
ON INVARIANT MEASURES OF "SATELLITE"
INFINITELY RENORMALIZABLE QUADRATIC

POLYNOMIALS

GENADI LEVIN AND FELIKS PRZYTYCKI

Abstract. Let f(z) = z2 + c be an infinitely renormalizable
quadratic polynomial and J∞ be the intersection of forward
orbits of "small" Julia sets of its simple renormalizations. We
prove that if f admits an infinite sequence of satellite renor-
malizations, then every invariant measure of f : J∞ → J∞ is
supported on the postcritical set and has zero Lyapunov ex-
ponent. Coupled with [14], this implies that the Lyapunov
exponent of such f at c is equal to zero, which answers partly
a question posed by Weixiao Shen.

1. Introduction

We consider the dynamics f : C→ C of a quadratic polynomial.
Up to a linear change of coordinates, f has the form fc(z) = z2 + c
for some c ∈ C. In this paper, which is the sequel of [9], we assume
that f is infinitely-renormalizable. Moreover, in the main results we
assume that f has infinitely many "satellite renormalizations", see
e.g. [19], or below for definitions. Dynamics, geometry and topol-
ogy of such system can be very non-trivial, in particular, due to the
fact that different renormalization levels are largely independent.

Historically, the first example of infinitely-renormalizsable one-
dimensional map was, probably, the Feigenbaum period-doubling
quadratic polynomial fcF , where cF = −1.4... [6]. The Julia set
of fcF is locally connected [7] as it follows from so-called "complex
bounds", a compactness property of renormalizations which is a key
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tool since [27], in particular, in proving the Feigenbaum-Coullet-
Tresser universality conjecture [27, 20, 15]. Perhaps, more strik-
ing for us are Douady-Hubbard’s examples, or alike, of infinitely-
renormalizable quadratic polynomials with non-locally connected
Julia sets [17, 26, 10, 11, 12, 4, 3]. As for the Feigenbaum poly-
nomial fcF , all the renormalizations of such maps are satellite, al-
though, contrary to fcF , combinatorics is unbounded (which, in
turn, implies that those maps cannot have complex bounds [1]).

Dynamics of every holomorphic endomorphism of the Riemann
sphere g : Ĉ → Ĉ classically splits Ĉ into two subsets: the Fatou
set F (g) and its complement the Julia set J(g), where F (g) is the
maximal (possibly, empty) open set where the sequence of iterates
gn, n = 0, 1, ... forms a normal (i.e., a precompact) family. See e.g.
[2], [16] for the Fatou-Julia theory and [25] for a recent survey.

If g is a polynomial, then the Julia set J(g) coincides with the
boundary of the basin of infinity A(∞) = {z ∈ C| limn→∞ g

n(z) =
∞} of g. The complement C \ A(g) is called the filled Julia set
K(g) of the polynomial g. The compact K(g) ⊂ C is connected if
and only if it contains all critical points of g in the complex plane.

A quadratic polynomial fc with connected filled Julia set K(f) is
renormalizable if, for some topological disks U b V around the crit-
ical point 0 of fc, and some p ≥ 2 (period of the renormalization),
the restriction F := fpc : U → V is a proper branched covering
map (called polynomial-like map) of degree 2 and the non-escaping
set K(F ) = {z ∈ U : F n(z) ∈ U for all n ≥ 1} (called the filled
Julia set of the polynomial-like map F ) is connected. The map
F : U → V is then a renormalization of fc and the set K(F ) is
a "small" (filled) Julia set of fc. By the theory of polynomial-
like mappings [5], there is a quasiconformal homeomorphism of C,
which is conformal on K(F ), that conjugates F on a neighbor-
hood of K(F ) to a uniquely defined another quadratic polynomial
fc′ with connected filled Julia set. If fc′ is renormalizable by it-
self, then fc is called twice renormalizable, etc. If fc admits infin-
itely many renormalizations, it is called infinitely-renormalizable.
The renormalization F = fpc is simple if any two sets f i(K(f)),
f j(K(F )), 0 ≤ i < j ≤ p − 1, are either disjoint or intersect each
other at a unique point which does not separate either of them.
A simple renormalization fpn is called primitive if all sets f i(Kn),
i = 0, · · · , pn − 1, are disjoints and satellite otherwise.

To state our main results, Theorems 1.1, let f(z) = z2 + c be
infinitely renormalizable. Then its Julia set J = J(f) coincides
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with the filled Julia set K(f) and is a nowhere dense compact full
connected subset of C. Let 1 = p0 < p1 < ... < pn < ... be the
sequence of consecutive periods of simple renormalizations of f and
Jn 3 0 denote the "small" Julia set of the n-renormalization (where
J0 = J). Then pn+1/pn is an integer, fpn(Jn) = Jn, for any n, and
f -orbits of Jn,

orb(Jn) = ∪j≥0f j(Jn) = ∪pn−1j=0 f
j(Jn),

n = 0, 1, ..., form a strictly decreasing sequence of compact subsets
of C. Let

J∞ = ∩n≥0orb(Jn)

be the intersection of the orbits of the "small" Julia sets Jn. For
every n, repelling periodic orbits of f are dense in orb(Jn) while
each component of J∞ is wandering, in particular, J∞ contains no
periodic points of f .

Let
P = {fn(0)|n = 1, 2, ...}

be the postcritical set of f . Clearly,

P ⊂ J∞.

Moreover, the critical point 0 is recurrent, hence,

P = ω(0),

where ω(z) is the omega-limit set of a point z ∈ J .
We prove in [9] that J∞ cannot contain any hyperbolic set. On

the other hand, a hyperbolic set of a rational map always carries
an invariant measure with a positive Lyapunov exponent. So a
generalization of [9] would be that J∞ never carries such a measure.
Here we prove this generalization for a class of "satellite" infinitely-
renormalizable quadratic polynomials:

Theorem 1.1. Suppose that f(z) = z2 + c admits infinitely many
satellite renormalizations. Then f : J∞ → J∞ has no an invariant
probability measure with positive Lyapunov exponent.

Let us comment on the behavior of the restriction map f : J∞ →
J∞ where f as in Theorem 1.1. First, by [9], the postcritical set
P must intersect the omega-limit set ω(x) of each x ∈ J∞. At
the same time, dynamics and topology of the further restriction
f : P → P can vary. Indeed, there are infinitely renormalizable
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quadratic polynomials f with all renormalizations being of satellite
type such that at least one of the following holds1:

(1) f : P → P is not minimal. This case happens in Douady-
Hubbard’s type examples. Indeed, by the basic construction [17],
J∞ then contains a closed invariant set X (which is the limit set
for the collection of α-fixed points of renormalizations) such that
0 /∈ X. By [9], X ∩ P is non-empty. Thus X ∩ P is an invariant
non-empty proper compact subset of P .

(2) P is a so-called "hairy" Cantor set, in particular, P contains
uncountably many non-trivial continua. This case takes place fol-
lowing [3].

(3) P is a Cantor set and f : P → P is minimal; this happens
whenever f either admits complex bounds (which then imply J∞ =
P ) or is robust [19]2. Under either of the two conditions, f : P → P
is a minimal homeomorphism, which is topologically conjugate to
x 7→ x+ 1 acting on the projective limit of the sequence of groups
{Z/pnZ}∞n=1; in particular, f : P → P (hence, also f : J∞ → J∞,
as it follows from the next Corollary 1.1) is uniquely ergodic in this
case.

Theorem 1.1 yields the following dichotomy about the measurable
dynamics of f : J → J on the Julia set J of f . Recall that, by
[22], any invariant probability measure on the Julia set of a rational
function has non-negative exponent.

Corollary 1.1. Let µ be an invariant probability ergodic measure
of f : J → J . Then either

(i) supp(µ) ∩ J∞ = ∅ and its Lyapunov exponent χ(µ) > 0,
or

(ii) supp(µ) ⊂ P and χ(µ) = 0.

In particular, the set J∞\P is "measure invisible", see also Propo-
sition 6.1 which is a somewhat stronger version of Corollary 1.1.

Corollary 1.2. If f admits infinitely many satellite renormaliza-
tions, then

(1.1) lim sup
n→∞

1

n
log |(fn)′(x)| ≤ 0 for any x ∈ J∞,

1A more complete description of f : P → P should follow from the methods
developed in [3].

2The "robustness" can happen without "complex bounds" as it follows from
[3] combined with [1].
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and

(1.2) lim
n→∞

1

n
log |(fn)′(c)| = 0.

For the proof of Corollaries 1.1-1.2, see Sect. 6. The proof of
Theorem 1.1 occupies sections 2-5.

As in [9], we use heavily a general result of [23] on the accessibility
although the main idea of the proof is different. Indeed, in [9] we
utilize the fact that the map cannot be one-to-one on an infinite
hyperbolic set. At the present paper, to prove Theorem 1.1 we
assign, loosely speaking, an external ray to a typical point of a
hypothetical measure with positive exponent such that the field
of such rays is invariant and has a controlled geometry. Given a
satellite renormalization fpn we use the measure and the above field
of rays to choose a point x and build a special domain that covers
a "small" Julia set Jn,x 3 x such that there is a univalent pullback
of the domain by fpn along the renormalization that enters into
itself, leading to a contradiction. The choice of x is ’probabilistic’,
i.e., made from sets of positive measure, and the construction of
the domain differs substantially depending on whether all satellite
renormalizations of f are doubling or not.
Acknowledgment. The conclusion (1.2) of Corollary 1.2 that

the Lyapunov exponent at the critical value equals zero answers
partly a question by Weixiao Shen, which inspired the present work
as well as the prior one [9].

2. Preliminaries

Here we collect, for further references and use throughout the
paper, necessary notations and general facts. (A)-(D) are slightly
adapted versions of (A)-(D) in Sect. 2, [9] which are either well-
known [19], [18], follow readily from known ones, or are proved
here.

Let f(z) = z2 + c be infinitely renormalizable. We keep the
notations of the Introduction.
(A). Let G be the Green function of the basin of infinity A(∞) =

{z|fn(z) → ∞, n → ∞} of f with the standard normalization at
infinity G(z) = ln|z| + O(1/|z|). The external ray Rt of argument
t ∈ S1 = R/Z is a gradient line to the level sets of G that has the
(asymptotic) argument t at ∞. G(z) is called the (Green) level of
z ∈ A(∞) and the unique t such that z ∈ Rt is called the (external)
argument (or angle) of z. A point z ∈ J(f) is accessible if there is
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an external ray Rt which lands at (i.e., converges to) z. Then t is
called an (external) argument (angle) of z.

