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THE LYAPUNOV EXPONENT OF HOLOMORPHIC MAPS

GENADI LEVIN, FELIKS PRZYTYCKI, AND WEIXIAO SHEN

Abstract. We prove that for any polynomial map with a single critical
point its lower Lyapunov exponent at the critical value is negative if and
only if the map has an attracting cycle. Similar statement holds for the
exponential maps and some other complex dynamical systems. We prove
further that for the unicritical polynomials with positive area Julia sets
almost every point of the Julia set has zero Lyapunov exponent. Part
of this statement generalizes as follows: every point with positive upper
Lyapunov exponent in the Julia set of an arbitrary polynomial is not a
Lebegue density point.

1. Introduction

1.1. Main results. In recent years, dynamical systems with different non-
uniform hyperbolicity conditions have been studied. Speaking about one-
dimensional (real or complex) dynamics, such restrictions are often put on
the critical orbits of the map, such as Collet-Eckmann [5], semi-hyperbolic [6]
and other conditions, see e.g. [15, 19, 9, 4, 24]. See also subsections 1.3-1.4 of
the Introduction.

Simplest and most studied are unicritical polynomial maps f(z) = zd + c
and exponential maps E(z) = a exp(z). In the first two results, we prove
that for each such polynomial or exponential map without sinks, but otherwise
arbitrary, there is always a certain expansion along the critical orbit.

Theorem 1.1. Let f(z) = zd + c, where d ≥ 2 and c ∈ C. Assume that c does
not belong to the basin of an attracting cycle. Then

χ−(f, c) = lim inf
n→∞

1

n
log |Dfn(c)| ≥ 0.

Theorem 1.1 has been known before for real c (more generally, for S-unimodal
maps of an interval) [16].

Note that [3] contains examples of real quadratic polynomials f(z) = z2 + c
without attracting or neutral cycles such that lim infn→∞ |Dfn(c)| = 0.

Theorem 1.2. Let E(z) = a exp(z), where a ∈ C \ {0}. Assume that 0 does
not belong to the basin of an attracting cycle. Then

χ−(E, 0) = lim inf
n→∞

1

n
log |DEn(0)| ≥ 0.
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These two theorems are special cases of the following theorem.
Let U = UV,V ′ be the set of all holomorphic maps f : V → V ′ between

open sets V ⊂ V ′ ⊂ C, for which there exists a unique point c = c(f) ∈ V ′ and
a positive number ρ = ρ(f) with the following properties:

(U1) f : V \ f−1(c) → V ′ \ {c} is an unbranched covering map;
(U2) for each n = 0, 1, . . ., fn(c) is well defined and B(fn(c), ρ(f)) ⊂ V ′.

Theorem 1.3. For any f ∈ UV,V ′ , if c(f) does not belong to the basin of an
attracting cycle, then χ−(c(f)) ≥ 0.

See the next Section for the proof and the last Section for some applications.
On the other hand, we have

Theorem 1.4. Let f(z) = zd + c, where d ≥ 2 and c ∈ C. Assume that the
Julia set J(f) of f has a positive area. Then for almost every z ∈ J(f), there
exists

χ(f, z) = lim
n→∞

1

n
log |Dfn(z)| = 0.

Quadratic polynomials with a positive area Julia set do exist [2].
For the proof of Theorem 1.4, see Section 4. To show that χ−(f, z) ≥ 0 for

a typical point we introduce the notion of a slowly recurrent point z for a map
f ∈ UV,V ′ and prove that χ−(f, z) ≥ 0 for such z, see the next Section. In
Section 4 we show that for f(z) = zd + c a.e. point of J(f) is slowly recurrent.
In the opposite direction, that any z ∈ J(f) with a positive upper Lyapunov
exponent χ+(f, z) is not a density point of J(f) is an immediately consequence
of the following general fact:

Theorem 1.5. Let g be a polynomial of degree at least 2. For every λ > 1
there exist ρ > 0, a positive integer N and α > 0 as follows. Suppose

χ+(g, z) = lim sup
n→∞

1

n
log |Dgn(z)| > 2 logλ

for some z ∈ J(g). Then there exists a subset H of the positive integers such
that the upper density of H is at least α, and for every n ∈ H, if Vn denotes
a connected component of g−n(B(gn(z), ρ)) which contains the point z then
Vn ⊂ B(z, λ−nρ) and the map gn : Vn → B(gn(z), ρ) is at most N -critical.

For the proof of a yet more general version, see Section 3. See also Corol-
lary 5.5.

Finally, for the unicritical polynomials we have the following

Theorem 1.6. Suppose f(z) = zd + c has no an attracting cycle in C. Let
x̄ = {x−n}

∞
n=0, x0 = 0, f(x−n) = x−(n−1), n > 0, be a backward orbit of 0.

Then

χback
− (f, x̄) := lim inf

n→∞

1

n
log |Dfn(x−n)| ≥ 0.

