equiv.

Fredholm determinants and RHPs: variational formulae

Let us denote by

= det [Id + K] , 7= := det [Id — ’CZ] (57)

and let @ denote any variation of the symbol r(\) := E1(A)E{ (A). Then

Theorem (B.-Cafasso 2011)

The variational formulz hold

1 )
dlnTp = 71 Tr (F:lr’,me—l) o (58)
2 Jypoye i
dx
dlnrg — J Tr (E:lELaMM’l) il (59)
Y4 UV— 24T
M := 1+ 27 (r(A)®0+ Xvy +T(—N)®0_X~y_) (60)

Furthermore the respective problems have solutions if and only if T0 # 0 (1= # 0).
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Special case: for ¢ = %
S

1
Oslnrp = —resTr (r—l I’ (N)idos® 1T> d\ = —2iTr Q(s) (61)
Oslntz = froe(sTr (Eil()\)E/()\)i)\O':;@lr) dX = —iTr V(s) (62)

where the residues are understood as formal residues, or the coefficient of A\=1 in the

expansion at infinity.

For r = 1 (scalar kernels) then one has the (standard, integrated) Miura relation
between the determinants

(0sInTz — 205 In7)? = —32InTs (63)
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Noncommutative Painlevé Il

In the study of noncommutative Toda equations, Retakh and Rubtsov defined it on a
noncommutative, associative unital algebra A with derivation D and distinguished
element s € A with the property

Ds=1 (64)

Then

NC-PII [Retakh-Rubtsov '10]

D2U = 4{s,U} +8U% + o, ac€Z(A). (65)

They provided (matrix) solutions in terms of quasideterminants (i.e. Schur
complements). Previously, attempts at defining noncommutative versions were in
[Balandin Sokolov '98] but with s in the center.

Problem

No Lax representation was given (and no isomonodromic system).
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NC-PIl and Fredholm determinants

We consider the example of the matrix Airy convolution kernel on L2(R,,C")

defined as:
(ish@) = | Al s dy (66)
+
Ai(z; 3) — j ee(u)cee(u)eimﬁ% = [cjrAi(z + s5 + si)] . A (67)
vy 20 7,
1S1ML

;3 18214 ;3
0=t 1, + = ™1 4 isp (68)

6 6

1S5

s := diag(s1, 82,...,5r) (69)

where C' € Mat(r x r,C) is an arbitrary constant.
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Theorem

Suppose C = C1 is a Hermitean matrix; then the solution to Problem 1 for E with

(M) = ——— N eI (70)
2im

exists for all values of §€ R" if and only if the eigenvalues of C' are all in the interval
[=1,1]. If C is an arbitrary complex matrix with singular values in [0, 1] then the

solution still exists for all §€ R".

The singular values of a matrix are the square roots of the eigenvalues of CTC.
The matrix Z()\) has expansion at infinity

E(Al S) = 1o, +

1 [ V(s) | iU(s)
A| —=iU(s) | V(s)

} + 0172 (71)

and the matrix U(s) solves noncommutative PIl. In particular this provides a linear
auxiliary system for ncPlII.
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Lax (isomonodromic) pair

The compatibility of the 2r x 2r isomonodromy system

95; ¥ (N, 8) = S;(A,8)¥(As)
Sj(/\,s) = i)\ej®0'3 + Z[V', ej]®1 + {U, Ej}®0'1
ATY(A,s) = A\ s)T(A,s)

A2 1
A()\, S) = 7,36'3 + )\U®O'1 - §DU®02 + ’L'(U2 + S)®O’3

T
D:= Z 0s; , € 1= diag(0,0,...,1,0,...), s:=diag(si,...,sr)
j=1

is equivalent to NC-PII
D?U = 4sU + 4Us + 8U3

(72)
(73)
(74)

(75)

(76)

(77)

V.
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Proposition (Noncommutative Hastings—McLeod solution)

For any C' = [c;;] € Mat(r x r,C) there is a unique solution of noncommutative PII