Let σ : S1 → S1 be the doubling map σ(t) = 2t(mod1). Then
f(Rt) = Rσ(t).

Every point a of a repelling cycle Oa of period p is the landing
point of an equal number v, 1 ≤ v < ∞, of external rays where
v coincides with the number of connected components of J(f) \
{a}. Their arguments are permuted by σp according to a rational
rotation number r/q (written in the lowest term); v/q is the number
of cycles of rays landing at a. If v ≥ 2, there is an alternative [18]:
r/q = 0/1, then v = 2 so that each of two external ray landing

at a is fixed by fp,
r/q 6= 0/1, i.e., q ≥ 2, then v = q, i.e., the arguments of q rays

landing at a form a single cycle of σp.
(B). All periodic points of f are repelling. Given a small Julia

set Jn containing 0, sets f j(Jn), 0 ≤ j < pn, are called small Julia
sets of level n. Each f j(Jn) contains pn+1/pn ≥ 2 small Julia sets
of level n + 1. We have Jn = −Jn. Since all renormalizations are
simple, for j 6= 0, the symmetric companion −f j(Jn) of f j(Jn) can
intersect the orbit orb(Jn) = ∪pn−1j=0 f

j(Jn) of Jn only at a single
point which is periodic. On the other hand, since only finitely
many external rays converge to each periodic point of f , the set J∞
contains no periodic points. In particular, each component K of
J∞ is wandering, i.e., f i(K)∩f j(K) = ∅ for all 0 ≤ i < j <∞. All
this implies that {x,−x} ⊂ J∞ if and only if x ∈ K0 := ∩∞n=1Jn.
Given x ∈ J∞, for every n, let jn(x) be the unique j ∈
{0, 1, · · · , pn − 1} such that x ∈ f j(x)(Jn). Let Jx,n = f jn(x)(Jn)
be a small Julia set of level n containing x and Kx =
∩n≥0Jx,n, a component of J∞ containing x.

In particular, K0 = ∩n≥0Jn is the component of J∞ containing 0
and Kc = ∩∞n=1f(Jn), the component containing c.

Note that either pn − jn(x) → ∞ as n → ∞ or pn − jn(x) = N
for some N ≥ 0 and all n, that is, fN(x) ∈ K0.

The map f : Kx → Kf(x) is two-to-one if x = 0 and one-to-one
otherwise. Moreover, for every y ∈ J∞, f−1(y)∩J∞ consists of two
points if y ∈ Kc and consists of a single point otherwise. Denote

J ′∞ = J∞ \ ∪∞j=−∞f j(K0).

We conclude that:
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f : J ′∞ → J ′∞ is a homeomorphism. Given x ∈ J ′∞ and m > 0,
denote xm = fm(x) and

x−m = f |−mJ ′∞ (x),

that is, the only point f−m(x) ∩ J∞.
(C). Given n ≥ 0, the map fpn : f(Jn) → f(Jn) has two fixed

points: the separating fixed point αn (that is, f(Jn) \ {αn} has at
least two components) and the non-separating βn (so that f(Jn)\βn
has a single component).

For every n > 0, there are 0 < tn < t̃n < 1 such that two rays
Rtn and Rt̃n land tat the non-separating fixed point βn ∈ f(Jn) of
fpn and the component Ωn of C \ (Rtn ∪ Rt̃n ∪ βn) which does not
contain 0 has two characteristic propertiers [18]:

(i) Ωn contains c and is disjoint with the forward orbit of βn,
(ii) for every 1 ≤ j < pn, consider arguments (angles) of external

rays which land at f j−1(βn). The angles split S1 into finitely many
arcs. Then the length of any such arc is bigger than the length of
the arc

Sn,1 = [tn, t̃n] = {t : Rt ⊂ Ωn}.
Denote

t′n = tn +
t̃n − tn

2pn
, t̃′n = t̃n −

t̃n − tn
2pn

.

The rays Rt′n , Rt̃′n
land at a common point β′n ∈ f−pn(βn) ∩ Ωn.

Introduce an (unbounded) domain Un with the boundary to be
two curves Rtn ∪ Rt̃n ∪ βn and Rt′n ∪ Rt̃′n

∪ β′n. Then c ∈ Un and
fpn : Un → Ωn is a two-to-one branched covering. Also,

f(Jn) = {z : fkpn(z) ∈ Un, G(fkpn(z) < 10, k = 0, 1, ...}.

Let
sn,1 = [tn, t

′
n] ∪ [t̃′n, t̃n]

so that sn,1 ⊂ Sn,1 and argument of any ray to f(Jn) lies in sn,1.
Let us iterate this construction. Given 1 ≤ j ≤ pn, let Sn,j be

one of the two arcs of S1 with end points

tn,j = σj−1(tn), t̃n,j = σj−1(t̃n)

such that arguments of any ray to f j(Jn) lies in Sn,j. Let

sn,j = σj−1(sn,1) = [tn,j, t
′
n,j] ∪ [t̃′n,j, t̃n,j]

where t′n,j = σj−1(t′n), t̃′n,j = σj−1(t̃′n). Then

sn,j ⊂ Sn,j
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and argument of any ray to f j(Jn) lies in fact in sn,j. Note that

(2.1) t′n,j − tn,j = t̃n,j − t̃′n,j =
t̃n − tn
2pn−j+1

< t̃n − tn < 1/2.

So σj−1 : sn,1 → sn,j is a homeomorphism and sn,j has two compo-
nents (’windows’) [tn,j, t

′
n,j] and [t̃′n,j, t̃n,j] of equal length.

Let Un,j = f j−1(Un) and βn,j = f j−1(βn). The domain Un,j is
bounded by two rays Rtn,j ∪Rt̃n,j converging to βn,j and completed
by βn,j along with two rays Rt′n,j

∪Rt̃′n,j
completed by their common

limit point f j−1(β′n) where t′n,j = σj−1(t′n), t̃′n,j = σj−1(t̃′n).
By (i)-(ii), for a fixed n, domains Un,j, 1 ≤ j ≤ pn, are pairwise

disjoint.
Let Un,j−pn be a component of f−(pn−j)(Un) which is contained

in Un,j. Then

(2.2) fpn : Un,j−pn → Un,j

is a two-to-one branched covering and

f j−1(Jn) = {z : fkpn(z) ∈ Un,j−pn , G(fkpn(z)) < 10, k = 0, 1, ...}.

Let s1n,j be the set of arguments of rays entering Un,j−pn . Then s1n,j
consists of 4 components so that σpn map homeomorphically each
of these components onto one of the ’windows’ of sn,j.

Furthermore, let
Ωn,j = f j−1(Ωn).

Unless the map (2.2), the map

(2.3) fpn : Un,j → Ωn,j

is a two-to-one branched covering only assuming f j−1 : Ωn → Ωn,j

is a homeomorphism, which holds if and only if σj−1 : Sn,1 →
σj−1(Sn,1) is a homeomorphism. In the latter case,

σj−1(Sn,1) = Sn,j.

Primitive vs satellite renormalizations. Let n ≥ 2 and kn/qn
be the rotation number of βn. The next claim is well-known, we
include the proof for reader’s convenience.

Lemma 2.1. (1) the renormalization fpn is primitive if and
only if kn/qn = 0/1, the period of βn is pn and βn is the
landing point of exactly two rays and they are fixed by fpn,

(2) points βn, n = 1, 2, · · · are all different,
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(3) fpn is satellite if and only if the α-fixed point αn−1 of fpn−1 :
f(Jn−1) → f(Jn−1) coincides with the β-fixed point βn of
fpn : f(Jn) → f(Jn). In particular, ∪qn−1j=0 f

jpn−1(f(Jn)) ⊂
f(Jn−1) and qn = pnqn−1. Moreover, each of pn−1 points
of the orbit of βn is the landing points of precisely qn rays
which are permuted by fpn−1 according to the rotation num-
ber rn/qn. Completed by the landing point they split C into
qn "sectors" such that the closure of each of them contains a
unique "small" Julia set of level n sharing a common point
with the boundary of the "sector".

Proof. (1). fpn is satellite if and only if f(Jn) meets at βn some
other iterate of Jn, hence, rn/qn 6= 0, and vice versa. (2). as-
sume β := βn = βm for some 0 ≤ n < m. As pn < pm, the
period of βm is smaller than pn. It follows that f(Jn) contains
two small Julia sets of level m that meet at β, hence, β sepa-
rates f(Jn), a contradiction as βn does not. (3). By (1), fpn
is satellite if and only if rn/qn 6= 0. Let p̃n−1 = pn/qn. Then
p̃n−1 is an integer and is equal to the period of βn. It follows
that pn sets f(Jn), f 2(Jn), · · · , fpn(Jn) are split into p̃n−1 connected
closed subsets Ei, i = 1, · · · ,̃̃ pn−1 where E1 = ∪qn−1j=0 f

jp̃n−1(f(Jn))

and Ei = f i−1(E1), i = 1, 2, · · · , p̃n−1. Moreover, 0 ∈ Epn−1 and
f(Ei) = Ei+1, i = 1, · · · , p̃n−1−1, f(Ep̃n−1) = E1. By [19, Theorem
8.5], f p̃n−1 is a simple renormalization and Ei, i = 1, · · · , p̃n−1 are
subsets of its p̃n−1 small Julia sets. Since 1 = p0 < p1 < ... are all
consecutive periods of simple renormalizations, then p̃n−1 = pk for
some k < n. Therefore, βn-fixed point of fpn : f(Jn) → f(Jn) is
αk-fixed point of fpk : f(Jpk)→ f(Jpk). As all renormalizations are
simple, if k < n− 1 that would imply that βn = βn−1 = ... = βk+1,
a contradiction with (2). The claim about "sectors" follows since
each map f j is one-to-one in a neighborhood of βn and the closure
of Ωn contains a single "small" Julia set f(Jn) of level n sharing a
common point with ∂Ωn. �

We need a more refined estimate provided the renormalization is
not doubling. Assume fpn is satellite so that pn−1 = pn/qn with
qn ≥ 2 and the rotation number of βn is rn/qn 6= 0/1.