This theorem can be deduced from Theorem 1.1 by modifying the proof of
Proposition 1 in [9]. (We leave the details to an interested reader.) In Section 4,
we shall provide a proof based on a modification of our argument in Section 2.
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1.2. On maps with several critical values. There are polynomials with all
periodic points repelling such that the lower Lyapunov exponent at one of the
critical values exists and is negative or even equals −∞ as examples of multi-
critical semi-hyperbolic, but not Collet-Eckmann polynomials show [21], [23].
Indeed, in [21] a real polynomial P of degree 4 is constructed such that all 3
critical points of P are real and non-degenerate, two of them q1, q2 lie in the
Julia set of P and obey the following properties: P 2(q1) is a repelling fixed point
of P , q2 is non-recurrent, P i(q2) 6= q1 for all i ≥ 0 while χ−(P, P (q2)) = −∞.
For a somewhat similar explicit example of degree 3 real cubic polynomial such
that the lower Lyapunov exponent at its critical value is finite and negative,
see [23].

1.3. On methods of the proof. As mentioned above, for S-unimodal map
without periodic attractor, it was proved in [16] that the lower Lyapunov ex-
ponent of the critical value is non-negative. The proof by Nowicki and Sands
relies heavy on the order of the real line. Using cross-ratio techniques, they
found some universal derivative and distortion bounds (related but different
bounds were obtained also in [12]) which enabled them to compare the de-
rivative along an orbit with the multiplier of certain periodic orbit and thus
obtain lower bounds for derivatives of the first return maps to small neighbor-
hoods of the critical value. To complete the proof, they also use Mañé’s result
which asserts that an S-unimodal map without periodic attractor is uniformly
expanding outside a neighborhood of the critical point.

Our theorems cover cases where universal distortion bounds are unknown
(e.g. infinitely renormalizable uncritical polynomials) and also cases where
Mañé’s result is not applicable (e.g. maps with a Cremer periodic point). Our
approach to the lower Lyapunov exponent is a telescope argument. Estimat-
ing the size of a ball which can be pulled back conformally and the resulting
topological disk, we derive our estimates from the (complex) Koebe distortion
theorems. See Lemmas 2.1 and 2.2 in the next Section 2.

Unlike similar arguments used frequently in the study of expansion property
of one-dimensional maps (see e.g. [14, 19, 9, 4, 24]), our argument does not
make use of any a priori knowledge of the critical orbits.

1.4. Some motivations and historical remarks. In 1-dimensional dynam-
ics often the asymptotic behaviour of derivatives along typical trajectories is
reflected in the asymptotic behaviour of derivatives along critical trajectories.
E.g. hyperbolicity is equivalent to the attraction of all critical trajectories to
attracting periodic orbits. This implies χ−(c) < 0 for all critical values c. This
paper provides converse theorems in case of a single critical point involved.

Another theory is that the ‘strong non-uniform hyperbolicity condition’ say-
ing that there is χ > 0 such that for all probability invariant measures µ on
Julia set J for a rational map g χµ(g) :=

∫

log |g′| dµ ≥ χ, is equivalent to
so called Topological Collet-Eckmann condition, see e.g. [23]. The latter in
presence of only one critical point in J is equivalent to the Collet-Eckmann
condition, which says that χ−(g, c) > 0 for each critical value c ∈ J whose
forward trajectory contains no critical points (and g has no parabolic orbits),
see also Remark 5.4.
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A motivation to Theorem 1.1 has been the theorem saying that for all µ as
above χµ(g) ≥ 0, see [20]. In particular for µ-almost every x ∈ J , for any µ,
χ(g, x) ≥ 0. This suggested the question whether critical values also have this
property (under appropriate assumptions).

Acknowledgment. We thank the referee for helpful recommendations.

2. Proof of Theorem 1.3

Let f : V → V ′ be a map in U and let c = c(f), ρ = ρ(f). Furthermore, let
AB(f) denote the union of the basin of attracting cycles of f . So when f has
no attracting cycle, AB(f) = ∅.

We need two lemmas for the proof of Theorem 1.3. In the first Lemma a
general construction is introduced which is used also later on. Throughout the
proofs, the Koebe principle applies.

Lemma 2.1. Assume that c is not a periodic point. Given λ > 1 there exists
δ0, such that for each δ ∈ (0, δ0), if n ≥ 1 is the first entry time of z /∈ AB(f)

into B(c; δ), then

• if either |z− c| ≤ δ or there is no neighborhood of z such that fn maps
it conformally onto Un = B(fn(z), |fn(z)− c|), then

(2.1) |Dfn(z)| ≥ λ−n |fn(z)− c|

max{δ, |z − c|}
;

• otherwise, i.e., if |z − c| > δ and fn maps a neighborhood of z confor-
mally onto Un, then

(2.2) |Dfn(z)| ≥
|fn(z)− c|

12|z − c|
.

Proof. Let δ ∈ (0, ρ/2]. Let n ≥ 1 and z 6∈ AB(f) be as in the Lemma,
and write zi = f i(z). Let {τi}ni=0 be a sequence of positive numbers with the
following properties:

(1) τn = |zn − c| and Un = B(zn, τn);
(2) for each 0 ≤ i < n, τi be the maximal number such that

• 0 < τi ≤ τi+1 and
• fn−i maps a neighborhood Ui of zi conformally onto B(zn, τi).

Let

I = {0 ≤ i < n : τi < τi+1}

and let

N = #I.

