ON INVARIANT MEASURES OF "SATELLITE" INFINITELY RENORMALIZABLE QUADRATIC POLYNOMIALS

GENADI LEVIN AND FELIKS PRZYTYCKI

Abstract

Let $f(z)=z^{2}+c$ be an infinitely renormalizable quadratic polynomial and J_{∞} be the intersection of forward orbits of "small" Julia sets of its simple renormalizations. We prove that if f admits an infinite sequence of satellite renormalizations, then every invariant measure of $f: J_{\infty} \rightarrow J_{\infty}$ is supported on the postcritical set and has zero Lyapunov exponent. Coupled with [14], this implies that the Lyapunov exponent of such f at c is equal to zero, which answers partly a question posed by Weixiao Shen.

1. Introduction

We consider the dynamics $f: \mathbb{C} \rightarrow \mathbb{C}$ of a quadratic polynomial. Up to a linear change of coordinates, f has the form $f_{c}(z)=z^{2}+c$ for some $c \in \mathbb{C}$. In this paper, which is the sequel of [9], we assume that f is infinitely-renormalizable. Moreover, in the main results we assume that f has infinitely many "satellite renormalizations", see e.g. [19], or below for definitions. Dynamics, geometry and topology of such system can be very non-trivial, in particular, due to the fact that different renormalization levels are largely independent.

Historically, the first example of infinitely-renormalizsable onedimensional map was, probably, the Feigenbaum period-doubling quadratic polynomial $f_{c_{F}}$, where $c_{F}=-1.4 \ldots$ [6]. The Julia set of $f_{c_{F}}$ is locally connected [7] as it follows from so-called "complex bounds", a compactness property of renormalizations which is a key

Date: December 27, 2022.
The first author partially supported by ISF grant 1226/17. The second author partially supported by National Science Centre, Poland, Grant OPUS 21 "Holomorphic dynamics, fractals, thermodynamic formalism", 2021/41/B/ST1/00461.
tool since [27], in particular, in proving the Feigenbaum-CoulletTresser universality conjecture [27, [20, 15]. Perhaps, more striking for us are Douady-Hubbard's examples, or alike, of infinitelyrenormalizable quadratic polynomials with non-locally connected Julia sets [17, 26, 10, 11, 12, 4, 3]. As for the Feigenbaum polynomial $f_{c_{F}}$, all the renormalizations of such maps are satellite, although, contrary to $f_{c_{F}}$, combinatorics is unbounded (which, in turn, implies that those maps cannot have complex bounds [1]).

Dynamics of every holomorphic endomorphism of the Riemann sphere $g: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ classically splits $\hat{\mathbb{C}}$ into two subsets: the Fatou set $F(g)$ and its complement the Julia set $J(g)$, where $F(g)$ is the maximal (possibly, empty) open set where the sequence of iterates $g^{n}, n=0,1, \ldots$ forms a normal (i.e., a precompact) family. See e.g. [2], [16] for the Fatou-Julia theory and [25] for a recent survey.

If g is a polynomial, then the Julia set $J(g)$ coincides with the boundary of the basin of infinity $A(\infty)=\left\{z \in \mathbb{C} \mid \lim _{n \rightarrow \infty} g^{n}(z)=\right.$ $\infty\}$ of g. The complement $\mathbb{C} \backslash A(g)$ is called the filled Julia set $K(g)$ of the polynomial g. The compact $K(g) \subset \mathbb{C}$ is connected if and only if it contains all critical points of g in the complex plane.

A quadratic polynomial f_{c} with connected filled Julia set $K(f)$ is renormalizable if, for some topological disks $U \Subset V$ around the critical point 0 of f_{c}, and some $p \geq 2$ (period of the renormalization), the restriction $F:=f_{c}^{p}: U \rightarrow V$ is a proper branched covering map (called polynomial-like map) of degree 2 and the non-escaping set $K(F)=\left\{z \in U: F^{n}(z) \in U\right.$ for all $\left.n \geq 1\right\}$ (called the filled Julia set of the polynomial-like map F) is connected. The map $F: U \rightarrow V$ is then a renormalization of f_{c} and the set $K(F)$ is a "small" (filled) Julia set of f_{c}. By the theory of polynomiallike mappings [5], there is a quasiconformal homeomorphism of \mathbb{C}, which is conformal on $K(F)$, that conjugates F on a neighborhood of $K(F)$ to a uniquely defined another quadratic polynomial $f_{c^{\prime}}$ with connected filled Julia set. If $f_{c^{\prime}}$ is renormalizable by itself, then f_{c} is called twice renormalizable, etc. If f_{c} admits infinitely many renormalizations, it is called infinitely-renormalizable. The renormalization $F=f_{c}^{p}$ is simple if any two sets $f^{i}(K(f))$, $f^{j}(K(F)), 0 \leq i<j \leq p-1$, are either disjoint or intersect each other at a unique point which does not separate either of them. A simple renormalization $f^{p_{n}}$ is called primitive if all sets $f^{i}\left(K_{n}\right)$, $i=0, \cdots, p_{n}-1$, are disjoints and satellite otherwise.