Lemma 2.2. Assume fpn is satellite and qn = pn/pn−1 ≥ 3, i.e.,
fpn is not doubling. Then
(2.4)
σj−1 : Sn,1 → σj−1Sn,1 is a homeomorphism for j = 1, · · · , pn−1(qn−2).
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In particular, given ζ ∈ (0, 1/3), the length of σj−1Sn,1 tends to zero
as n → ∞ uniformly in j = 1, · · · , [ζpn] (where [x] is the integer
part of x ∈ R).

Moreover, for every 1 ≤ j ≤ pn−1(qn − 2), Sn,j = σj−1(Sn,1) and
the map fpn : Un,j → Ωn,j is a two-to-one branched covering such
that

f j(Jn) = {z : fkpn(z) ∈ Un,j, G(fkpn(z)) < 10, k = 0, 1, ...}.

Proof. Let g = fpn−1 : Un−1 → Ωn−1. Then g is a two-to-one
covering of degree 2 and the critical value c.

(1) Recall that sn−1,1 = [tn−1, t
′
n−1] ∪ [t̃′n−1, t̃n−1] consists of two

’windows’ so that σpn−1 is orientation preserving homeomorphism
of either ’window’ onto Sn−1,1 = [tn−1, t̃n−1].

(2) Consider qn rays L1, ..., Lqn to αn−1. The map g is a local
homeomorphism near αn−1 which permutes the rays to αn−1 ac-
cording to the rotation number ν := kn/qn 6= 0, 1/2. In particular,
g maps any pair of adjacent rays to αn−1 onto another pair of ad-
jacent rays to αn−1.

(3) Not all arguments of these rays lie in a single ’window’ I of
sn−1,1 because otherwise, by (1), the set of those arguments would
lie in the non-escaping set of an orientation preserving homeomor-
phism σpn−1 : I → Sn,1, which consists of a fixed point of this map,
a contradiction with the fact that qn > 1.

(4) The rays Lj split Un−1 into qn disjoint domains U j, j =

0, 1, ..., qn−1. By the "ideal boundary" ∂̂U j of U j we will mean the
usual (topological) boundary ∂U j (in our case, the set of boundary
rays completed by their landing points) along with the "boundary
at infinity" which is the set of arguments of rays entering U j. Then
define ĝ on ∂̂U j to be g on ∂U j and σpn−1 on the "boundary at
infinity" of U j.

(5) By (3), one of U j, called U0, has βn−1 in its boundary, and
another one, called U qn−1, has β′n−1 in the boundary. In particular,
the boundary of any other U j, j 6= 0, qn − 1, consists of a pair of
adjacent rays to αn−1 whose arguments belong to a single ’window’
of sn−1,1. Therefore, by (1), the rest of indices j = 1, ..., qn − 2

can be ordered in such a way that ĝ : ∂̂U j → ∂̂U j+1 is a one-
to-one map for j = 1, · · · , qn − 3 (note that the "boundary at
infinity" of each U j, 1 ≤ j ≤ qn − 2, consists of a single "arc
at infinity"). Therefore, g : U j → U j+1 is a homeomorphism for
j = 1, ..., qn − 3. The map ĝ on ∂̂U qn−2 is also a one-to-one map
on its image W = g(U qn−2) where W is bounded by two adjacent
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rays to αn−1. W cannot contain U0 because otherwise W would
contain β′n−1, a contradiction. Thus W must contain β′n−1. That
is, g(U qn−2) covers U qn−1.

Thus, for j = 1, · · · , qn − 3, g : U j → U j+1 is a homeomorphism,
and g : U qn−2 → W is also a homeomorphism where the image
W = g(U qn−2) covers U qn−1 and has two common rays with the
boundary of U qn−1.

(6) The critical value c of g has a unique preimage by g (the
critical point of g). As c ∈ Ωn ⊂ Ωn−1 and Ωn is bounded by two
adjacent rays to αn−1, c ∈ U i for some i ∈ {1, · · · , qn− 1}. If i > 1,
then i− 1 ≥ 1 while g would not be a homeomorphism of U i−1 on
its image. This shows that c ∈ U1 = Ωn.

Concluding, U j = gj−1(Ωn), j = 1, ..., qn − 2, in particular,

Ωn, g(Ωn), · · · , gqn−3(Ωn) ⊂ Un−1

and gqn−2 : Ωn → gqn−2(Ωn) is a homeomorphism, that is, (2.4)
holds. It implies the rest.

�

(D). Given a compact set Y ⊂ J(f) denote by (Ỹ )f (or simply
Ỹ , if the map is fixed) the set of arguments of the external rays
which have their limit sets contained in Y . It follows from (C) that
K̃c =

⋂∞
n=1{[tn, t′n] ∪ [t̃′n, t̃n]}, i.e., it is either a single-point set or a

two-point set.
Since K̃c contains at most two angles, Kc contains at most two

different accessible points. More generally, given x ∈ J ′∞ let

sn,jn(x) = [tn,jn(x), t
′
n,jn(x)] ∪ [t̃′n,jn(x), t̃n,jn(x)].

Then sn+1,jn+1(x) ⊂ sn,jn(x) so that

s∞,x := ∩n>0sn,jn(x)

is not empty and consists of either one or two components. Since
pn − jn(x)→∞ for x ∈ J ′∞ we conclude using (2.1):
s∞,x consists of either a single point or two different points. In

particular, for any component K of J∞ which is not one of f−j(K0),
j ≥ 0, there is either one or two rays tending to K.

From now on, µ is an f-invariant probability ergodic mea-
sures supported in J∞: suppµ ⊂ J∞, and having a positive
Lyapunov exponent

χ(µ) :=

∫
log |f ′|dµ > 0.
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(E). We start with the following basic statement. Parts (i)-(ii)
are easy consequences of the invariance of µ and (B) while (iii) is
a part of Pesin’s theory as in [24] coupled with the structure of
f : J∞ → J∞, see (B). Recall that J ′∞ = J∞ \ ∪∞j=−∞f j(K0).

Proposition 2.3. (i) For every n and 0 ≤ j < pn, µ(f j(Jn)) =
1/pn.

(ii) µ has no atoms and µ(K) = 0 for every component K of J∞.
(iii) µ(J ′∞) = 1 and f : J ′∞ → J ′∞ is a µ-measure preserv-

ing homeomorphism. There exists a measurable positive function
r̃(x) > 0 on J ′∞ such that for µ-almost every x ∈ J ′∞, and all
n ∈ N, if x−n is the unique point of J ′∞ with fn(x−n) = x, then a
(univalent) branch gn : B(x, r̃(x))→ C of f−n is well-defined such
that gn(x) = x−n,

Remark 2.4. The branch gn of f−n depends on n and x−n but it
should be clear from the context which points x and x−n are meant.

Using the Birkhoff Ergodic Theorem and Egorov’s theorem, Propo-
sition 2.3 implies immediately (e1)-(e3) of the next corollary. The
proof of (e4)-(e5) is given right after it.

Corollary 2.5. For every ε > 0, there exists a closed set E ′ε/2 ⊂ J ′∞
and constants ρ = ρ(ε) > 0, κ = κ(ε) ∈ (0, 1) such that:

(e1) µ(E ′ε/2) > 1− ε
2
,

(e2) there exists another closed set Êε/2 such that E ′ε/2 ⊂ Êε/2 ⊂
J ′∞ as follows. For every x ∈ Êε/2 and every m > 0 there ex-
ists a (univalent) branch gm : B(x, 3ρ) → C of f−m such that
gm(x) = x−m and |g′m(x1)/g

′
m(x2)| < 2, for every x1, x2 ∈ B(x, 2ρ).

Moreover, m−1 ln |Dgm(x)| → −χ(µ) as m → ∞ uniformly in
x ∈ E ′ε/2,

(e3) for every x ∈ E ′ε/2 there exists a sequence of positive integers
nj = nj(x), j = 1, 2, ..., such that j/nj ≥ κ and fnj(x) ∈ Êε/2 for
all j (in fact, {nj}∞j=1 = {n ∈ N : fn(x) ∈ Ẽε/2}),

(e4) given x ∈ J∞ and n ≥ 0, let jn(x) be the unique 1 ≤ j < pn
such that x ∈ f j(Jn). Then pn − jn(x) → ∞ as n → ∞ uniformly
in x ∈ E ′ε/2,

(e5) for sn,jn(x) = [tn,jn(x), t
′
n,jn(x)

] ∪ [t̃′n,jn(x), t̃n,jn(x)], we have:
sn+1,jn+1(x) ⊂ sn,jn(x) and

|tn,jn(x) − t′n,jn(x)| = |t̃
′
n,jn(x) − t̃n,jn(x)| → 0

as n→∞ uniformly in x ∈ E ′ε/2.
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Proof of (e4)-(e5): assuming the contrary in (e4), we find some
N and sequences (nk) ⊂ N and (xk), xk ∈ E ′ε/2, such that pnk −
jnk(xk) = N , hence, xk ∈ f−N(Jnk), for all k. Since Eε/2 is closed,
one can assume xk → x ∈ E ′ε/2 ⊂ J ′∞. Hence, x ∈ f−N(K0), a
contradiction. Now, for (e5) using (e4), t′n,jn(x)− tn,jn(x) = t̃n,jn(x)−
t̃′n,jn(x) <

1
2pn−jn(x) → 0 uniformly in x.

3. External rays to typical points

We define a telescope following essentially [23]. Given x ∈ J(f),
r > 0, δ > 0, k ∈ N and κ ∈ (0, 1), an (r, κ, δ, k)-telescope at x ∈ J
is collections of times 0 = n0 < n1 < ... < nk = n and disks Bl =
B(fnl(x), r), l = 0, 1, ..., k such that, for every l > 0: (i) l/nl > κ,
(ii) there is a univalent branch gnl : B(fnl(x), 2r) → C of f−nl so
that gnl(fnl(x)) = x and, for l = 1, ..., k, d(fnl−1 ◦ gnl(Bl), ∂Bl−1) >
δ (clearly, here fnl−1 ◦gnl is a branch of f−(nl−nl−1) that maps fnl(x)
to fnl−1(x)). The trace of the telescope is a collection of sets Bl,0 =
gnl(Bl), l = 0, 1, ..., k. We have: Bk,0 ⊂ Bk−1,0 ⊂ ... ⊂ B1,0 ⊂
B0,0 = B0 = B(x, r).