Note that for each i ∈ I, c ∈ ∂f(Ui). Since fn maps U0 conformally onto
B(zn, τ0), by the Koebe 1

4 Theorem, we have

(2.3) |Dfn(z)| ≥
τ0
4ε0

, where ε0 = d(z0, ∂U0).

Claim 1. There exists a universal constant K > 1 such that for each i ∈ I,
we have τi+1 ≤ Kτi. Moreover,

(2.4) ε0 ≤ 2δ + |z − c| ≤ 3max{δ, |z − c|}.
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Proof of Claim 1. We first note that for each 0 ≤ i < n, Ui 6⊃ B(c, 2δ) for
otherwise,

fn−i(Ui) = B(zn, τi) ⊂ B(c, 2δ) ⊂ Ui,

which implies by the Schwarz lemma that zi, hence z0, is contained in the basin
of an attracting cycle of f , a contradiction! The inequality (2.4) follows.

Now let i ∈ I. Then i < n− 1 and Ui+1 ⊃ ∂f(Ui) ∋ c, so

(2.5) diam(f(Ui)) ≥ |c− zi+1| ≥ δ.

Since Ui+1 6⊃ B(c, 2δ), it follows that mod(Ui+1 \f(Ui)) is bounded from above
by a universal constant. Since fn−i−1 : Ui+1 → B(zn, τi+1) is a conformal
map, we have

mod(Ui+1 \ f(Ui)) = log
τi+1

τi
.

Thus τi+1/τi is bounded from above by a universal constant. �

By (2.3), it follows that

(2.6) |Dfn(z0)| ≥
|τn|

max{δ, |z − c|}
(12KN)−1.

Since c is not a periodic point,

C(δ) = inf{m ≥ 1 : ∃z ∈ B(c, 2δ) such that fm(z) ∈ B(c, 2δ)} → ∞

as δ → 0. Thus given λ > 1, there is δ0 > 0 such that when δ ∈ (0, δ0] we have

12K ≤ λC(δ).

For i < i′ in I ∪ {n− 1}, we have w := fn−i′−1(c) ∈ B(c; 2δ) and f i′−i(w) =
fn−i−1(c) ∈ B(c, 2δ), i′ − i ≥ C(δ). Thus n ≥ C(δ)N. Consider several cases.
If N ≥ 1, then

λn ≥ λC(δ)N ≥ 12KN .

By (2.6), the inequality (2.1) holds in this case. If |z−c| ≤ δ, since z ∈ B(c; 2δ)
and fn(z) ∈ B(c, 2δ) we have n ≥ C(δ). Hence, if |z − c| ≤ δ and N = 0,

12 ≤ λC(δ) ≤ λn.

By (2.6), then (2.1) holds again. Finally, if N = 0, by (2.6), the inequality (2.2)
holds. �

Lemma 2.2. There exists M = M(f) > 1 and given λ > 1 and δ ∈ (0, 1)
there exists κ = κ(δ, λ) such that whenever z /∈ AB(f), |f j(z) − c| ≥ δ holds
for 0 < j ≤ n and B(fn(z), δ) ⊂ V ′, we have

(2.7) |Dfn(z)| ≥
κλ−n

max{M, |z − c|}
.

Proof. Fix λ and δ. We define the numbers τi, domains Ui, 0 ≤ i ≤ n and the
number ε0 as in the proof of Lemma 2.1, with the only difference that we start
with τn = δ. Let us show that there exists M = M(f) such that

(2.8) Ui 6⊃ B(c,M + δ) for each 0 ≤ i < n.

If V 6= C, we define M = d(c, ∂V ) + 1. Then (2.8) is obvious since Ui

must be in V . If V = C, then also V ′ = C. In this case, f : C → C is either a
polynomial or a transcendental entire function. It always has a (finite) periodic
orbit P (this fact is trivial for polynomials, and was proved by Fatou for entire
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functions). Define M = max{|w − c| : w ∈ P} + 1. Then (2.8) holds, for
otherwise, we would have that B(zn, δ) = fn−i(Ui) ⊃ fn−i(P ) = P , hence,

B(zn, δ) ⊂ B(c,M + δ).Then fn−i(Ui) = B(zn, δ) ⊂ B(c,M + δ) ⊂ Ui, which
would then imply zi ∈ AB(f) and hence z ∈ AB(f), a contradiction.

It follows that

(2.9) ε0 ≤ M + |z − c|+ δ ≤ 3max{M, |z − c|}.

To complete the proof, we need to consider the following set of indexes

Iλ = {i ∈ I : λτi ≤ τi+1}.

For each i ∈ Iλ, diam(f(Ui)) ≥ |zi+1 − c| ≥ δ. Since fn−i−1 maps f(Ui)
onto B(zn, τi) with a distortion which depends merely on λ, there exists α =
α(λ) > 0 such that

(2.10) B(zi+1, αδ) ⊂ f(Ui).

Moreover, by (2.8), there exists K = K(δ, λ) > 0 such that

(2.11)
τi+1

τi
= e mod (Ui+1\f(Ui)) ≤ K.

Furthermore, by (2.8) and τi+1 ≥ λτi, there exists a constant D = D(δ, λ) > 0
such that

(2.12) |zi+1 − c| ≤ D.