To state our main results, Theorems 1.1, let $f(z)=z^{2}+c$ be infinitely renormalizable. Then its Julia set $J=J(f)$ coincides
with the filled Julia set $K(f)$ and is a nowhere dense compact full connected subset of \mathbb{C}. Let $1=p_{0}<p_{1}<\ldots<p_{n}<\ldots$ be the sequence of consecutive periods of simple renormalizations of f and $J_{n} \ni 0$ denote the "small" Julia set of the n-renormalization (where $\left.J_{0}=J\right)$. Then p_{n+1} / p_{n} is an integer, $f^{p_{n}}\left(J_{n}\right)=J_{n}$, for any n, and f-orbits of J_{n},

$$
\operatorname{orb}\left(J_{n}\right)=\cup_{j \geq 0} f^{j}\left(J_{n}\right)=\cup_{j=0}^{p_{n}-1} f^{j}\left(J_{n}\right),
$$

$n=0,1, \ldots$, form a strictly decreasing sequence of compact subsets of \mathbb{C}. Let

$$
J_{\infty}=\cap_{n \geq 0} \operatorname{orb}\left(J_{n}\right)
$$

be the intersection of the orbits of the "small" Julia sets J_{n}. For every n, repelling periodic orbits of f are dense in $\operatorname{orb}\left(J_{n}\right)$ while each component of J_{∞} is wandering, in particular, J_{∞} contains no periodic points of f.

Let

$$
P=\overline{\left\{f^{n}(0) \mid n=1,2, \ldots\right\}}
$$

be the postcritical set of f. Clearly,

$$
P \subset J_{\infty}
$$

Moreover, the critical point 0 is recurrent, hence,

$$
P=\omega(0)
$$

where $\omega(z)$ is the omega-limit set of a point $z \in J$.
We prove in [9] that J_{∞} cannot contain any hyperbolic set. On the other hand, a hyperbolic set of a rational map always carries an invariant measure with a positive Lyapunov exponent. So a generalization of [9] would be that J_{∞} never carries such a measure. Here we prove this generalization for a class of "satellite" infinitelyrenormalizable quadratic polynomials:

Theorem 1.1. Suppose that $f(z)=z^{2}+c$ admits infinitely many satellite renormalizations. Then $f: J_{\infty} \rightarrow J_{\infty}$ has no an invariant probability measure with positive Lyapunov exponent.

Let us comment on the behavior of the restriction map $f: J_{\infty} \rightarrow$ J_{∞} where f as in Theorem 1.1. First, by [9, the postcritical set P must intersect the omega-limit set $\omega(x)$ of each $x \in J_{\infty}$. At the same time, dynamics and topology of the further restriction $f: P \rightarrow P$ can vary. Indeed, there are infinitely renormalizable
quadratic polynomials f with all renormalizations being of satellite type such that at least one of the following holds \mathbb{T}^{\top},
(1) $f: P \rightarrow P$ is not minimal. This case happens in DouadyHubbard's type examples. Indeed, by the basic construction [17], J_{∞} then contains a closed invariant set X (which is the limit set for the collection of α-fixed points of renormalizations) such that $0 \notin X$. By [9], $X \cap P$ is non-empty. Thus $X \cap P$ is an invariant non-empty proper compact subset of P.
(2) P is a so-called "hairy" Cantor set, in particular, P contains uncountably many non-trivial continua. This case takes place following [3].
(3) P is a Cantor set and $f: P \rightarrow P$ is minimal; this happens whenever f either admits complex bounds (which then imply $J_{\infty}=$ $P)$ or is robust [19] Under either of the two conditions, $f: P \rightarrow P$ is a minimal homeomorphism, which is topologically conjugate to $x \mapsto x+1$ acting on the projective limit of the sequence of groups $\left\{\mathbb{Z} / p_{n} \mathbb{Z}\right\}_{n=1}^{\infty}$; in particular, $f: P \rightarrow P$ (hence, also $f: J_{\infty} \rightarrow J_{\infty}$, as it follows from the next Corollary 1.1) is uniquely ergodic in this case.

Theorem 1.1 yields the following dichotomy about the measurable dynamics of $f: J \rightarrow J$ on the Julia set J of f. Recall that, by [22], any invariant probability measure on the Julia set of a rational function has non-negative exponent.

Corollary 1.1. Let μ be an invariant probability ergodic measure of $f: J \rightarrow J$. Then either
(i) $\operatorname{supp}(\mu) \cap J_{\infty}=\emptyset$ and its Lyapunov exponent $\chi(\mu)>0$, or
(ii) $\operatorname{supp}(\mu) \subset P$ and $\chi(\mu)=0$.

In particular, the set $J_{\infty} \backslash P$ is "measure invisible", see also Proposition 6.1 which is a somewhat stronger version of Corollary 1.1.