By the first point of intersection of a ray Rt, or an arc of Rt,
with a set E we mean a point of Rt ∩ E with the minimal level (if
it exists).

Theorem 3.1. [23] Given r > 0, κ ∈ (0, 1), δ > 0 and C > 0 there
exist M > 0, l̃, k̃ ∈ N and K > 1 such that for every (r, κ, δ, k)-
telescope the following hold. Let k > k̃. Let u0 = u be any point
at the boundary of Bk such that G(u) ≥ C. Then there are indexes
1 ≤ l1 < l2 < ... < lj = k such that l1 < l̃, li+1 < Kli, i = 1, ..., j−1
as follows. Let uk = gnk(u) ∈ ∂Bk,0 and let γk be an infinite arc of
an external ray through uk between the pint uk and∞. Let uk,k = uk
and, for l = 1, ..., k − 1, let uk,l be the first point of intersection of
γk with ∂Bl,0. Then, for i = 1, ..., j,

G(uk,li) > M2−nli .

Next corollary of Theorem 3.1 is a key one.

Proposition 3.1. Given ε > 0 there exists a closed set Eε as fol-
lows. First, µ(Eε) > 1 − ε and Eε ⊂ E ′ε/2 where E ′ε/2 is the set
defined in (E) and satisfies (e1)-(e5). There exists r = r(ε) > 0
and, for each ν > 0 there is C(ν) > 0 as follows.

(1) Let x ∈ Eε. Then x is the landing point of an external ray
Rt(x) of argument t(x). Moreover, the first intersection of Rt(x) with
∂B(x, ν) has the level at least C(ν).
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(2) for each n a branch gn : B(x, 2r)→ C of f−n is well-defined
such that gn(x) = x−n, |gn(x1)/gn(x2)| < 2, for every x1, x2 ∈
B(x, r) and n−1 ln |Dgn(x)| → −χ(µ) as m → ∞ uniformly in
x ∈ Eε,

(3) if x′ = gn(x) ∈ Eε, then fn(Rt(x′)) = Rt(x).

Proof. (1)-(2) will hold already for the set E ′ε/2 which follows from
Theorem 3.1 as in [23] and uses only that µ has a positive exponent;
(3) will follow in our case as we shrink a bit the set E ′ε/2 since each
point x ∈ J ′∞ admits at most two external arguments. Here are
details. Let r = ρ(ε) and κ = κ(ε) as in the properties (e2)-(e3)
of the set E ′ε/2. Then, by (e2)-(e3), there is δ > 0 such that, for
each k, every x ∈ E ′ε/2 admits (r, κ, δ, k)-telescope with the times
0 = n0 < n1 < n2 < ... < nk that appear in the property (e3)
of E ′ε/2. On the other hand, there exists Lr > 0 such that for
every z ∈ J(f) there is a point u(z) ∈ ∂B(z, r) with the level
G(u(z)) > Lr. Given this C = Lr, let M , l̃ and k̃ be as in Theorem
3.1.

Let x ∈ E ′ε/2 and n1 < n2 < ... < nk < ... as in (e3). Fix k > k̃.
Let Bk,0(x) ⊂ Bk−1,0(x) ⊂ · · · ⊂ B1,0(x) ⊂ B0,0(x) be the corre-
sponding trace. By Theorem 3.1, there are 1 ≤ l1,k(x) < l2,k(x) <

· · · < ljxk ,k(x) = k such that l1,k(x) < l̃, li+1,k(x) < Kli,k(x),
i = 1, · · · , jxk − 1. Let γk(x) be an arc of an external ray between
the point uk(x) := gnk(u(fnk(x)) and ∞. Let uk,l(x) be the first
intersection of γk(x) with ∂Bl,0(x). Then, for i = 1, · · · , jxk − 1,

(3.1) G(uk,li,k(x)) > M2
−nli,k(x) > M2−li,k(x)/κ.

For all i = 1, · · · , jxk − 1,

(3.2) i ≤ li,k(x) < Kil̃.

Denote by tk(x) the argument of an external ray that contains the
arc γk(x).

Now, given a sequence

(3.3) k1 < k2 < ... < km < ...

such that k1 > k̃, we get a sequence of arguments tkm(x) and a
sequence of arcs γkm(x) of external rays of the corresponding ar-
guments tkm(x). Passing to a subsequence in the sequence (km), if
necessary, one can assume that tkm(x) → t̃(x), for some argument
t̃(x).
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Fix any ν ∈ (0, r) and choose k̃0 > k̃ such that,

2 exp(−K k̃0−2l̃χ(µ)) < ν and let C(ν) = M(2−1/κ)l̃K
k̃0 .

Then, by Theorem 3.1, for each km > k0, the first intersection of
the ray Rtkm

(x) with the boundary of B(x, ν) has the level at least
C(ν). It follows, for any 0 < C < C(ν), the sequence of arcs of the
rays Rtkm (x) between the levels C and C(ν) do not exit B(x, ν) for
all km > k0. As tkm(x) → t̃(x), it follows that the arc of the ray
Rt̃(x) between levels C and C(ν) stays in B(x, ν) too. As ν > 0 and
C ∈ (0, C(ν)) can be chosen arbitrary small, Rt̃(x) must land at x
and satisfy (1) with t(x) replaced by t̃(x).

Let us call the above procedure of getting t̃(x) from the constants
r, Lr, the point x ∈ E ′ε/2 and the sequence (3.3) the (r, Lr, x, (km))-
procedure.

Note that (2) is property (e2) of the set E ′ε/2.
In order to satisfy property (3), we shrink the set E ′ε/2 and correct

t̃(x) changing it to some t(x) (if necessary) as follows. Using the
Birkhoff Ergodic Theorem and Egorov’s theorem, choose a closed
subset Eε of E ′ε/2 such that µ(Eε) > 1− ε and, for each x ∈ Eε, the
set N (x) := {N ∈ N : fN(x) ∈ E ′ε/2} is infinite. Note that N (x) ⊂
{nk}∞k=1. We have proved that, for each N ∈ N (x), (1) holds for the
point fN(x) instead of x, in particular, t̃(fN(x)) is an argument of
fN(x). On the other hand, by (D1), each y ∈ Eε admits at most two
external arguments, hence, all possible external arguments of the
forward orbit fn(x), n ≥ 0, belong to at most two different orbits of
σ : S1 → S1. Hence, there is one of those orbits, O = {σn(t(x))}n≥0
for some t(x), such that the intersection O∩{t̃(fN(x)) : N ∈ N (x)}
is an infinite set, so that t̃(fnkm(x)(x)) = σnkm(x)(t(x)) for an infinite
sequence (km(x))m≥1.

Let’s start over with the (r/2, C(r/2), x, (km(x)))-procedure for
the point x and the sequence {kj(x)}. Then, by the construction,
tkm(x) = t(x) for all m, hence, (1) holds with t(x) instead of the
previous t̃(x). If y ∈ Eε is any other point of the grand orbit
{fn(x) : n ∈ Z} (remember that f : J ′∞ → J ′∞ is invertible), the
(r/2, C(r/2), y, (km))-procedure works for y with the same (per-
haps, truncated) sequence k1(x) < k2(x) < ..., which ensures that
(3) holds (for the corrected arguments) too. �

Remark 3.2. Given t(x), we cannot just set t(fn(x)) = σn(t(x))
to satisfy property (3) because this would change κ in the defi-
nition of telescope, so we might loose property (1). Notice that
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correcting (flipping) t̃(x) to t(x) does not change C(ν) The same
for flipping any t(y) in the grand orbit of x. But the flipping can
make f `(Rt(y)) = Rt(fN (x) for f `(y) = fN(x) where N = nkm with
G(Rt(f`(y)) ∩ ∂B(f `(y), r/2) > Lr/2, thus yielding (3).

4. Lemmas

Lemma 4.1. Let zk ∈ ∪
pnk−1
j=0 f j(Jnk) where nk ↗∞.

(a) If zk → z then z ∈ J∞.
(b) z ∈ Jn,z ∩ J ′∞ yields z±pn ∈ Jn,x. If, additionally to (a),

zk ∈ J ′∞ for all k and wk → w where wk = (zk)epnk , where e is
always either 1 or −1 then z and w are in the same component of
J∞.
(c) If zk ∈ Eε for all k and t(zk)→ t (where Eε, t(zk) are defined

in Proposition 3.1), then the ray Rt lands at the limit point z. In
particular, given σ > 0 there is ∆(σ) > 0 such that |x1 − x2| < σ
for some x1, x2 ∈ Eε whenever |t(x1)− t(x2)| < ∆(σ).

Proof. (a) Assume the contrary. Then there is n such that d :=

d(z,∪pn−1j=0 Jn) > 0. As, for any nk ≥ n, zk ∈ ∪pnn−1j=0 Jnn where the
latter union is a subset of ∪pn−1j=0 Jn), the distance between z and zk
is at least d, a contradiction.

(b) z±pn ∈ Jn,x by combinatorics and definitions of points zm.
In particular, for every k, zk and wk are in the same component
f jk(Jnk) of ∪pnk−1j=0 f j(Jnk). By (a), any limit set A of the sequence
of compacts (f jk(Jnk)) in the Hausdorff metric is a subset of J∞.
On the other hand, A is connected as each set f jk(Jnk) is connected.
This proves (b).

(c) We prove only the first claim as the second one directly follows
from it. Fix any ν ∈ (0, r) and choose k0 such that for any k >
k0, B(zk, ν) ⊂ B(z, 11/10ν). Then, by Proposition 3.1, part (1),
for each k > k0, the first intersection of the ray Rt(zk) with the
boundary of B(z, ν) has the level at least C̃(ν) := C(11/10ν). It
follows, for any 0 < C < C̃(ν), the sequence of arcs of the rays Rtzk

between the levels C and C̃(ν) do not exit B(z, ν) for all k > k0.
As ν > 0 and C ∈ (0, C̃(ν)) can be chosen arbitrary small, Rt must
land at z. �

By lemma 4.1(c), if arguments t(x), t(x′) of x, x′ ∈ Eε are close
then x, x′ are close as well.