Let us prove that there exists m0 = m0(λ, δ) such that #Iλ ≤ m0. To this
end, let i(0) < i(1) < · · · < i(m − 1) be all the elements of Iλ. For each
0 ≤ j ≤ j′ < m, we have

mod (Ui(j′)+1 \ f
i(j′)−i(j)+1(Ui(j))) = log

τi(j′)+1

τi(j)
≥ logλ · (j′ − j + 1).

By (2.8), it follows that there exists m1 = m1(δ, λ) such that for 0 ≤ j < j′ < m

with j′ − j ≥ m1, diam(f i(j′)−i(j)+1(Ui(j))) ≤ αδ/2. For such j, j′, since

zi(j)+1 6∈ AB(f), f i(j′)−i(j)+1(Ui(j)) is not properly contained in f(Ui(j)), and
thus by (2.10), we have |zi(j)+1 − zi(j′)+1| ≥ αδ/2. In particular, the distance
between any two distinct points in the set {zi(km1) : 0 ≤ k < m/m1} is at least

αδ/2. By (2.12), the last set is contained in a bounded set B(c,D), thus its
cardinality is bounded from above by a constant. Thus m = #Iλ is bounded
from above.

It follows that

τ0 ≥ τnK
−m0λ−(n−m0) ≥ δK−m0λ−n.

So

|Dfn(z)| ≥
τ0
4ǫ0

≥
κλ−n

max{M, |z − c|}
,

where κ = δK−m04−1. �

Remark 2.3. Lemma 2.2 is valid for maps with several singular values c1, ...cm.
Then the condition is that |f j(z)− ci| ≥ δ holds for 0 < j ≤ n and 1 ≤ i ≤ m
and the maximum in (2.7) should be taken over all ci. The proof holds the
same with obvious changes. On the other hand, the proof of Lemma 2.1 relies
on the assumption that there exists only one singular value.

As a corollary of Lemmas 2.1-2.2, we have
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Lemma 2.4. Assume that c is not a periodic point. Given λ > 1 and σ ∈ (0, 1)
there exists C = C(λ, σ) > 0 such for every z0 /∈ AB(f) and s ≥ 1 whenever
B(f s(z0), σ) ⊂ V ′, we have: if z0 = c, then

|Df s(c)| ≥ Cλ−s,

and if z0 6= c, then

|Df s(z0)| ≥ C
min{1, infsi=0 |f

i(z0)− c|}

|z0 − c|
λ−s.

Proof. Fix λ > 1 and σ > 0, let δ0 = δ0(λ) ∈ (0, σ] be given by Lemma 2.1 and
let κ̃ = κ(δ0(λ), λ) be given by Lemma 2.2. Define ǫ0 = infsi=0 |f

i(z0) − c|. If
ǫ0 > δ0, we are done by Lemma 2.2 with C = κ̃. Otherwise let s0 ∈ {0, ..., s}
be minimal such that |f s0(z0)− c| = ε0 and smax ∈ {s0, ..., s} be maximal such
that |f smax(z0)− c| ≤ δ0. We show that

(2.13) Df s−s0(f s0(z0))| ≥
κ̃

M
λ−(s−s0).

Indeed, if smax = s0, we are done by Lemma 2.2, where we put z = f s0(z0)
and δ = δ0. Let s0 < smax. Define ε1 = infsmax

i=s0+1 |f
i(z0) − c| and let s1 ∈

{s0+1, ..., smax} be minimal such that |f s1(z0)− c| = ε1. If s1 = smax then we
stop. Otherwise, define ε2 = infsmax

i=s1+1 |f
i(z0)−c| and let s2 ∈ {s1+1, . . . , smax}

be minimal such that |f s2(z0) − c| = ε2. Repeating that argument, we obtain
a sequence of positive numbers 0 < ε1 ≤ ε2 ≤ · · · εk ≤ δ0 and a sequence of
integers 0 ≤ s0 < s1 < s2 < · · · < sk = smax.

Applying Lemma 2.1 to z = f s0(z0), δ = ε1 and n = s1 − s0, we obtain

|Df s1−s0(f s0(z0))| ≥ λ−(s1−s0).

For each i = 2, 3, . . . , k, applying Lemma 2.1 to z = f si−1(z0), δ = εi and
n = si − si−1, we obtain

|Df si−si−1(f si−1(z0))| ≥ λ−(si−si−1).

Therefore

|Df smax−s0(f s0(z0))| =
k
∏

i=1

|Df si−si−1(f si−1(f s0(z0)))| ≥ λ−(smax−s0).

If smax < s, we can further apply Lemma 2.2 with z = f smax(z0), δ = δ0 and
n = s− smax:

|Df s−smax(f smax(z0))| ≥
κ̃

M
λ−(s−smax).

Thus (2.13) follows:

|Df s−s0(f s0(z0))| ≥ λ−(smax−s0)
κ̃

M
λ−(s−smax) =

κ̃

M
λ−(s−s0).

This proves the Lemma if s0 = 0 (including the case z0 = c).
If s0 > 0, we apply Lemma 2.1 for z = z0, δ = ǫ0 and n = s0:

|Df s0(z0)| ≥ λ−s0
ǫ0

12max{ǫ0, |z0 − c|}
= λ−s0

ǫ0
12|z0 − c|

.