Corollary 1.2. If f admits infinitely many satellite renormalizations, then

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|\left(f^{n}\right)^{\prime}(x)\right| \leq 0 \text { for any } x \in J_{\infty}, \tag{1.1}
\end{equation*}
$$

[^0]and
\[

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\left(f^{n}\right)^{\prime}(c)\right|=0 \tag{1.2}
\end{equation*}
$$

\]

For the proof of Corollaries 1.1-1.2, see Sect. 6. The proof of Theorem 1.1 occupies sections 245

As in [9], we use heavily a general result of [23] on the accessibility although the main idea of the proof is different. Indeed, in [9] we utilize the fact that the map cannot be one-to-one on an infinite hyperbolic set. At the present paper, to prove Theorem 1.1 we assign, loosely speaking, an external ray to a typical point of a hypothetical measure with positive exponent such that the field of such rays is invariant and has a controlled geometry. Given a satellite renormalization $f^{p_{n}}$ we use the measure and the above field of rays to choose a point x and build a special domain that covers a "small" Julia set $J_{n, x} \ni x$ such that there is a univalent pullback of the domain by $f^{p_{n}}$ along the renormalization that enters into itself, leading to a contradiction. The choice of x is 'probabilistic', i.e., made from sets of positive measure, and the construction of the domain differs substantially depending on whether all satellite renormalizations of f are doubling or not.

Acknowledgment. The conclusion (1.2) of Corollary 1.2 that the Lyapunov exponent at the critical value equals zero answers partly a question by Weixiao Shen, which inspired the present work as well as the prior one [9].

2. Preliminaries

Here we collect, for further references and use throughout the paper, necessary notations and general facts. (A)-(D) are slightly adapted versions of (A)-(D) in Sect. 2, 9 which are either wellknown [19], [18], follow readily from known ones, or are proved here.

Let $f(z)=z^{2}+c$ be infinitely renormalizable. We keep the notations of the Introduction.
(A). Let G be the Green function of the basin of infinity $A(\infty)=$ $\left\{z \mid f^{n}(z) \rightarrow \infty, n \rightarrow \infty\right\}$ of f with the standard normalization at infinity $G(z)=\ln |z|+O(1 /|z|)$. The external ray R_{t} of argument $t \in \mathbf{S}^{\mathbf{1}}=\mathbf{R} / \mathbf{Z}$ is a gradient line to the level sets of G that has the (asymptotic) argument t at $\infty . G(z)$ is called the (Green) level of $z \in A(\infty)$ and the unique t such that $z \in R_{t}$ is called the (external) argument (or angle) of z. A point $z \in J(f)$ is accessible if there is
an external ray R_{t} which lands at (i.e., converges to) z. Then t is called an (external) argument (angle) of z.

Let $\sigma: \mathbf{S}^{\mathbf{1}} \rightarrow \mathbf{S}^{\mathbf{1}}$ be the doubling map $\sigma(t)=2 t(\bmod 1)$. Then $f\left(R_{t}\right)=R_{\sigma(t)}$.

Every point a of a repelling cycle O_{a} of period p is the landing point of an equal number $v, 1 \leq v<\infty$, of external rays where v coincides with the number of connected components of $J(f) \backslash$ $\{a\}$. Their arguments are permuted by σ^{p} according to a rational rotation number r / q (written in the lowest term); v / q is the number of cycles of rays landing at a. If $v \geq 2$, there is an alternative [18]:
$r / q=0 / 1$, then $v=2$ so that each of two external ray landing at a is fixed by f^{p},
$r / q \neq 0 / 1$, i.e., $q \geq 2$, then $v=q$, i.e., the arguments of q rays landing at a form a single cycle of σ^{p}.
(B). All periodic points of f are repelling. Given a small Julia set J_{n} containing 0 , sets $f^{j}\left(J_{n}\right), 0 \leq j<p_{n}$, are called small Julia sets of level n. Each $f^{j}\left(J_{n}\right)$ contains $p_{n+1} / p_{n} \geq 2$ small Julia sets of level $n+1$. We have $J_{n}=-J_{n}$. Since all renormalizations are simple, for $j \neq 0$, the symmetric companion $-f^{j}\left(J_{n}\right)$ of $f^{j}\left(J_{n}\right)$ can intersect the orbit $\operatorname{arb}\left(J_{n}\right)=\cup_{j=0}^{p_{n}-1} f^{j}\left(J_{n}\right)$ of J_{n} only at a single point which is periodic. On the other hand, since only finitely many external rays converge to each periodic point of f, the set J_{∞} contains no periodic points. In particular, each component K of J_{∞} is wandering, i.e., $f^{i}(K) \cap f^{j}(K)=\emptyset$ for all $0 \leq i<j<\infty$. All this implies that $\{x,-x\} \subset J_{\infty}$ if and only if $x \in K_{0}:=\cap_{n=1}^{\infty} J_{n}$.

Given $x \in J_{\infty}$, for every n, let $j_{n}(x)$ be the unique $j \in$ $\left\{0,1, \cdots, p_{n}-1\right\}$ such that $x \in f^{j(x)}\left(J_{n}\right)$. Let $J_{x, n}=f^{j_{n}(x)}\left(J_{n}\right)$ be a small Julia set of level n containing x and $K_{x}=$ $\cap_{n \geq 0} J_{x, n}$, a component of J_{∞} containing x.