Definition 4.2. Given ε and ρ we define δ as follows. First, for
r̂ ∈ (0, 1) and Ĉ > 0, we define δ̂ = δ̂(r, Ĉ) > 0. Namely, let C0 > 0
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be so that the distance between the equipotential of level C0 and
J(f) is bigger than 1. Then δ̂ = δ̂(r̂/2, Ĉ) > 0 is such that for any
C ∈ [C̃, C0], if w1, w2 lie on the same equipotential Γ of level C and
the difference between external arguments of w1, w2 is less than δ̂
then the length of the shortest arc of the equipotential Γ between
w1 and w2 is less than r̂/2. Apply Lemma 4.1(c) with σ = ρ/4 and
find the corresponding ∆(ρ/4). Let

δ = δ(ε, ρ) := min{δ̂(ρ, C(ρ/2)),∆(
ρ

4
)}

where C(ν) is defined in Proposition 3.1.

In the next two lemmas we construct curves with special prop-
erties. The idea is as follows. Let x ∈ Eε ∩ Jn,x. Then x−pn ∈ Jn,x.
It is easy to get in curve γ in A(∞) starting with an arc from a
point b ∈ Rt(x) to gpn(b) and then iterating this arc by gpn so that
gpn(γ) ⊂ γ so that γ tends to a fixed point a of fpn . We show in the
next lemma (in a more general setting) that if both points x, x−pn
are either in the range of the covering (2.2) (condition (I)) or in
the range of the covering (2.3) (condition (II)) then a ∈ Jn,x. This
implies that a has to be the β-fixed point of fpn : Jn,x → Jn,x. In
Lemma 4.5 assuming additionally that fpn is satellite, we ’rotate’
the curve γ by gpn−1 to put Jn,x in a ’sector’ bounded by γ and of of
its ’rotations’. In Lemma 4.7-4.8 we consider the case of doubling
for which the condition (II) usually does not hold.

In what follows, we use the following notation: given p, q ∈ N ,
let

Eε,p,q = ∩q−1j=0f
jp(Eε).

It is a closed subset of Eε of points x such that x−jp ∈ Eε for j =
0, 1, · · · , q − 1. As f : J ′∞ → J ′∞ is a µ-automorphism, µ(Eε,p,q) >
1− qε. Notice that this bound is independent of p.

Lemma 4.3. Fix ε > 0 and consider the set Eε with the corre-
sponding constant r(ε) > 0. Fix ρ ∈ (0, r(ε)/3). let δ = δ(ε, ρ) from
Definition 4.2. For every q ≥ 2 there exist ñ, C̃ as follows. For
every n > ñ consider the closed set Eε,pn,q. Let x ∈ Eε,pn,q. Denote
for brevity

xk := x−kpn and Rk := Rt(xk), k = 0, 1, ..., q − 1.

By Lemma 4.1(b), xk ∈ Jn,x. Hence, t(xk) ∈ sn,jn(x) ⊂ Sn,jn(x),
0 ≤ k ≤ q − 1. Fix 0 ≤ i < j ≤ q − 1.
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Assume that either (I) t(xj) and t(xi) belong to a single com-
ponent of sn,jn(x), or (II) the map σjn(x)−1 : Sn,1 → Sn,jn(x) is a
homeomorphism and the length of the arc Sn,jn(x) is less than δ.

Then:
(a) the map f (j−i)pn : g(j−i)pn(B(xi, ρ))→ (B(xi, ρ)) has a unique

fixed point a = an and a ∈ Jn,x,
(b) there is a semi-open simple curve

γpn,q,i,j(x) ⊂ B(xi, ρ) ∩ A(∞)

such that:
(1) it lands at a and g(j−i)pn(γpn,q,i,j(x)) ⊂ γpn,q,i,j(x). Another

end point b of γpn,q,i,j(x) lies in Ri and G(b) > C̃/2,
(2) γpn,q,i,j(x) = ∪l≥0gl(j−i)pn(L0 ∪ L1) where the ’fundamental

arc’ L0 ∪ L1 consists of an arc L0 of an equipotential of the
level at least C̃/2 that joins a point b ∈ Ri with a point b1 ∈
Rj, being extended by an arc L1 of the ray Rj between points
b1 and g(j−i)pn(b) ∈ Rj; in particular, the Green function is
not increasing along γpn,q,i,j(x),

(3) the point a is the landing point of a ray R(a) which is fixed
by f (j−i)pn and which is homotopic to γpn,q,i,j(x) through a
family of curves in A(∞) with the fixed end point a.

(4) arguments of all points of the curve g(j−i)pn(γpn,q,i,j(x)) lie in
a single component of s1n,jn(x) in the case (I) and in a single
component of sn,jn(x) in the case (II) (recall that s1n,jn(x) has 4

components and sn,jn(x) has 2 components, see Sect 2, (C)).
Besides,

(4.1) |a− xj| → 0 and log
|(g(j−i)pn)′(xj)|
|(g(j−i)pn)′(a)|

→ 0

as n→∞, uniformly in xj and q.
(c) if j − i = 1 then a = βn,jn(x) where βn,jn(x) = f jn(x)−1(βn),

the non-separating fixed point of fpn : Jx,n → Jx,n. Moreover,

χ(βn,jn(x)) :=
1

pn
log |(fpn)′(βn,jn(x)) =

1

pn
log |(fpn)′(βn)| → χ(µ)

as n→∞.

Remark 4.4. Note that a /∈ J∞ while x, x1, ..., xq−1 ∈ J∞.

Proof. Denote Gn := g(j−i)pn which is a holomorphic univalent
function in B(xi, ρ). Since gm are uniform contractions, there is
n1 such that Gn(B(xi, ρ)) ⊂ B(xi, ρ/2) whenever n > n1. Let
ñ = max{n0, n1}.
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Let a = an be the unique fixed point of the latter map Gn. We
construct the curve γpn,q,i,j(x) to the point a as follows. First, joint
a point b ∈ Ri, G(b) = (3/4)C̃, to a point b1 ∈ Rj by an arc L0 of
the equipotential {G(z) = (3/4)C̃}. By the choice of δ > 0, L0 ⊂
B(xi, ρ). Secondly, connect b1 to the point g(j−i)pn(b) ∈ Rj by an arc
L1 ⊂ Rj. Let now γpn,q,i,j(x) = ∪l≥0gl(j−i)pn(L0 ∪L1). Then proper-
ties (1), (2) in (b) are immediate and (3) follows from general prop-
erties of conformal maps. Now, by Proposition 3.1(2) and (??), for
all n big enough, xj = g(j−i)pn(xi) ∈ g(j−i)pn(B(xi, ρ)) ⊂ B(xi, ρ),
moreover, the modulus of the annulus B(xi, ρ) \ g(j−i)pn(B(xi, ρ))
tends to ∞ as n → ∞. Therefore, (4.1) follows from Koebe and
Proposition 3.1(2).

It remains to show the property (3) and that a ∈ Jn,x. Con-
sider the case (II), which is equivalent to say that the map σpn :
s → Sn,jn(x) is a homeomorphism on each of two components s
of sn,jn(x). Let Λ be the set of arguments of points of the curve
Γ := g(j−i)pn(γpn,q,i,j(x)). Let s be a component that contains t(xj).
Assume, by a contradiction, that Λ contains t which is in the bound-
ary of s. Then t is the argument of a point of Gl

n(L0), for some
l ≥ 1, hence, σl(j−i)pn(t) is simultaneously the argument of a point
of L0 and in the boundary of Sn,jn(x), a contradiction. The case
(I) is similar. Property (3) is verified. In fact, we proved more:
for k = 0, 1, · · · , j − i − 1, the set σkpn(Λ) is a subset of a sin-
gle (depending on k) component of sn,jn(x) in the case (II) and a
single component of s1n,jn(x) in the case (I). This implies that all
point fkpn(a), 0 ≤ k ≤ j − i − 1, of the cycle of fpn containing a
belong to the closure of Un,jn(x) in the case (II) and to the closure
of Un,jn(x)−pn in the case (I). Therefore, this cycle lies in Jn,x, in
particular, a ∈ Jn,x.

Proof of (c): if j−i = 1 then a is a fixed point of fpn : Jx,n → Jx,n
and, moreover, the ray R(a) lands at a and is fixed by fpn . Hence,
the rotation number of a w.r.t. the map fpn : Jx,n → Jx,n is zero.
On the other hand, βn,jn(x) is the only such a fixed point, i.e., a =
βn,jn(x) as claimed. Then (4.1) implies that χ(βn,jn(x))→ χ(µ). �

For the rest of the paper, let us fix Q, ε, r, ρ, ñ, C̃ and δ
as follows:
Q ∈ N, Q > 3, is such that

Q > 4 log 2/χ(µ).

This choice is motivated by the following
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Fact ([21], [13], [8]): if a repelling fixed point z of fn is the land-
ing point of q rays, then χ(z) := (1/n) log |Dfn(z)| ≤ (2/q) log 2.
Hence, if χ(z) > χ(µ)/2, then q < Q.

Furthermore, fix ε > 0 such that 2100Qε < 1, apply Proposi-
tion 3.1 and Lemma 4.3 and find, first, r = r(ε), then fix ρ ∈
(0, r/32) and find the corresponding ñ, C̃ and δ.

Let

Xn = Eε,pn,4 ∩ Eε,pn−1,Q = ∩3i=0f
ipn(Eε) ∩Q−1k=0 f

kpn−1(Eε).

Let us analyze several possibilities.

Lemma 4.5. There is n∗ > ñ as follows. Let n > n∗ and x ∈ Xn.
Consider Jn,x = f jn(x)(Jn) ⊂ f j(Jn−1) so that x ∈ Jn,x.

Let x0 = x and x1 = x−pn. Assume that either (I) t(x0), t(x1)
belong to a single component of sn,jn(x), or (II) the map σjn(x)−1 :
Sn,1 → Sn,jn(x) is a homeomorphism and the length of the arc Sn,jn(x)
is less than δ.