Combining this with (2.13) we obtain finally:

|Df s(z0)| ≥ C
infsi=0 |f

i(z0)− c|

|z0 − c|
λ−s,
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where C = κ̃/(12M). �

Theorem 1.3 follows at once from Lemma 2.4.

Proof of Theorem 1.3. We may certainly assume that c is not periodic. Fix
λ > 1. Applying Lemma 2.4 with z0 = c, we find C > 0 such that for each
s ≥ 1,

|Df s(c)| ≥ Cλ−s.

Hence, χ−(f, c) ≥ − logλ for every λ > 1 �

Let us formulate another consequence of Lemma 2.4.

Definition 2.5. Let z /∈ AB(f) such that the forward orbit of z is well-defined.
We call z (exponentially) slowly recurrent if for any α > 0, |fn(z)− c| ≥ e−αn

holds for every large n.

As in the proof of Theorem 1.3, Lemma 2.4 implies:

Lemma 2.6. If z is a slowly recurrent point and there exists δ > 0 such that
B(fn(z), δ) ⊂ V ′ for every n, then χ−(f, z) ≥ 0.

3. Expansion along the orbit

Let us fix a polynomial g of degree at least 2. Theorem 1.5 of the Introducton
is an immediate corollary of the following.

Theorem 3.1. For every λ > 1 and ǫ0 > 0 there exist ρ > 0, N, ñ ∈ Z+

and α > 0 (which depend on g and λ, ǫ0 only) as follows. Let z ∈ J(g) and
m ∈ Z

+. Assume

(3.1)
1

m
log |Dgm(z)| > ǫ0 + logλ.

Then there exists a subset Hm of the set {1, 2, ...,m} such that the following
hold:

(a) # Hm ≥ αm,
(b) for every n ∈ Hm, if Vn is a connected component of g−n(B(gn(z), ρ))

which contains the point z then the map gn : Vn → B(gn(z), ρ) is at
most N -critical, that is, #{0 ≤ k < n : gk(Vn)∩Crit 6= ∅} ≤ N , where
Crit is the set of critical points of g.

(c) Vn ⊂ B(z, λ−nρ) whenever n ∈ Hm and n ≥ ñ.

This result has already been referred to in [8].

Remark 3.1. Theorem 3.1 as well as its proof (see below) hold for rational
functions as well (derivatives are then taken in the spherical distance).

We need some preparations for the proof.

Definition 3.2. We say that m is a λ-hyperbolic time for z if

|Dgm−i(gi(z))| ≥ λm−i

holds for each i = 0, 1, . . . ,m− 1.

Let W k
δ (z) , k > 0, denote the connected component of g−k(B(gk(z), δ))

which contains z. The next Lemma is known as the “telescope lemma” of [18]
(see also [23], Lemma 2.3 for a simplified method and [8] for C1 multimodal
interval maps):
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Lemma 3.3. Let λ > 1 and ǫ > 0. There exist C = C(λ, ǫ) and δ0 = δ0(λ, ǫ) >
0 as follows. Assume that s is a λeǫ-hyperbolic time for z ∈ J(g). Then, for
every δ ∈ (0, δ0] and every i = 0, ..., s− 1,

(3.2) W s−i
δ (gi(z)) ⊂ B(gi(z), Cδλ−(s−i)).

Recall the definition of “shadow” [22]. Fix z ∈ J(g). For n ∈ Z+, set
ϕ(n) = − log d(gn(z), Crit). Multiplying the metric d by a constant we can
assume that ϕ ≥ 0. By [7], there exists Cg > 0, which depends only on g such
that

(3.3)

n−1
∑

k=0

′ ϕ(k) ≤ Cgn, n = 1, 2, ...

where
∑

′ denotes the summation over all but at most M = # Crit indexes
(at most one closest approach, i.e., the biggest ϕ(k), per each c ∈ Crit). Given
K > 0, define a “shadow” S(j,K) of j ∈ Z+ to be the following interval of the
real line:

S(j,K) = (j, j +Kϕ(j)].

For any N ∈ Z+, let A(N,K) be the set of all n ∈ Z+ such that there are at
most N integers j so that n ∈ S(j,K). Let us denote by l(S) the lenght of an
interval S ⊂ R.

Claim 1. For every m ∈ Z+,

# {A(N,K) ∩ {1, ...,m}}

m
≥ 1−

CgK

N −M + 1
.

Proof of Claim 1. Let 1 ≤ n1 < ... < nr ≤ m be all n with the property

that n lies in at least N + 1 “shadows”. Then obviously
∑m−1

j=0
′ l(S(j,K)) ≥

(N −M + 1)r. On the other hand, by (3.3),

m−1
∑

j=0

′ l(S(j,K)) = K

m−1
∑

j=0

′ ϕ(j) ≤ KCgm.

Therefore, for N large enough, r ≤ CgK

N−M+1m. �

Given r > 0, we denote by G(N, r) the set of all n ∈ N such that the map
gn : Wn

r (z) → B(gn(z), r) is at most N -critical. Then we have
Claim 2. Suppose that n is an λeǫ-hyperbolic time for z, for some ǫ > 0.