In particular, $K_{0}=\cap_{n \geq 0} J_{n}$ is the component of J_{∞} containing 0 and $K_{c}=\cap_{n=1}^{\infty} f\left(J_{n}\right)$, the component containing c.

Note that either $p_{n}-j_{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$ or $p_{n}-j_{n}(x)=N$ for some $N \geq 0$ and all n, that is, $f^{N}(x) \in K_{0}$.

The map $f: K_{x} \rightarrow K_{f(x)}$ is two-to-one if $x=0$ and one-to-one otherwise. Moreover, for every $y \in J_{\infty}, f^{-1}(y) \cap J_{\infty}$ consists of two points if $y \in K_{c}$ and consists of a single point otherwise. Denote

$$
J_{\infty}^{\prime}=J_{\infty} \backslash \cup_{j=-\infty}^{\infty} f^{j}\left(K_{0}\right)
$$

We conclude that:
$f: J_{\infty}^{\prime} \rightarrow J_{\infty}^{\prime}$ is a homeomorphism. Given $x \in J_{\infty}^{\prime}$ and $m>0$, denote $x_{m}=f^{m}(x)$ and

$$
x_{-m}=\left.f\right|_{J_{\infty}^{\infty}} ^{-m}(x)
$$

that is, the only point $f^{-m}(x) \cap J_{\infty}$.
(C). Given $n \geq 0$, the map $f^{p_{n}}: f\left(J_{n}\right) \rightarrow f\left(J_{n}\right)$ has two fixed points: the separating fixed point α_{n} (that is, $f\left(J_{n}\right) \backslash\left\{\alpha_{n}\right\}$ has at least two components) and the non-separating β_{n} (so that $f\left(J_{n}\right) \backslash \beta_{n}$ has a single component).

For every $n>0$, there are $0<t_{n}<\tilde{t}_{n}<1$ such that two rays $R_{t_{n}}$ and $R_{\tilde{t}_{n}}$ land tat the non-separating fixed point $\beta_{n} \in f\left(J_{n}\right)$ of $f^{p_{n}}$ and the component Ω_{n} of $\mathbf{C} \backslash\left(R_{t_{n}} \cup R_{\tilde{t}_{n}} \cup \beta_{n}\right)$ which does not contain 0 has two characteristic propertiers [18:
(i) Ω_{n} contains c and is disjoint with the forward orbit of β_{n},
(ii) for every $1 \leq j<p_{n}$, consider arguments (angles) of external rays which land at $f^{j-1}\left(\beta_{n}\right)$. The angles split \mathbf{S}^{1} into finitely many arcs. Then the length of any such arc is bigger than the length of the arc

$$
S_{n, 1}=\left[t_{n}, \tilde{t}_{n}\right]=\left\{t: R_{t} \subset \Omega_{n}\right\} .
$$

Denote

$$
t_{n}^{\prime}=t_{n}+\frac{\tilde{t}_{n}-t_{n}}{2^{p_{n}}}, \quad \tilde{t}_{n}^{\prime}=\tilde{t}_{n}-\frac{\tilde{t}_{n}-t_{n}}{2^{p_{n}}} .
$$

The rays $R_{t_{n}^{\prime}}, R_{\tilde{t}_{n}^{\prime}}$ land at a common point $\beta_{n}^{\prime} \in f^{-p_{n}}\left(\beta_{n}\right) \cap \Omega_{n}$. Introduce an (unbounded) domain U_{n} with the boundary to be two curves $R_{t_{n}} \cup R_{\tilde{t}_{n}} \cup \beta_{n}$ and $R_{t_{n}^{\prime}} \cup R_{\tilde{t}_{n}^{\prime}} \cup \beta_{n}^{\prime}$. Then $c \in U_{n}$ and $f^{p_{n}}: U_{n} \rightarrow \Omega_{n}$ is a two-to-one branched covering. Also,

$$
f\left(J_{n}\right)=\left\{z: f^{k p_{n}}(z) \in \bar{U}_{n}, G\left(f^{k p_{n}}(z)<10, k=0,1, \ldots\right\} .\right.
$$

Let

$$
s_{n, 1}=\left[t_{n}, t_{n}^{\prime}\right] \cup\left[\tilde{t}_{n}^{\prime}, \tilde{t}_{n}\right]
$$

so that $s_{n, 1} \subset S_{n, 1}$ and argument of any ray to $f\left(J_{n}\right)$ lies in $s_{n, 1}$.
Let us iterate this construction. Given $1 \leq j \leq p_{n}$, let $S_{n, j}$ be one of the two arcs of S^{1} with end points

$$
t_{n, j}=\sigma^{j-1}\left(t_{n}\right), \tilde{t}_{n, j}=\sigma^{j-1}\left(\tilde{t}_{n}\right)
$$

such that arguments of any ray to $f^{j}\left(J_{n}\right)$ lies in $S_{n, j}$. Let

