Regular coordinates and reduction of deformation equations for Fuchsian systems

Yoshishige Haraoka

Department of Mathematics
Kumamoto University

FASDE II Conference, 11 August 2011
Problem

“Construct Fuchsian systems for prescribed Riemann schemes”

Fuchsian system:

\[\frac{dY}{dx} = \left(\sum_{j=1}^{p} \frac{A_j}{x - t_j} \right) Y \]

\(A_j : n \times n \)-constant matrix \((1 \leq j \leq p)\)

\[A_0 := - \sum_{j=1}^{p} A_j, \quad t_0 = \infty \]

Assume: for each \(j \),

\(A_j \) is \(\left\{ \begin{array}{l} \text{diagonalizable} \\ \lambda, \mu : \text{eigenvalues of } A_j, \lambda \neq \mu \Rightarrow \lambda - \mu \notin \mathbb{Z} \end{array} \right\} \)
Riemann scheme: the table which describes the characteristic exponents at each singular point

\begin{align*}
\begin{cases}
 x = t_0 :
 \begin{array}{c}
 \lambda_{01}, \ldots, \lambda_{01}, \ldots, \\
 \lambda_{0n_0}, \ldots, \lambda_{0n_0}
 \end{array} \\
 \vdots \\
 x = t_j :
 \begin{array}{c}
 \lambda_{j1}, \ldots, \lambda_{j1}, \ldots, \\
 \lambda_{jn_j}, \ldots, \lambda_{jn_j}
 \end{array} \\
 \vdots \\
 x = t_p :
 \begin{array}{c}
 \lambda_{p1}, \ldots, \lambda_{p1}, \ldots, \\
 \lambda_{pn_p}, \ldots, \lambda_{pn_p}
 \end{array}
\end{cases}
\end{align*}

\(m_j := (m_{j1}, \ldots, m_{jn_j}) \): the spectral type of \(A_j \)
Problem: Construct tuples \((A_0, A_1, \ldots, A_p)\) with sum zero and with prescribed eigenvalues \(\{\lambda_{01}(m_{01}), \ldots, \lambda_{pn_p}(m_{pn_p})\}\)

The Problem

- seems fundamental
- is open (far from the perfect solution)
- is deeply related to the deformation theory
Precise formulation of the problem

\[
A_j \sim \begin{pmatrix}
\lambda_{j1} I_{m_{j1}} \\
\vdots \\
\lambda_{jn_j} I_{m_{jn_j}}
\end{pmatrix} =: C_j
\]

\[
O_j := \{ A \in M(n \times n, \mathbb{C}) \mid A \sim C_j \}
\]

We set

\[
\mathcal{M} = \mathcal{M}_{O_0, \ldots, O_p}
\]

\[
:= \{ (A_0, \ldots, A_p) \in O_0 \times \cdots \times O_p \mid \sum_{j=0}^{p} A_j = O \} / \sim,
\]

where

\[
(A_0, \ldots, A_p) \sim (B_0, \ldots, B_p)
\]

\[
def \iff \exists P \in \text{GL}(n, \mathbb{C}), A_j = PB_jP^{-1} \quad (\forall j)
\]
We have a map

\[[(A_0, \ldots, A_p)] \leftrightarrow (O_0, \ldots, O_p) \]

Our problem is to describe

\[\varphi^{-1}((O_0, \ldots, O_p)) = M_{O_0, \ldots, O_p} \]
Related results

1. \(\varphi \) is not surjective.
 We have an obvious necessary condition \(\sum_{j=0}^{p} \text{tr} \mathcal{O}_j = 0 \), which is not sufficient.

\[
\tilde{m} := (m_0, m_1, \ldots, m_p) : \text{the spectral type of } (F)
\]

For which \(\tilde{m} \), does an irreducible \([(A_0, \ldots, A_p)] \) exist?
 (for generic values of \(\{\lambda_{jk}\} \))

Deligne-Simpson Problem

- V.P. Kostov
- W. Crawley-Boevey — in terms of Kac-Moody root systems

2. For an irreducibly realizable \(\tilde{m} \),

\[
\dim \mathcal{M} = (p - 1) n^2 - \sum_{j=0}^{p} \dim \mathcal{Z}(\mathcal{O}_j) + 2 =: \alpha
\]

A coordinate system of \(\mathcal{M} \) is called \textit{accessory parameters}.
3. Scalar equation case. Toshio Oshima solved the Problem for scalar equations

\[y^{(n)} + p_1(x)y^{(n-1)} + \cdots + p_n(x)y = 0. \]

The moduli space is a smooth manifold.