Set K0 = 1/ logλ. There exists δ̃ = δ̃(λ, ǫ) such that for every δ ∈ (0, δ̃] and
N ∈ Z+, if n ∈ A(N,K0), then n ∈ G(N, δ).

Proof of Claim 2. Let C = C(λ, ǫ) and δ0 = δ0(λ, ǫ) be taken from Lemma 3.3.

Define δ̃ = min{δ0, 1/C}. Let δ ≤ δ̃. If 1 ≤ j < n is such that W j
δ (g

n−j(z)) ∩

Crit 6= ∅, then d(gn−j(z), Crit) ≤ diam(W j
δ (g

n−j(z))) ≤ Cδλ−j . Hence,

ϕ(n− j) ≥ j logλ+ log
1

Cδ
≥

j

K0
.

It means that n ∈ S(n− j,K0). Now, assume that gn : Wn
δ (z) → B(gn(z), δ)

is at least N + 1-critical. By the preceding consideration, n belongs to at
least N + 1 different “shadows” S(n− j,K0). Therefore, n /∈ A(N,K0). Thus
n ∈ A(N,K0) implies n ∈ G(N, δ). �
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The last ingredient of the proof is the Pliss Lemma [17]:

Lemma 3.4. Let 0 < b1 < b2 ≤ B and θ = (b2 − b1)/(B − b1). Given real
numbers a1, ..., ar satisfying

∑r
j=1 aj ≥ b2r and aj ≤ B for all 1 ≤ j ≤ r, there

are l > θr and 1 < n1 < ... < nl ≤ r such that
∑nj

i=n+1 ai ≥ b1(nj −n) for each
0 ≤ n < nj, j = 1, ..., l.

Proof of Theorem 3.1. Let z ∈ J(g), m ∈ Z+ and

1

m
log |Dgm(z)| > ǫ0 + logλ.

Let ǫ = ǫ0/8. Consider the set

H̃m = {n ∈ {1, ...,m} : n is a λe4ǫ − hyperbolic time for z}.

By the Pliss Lemma 3.4 (for aj = log g′(gj−1(z))|), there exists θ = θ(λ, ǫ) such
that

(3.4)
# H̃m

m
> θ, m ≥ 1.

Let K0 = 1/ log(λe2ǫ) and let δ̃ = δ̃(λ, 2ǫ) be the constant from Claim 2. We
define

ρ = δ̃, N = [2CfK0/θ] +M and α = θ/2.

Consider the corresponding sets A(N,K0) and G(N, ρ). By Claim 1,

(3.5)
# {A(N,K0) ∩ {1, ...,m}}

m
≥ 1−

CgK0

N −M + 1
> 1−

θ

2

while by Claim 2,

(3.6) A(N,K0) ∩ H̃m ⊂ G(N, ρ).

Then (3.4) and (3.5) give us

(3.7) # {A(N,K0) ∩ H̃m} >
θ

2
m.

Hence, by (3.6) we must have:

(3.8)
# {G(N, ρ) ∩ H̃m}

m
> α.

Denote Hm = G(N, ρ)∩H̃m. Then the properties (a) and (b) hold for n ∈ Hm.
Furthermore, by Lemma 3.3, for every n ∈ H , diamVn ≤ 2C(λe2ǫ)−n, where
C = C(λ, 2ǫ) > 0. Hence, diamVn ≤ λ−n, for every n ≥ ñ, where ñ = ñ(λ, ǫ).
Thus (c) holds too. �

Remark 3.5. Theorem 3.1 implies the following fact which is announced in the
Abstract: every point z of a polynomial Julia set J(g) satisfying χ+(g, z) > 0
is not a Lebesgue density point of J(g). (By Remark 3.1, this holds as well for
rational functions with nowhere dense Julia sets.) In fact J(g) is even upper
mean porous at such z which means: there are r > 0 and a subset of Z+ of a
positive upper density such that for every j in this subset B(z, 2−j) contains a
ball disjoint from J(g) of radius r2−j . The proof is the same as in [22] in the
case of g satisfying Collet-Eckmann condition.
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4. Unicritical polynomials

In this Section, f(z) = zd + c, where d ≥ 2 and c ∈ C. Recall that a point
z ∈ J(f) is slowly recurrent if for any α > 0, |fn(z)| ≥ e−αn holds for every
large n.

The next fact is crucial.

Lemma 4.1. Almost every point z ∈ J(f) is slowly recurrent.

Proof. If the critical point 0 is not in the Julia set, then 0 is attracted by either
an attracting cycle or a parabolic cycle, and it is well known that the Julia set
has measure zero. In the following, we assume that 0 ∈ J(f).

We need the following fact which is a particular case of [20], Lemma 1.
Claim 1. There is a constant K = K(d) > 0 such that for any ε > 0, any

w ∈ J(f) and any integer s ≥ 1, if |w| < ε and |f s(w)| < ε, then

s ≥ C(ε) := K log(ε−1).