$$
s_{n, j}=\sigma^{j-1}\left(s_{n, 1}\right)=\left[t_{n, j}, t_{n, j}^{\prime}\right] \cup\left[\tilde{t}_{n, j}^{\prime}, \tilde{t}_{n, j}\right]
$$

where $t_{n, j}^{\prime}=\sigma^{j-1}\left(t_{n}^{\prime}\right), \tilde{t}_{n, j}^{\prime}=\sigma^{j-1}\left(\tilde{t}_{n}^{\prime}\right)$. Then

$$
s_{n, j} \subset S_{n, j}
$$

and argument of any ray to $f^{j}\left(J_{n}\right)$ lies in fact in $s_{n, j}$. Note that

$$
\begin{equation*}
t_{n, j}^{\prime}-t_{n, j}=\tilde{t}_{n, j}-\tilde{t}_{n, j}^{\prime}=\frac{\tilde{t}_{n}-t_{n}}{2^{p_{n}-j+1}}<\tilde{t}_{n}-t_{n}<1 / 2 . \tag{2.1}
\end{equation*}
$$

So $\sigma^{j-1}: s_{n, 1} \rightarrow s_{n, j}$ is a homeomorphism and $s_{n, j}$ has two components ('windows') $\left[t_{n, j}, t_{n, j}^{\prime}\right]$ and $\left[\tilde{t}_{n, j}^{\prime}, \tilde{t}_{n, j}\right]$ of equal length.

Let $U_{n, j}=f^{j-1}\left(U_{n}\right)$ and $\beta_{n, j}=f^{j-1}\left(\beta_{n}\right)$. The domain $U_{n, j}$ is bounded by two rays $R_{t_{n, j}} \cup R_{\tilde{t}_{n, j}}$ converging to $\beta_{n, j}$ and completed by $\beta_{n, j}$ along with two rays $R_{t_{n, j}^{\prime}} \cup R_{\tilde{t}_{n, j}^{\prime}}$ completed by their common limit point $f^{j-1}\left(\beta_{n}^{\prime}\right)$ where $t_{n, j}^{\prime}=\sigma^{j-1}\left(t_{n}^{\prime}\right), \tilde{t}_{n, j}^{\prime}=\sigma^{j-1}\left(\tilde{t}_{n}^{\prime}\right)$.

By (i)-(ii), for a fixed n, domains $U_{n, j}, 1 \leq j \leq p_{n}$, are pairwise disjoint.

Let $U_{n, j-p_{n}}$ be a component of $f^{-\left(p_{n}-j\right)}\left(U_{n}\right)$ which is contained in $U_{n, j}$. Then

$$
\begin{equation*}
f^{p_{n}}: U_{n, j-p_{n}} \rightarrow U_{n, j} \tag{2.2}
\end{equation*}
$$

is a two-to-one branched covering and

$$
f^{j-1}\left(J_{n}\right)=\left\{z: f^{k p_{n}}(z) \in \bar{U}_{n, j-p_{n}}, G\left(f^{k p_{n}}(z)\right)<10, k=0,1, \ldots\right\}
$$

Let $s_{n, j}^{1}$ be the set of arguments of rays entering $U_{n, j-p_{n}}$. Then $s_{n, j}^{1}$ consists of 4 components so that $\sigma^{p_{n}}$ map homeomorphically each of these components onto one of the 'windows' of $s_{n, j}$.

Furthermore, let

$$
\Omega_{n, j}=f^{j-1}\left(\Omega_{n}\right)
$$

Unless the map (2.2), the map

$$
\begin{equation*}
f^{p_{n}}: U_{n, j} \rightarrow \Omega_{n, j} \tag{2.3}
\end{equation*}
$$

is a two-to-one branched covering only assuming $f^{j-1}: \Omega_{n} \rightarrow \Omega_{n, j}$ is a homeomorphism, which holds if and only if $\sigma^{j-1}: S_{n, 1} \rightarrow$ $\sigma^{j-1}\left(S_{n, 1}\right)$ is a homeomorphism. In the latter case,

$$
\sigma^{j-1}\left(S_{n, 1}\right)=S_{n, j} .
$$

Primitive vs satellite renormalizations. Let $n \geq 2$ and k_{n} / q_{n} be the rotation number of β_{n}. The next claim is well-known, we include the proof for reader's convenience.

Lemma 2.1. (1) the renormalization $f^{p_{n}}$ is primitive if and only if $k_{n} / q_{n}=0 / 1$, the period of β_{n} is p_{n} and β_{n} is the landing point of exactly two rays and they are fixed by $f^{p_{n}}$,
(2) points $\beta_{n}, n=1,2, \cdots$ are all different,
(3) $f^{p_{n}}$ is satellite if and only if the α-fixed point α_{n-1} of $f^{p_{n-1}}$: $f\left(J_{n-1}\right) \rightarrow f\left(J_{n-1}\right)$ coincides with the β-fixed point β_{n} of $f^{p_{n}}: f\left(J_{n}\right) \rightarrow f\left(J_{n}\right)$. In particular, $\cup_{j=0}^{q_{n}-1} f^{j p_{n-1}}\left(f\left(J_{n}\right)\right) \subset$ $f\left(J_{n-1}\right)$ and $q_{n}=p_{n} q_{n-1}$. Moreover, each of p_{n-1} points of the orbit of β_{n} is the landing points of precisely q_{n} rays which are permuted by $f^{p_{n-1}}$ according to the rotation number r_{n} / q_{n}. Completed by the landing point they split \mathbb{C} into q_{n} "sectors" such that the closure of each of them contains a unique "small" Julia set of level n sharing a common point with the boundary of the "sector".