0
D?U = 4sU + 4Us + 8U% , s :=diag(s1,...,8,) , D= ) Fo (78)
£ Sj
g=1""J
with the asymptotics as follows: if S := %Z;;l s; — +o0 and §; :=s; — S,
j=1,...,7 are kept fixed, |0;| < m, then
(79)

3
[U]kg = —CkgAi(Sk + Se) + O (\/ge—é(QS—Qm) 2)

If C = C* then the solution is pole-free on R” iff |C| < 1.
If |C|| < 1 then the solution is pole-free on R”.
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Theorem (Noncommutative Tracy-Widom)

Let U(s) be the noncommutative Hastings—McLeod solution of above: then

o0
det (Id — AiZ) = exp [—4 J (t—S)Tr U?(t + é)dt} (80)
S
where
g =
S:i==>1s;, s;=8+6;, t+8:=(t+01,...,t+6). (81)
T
J=1

Corollary

The Fredholm determinant of the matrix Airy convolution kernel Aiz satisfies

det (Id + Aiz) = exp [ J: Tr (U(t +8) + 20t — SYU(t + S)) df} (82)

where U(3S) is the Hastings-McLeod family of solutions to noncommutative Painlevé Il

as above
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The Fredholm determinant det (Id + Aiz) is also related to a noncommutative version
of the Painlevé XXXIV equation (' = D)

V/ — W/W = (83)

W = 6ifW" , W'} + 8iW'[s, W] + 8i[W,sW'] + 8is[W', W] + 4f{s, W} + 16W’ (84)

{ W = 8i[W,s]W + 8W + 8i[s, V] + 6i(W')2 + 4{W', s}

DIndet (Id + Aig) = —2iTr W(5) (85)
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The Airy process

This is a determinantal point field with configuration space

X=Rx{rm<m<--<m}lx=Rx{,2,...,n} (86)
Aij(xay) = Azg ('73 y Bzg (x y) 1<ujsn (87)
i (@) j J 9(%#) 9(y ) (88)

ig(Ty) =
Y (27rz vr; Ji A+1i—p—7
o) = B (89)
1 (rj=m)% (a—y)? (=T (=+y)
Bij(m7y) — 12 4(7 —1i) 2 (90)

It represents a field
motions.

g —————————¢
XTZ<TJ ﬁﬂ'(Tj — Ti)

of oo'ly many particles undergoing mutually avoiding Brownian
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Multi-layer PolyNuclear Growth (PNG) model

The Airy process was introduced by Praehofer and Spohn in the study of the
fluctuations around the top layer of the growth model.

x=—t © x=t

FIgU Fe. A snapshot of a multi-layer PNG configuration at time t. Asymptotic droplet is also marked.
From Praehofer-Spohn, 2001
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It also occurs in the study of fluctuations around the edge in the model of
self-avoiding brownian motions in the limit N — o

Simulation with N = 30
non-intersecting Brownian particles
starting at z = 0 and ending at

z = 1,z = —1. Courtesy of P.M.

Roman, S. Delvaux.

N — ®

Transition probability: px (At, z,y) := Ce ¥ oAt
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For example the two—times Airy process has a matrix kernel

Az, y) = (91)

Avi(z,y)  Aiz(z,y) - Bua(z,y)
Aoy (z,y) Ao (z,y)

One verifies that A;;(z,y) = Kai(z,y) does have the IIKS form: however all the
other (off-diagonal) entries do not.

Yet, we want to characterize the Fredholm determinants describing the gap
probabilities; the simplest example of which is

ticle i o0) at ti
pr( | roprice (b ot imen ) et (1des — Al ) (92
no particle in (b, 00) at time 72 > 71 (b,)

Problem

Can the IIKS theory be applied? Can we obtain a Lax representation?