However,

\[\# \text{ of a.p. for scalar equation} = \frac{\alpha}{2}. \]

\(\alpha\) parameters are necessary for the deformation, because \(\alpha\) is equal to the dimension of the conjugacy classes of the monodromy representations.

4. Case \(\vec{m} = (11, 11, 11, 11)\). \(\overline{\mathcal{M}}\) is constructed by Saito-Inaba-Iwasaki. \(\Rightarrow\) Painlevé property for Painlevé VI.
Our Approach

- Do not go into the compactification (too serious)
- Consider only generic points of \mathcal{M}
- Find *good* representatives (A_0, A_1, \ldots, A_p)

It would be good if there is a set of a.p. $z = (z_1, z_2, \ldots, z_\alpha)$ s.t. \(\forall \) entries of \(\forall A_j \) are rational functions in z.

We call such set of a.p. a *regular coordinate*.

A regular coordinate may be different from the canonical coordinate.
How to find regular coordinates

Lemma 1. For a generic pair A, B of $n \times n$-matrices, there exists $P \in \text{GL}(n, \mathbb{C})$ such that

$$P^{-1}AP = \text{lower triangular}$$

$$P^{-1}BP = \text{upper triangular}$$

Lemma 2. Let C be a diagonalizable $n \times n$-matrix with spectral type (n_1, n_2, \ldots, n_q).

(i) C can be parametrized by $n^2 - \sum_{i=1}^{q} n_i^2$ parameters besides the eigenvalues.
(ii) Let γ_i be the eigenvalue of multiplicity n_i. Then C can be (generically) parametrized as follows.

$$C = \gamma_1 + \begin{pmatrix} C_1 \\ U_1 \end{pmatrix} \begin{pmatrix} I_{n-n_1} & P_1 \end{pmatrix} \quad C_1 : (n - n_1) \times (n - n_1)$$

$$C_1 + P_1 U_1 = \gamma_2 - \gamma_1 + \begin{pmatrix} C_2 \\ U_2 \end{pmatrix} \begin{pmatrix} I_{n-n_1-n_2} & P_2 \end{pmatrix}$$

$$C_2 + P_2 U_2 = \gamma_3 - \gamma_2 + \begin{pmatrix} C_3 \\ U_3 \end{pmatrix} \begin{pmatrix} I_{n-n_1-n_2-n_3} & P_3 \end{pmatrix}$$

$$\vdots$$

$$C_{q-1} + P_{q-1} U_{q-1} = \gamma_q - \gamma_{q-1}$$

parameters: P_i, U_i (1 \leq i \leq q - 1)

Note that $\sum_{i=1}^{q} n_i^2 = \dim Z(C)$
\(\vec{m} = (m_0, m_1, \ldots, m_p) \): given
First we assume two \(m_i \) are \(1^n \).

\[
m_0 = m_p = 1^n
\]

By Lemma 1, we can take a representative \((A_0, A_1, \ldots, A_p)\) s.t.

\[
A_0 = \begin{pmatrix} a_{01} & \cdots & O \\ \vdots & \ddots & \vdots \\ * & \cdots & a_{0n} \end{pmatrix}, \quad A_p = \begin{pmatrix} a_{p1} & \cdots & * \\ \vdots & \ddots & \vdots \\ O & \cdots & a_{pn} \end{pmatrix}
\]

Parametrize \(A_1, \ldots, A_{p-1} \) by Lemma 2.

The number of parameters we use is

\[
\sum_{j=1}^{p-1} \left(n^2 - \dim Z(A_j) \right).
\]
We can normalize the tuple \((A_0, \ldots, A_p)\) by \(\text{GL}(1)^n\) (with center \(\mathbb{C}^\times\)).

Since \(\sum_{j=0}^p A_j = O\), we have

\[
(*) \quad a_{oi} + \sum_{j=1}^{p-1} ((i, i)\text{-entry of } A_j) + a_{pi} = 0
\]

for \(i = 1, \ldots, n-1\), which are \(n-1\) relations for the parameters.

Thus

\[
\sum_{j=1}^{p-1} \left(n^2 - \dim Z(A_j) \right) - (n - 1) - (n - 1)
\]

\[
= (p - 1) n^2 - \sum_{j=1}^{p-1} \dim Z(A_j) - n - n + 2
\]

\[= \alpha.\]
If we can take α parameters $(z_1, z_2, \ldots, z_\alpha)$ s.t. the solution of (*) can be written as rational functions of $(z_1, z_2, \ldots, z_\alpha)$, this set of the parameters is a regular coordinate.