Then:
(i) χ(βn,jn(x)) = χ(βn) → χ(µ) as n → ∞ and χ(βn) > χ(µ)/2

for n > n∗.
(ii) assume that fpn is satellite, i.e., (by Lemma 2.1) βn has

period pn−1, qn ≥ 2 in the rotation number kn/qn of βn, and βn,jn(x)
is the α (i.e., separating) fixed point of fpn−1 : Jn−1,x → Jn−1,x.
Then qn < Q and
(4.2)
|βn,jn(x)−x−kpn−1| → 0, n→∞, uniformly in x ∈ Xn, 1 ≤ k ≤ qn.

There exist two simple semi-open curves γ(x) and γ̃(x) that satisfy
the following properties:

(1) γ(x) and γ̃(x) tend to βn,jn(x) and γ(x), γ̃(x) ⊂ B(x0, ρ) ∩
A(∞),

(2) γ(x), γ̃(x) consist of arcs of equipotentials and external rays;
the start point b1 = b1(x) of γ(x) lies in an arc of Rt(x1) and
the start point b̃1 = b̃1(x) of γ̃(x) lies in an arc of Rt(x̃)

where x̃ = x−ipn−1 for some i = i(x) ∈ {1, · · · , qn− 1}, such
that levels of b1 and b̃1 are equal and at least C̃/4,

(3) one of the two curves (say, γ(x)) is homotopic, through
curves in A(∞) tending to βn,jn(x), to the ray Rtn,jn(x)

=

f jn(x)−1(Rtn), and another one - to the ray Rt̃n,jn(x)
= f jn(x)−1(Rt̃n);

(4) γ(x), γ̃(x) ⊂ Un−1,jn−1(x),
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(5) γ(x) ⊂ Un,jn(x), γ̃(x) ⊂ Un,jn(x̃), in particular, γ(x), γ̃(x)
are disjoint; being completed by their common limit point
βn,jn(x) and two other arcs: an arc of the ray Rt(x1) from
b1 ∈ γ(x) to ∞ and an arc of the ray Rt(x̃) from b̃1 ∈ γ̃(x)
to∞, they split the plane into two domains such that one of
them contains I := Jn,x \ βn,jn(x) and another one contains
all qn − 1 other different iterates fkpn−1(I), 1 ≤ k ≤ qn − 1.
The intersection of closures of all those qn sets consists of
the fixed point βn,jn(x) of fpn−1.

Remark 4.6. Beware that the point x that determines both curves
γ(x), γ̃(x) does not belong to either of these curves.

Proof. (i) follows from Lemma 4.3 where we take i = 0, j = 1. Fix
n∗ > ñ such that χ(βn) > χ(µ)/2 for all n > n∗.

Let us prove (ii). Here we build a "flower" of arcs at the β fixed
of the satellite fpn starting with an arc which is fixed by fpn and
then "rotate" this arc by a branch of f−pn−1 (for which the same β
point is also a fixed point, see (C)). Let γ′(x) := γpn,1,0,1(x) where
the latter curve is defined in Lemma 4.3. Then properties (1)-(3)
of the curve γ(x) are satisfied also for γ′(x). In particular, γ′(x) is
homotopic to Rtn,jn(x)

.
As both t̃n,jn(x), tn,jn(x) are external arguments of βn,jn(x) which

is a pn−1-periodic point of f , there is i ∈ {1, · · · , qn − 1} such
that σipn−1(t̃n,jn(x)) = tn,jn(x). Now we use that x ∈ Eε,pn−1,Q and
that qn < Q to prove (4.2). Indeed, for each k = {1, · · · , qn},
since f : J ′∞ → J ′∞ is a homeomorphism and x−kpn−1 ∈ Eε, we
have: gpn = g(qn−k)pn−1 ◦ gkpn−1 . Hence, if β′ = gkpn−1(βn,jn(x)), then
βn,jn(x) = g(qn−1−k)pn−1(β

′) implying that β′ = f (qn−k)pn−1(βn,jn(x)) =
βn,jn(x). Then βn,jn(x), x−kpn−1 ∈ gkpn−1(B(x, ρ)) which along with
Proposition 3.1, part (2) imply (4.2).

In turn, (4.2) implies that, provided n is big, gkpn−1 : B(y, ρ/2)→
B(y, ρ/2) uniformly in k = 0, 1, · · · , qn where y is either βn,jn(x) or
x−kpn−1 .

Now we consider a curve gip̃n(γ′(x)) that starts at x−ip̃n and tends
to βn,jn(x). By Proposition 3.1 coupled with (4.2), one can join
x−ipn−1 by an arc of the ray Rt(x−ipn−1

) inside of B(x, ρ/2) up to a
point of level C̃/4. This will be the required curve γ̃(x). To get
the curve γ(x) we modify γ′(x) = γpn,1,0,1(x) = ∪l≥0glpn(L0∪L1) by
cutting off the arc L0 of an equipotential: γ(x) = γ′(x) \ L0 (see
Lemma 4.3 for details about L0). Properties (1)-(5) follow.

�
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Given a point x = x0 and n such that x ∈ f j(Jn)∩Eε,pn,1, where
j = jn(x), let x1 = x−pn and t(x0), t(x1) the arguments of x0, x1
as in Proposition 3.1. We call x n-friendly if t(x0) and t(x1) lie in
the same component of sn,j and n-unfriendly otherwise (or simply
friendly and unfriendly if n is clear from the context). The name
reflects the fact that for an n-friendly point x the condition (I) of
Lemma 4.5 always holds for x1 = x and x2 = x−pn , so Lemma 4.5
always applies.

When the rotation number of αn is equal to 1/2 we have:

Lemma 4.7. There is C̃3 > 0 (depending only on fixed ε and ρ)
as follows. Suppose that, for some n > ñ, the rotation number
of the separating fixed point αn is equal to 1/2. Let z = z0 ∈
f j(Jn) ∩ Eε,pn,3 and zi = z−ipn, i = 1, 2, 3. Assume that all three
points z0, z1, z2 are n-unfriendly.

Then there exist two (semi-open) curves γ1/2n (z) and γ̃1/2n (z) con-
sisting of arcs of rays and equipotentials with the following proper-
ties:

(i) γ1/2n (z) ⊂ B(z, ρ), γ̃1/2n (z) ⊂ B(z1, ρ), moreover, arguments
of points of γ1/2n (z) lie in one ’window’ of sn,j while arguments of
points of γ̃1/2n (x) lie in another ’window’ of sn,j,

(ii) γ1/2n (z) and γ̃1/2n (z) converge to a common point α∗n,j which
is a fixed point of fpn : f j(Jn) → f j(Jn) (i.e., α∗n,j is either the
non-separating fixed point βn,j or the separating fixed point αn,j,

(iii) start points of γ1/2n (z), γ̃
1/2
n (z) have equal Green level which

is bigger than C̃3,
(iv) zk − α∗n,j → 0, 0 ≤ k ≤ 3, as n→∞.

Proof. As z ∈ Eε, lengths of ’windows’ of sn,jn(z) tend uniformly to
zero as n→∞. It follows from the definition of friendly-unfriendly
points that t(z0), t(z2) are in one ’window’ of sn,j and t(z1), t(z3)
are in another ’window’ of sn,j. Therefore, condition (I) of Lemma
4.3 holds for each pair z0, z2 and z1, z3. Now, apply Lemma 4.3 to
z ∈ Eε,pn,3, first, with i = 0, j = 2, and then with i = 1, j = 3.
Let γ1/2n (z) = γpn,3,0,2(z) and γ̃

1/2
n (z) = γpn,3,1,3(z). Then (i),(iii)

hold. To check (ii), note that these curves converge to some points
α,α̃ ∈ f j(Jn) which are fixed by f 2pn On the other hand, since the
rotation number of αn is 1/2, fpn : f j(Jn)→ f j(Jn) has no 2-cycle.
Therefore, one must have either α = α̃ = βn,j or α = α̃ = αn,j,
i.e., (ii) holds too. As t(z0) − t(z2) → 0 and t(z1) − t(z3) → 0 as
n → ∞, z0 − z2, z1 − z3 → 0, too, by Lemma 4.1. Besides, by
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(4.1), z2 − α, z3 − α̃ → 0 as n → ∞. As α = α̃ = α∗n,j, (iv) also
follows. �

The following is a consequence of Lemmas 4.3 and 4.7:

Lemma 4.8. Let n > ñ. Assume that fpn is satellite and doubling,
i.e., βn = αn−1 and the rotation number of αn−1 is equal to 1/2
(in particular, pn = 2pn−1). For some 1 ≤ j ≤ pn−1, denote J :=
f j(Jn−1). Let J1 := f j(Jn), J0 := f j+pn−1(Jn) be the two small
Julia sets of the next level n which are contained in J (note that
J0 contains the critical point and J1 contains the critical value of
the map F := fpn−1 : J → J). Let x ∈ J1 ∩ Eε be such that all
its 5 forward iterates xkpn−1 = F k(x) ∈ Eε, k = 1, 2, 3, 4, 5. Then
there exist two simple semi-open curves Γ

1/2
n (x), Γ

1/2
n (x) consisting

of arcs of rays and equipotentials that satisfy essentially conclusions
of the previous lemma where n is replaced by n− 1, i.e.:

(i) Γ
1/2
n (x), Γ̃

1/2
n (x) ⊂ B(x, 3/2ρ), moreover, arguments of points

of Γ
1/2
n (x) lie in one ’window’ of sn−1,jn−1(x) while arguments of

points of Γ̃
1/2
n (x) lie in another ’window’ of sn−1,jn−1(x),

(ii) Γ
1/2
n (x) and Γ̃

1/2
n (x) converge to a common point β∗n−1,jn−1(x)

which is a fixed point of fpn−1 : f j(Jn−1)→ f j(Jn−1) (i.e., β∗n−1,jn−1(x)

is either the non-separating fixed point βn−1,jn−1(x) or the separating
fixed point αn−1,jn−1(x),

(iii) start points of Γ
1/2
n (x), Γ̃

1/2
n (x) have equal Green level which

is bigger than C̃3,
(iv) xkpn−1 − β∗n−1,jn−1(x)

→ 0, 0 ≤ k ≤ 3 as n→∞ uniformly in
x.