Proof. (1). $f^{p_{n}}$ is satellite if and only if $f\left(J_{n}\right)$ meets at β_{n} some other iterate of J_{n}, hence, $r_{n} / q_{n} \neq 0$, and vice versa. (2). assume $\beta:=\beta_{n}=\beta_{m}$ for some $0 \leq n<m$. As $p_{n}<p_{m}$, the period of β_{m} is smaller than p_{n}. It follows that $f\left(J_{n}\right)$ contains two small Julia sets of level m that meet at β, hence, β separates $f\left(J_{n}\right)$, a contradiction as β_{n} does not. (3). By (1), $f^{p_{n}}$ is satellite if and only if $r_{n} / q_{n} \neq 0$. Let $\tilde{p}_{n-1}=p_{n} / q_{n}$. Then \tilde{p}_{n-1} is an integer and is equal to the period of β_{n}. It follows that p_{n} sets $f\left(J_{n}\right), f^{2}\left(J_{n}\right), \cdots, f^{p_{n}}\left(J_{n}\right)$ are split into \tilde{p}_{n-1} connected closed subsets $E_{i}, i=1, \cdots, \tilde{\tilde{p}}_{n-1}$ where $E_{1}=\cup_{j=0}^{q_{n}-1} f^{j \tilde{p}_{n-1}}\left(f\left(J_{n}\right)\right)$ and $E_{i}=f^{i-1}\left(E_{1}\right), i=1,2, \cdots, \tilde{p}_{n-1}$. Moreover, $0 \in E_{p_{n-1}}$ and $f\left(E_{i}\right)=E_{i+1}, i=1, \cdots, \tilde{p}_{n-1}-1, f\left(E_{\tilde{p}_{n-1}}\right)=E_{1}$. By [19, Theorem 8.5], $f^{\tilde{p}_{n-1}}$ is a simple renormalization and $E_{i}, i=1, \cdots, \tilde{p}_{n-1}$ are subsets of its \tilde{p}_{n-1} small Julia sets. Since $1=p_{0}<p_{1}<\ldots$ are all consecutive periods of simple renormalizations, then $\tilde{p}_{n-1}=p_{k}$ for some $k<n$. Therefore, β_{n}-fixed point of $f^{p_{n}}: f\left(J_{n}\right) \rightarrow f\left(J_{n}\right)$ is α_{k}-fixed point of $f^{p_{k}}: f\left(J_{p_{k}}\right) \rightarrow f\left(J_{p_{k}}\right)$. As all renormalizations are simple, if $k<n-1$ that would imply that $\beta_{n}=\beta_{n-1}=\ldots=\beta_{k+1}$, a contradiction with (2). The claim about "sectors" follows since each map f^{j} is one-to-one in a neighborhood of β_{n} and the closure of Ω_{n} contains a single "small" Julia set $f\left(J_{n}\right)$ of level n sharing a common point with $\partial \Omega_{n}$.

We need a more refined estimate provided the renormalization is not doubling. Assume $f^{p_{n}}$ is satellite so that $p_{n-1}=p_{n} / q_{n}$ with $q_{n} \geq 2$ and the rotation number of β_{n} is $r_{n} / q_{n} \neq 0 / 1$.

Lemma 2.2. Assume $f^{p_{n}}$ is satellite and $q_{n}=p_{n} / p_{n-1} \geq 3$, i.e., $f^{p_{n}}$ is not doubling. Then
$\sigma^{j-1}: S_{n, 1} \rightarrow \sigma^{j-1} S_{n, 1}$ is a homeomorphism for $j=1, \cdots, p_{n-1}\left(q_{n}-2\right)$.

In particular, given $\zeta \in(0,1 / 3)$, the length of $\sigma^{j-1} S_{n, 1}$ tends to zero as $n \rightarrow \infty$ uniformly in $j=1, \cdots,\left[\zeta p_{n}\right]$ (where $[x]$ is the integer part of $x \in \mathbb{R}$).