Note that the off-diagonal entries of A_0 and A_ρ are determined by $\sum_{j=1}^{\rho} A_j = O$:

\[
\begin{pmatrix}
a_{01} & \cdots & O \\
\vdots & \ddots & \vdots \\
a_{0\rho} & & a_{0n}
\end{pmatrix}
+ A_1 + \cdots + A_{\rho-1} +
\begin{pmatrix}
a_{\rho1} & \cdots & * \\
\vdots & \ddots & \vdots \\
O & & a_{\rho n}
\end{pmatrix} = O
\]
Next we relax the assumption by a coalescence of eigenvalues.

\[m_0 = 1^n \rightarrow 2, 1^{n-2} \]

\[A_0 = \begin{pmatrix} a_{01} & \ast & a_{01} & O \\ \ast & a_{03} & \ddots \\ & \ast & \ddots & a_{0n} \end{pmatrix} = \begin{pmatrix} a_{01} & 0 & a_{01} & O \\ 0 & a_{03} & \ddots \\ & \ast & \ddots & a_{0n} \end{pmatrix} \]

Then by $GL(2) \times GL(1)^{n-2}$ action, we have

\[A_p = \begin{pmatrix} a_{p1} & 0 & \ast \\ a_{p2} & a_{p3} & \ast \\ 0 & \ddots & \ddots \end{pmatrix} \]
\[m_0 = 1^n \rightarrow 3, 1^{n-3}; \quad m_p = 1^n \rightarrow 2, 1^{n-2} \]

\[A_0 = \begin{pmatrix} a_{01} & 0 & 0 \\ 0 & a_{01} & 0 \\ 0 & 0 & a_{01} \end{pmatrix} \]

\[A_p = \begin{pmatrix} a_{p1} & 0 & 0 \\ 0 & a_{p1} & 0 \\ 0 & 0 & a_{p3} \end{pmatrix} \]

GL(2) × GL(1)^{n-2} action keeps these forms of \(A_0 \) and \(A_p \).
Reductions

1. Katz operations

addition: \(Y(x) \mapsto \prod_{j=1}^{p} (x - t_j)^{a_j} \cdot Y(x) \)

middle convolution: \(Y(x) \mapsto \int_{\Delta} (u - x)^{\lambda} Y(u) \, du \)

These operations are realized as operations on \((A_0, A_1, \ldots, A_p)\).

Katz operations keep the number of accessory parameters, irreducibility and the deformation equation invariant.

Theorem. If \((A_0, A_1, \ldots, A_p)\) has a regular coordinate, the result of a Katz operation also has a regular coordinate.

Thus it is enough to find regular coordinates for basic \(\tilde{m}\).
Basic spectral types.

\(\alpha = 2: \)

\((11, 11, 11, 11)\); \((111, 111, 111)\), \((22, 1^4, 1^4)\), \((33, 2^3, 1^6)\)

\(\alpha = 4: \)

\((11, 11, 11, 11, 11)\);
\((21, 21, 1^3, 1^3)\), \((31, 22, 22, 1^4)\), \((22, 22, 22, 211)\);
\((211, 1^4, 1^4)\), \((221, 221, 1^5)\), \((32, 1^5, 1^5)\), \((2^3, 2^3, 2211)\),
\((33, 2211, 1^6)\), \((44, 2^4, 22211)\), \((44, 332, 1^8)\), \((55, 3331, 2^5)\),
\((66, 4^3, 2^511)\)
Example. \((33, 222, 1^6) \ (\alpha = 2)\)

\[
A = \begin{pmatrix}
 a_1 & 0 \\
 0 & a_1 \\
 a_2 & 0 \\
 0 & a_2 \\
 * & a_3 \\
 0 & a_3
\end{pmatrix},
B = \begin{pmatrix}
 b_1 & 0 \\
 0 & b_2 \\
 b_3 & 0 \\
 0 & b_4 \\
 O & * \\
 b_5 & 0 \\
 0 & b_6
\end{pmatrix}
\]

\[C = c_1 + \begin{pmatrix} C_1 \\ U_1 \end{pmatrix} \begin{pmatrix} I_3 & P_1 \end{pmatrix}, \quad C_1 + P_1 U_1 = c_2 - c_1\]

Normalization by GL(1)^6 gives

\[U_1 = \begin{pmatrix}
 1 & * & * \\
 1 & * & * \\
 1 & 1 & 1
\end{pmatrix}\]
\[P_1 = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{pmatrix} \]