Note that by different methods, Tracy and Widom (2004) do obtain PDEs for the gap
probabilities, but no Lax representation.
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Equivalence of determinants

The following determinants are equal

det (IdRz — A(®;71,72) (a“x)> = det(Id — K) (93)
(b0

where K acts on L2(iRy UiR2 Uvg, C?) with kernel (iR; := iR + 75,
)\J‘ = >\—Tj, Hj I=/J,—Tj)

T Ng(w)
KO = (94)
—p
A Ag u _n3
€6 Xyg €6 Xyp e 3 XiR; € 3 XiRy
B B 3 3 3

f) ea>\1x Ry 0 s 9(p) e%*ﬂﬂl Xon e“1;#2 —ap1 Xikg

3

m

0 ey, 0 e® PH2xap
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The problem is thus reduced to one with integrable kernel (one has to check

F(\) - gT(\) = 0) and hence it is associated in a canonical way to a RHP for a matrix
I'(X) of size 3 x 3 on the union of contours depicted before.

Writing out the jumps one realizes furthermore that the matrix

W) :=T(\)eT (96)
A3 43
T(X\;711,72,a,b) := diag 3

3_ 3
+ady +bAe 22720 4 by — 20
3 ’ 3

o)

solves a RHP with constant jumps, and hence solves an ODE in X (which can be
easily written) as well as isomonodromic deformations in a,b, 71, 72. It can be also
shown that

Proposition

The Jimbo-Miwa-Ueno isomonodromic tau function coincides with the Fredholm
determinant(s)
olnrymy = —"res “ Tr (Tr'(\eT) dx (98)
=60
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Some details on the proof

The equivalence of determinants is actually unitary (a1 = a,az = b, x1; := [a;, ®))

A€ ¢ (a. —
Aij(;p,y)xli(z) = f 42 ‘egz(az ) X
iR41; 4T

{J d\ dp e9(@irni)=0(0,A;)+yA;
- +

Rebry 28 Dy 2w (§—p)(p—A)
dp (@i ni)=0(0,u5)+yu;

+X1‘<‘J‘ N
e Rtr; 2m E—p

After Fourier transform (some care to be paid) one has an unitarily equivalent
operator on L2(iR1 U iRg, (C2) with kernel

(R)ij (& A) =
dp Oaini)—0(0.0)) +aik; e0(aisXi)=0(0,x;)+a;&;
= XiR; (§)Xar, (A J — +Xri<T;
i (E)xim; (M) wr 21 (=) =) v -2
GoF H
OH 7
L2(iRy U iRy, C2)  L*(yg,C2) (99)
G
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So we have the determinant of

det(Id —Go F —H) (100)
OH 7z,
L2(iR1) ® L2(iR2) L?(yg,C?) (101)
g

Note that all three operators are Hilbert-Schmidt so that G o F is trace-class but H is
not (at least we cannot prove it directly).

However the matrix kernel of H is upper-triangular so that it is “traceless” (it is not,
technically)

But then the series of detg for HS operators (well-defined) coincides with the series of
det for trace-class (ill-defined here); thus, the correct definition is

“det”(Id — G o F — H) := deta(ld — G o F — H)e~ Tr9e7 (102)

40/ 44



Finally one uses the identity

0o F
det(]d—Qo]—'—H):det(]d—[g HD (103)

and then recognize that the last operator on L2(iRy U iR2 U g, C?) has the
postulated kernel.
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Nonlinear PDE

Using the Lax pair one can verify the nonlinear PDE for G(a,b,7) (7 := 72 — 71) that
was found by Adler-VanMoerbeke using vertex operators:

2
(%aw - WaE> (0% — 8%) G + 2102 gy G = {03 G, 905G} E (104)

where E = ‘ZTH’, W = anb and {f,g9}g :=0fg— forg.
This confirms that the RHP provides the desired Lax formulation.
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Conclusions

Fredholm determinants of scalar operators are intimately related to Painlevé
equations (property);

Fredholm determinant of matrix operators lead to noncommutative versions
and/or PDEs with Painlevé property.

Special solutions of Painlevé type equations come from Fredholm determinants
(e.g. Hastings-McLeod, Ablowitz-Segur for P2). Numerical evaluation of
Fredholm determinants is more stable than numerical integration of nonlinear
PDE/ODEs => tools for numerical study (if appropriate det. representation can
be found) (see Bornemann, and cf. Prof. Clarkson's talk).
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