Moreover, for every $1 \leq j \leq p_{n-1}\left(q_{n}-2\right), S_{n, j}=\sigma^{j-1}\left(S_{n, 1}\right)$ and the map $f^{p_{n}}: U_{n, j} \rightarrow \Omega_{n, j}$ is a two-to-one branched covering such that

$$
f^{j}\left(J_{n}\right)=\left\{z: f^{k p_{n}}(z) \in \bar{U}_{n, j}, G\left(f^{k p_{n}}(z)\right)<10, k=0,1, \ldots\right\} .
$$

Proof. Let $g=f^{p_{n-1}}: U_{n-1} \rightarrow \Omega_{n-1}$. Then g is a two-to-one covering of degree 2 and the critical value c.
(1) Recall that $s_{n-1,1}=\left[t_{n-1}, t_{n-1}^{\prime}\right] \cup\left[\tilde{t}_{n-1}^{\prime}, \tilde{t}_{n-1}\right]$ consists of two 'windows' so that $\sigma^{p_{n-1}}$ is orientation preserving homeomorphism of either 'window' onto $S_{n-1,1}=\left[t_{n-1}, \tilde{t}_{n-1}\right]$.
(2) Consider q_{n} rays $L_{1}, \ldots, L_{q_{n}}$ to α_{n-1}. The map g is a local homeomorphism near α_{n-1} which permutes the rays to α_{n-1} according to the rotation number $\nu:=k_{n} / q_{n} \neq 0,1 / 2$. In particular, g maps any pair of adjacent rays to α_{n-1} onto another pair of adjacent rays to α_{n-1}.
(3) Not all arguments of these rays lie in a single 'window' I of $s_{n-1,1}$ because otherwise, by (1), the set of those arguments would lie in the non-escaping set of an orientation preserving homeomorphism $\sigma^{p_{n-1}}: I \rightarrow S_{n, 1}$, which consists of a fixed point of this map, a contradiction with the fact that $q_{n}>1$.
(4) The rays L_{j} split U_{n-1} into q_{n} disjoint domains $U^{j}, j=$ $0,1, \ldots, q_{n}-1$. By the "ideal boundary" $\hat{\partial} U^{j}$ of U^{j} we will mean the usual (topological) boundary ∂U^{j} (in our case, the set of boundary rays completed by their landing points) along with the "boundary at infinity" which is the set of arguments of rays entering U^{j}. Then define \hat{g} on $\hat{\partial} U^{j}$ to be g on ∂U^{j} and $\sigma^{p_{n-1}}$ on the "boundary at infinity" of U^{j}.
(5) By (3), one of U^{j}, called U^{0}, has β_{n-1} in its boundary, and another one, called $U^{q_{n}-1}$, has β_{n-1}^{\prime} in the boundary. In particular, the boundary of any other $U^{j}, j \neq 0, q_{n}-1$, consists of a pair of adjacent rays to α_{n-1} whose arguments belong to a single 'window' of $s_{n-1,1}$. Therefore, by (1), the rest of indices $j=1, \ldots, q_{n}-2$ can be ordered in such a way that $\hat{g}: \hat{\partial} U^{j} \rightarrow \hat{\partial} U^{j+1}$ is a one-to-one map for $j=1, \cdots, q_{n}-3$ (note that the "boundary at infinity" of each $U^{j}, 1 \leq j \leq q_{n}-2$, consists of a single "arc at infinity"). Therefore, $g: U^{j} \rightarrow U^{j+1}$ is a homeomorphism for $j=1, \ldots, q_{n}-3$. The map \hat{g} on $\hat{\partial} U^{q_{n}-2}$ is also a one-to-one map on its image $W=g\left(U^{q_{n}-2}\right)$ where W is bounded by two adjacent
rays to α_{n-1}. W cannot contain U^{0} because otherwise W would contain β_{n-1}^{\prime}, a contradiction. Thus W must contain β_{n-1}^{\prime}. That is, $g\left(U^{q_{n}-2}\right)$ covers $U^{q_{n}-1}$.

Thus, for $j=1, \cdots, q_{n}-3, g: U^{j} \rightarrow U^{j+1}$ is a homeomorphism, and $g: U^{q_{n}-2} \rightarrow W$ is also a homeomorphism where the image $W=g\left(U^{q_{n}-2}\right)$ covers $U^{q_{n}-1}$ and has two common rays with the boundary of $U^{q_{n}-1}$.
(6) The critical value c of g has a unique preimage by g (the critical point of g). As $c \in \Omega_{n} \subset \Omega_{n-1}$ and Ω_{n} is bounded by two adjacent rays to $\alpha_{n-1}, c \in U^{i}$ for some $i \in\left\{1, \cdots, q_{n}-1\right\}$. If $i>1$, then $i-1 \geq 1$ while g would not be a homeomorphism of U^{i-1} on its image. This shows that $c \in U^{1}=\Omega_{n}$.

Concluding, $U^{j}=g^{j-1}\left(\Omega_{n}\right), j=1, \ldots, q_{n}-2$, in particular,

$$
\Omega_{n}, g\left(\Omega_{n}\right), \cdots, g^{q_{n}-3}\left(\Omega_{n}\right) \subset U_{n-1}
$$

and $g^{q_{n}-2}: \Omega_{n} \rightarrow g^{q_{n}-2}\left(\Omega_{n}\right)$ is a homeomorphism, that is, (2.4) holds. It implies the rest.
(D). Given a compact set $Y \subset J(f)$ denote by $(\tilde{Y})_{f}$ (or simply \tilde{Y}, if the map is fixed) the set of arguments of the external rays which have their limit sets contained in Y. It follows from (C) that $\tilde{K}_{c}=\bigcap_{n=1}^{\infty}\left\{\left[t_{n}, t_{n}^{\prime}\right] \cup\left[\tilde{t}_{n}^{\prime}, \tilde{t}_{n}\right]\right\}$, i.e., it is either a single-point set or a two-point set.