Now we fix α > 0 and consider En = {z ∈ J(f) : |fn(z)| < e−2αn}. Let V be
a component of f−n(B(0, e−αn)). If 0 ≤ j1 < j2 ≤ n are such that f j1(V ) and
f j2(V ) both contain 0, then j2 − j1 is a return time of fn−j2(0) ∈ B(0, e−αn)

into the ball. By Claim 1, j2 − j1 ≥ C(e−αn) = C̃αn for some constant C̃ =

C̃(d) > 0. Thus # {0 ≤ j ≤ n : f j(V ) ∋ 0} is bounded by 1+1/(αC). It means
that the map fn : V → B(0, e−αn) is a (branched) cover with a degree which is
uniformly bounded by some D = D(d, α). Since En∩V ⊂ f−n(B(0, e−2αn)), it
follows from a version of the Koebe distortion theorem for multivalent maps, see
e.g. [22], Lemma 2.1, that there exists α′ > 0, which depends only on α and D

such that area(V ∩ En)/area(V ) ≤ e−α′n. As V ⊂ f−n(B(0, e−αn)) ⊂ B(0, 3),
area(En) is exponentially small with n and thus

∑∞
n=1 area(En) < ∞. By the

Borel-Cantelli lemma, a.e. z is contained in only finitely many En. �

Proof of Theorem 1.4. By Lemma 2.6, χ−(z) ≥ 0 for every slowly recurrent
z ∈ J(f) and using Lemma 4.1, χ−(z) ≥ 0 for almost every z ∈ J(f). And
χ+(z) ≤ 0 for a.e. z because each z with χ+(z) > 0 is not a Lebesgue density
point by Theorem 1.5. �

We shall now consider backward orbits of the critical point and prove Theo-
rem 1.6 of the Introduction. We first prove the following variation of Lemma 2.1
for polynomial maps which gives a better estimate.

Lemma 4.2. Let f(z) = zd + c where d ≥ 2 and c ∈ C. Assume that f has
no an attracting cycle. Then for each λ > 1 there is δ0 > 0 such that for each
δ ∈ (0, δ0), if z 6∈ B(0, δ) and n ≥ 1 is the minimal positive integer such that
|fn(z)| ≤ δ, then

|Dfn(z)| ≥
δ

12|z|
λ−n.

Moreover, if |z| = δ, then
|Dfn(z)| ≥ λ−n.

Proof. Fix λ and δ. Define the numbers τi, domains Ui, 0 ≤ i ≤ n, the index
set I and the number ε0 as in the proof of Lemma 2.1, with the only difference
that we start with Un = B(zn, δ), so τn = δ. As f has no attracting cycle in C,

Ui 6⊃ B(0, 2δ) for each 0 ≤ i ≤ n. Thus the conclusion of Claim 1 of Section 2
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holds with c replaced by 0 in the current setting. So we obtain similar to (2.6)
the following estimate: |Dfn(z)| ≥ δ/(12|z|KN). Arguing as in the last part
of the proof of Lemma 2.1, we show that KN ≤ λn, provided that δ is small
enough. In the case |z| = δ, we have 12KN ≤ λn. Thus the lemma holds. �

As an immediate corollary, we have

Lemma 4.3. Let f(z) = zd + c where d ≥ 2 and c ∈ C. Assume that f has
no an attracting cycle. Then for each λ > 1 there is δ0 > 0 such that for
each z ∈ C and n ≥ 1 with |fn(z)| ≤ δ0 and with |fn(z)| ≤ |f j(z)| for each
0 ≤ j < n, we have

|Dfn(z)| ≥ min

(

δ0
12|z|

, 1

)

λ−n.

Proof. Let δ0 be given by Lemma 4.2 and let δ′0 = min(|z|, δ0). By the as-
sumption, there is a sequence of integers 1 ≤ n1 < n2 < · · · < nk = n such
that

• n1 is the minimal positive integer such that |fn1(z)| ≤ δ′0;
• nj+1 is the minimal integer with nj+1 > nj and |fnj+1(z)| ≤ |fnj(z)|

for each j = 1, . . . , k − 1.

If |z| ≥ δ0, then n1 is the minimal positive integer such that |fn1(z)| ≤ δ0, so
by Lemma 4.2, we have

|Dfn1(z)| ≥
δ0

12|z|
λ−n.

If |z| < δ0, then |z| = δ′0 ∈ (0, δ0] and n1 is the minimal integer such that
|fn1(z)| ≤ δ′0, so by the latter inequality of Lemma 4.2, we have

|Dfn1(z)| ≥ λ−n1 .

For each 1 ≤ j < n, putting δj := |fnj (z)| ∈ (0, δ0], nj+1 − nj is the minimal
positive integer such that |fnj+1−nj (fnj (z))| ≤ δj , so by the latter inequality
in Lemma 4.2 again, we have

|Dfnj+1−nj (fnj (z))| ≥ λ−(nj+1−nj).

Therefore, if |z| ≥ δ0, then

|Dfn(z)| = |Dfn1(z)|
k−1
∏

j=1

|Dfnj+1−nj (fnj (z))| ≥
δ0

12|z|
λ−n,

and if |z| < δ0, then

|Dfn(z)| ≥ λ−n.