Remark 4.9. Condition F k(x) ∈ Eε, 0 ≤ k ≤ 5, is equivalent to the
following: x ∈ f−5pn−1(Eε,pn−1,6).

Proof. To fix the idea let’s replace fpn−1 : f j(Jn−1) → f j(Jn−1),
using a conjugacy with a quadratic polynomial, by a quadratic
polynomial (denoted also by F ) so that now F : J → J where
J = J(F ) and F 2 is satellite with two small Julia sets J0, J1 that
meet at the α-fixed point of F and rays of arguments 1/3, 2/3 land
at α . Here 0 ∈ J0, F (0) ∈ J1, F : J1 → J0 is a homeomorphism
while F : J0 → J1 is a two-to-one map. If a ray Rt of F has its
accumulation set in J1 then t ∈ [1/3, 5/12] ∪ [7/12, 2/3] and if Rt

accumulates in J0 then t ∈ [1/6, 1/3]∪ [2/3, 5/6]. This implies that
if Rt lands at x ∈ J1 and t lies in one of the two ’windows’ [0, 1/2),
(1/2, 1] then Rσ(t) lands at J0 where σ(t) must be in a different
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’window’ (in other words, points of J0 are ’unfriendly’). Coming
back to fpn−1 this means that, for x ∈ J1, t(x), t(F (x)) are always
in different components (where by ’component’ we mean a compo-
nent of sn−1,j). Besides, for y ∈ J∞ ∩ J , y and F (y) are always in
different J i, i = 0, 1. This leaves us with the only possibilities:

(i) t(F (x)), t(F 2(x)) are in different components; this implies that
t(x), t(F (x)) are in different components and t(F (x)), t(F 2(x)) are
in different components, that is, points F 3(x), F 2(x), F (x) are all
unfriendly;

(ii) t(F (x)), t(F 2(x)) are in the same components; there are two
subcases:

(ii’) t(F 3(x)), t(F 4(x)) are in different components, i.e., (i) holds
with x replaced by F 2(x) which implies that F 5(x), F 4(x), F 3(x)
are all unfriendly;

(ii”) t(F 3(x)), t(F 4(x)) are in the same component which then
means that F 2(x) and F 4(x) are both friendly.

In the case (i) and (ii’), apply Lemma 4.7 with n − 1 instead of
n to z = F 3(x) and to z = F 5(x), respectively, letting Γ

1/2
n (x) =

γ
1/2
n−1(F

3(x)), Γ̃
1/2
n (x) = γ̃

1/2
n−1(F

3(x)) and Γ
1/2
n (x) = γ

1/2
n−1(F

5(x)),
Γ̃
1/2
n (x) = γ̃

1/2
n−1(F

5(x)), respectively. In the case (ii”), apply Lemma
4.3 with pn−1, q = 1, i = 0, j = 0, first, to the point F 2(x) and then
to the point F 4(x) letting Γ

1/2
n (x) = γpn−1,1,0,1(F

2(x)), Γ̃
1/2
n (x) =

γpn−1,1,0,1(F
4(x)). �

5. Proof of Theorem 1.1

Every invariant probability measure with positive Lyapunov ex-
ponent has an ergodic component with positive exponent. So let
µ be such an ergodic f -invariant measure component supported in
J∞. First, we have the following general

Remark 5.1. Given x ∈ J ′∞ such that r̃(x) > 0 as in Proposition
2.3, and given n, the set Jn,x = f jn(x)(Jn) cannot be covered by
B(x, r̃(x)) because otherwise the branch gpn : B(x, r̃(x)) → C of
f−pn , which sends x to x−pn ∈ Jn,x meets the critical value along
the way so cannot be well-defined. Thus diam Jn,x > r̃(x), for each
n, and diamKx = lim diam Jn,x ≥ r̃(x). In particular, diam Jn,x ≥
r(ε) for all x ∈ Eε and n.

We need to prove that f has finitely many satellite renormaliza-
tions. Assuming the contrary, let S be an infinite subsequence such
that fpn is a satellite renormalization of f for each n ∈ S.



25

We arrive at a contradiction by considering, roughly speaking,
two alternative situations. In the first one, we find a point x ∈ Eε,
n, and two curves in B ∩A(∞) where B := B(x, r̃(x)) that tend to
the β-fixed points of Jn,x such that another ends of the curves can
be joined by an arc of equipotential in B thus ’surrounding’ Jn,x
by a ’triangle’ in B which would be a contradiction as in Remark
5.1. The second situation is when the first one does not happen.
Then we use several curves to ’surround’ Jn,x by a ’quadrilateral’
in B, ending by the same conclusion. The curves we use have been
constructed in Lemmas 4.5, 4.8.

The first situation happens in cases A and B1, and the second
one in B2.
Case A: S contains an infinite sequence of indices of non-doubling

renormalizations. Passing to a subsequence one can assume that
fpn is satellite not doubling for every n ∈ S.

Fix ζ = 1/4. By Lemma 2.2, for each n ∈ S and each j =
1, · · · , [ζpn], the map σj−1 : Sn,1 → Sn,j is a homeomorphism and
the length |Sn,j| → 0 as n → ∞ uniformly in j. Fix N such that
|Sn,j| < δ for each n > N , n ∈ S. For n ∈ S, let

Cn = {f j(Jn)|1 ≤ j ≤ [ζpn]}.
Let n,m ∈ S, m < n. Denote p = pm, P = pn, q = pn/pm.
The intersection Cn ∩ Cm contains all f j+kp(Jn) with 1 ≤ j ≤ [ζp],
j + kp ≤ [ζP ]. Hence,

#(Cn ∩ Cm) ≥
[ζp]∑
j=1

[ζq − j

p
] ≥ [ζq − 1][ζp] ≥

P{ζp− 1

p

ζq − 1

q
− ζ

q
} ∼ ζ2P

as p, q →∞. Therefore, fixing κ = ζ2/2=1/8, there are m0, k0 such
that for each n,m ∈ S, m > m0, n > m+ k0,

µ(Cn ∩ Cm) > κ.

Fix such n,m, assume also that m > max{N, n∗} where n∗ is de-
fined in Lemma 4.5 and recall the set

Xn = Eε,pn,4 ∩ Eε,pn−1,Q = ∩3i=0f
ipn(Eε) ∩Q−1k=0 f

kpn−1(Eε).

Since µ(Xn) > 1 − (Q + 4)ε > 1 − κ, there is x ∈ Xn ∩ Cn ∩ Cm
and, by the choice of n, the assumption (II) of Lemma 4.5 holds
for x. Therefore, there exist two simple semi-open curves γ(x) and
γ̃(x) that satisfy the following properties: γ(x) and γ̃(x) tend to
βn,jn(x), γ(x), γ̃(x) ⊂ B(x, ρ) ∩ A(∞) and γ(x), γ̃(x) consist of arcs
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of equipotentials and external rays; the start point b1 of γ(x) and
the start point b̃1 of γ̃(x) have equal levels which is at least C̃/4;
γ(x), γ̃(x) ⊂ Un−1,jn−1(x); finally, being completed by their common
limit point βn,jn(x) and arcs of rays from b1 ∈ γ(x) to ∞ and from
b̃1 ∈ γ̃(x) to ∞, they split the plane into two domains such that
one of them contains I := Jn,x\βn,jn(x) and another one contains all
other iterates fkpn−1(I), 1 ≤ k ≤ qn − 1. Now, since Un−1,jn−1(x) ⊂
Um,jm(x) and by the choice of m, the distance between arguments
of the points b1 and b̃1 inside of Sn−1,jn−1(x) is less than δ. By the
definition of δ, b1 and b̃1 can be joined by an arc An of equipotential
inside of B(x, ρ) ∩ Un−1,jn−1(x). Consider a Jordan domain Zn with
the boundary to be the arc An and semi-open curves γ(x), γ̃(x)
completed by their common limit point βn,jn(x). Then Zn ⊂ B(x, ρ).
By the properties of the curves , Zn∪βn,jn(x) contains either Jn,x or
its iterate fkpn−1(Jn,x), for some 1 ≤ k ≤ qn − 1, in a contradiction
with Remark 5.1.

Complementary to A is
Case B: for all big n, every satellite renormalization fpn is dou-

bling, i.e., βn = αn−1 and pn = 2pn−1 for every n ∈ S.
Let Yn−1 = Eε,pn−1,6 and Ỹn−1 = f−5pn−1(Yn−1). Note that µ(Yn−1) =

µ(Ỹn−1) > 1− 6ε.
For every n ∈ S, let

Ln = {0 < j < pn−1|µ(f j(Jn−1) ∩ Ỹn−1) >
1− 212ε

pn−1
}.

As µ(Ỹn−1) > 1− 6ε, it follows,

#Ln > (1− 3/211)pn−1.

Since we are in case B, each f j(Jn−1) contains precisely two small
Julia sets f j(Jn), f j+pn−1(Jn) of the next level n each of them of
measure 1/(2pn−1). Hence, the measure of intersection of each of
these small Julia sets with Ỹn−1 is bigger than (1/2−210ε)/pn−1 > 0.
By Lemma 4.8, choosing for every j ∈ Ln a point xj ∈ f j(Jn−1) ∩
Ỹn−1 we get a pair of curves Γ

1/2
n (xj), Γ̃

1/2
n (xj) consisting of arcs of

rays and equipotentials as follows: (i) Γ
1/2
n (xj), Γ̃

1/2
n (xj) ⊂ B(xj, 3/2ρ),

moreover, arguments of points of Γ
1/2
n (xj) lie in one ’window’ of

sn−1,j while arguments of points of Γ̃
1/2
n (xj) lie in another ’window’

of sn−1,j, (ii) Γ
1/2
n (xj) and Γ̃

1/2
n (xj) converge to a common point

β∗n−1,j which is a fixed point of fpn−1 : f j(Jn−1) → f j(Jn−1) (i.e.,
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β∗n−1,j is either the non-separating fixed point βn−1,j or the sepa-
rating fixed point αn−1,j, (iii) start points of Γ

1/2
n (xj), Γ̃

1/2
n (xj) have

equal Green level which is bigger than C̃3, (iv) xj − β∗n−1,j → 0
as n → ∞ uniformly in j and xj. We add one more property as
follows. Let

Γn,j = Γ1/2
n (xj) ∪ β∗n−1,j ∪ Γ̃1/2

n (xj).