Parameters we use: \(4 + 9 = 13 \)
Relations: \(4 + 4 + 4 - 1 = 11 \)
Thus we have
\[13 - 11 = 2 = \alpha. \]
We find we can take a regular coordinate \((p_{11}, p_{21})\).
2. Good reductions

We consider a coalescence of eigenvalues which sends \vec{m} to \vec{m}'. For example, for $\vec{m} = (m_0, m_1, \ldots, m_p)$ with $m_0 = m_p = 1^n$, we consider the coalescence

$$m_0 = 1^n \mapsto 21^{n-2} =: m'_0.$$
Assume that the tuple \((A_0, A_1, \ldots, A_p)\), in particular \(f\) and \(g\), are written rationally by a regular coordinate \(z = (z_1, \ldots, z_\alpha)\).

The coalescence \(a_{02} \rightarrow a_{01}\) yields two equations

\[
f = 0, \quad g = 0.
\]

If this system is linear in two entries \(z_i, z_j\) of the regular coordinate \(z\), we can solve the system to get a regular coordinate \(z' := (z_1, \ldots, \hat{z}_i, \ldots, \hat{z}_j, \ldots, z_\alpha)\) for \(\vec{m}'\).

We call such reduction \(\vec{m} \rightarrow \vec{m}'\) a **good reduction**.
Example.

\((11, 11, 11, 11, 11) \rightarrow (11, 11, 11, 11, 2) = (11, 11, 11, 11)\)

\[
A_0 = \begin{pmatrix} a_{01} & 0 \\ f & a_{02} \end{pmatrix}, \quad A_4 = \begin{pmatrix} a_{41} & g \\ 0 & a_{42} \end{pmatrix}
\]

\[
A_j = \begin{pmatrix} a_{j2} - u_j p_j & (a_{j2} - a_{j1} - u_j p_j) p_j \\ u_j & a_{j1} + u_j p_j \end{pmatrix} \quad (j = 1, 2, 3)
\]

Normalization: \(p_1 = 1\)
Relation: \(a_{01} + \sum_{j=1}^{3} (a_{j2} - u_j p_j) + a_{41} = 0\)

We have a regular coordinate \((u_2, p_2, u_3, p_3)\).

\[
\begin{cases}
 f = -(u_1 + u_2 + u_3) \\
 g = - \sum_{j=1}^{3} (a_{j2} - a_{j1} - u_j p_j) p_j
\end{cases}
\]
Coalescence: $a_{41}, a_{42} \rightarrow (a_{41} + a_{42})/2$

$$
\begin{align*}
\Rightarrow \quad & \begin{cases}
 u_1 + u_2 + u_3 = 0 \\
 \sum_{j=1}^{3} (a_{j2} - a_{j1} - u_j p_j) p_j = 0
\end{cases}
\end{align*}
$$

This system is linear in u_2, u_3, and then they can be written rationally in p_2, p_3. Thus we obtain a regular coordinate (p_2, p_3) after the coalescence.

This is a good reduction, and gives a reduction from Garnier system to Painlevé VI.
The isomonodromic deformation of the Fuchsian system

\[\frac{dY}{dx} = \left(\sum_{j=1}^{p} \frac{A_j}{x - t_j} \right) Y \]

is described by the Schlesinger system

\[\frac{\partial A_i}{\partial t_i} = - \sum_{k \neq i} \frac{[A_i, A_k]}{t_i - t_k} \quad \frac{\partial A_j}{\partial A_i} = \frac{[A_i, A_j]}{t_i - t_j} \quad (i \neq j) \]

under the condition

\[A_j \sim C_j \quad (0 \leq j \leq p). \]
The unknowns of (S) are the entries of A_1, \ldots, A_p: pn^2 unknowns, while the rank of (S)+(J) is α.
Thus we must reduce the unknowns of (S) to get a slim deformation equation.

If we have a regular coordinate for (A_0, A_1, \ldots, A_p), we obtain, as isomonodromic deformation equations, algebraic differential equations for the regular coordinate.

If, moreover, we have a good reduction, we get an explicit reduction formula for the deformation equations such as Garnier to Painlevé.
Questions

Q1. Does a regular coordinate exist for any basic spectral type \(\tilde{m} \)? If it does not so, describe the condition.

Q2. Are there any general procedures to find a regular coordinate?

Q3. Can we obtain a regular coordinate for any basic spectral type from a regular coordinate for \((1^n, 1^n, \ldots, 1^n)\) by a finite iteration of good reductions?

Q4. For which pair of spectral types does a good reduction exist? Give the condition in terms of Kac-Moody root systems.

Q5. Irregular singular case?