�

Proof of Theorem 1.6. Fix λ > 1 and let δ0 be given by Lemma 4.3. Let
x̄ = {x−n}∞n=0 be a backward orbit of 0. Then for each n, applying Lemma 4.3
to z = x−n, we obtain

|Dfn(x−n)| ≥ Knλ
−n,

where Kn = min (δ0/(12|x−n|), 1) . Clearly Kn is bounded from below by a
positive constant depending only on f . Thus

χback
− (f, x̄) ≥ − logλ.
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Since this holds for all λ > 1, χback
− (f, x̄) ≥ 0. �

5. Some applications and remarks

Let us note the following special case of Theorem 1.3:

Theorem 5.1. Let g be a rational function on the Riemann sphere of degree
at least two. Given a critical value c of g, define its postcritical set P (c) =

∪n≥0gn(c). Assume that c0 is a critical value of g not in the basin of an
attracting cycle, such that P (c0) is disjoint from the union X of the postcritical
sets of all other critical values of g. Then

χ−(g, c0) = lim inf
n→∞

1

n
log ‖Dgn(c0)‖ ≥ 0,

where ‖ · ‖ denote the norm in the spherical metric.

Proof. By means of a Möbius conjugacy, we may assume that ∞ ∈ X , so that
the orbit of c0 lies in a compact subset of C and χ−(g, c0) can be calculated using
the Euclidean metric instead of the spherical metric. Then define V ′ = C \X
and V = g−1(V ′), and apply Theorem 1.3 to g ∈ UV,V ′ . �

An immediate corollary of Theorem 1.1 along with Remark 13 of [10] is as
follows:

Corollary 5.1. Assume that the map f(z) = zd + c has no attracting cycles.
Then the power series

F (t) = 1 +

∞
∑

n=1

tn

Dfn(c)

has the radius of convergence at least 1, and

(5.1) F (t) 6= 0 for every |t| < 1.

Remark 5.2. The function F (t) should be interpreted as “Fredholm determi-

nant” of the operator T : φ 7→
∑

w:f(w)=z
φ(w)

Df(w)2 acting in a space of func-

tions φ, which are analytic outside of J(f) and locally integrable on the plane.
Then (5.1) reflects the fact that T is a contraction operator in this space. Note
that this operator plays, in particular, an important role (after Thurston) in
the problem of stability in holomorphic dynamics.

Another consequence of Theorem 1.3 is that:

Corollary 5.3. Let gi : Vi → V ′
i , i = 0, 1, be two mappings in the class U

which are quasi-conformally conjugated (i.e., there exists a q-c map h : C → C

such that h(V0) = V1, h(V ′
0 ) = V ′

1 , and h ◦ g0 = g1 ◦ h on V0). Assume
that ωg0(c(g0)) (the ω-limit set of the point c(g0) by the map g0) is compactly
contained in V0. If, for a subsequence nk → ∞, limk→∞

1
nk

log |Dgnk

0 (c(g0))| =

0, then also limk→∞
1
nk

log |Dgnk

1 (c(g1))| = 0.

Proof. Normalize the maps in such a way that c(g0) = c(g1) = 0 and h(1) =
1. As in [13], one can include g0 and g1 in a family gν of quasi-conformally
conjugated maps of the class U , with c(gν) = 0, which depends holomorphically
on ν ∈ Dr = {|ν| < r}, for some r > 1. Namely, if µ = ∂h

∂z̄
/∂h
∂z

is complex

dilatation of h, then, for every ν ∈ Dr, where r = ||µ||−1
∞ , let hν be the unique
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q-c homeomorphism of C with complex dilatation νµ, which leaves the points
0, 1 fixed (in particular, h0 = id and h1 = h). Then we can define domains
Vν = hν(V0), V

′
ν = hν(V

′
0), and the map gν = hν ◦ g0 ◦ h−1

ν : Vν → V ′
ν ∈ U

with c(gν) = 0. As ωgν (0) = hν(ωg0(c(g0)) is compactly contained in Vν =
hν(V0), by the Schwarz lemma and a compactness argument, given a compact
subset K of the disk Dr, there exists C, such that |Dgν(g

i
ν(0))| ≤ C for every

ν ∈ K and every i ≥ 0. Then uk(ν) = n−1
k log |Dgnk

ν (0)| is a sequence of
harmonic functions in Dr, which is bounded on compacts. On the other hand,
by Theorem 1.3, every limit value of the sequence {uk} is non-negative, and, by
the assumption, uk(0) → 0. According to the Minimum Principle, uk(ν) → 0
for any ν. �

Remark 5.4. In particular, the Collet-Eckmann condition χ−(g, c(g)) > 0 is a
quasi-conformal invariant. In fact, it is even a topological invariant [21].

The following is a consequence of Theorem 1.5:

Corollary 5.5. Let g be a polynomial which is infinitely-renormalizable around
a critical value c. If χ+(g, c) > 0, then J(g) is not locally-connected.

Indeed, let Jn, n ≥ 1, be a sequence of “small” Julia sets such that c ∈ Jn
and let pn → ∞ be their corresponding periods. Theorem 1.5 implies that
there is a sequence of integers mn → ∞ such that infn diam gmn(Jn) > 0.
Hence, a Hausdorff limit point of the sequence of compacts gmn(Jn), n ≥ 1,
must be a non-trivial wandering subcontinuum of J(g). By Theorem 3.2 of [1]
(see also [11]), J(g) cannot be locally-connected.
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