Then: (v) Γn,j is a simple curve; the level of z ∈ Γn,j \ {β∗n−1,j} is
positive and decreases (not strickly) from C̃3 to zero along Γ

1/2
n (xj)

and then increases from zero to C̃3 along Γ̃
1/2
n (xj); moreover, if

j1, j2 ∈ Ln, j1 6= j2, then Γn,1, Γn,j2 are either disjoint or meet
at the unique common point βn−1,j1 = βn−1,j2 and then disjoint
with all others γn−1,j, j 6= j1, j2. This is because, by property (i),
Γn,j ⊂ Un−1,j where (by (C), Sect 2) any two Un−1,j, Un−1,j̃, j 6= j̃,
are either disjoint or meet at β := βn−1,j = βn−1,j̃ in which case
fpn−1 is satellite. In the considered case, any satellite is doubling
so β 6= βn−1,i for all i different from j, j̃.

We assign, for the use below, a ’small’ Julia set In,j to each Γn,j
as follows: by the construction, β∗n−1,j is either the β-fixed point of
f j(Jn−1), or the α-fixed point of f j(Jn−1). In the former case, let
In,j = f j(Jn−1), and in the latter case, In,j = f j(Jn) (one of the two
small Julai sets of the next level n that are contained in f j(Jn−1).
Observe that In,j ∩Γn−1,j = {β∗n−1,j} and is disjoint with any other
Γn,j′ provided Γn,j, Γn,j′ are disjoint.

There are two subcases B1-B2 to distinguish depending on whether
arguments of end points of Γm,j become close or not. If yes, then
one can join the end points of some Γn,j by an arc of equipotential
inside of B(xj, 2ρ) ⊃ Γm,j to surround a small Julia set as in case A,
which would lead to a contradiction. If no, the construction is more
subtle: we build a domain (’quadrilateral’) in B(xj, 2ρ) bounded by
two disjoint curves as above completed by two arcs of equipotential
that join ends of different curve, so that the obtained quadrilateral
again contains a small Julia set.
B1: lim infn∈S,j∈Ln |Sn−1,j| < δ.
By property (i) listed above and the definition of δ, there are a

sequence (nk) ⊂ S, jk ∈ Lnk and xjk as above, such that two ends
of each curve Γnk,jk can be joined inside of B(xjk , ρ) by an arc Ak

of equipotential of fixed level C̃3 such that all arguments of points
in Ak belong to Snk−1,jk . Then we arrive at a contradiction as in
case A.
B2: |Sn−1,j| ≥ δ for all big n ∈ S and all j ∈ Ln.
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Figure 1. Top: Case A and Case B1, bottom: Case B2

Fix n,m ∈ S, m− n ≥ 3. Define a subset of Ln as follows:

Lmn = {0 < j < pn−1|µ(f j(Jn−1) ∩ (Ỹn−1 ∩ Ỹm−1)) >
1− 212ε

pn−1
}.

As µ(Ỹn−1 ∩ Ỹm−1) > 1− 12ε,

#Lmn > (1− 3/210)pn−1.

For each j ∈ Lmn we define further

Lmn,j = {0 < k < pn−1|fk(Jm−1) ⊂ f j(Jn−1), µ(fk(Jm−1)∩(Ỹn−1∩Ỹm−1)) >
1− 216ε

pm−1
}.

Then
#Lmn,j ≥ 5

as otherwise #Lmn,j ≤ 4 and, therefore, (1− 212ε)/pn−1 < 4/pm−1 +

(pm−1/pn−1− 4)(1− 216ε)/pm−1 = 218ε/pm−1 + (1− 216ε)/pn−1, i.e.,
pm−1/pn−1 < 218ε/(216ε − 212ε) = 4/(1 − 2−4) < 8, a contradiction
because pm−1/pn−1 ≥ 2m−n ≥ 23.

Fix j ∈ Lmn . Thus Lmn,j contains 5 pairwise different indices ki,
1 ≤ k ≤ 5. As Lmn,j ⊂ Lm, we find 5 curves Γm−1,ki . By property
(v), if two of them meet, they are disjoint with all others. Therefore,
there are at least 3 of them denoted by Γm−1,ri , i = 1, 2, 3, which
are pairwise disjoint. Let wi, w̃m,i be two ends of Γm−1,ri .

For each i = 1, 2, 3, arguments of points of wm,i, w̃m,i lie in dif-
ferent ’windows’ of sm−1,ri . On the other hand, by the choice of
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j, sm−1,ri ⊂ sn−1,j ⊂ Sn−1,j. As n is big enough, lengths of ’win-
dows’ of sn−1,j are less than δ. But since we are in case B2, the
length of Sn−1,j is bigger than δ. One can assume, therefore, that,
for i = 1, 2, 3, arguments of wm,i lie in one window of sn−1,j while
arguments of w̃m,i are in another window. Therefore, differences
of arguments of all wm,i tend to zero as m → ∞, and the same
for w̃m,i. As all wm,i, w̃m,i ∈ Eε, this implies by Lemma 4.1 that
max1≤i,l≤3 |wm,i −wm,l| → 0. This along with property (iv) implies
that γm−1,ri ⊂ B(wm,1, 2ρ), i = 1, 2, 3, for all big m. Since, for
big m, differences of arguments of all wm,i are less than δ, and the
same for w̃m,i, one can joint all wm,i by an arc Dm of equipotential
of level C̃3 and all w̃m,i by an arc D̃m of equipotential of the same
level C̃3 such that Dm, D̃m ⊂ B(w1, 2ρ). Let the end points of Dm

be, say, wm,1 and wm,3, so that wm,2 ∈ Dm is in between. Since all
3 curves Γm−1,ri , i = 1, 2, 3, are pairwise disjoint, the end points
of D̃m have to be then w̃m,1 and w̃m,3, so that w̃m,2 ∈ D̃m is in
between. Therefore, we get a ’big’ quadrilateral Π0

m ⊂ B(wm,1, 2ρ)

bounded by Dm, D̃m,Γm,1, Γ̃m,3. The curve Γm,2 splits Πm into two
’small’ quadrilaterals Π1

m,Π
2
m with a common curve Γm,2 in their

boundaries. Recall now that the curve Γm,2 comes with a small
Julia set Im,2 of level either m − 1 or m, such that Im,2 ∩ Γm,2
is a single point while Im,2 is disjoint with Γm,1, Γm,3. Therefore,
Im,2 ⊂ Π0

m ⊂ B(wm,1, 2ρ), a contradiction with Remark 5.1.

6. Proof of Corollaries 1.1-1.2

Corollary 1.1 follows directly from the following

Proposition 6.1. Let f be an infinitely renormalizable quadratic
polynomial. Then conditions (1)-(4) are equivalent:

(1) f : J∞ → J∞ has no invariant probability measure with
positive exponent,

(2) for every neighborhood W of P and every α ∈ (0, 1) there
exist m0 and n0 such that, for each m ≥ m0 and x ∈ orb(Jn)
with n ≥ n0,

#{i|0 ≤ i < m, f i(x) ∈ W}
m

> α;

additionally, f : P → P has no invariant probability mea-
sure with positive exponent,

(3) every invariant probability measure of f : J∞ → J∞ is, in
fact, supported on P and has zero exponent,
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(4) for every invariant probability ergodic measure µ of f on the
Julia set J of f , either supp(µ)∩ J∞ = ∅ and its Lyapunov
exponent χ(µ) > 0, or supp(µ) ⊂ P and χ(µ) = 0.

Proof. (1)⇒(2). Assume the contrary. Let E = C \ W . Since
W is a neighborhood of a compact set P , the Euclidean distance
d(E,P ) > 0. By a standard normality argument, as all periodic
points of f are repelling, there are λ > 1 and k0 > 0 such that
|(fk)′(y)| > λ whenever y, fk(y) ∈ E and k ≥ k0. As (2) does not
hold, find α ∈ (0, 1), a sequence nk →∞, points xk ∈ orb(Jnk) and
a sequence mk →∞ such that, for each k,

#{i : 0 ≤ i < mk, f
i(xk) ∈ E}

mk

≥ β := 1− α.

Fix a big k such that βmk > 3k0 and consider the times 0 ≤ ik1 <
ik2 < ...iklk < mk where lk/mk ≥ β such that f i(xk) ∈ E. Let
zk = f i

k
1 (xk) so that zk ∈ E∩orb(Jn). Therefore, by the choice of λ

and k0, |(fmk−i
k
1 )′(zk)| ≥ λ̃mk ≥ λ̃mk−i1 where λ̃ = λ

β
2k0 > 1. In this

way we get a sequence of measures µk = 1
mk−ik1

∑mk−ik1−1
i=0 δf i(zk) such

that the Lyapunov exponent of µk is at least log λ̃ > 0. Passing
to a subsequence one can assume that {µk} converges weak-* to
a measure µ. Then µ is an f -invariant probability measure on
J∞ = ∩orb(Jn) with the exponent at least log λ̃ > 0, a contradiction
with (1).

(2)⇒(3), by the Birkhoff Ergodic Theorem along with [22].
(3)⇒(4): let µ be as in (4) and U ∩ P = ∅ for some open set U

with µ(U) > 0. Let F : U → U be the first return map equipped
with the induced invariant measure µU . By the Birkhoff Ergodic
Theorem and by an argument as in (1)⇒(2), the exponent χF (µU)
of F w.r.t. µU is strictly positive. Hence, χ(µ) = µ(U)χF (µU) is
positive too. This proves the implication.

And (4) obviously implies (1). �

Proof of Corollary 1.2. If χ(x) were strictly positive, for some x ∈
J∞, that would imply, by a standard argument (see the proof of
Corollary 1.1), the existence of an f -invariant measure with positive
exponent supported in ω(x) ⊂ J∞, with a contradiction to Theorem
1.1. This proves (1.1). By [14], lim infn→∞

1
n

log |(fn)′(c)| ≥ 0. On
the other hand, by (1.1), χ(c) ≤ 0, which proves (1.2). �
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