Since \tilde{K}_{c} contains at most two angles, K_{c} contains at most two different accessible points. More generally, given $x \in J_{\infty}^{\prime}$ let

$$
s_{n, j_{n}(x)}=\left[t_{n, j_{n}(x)}, t_{n, j_{n}(x)}^{\prime}\right] \cup\left[\tilde{t}_{n, j_{n}(x)}^{\prime}, \tilde{t}_{n, j_{n}(x)}\right] .
$$

Then $s_{n+1, j_{n+1}(x)} \subset s_{n, j_{n}(x)}$ so that

$$
s_{\infty, x}:=\cap_{n>0} s_{n, j_{n}(x)}
$$

is not empty and consists of either one or two components. Since $p_{n}-j_{n}(x) \rightarrow \infty$ for $x \in J_{\infty}^{\prime}$ we conclude using (2.1):
$s_{\infty, x}$ consists of either a single point or two different points. In particular, for any component K of J_{∞} which is not one of $f^{-j}\left(K_{0}\right)$, $j \geq 0$, there is either one or two rays tending to K.

From now on, μ is an f-invariant probability ergodic measures supported in J_{∞} : supp $\mu \subset J_{\infty}$, and having a positive Lyapunov exponent

$$
\chi(\mu):=\int \log \left|f^{\prime}\right| d \mu>0 .
$$

(E). We start with the following basic statement. Parts (i)-(ii) are easy consequences of the invariance of μ and (B) while (iii) is a part of Pesin's theory as in 24 coupled with the structure of $f: J_{\infty} \rightarrow J_{\infty}$, see (B). Recall that $J_{\infty}^{\prime}=J_{\infty} \backslash \cup_{j=-\infty}^{\infty} f^{j}\left(K_{0}\right)$.

Proposition 2.3. (i) For every n and $0 \leq j<p_{n}, \mu\left(f^{j}\left(J_{n}\right)\right)=$ $1 / p_{n}$.
(ii) μ has no atoms and $\mu(K)=0$ for every component K of J_{∞}.
(iii) $\mu\left(J_{\infty}^{\prime}\right)=1$ and $f: J_{\infty}^{\prime} \rightarrow J_{\infty}^{\prime}$ is a μ-measure preserving homeomorphism. There exists a measurable positive function $\tilde{r}(x)>0$ on J_{∞}^{\prime} such that for μ-almost every $x \in J_{\infty}^{\prime}$, and all $n \in \mathbf{N}$, if x_{-n} is the unique point of J_{∞}^{\prime} with $f^{n}\left(x_{-n}\right)=x$, then a (univalent) branch $g_{n}: B(x, \tilde{r}(x)) \rightarrow \mathbf{C}$ of f^{-n} is well-defined such that $g_{n}(x)=x_{-n}$,

Remark 2.4. The branch g_{n} of f^{-n} depends on n and x_{-n} but it should be clear from the context which points x and x_{-n} are meant.

Using the Birkhoff Ergodic Theorem and Egorov's theorem, Proposition 2.3 implies immediately (e1)-(e3) of the next corollary. The proof of (e4)-(e5) is given right after it.

Corollary 2.5. For every $\epsilon>0$, there exists a closed set $E_{\epsilon / 2}^{\prime} \subset J_{\infty}^{\prime}$ and constants $\rho=\rho(\epsilon)>0, \kappa=\kappa(\epsilon) \in(0,1)$ such that:
(e_{1}) $\mu\left(E_{\epsilon / 2}^{\prime}\right)>1-\frac{\epsilon}{2}$,
$\left(e_{2}\right)$ there exists another closed set $\hat{E}_{\epsilon / 2}$ such that $E_{\epsilon / 2}^{\prime} \subset \hat{E}_{\epsilon / 2} \subset$ J_{∞}^{\prime} as follows. For every $x \in \hat{E}_{\epsilon / 2}$ and every $m>0$ there exists a (univalent) branch $g_{m}: B(x, 3 \rho) \rightarrow \mathbf{C}$ of f^{-m} such that $g_{m}(x)=x_{-m}$ and $\left|g_{m}^{\prime}\left(x_{1}\right) / g_{m}^{\prime}\left(x_{2}\right)\right|<2$, for every $x_{1}, x_{2} \in B(x, 2 \rho)$. Moreover, $m^{-1} \ln \left|D g_{m}(x)\right| \rightarrow-\chi(\mu)$ as $m \rightarrow \infty$ uniformly in $x \in E_{\epsilon / 2}^{\prime}$,
(e_{3}) for every $x \in E_{\epsilon / 2}^{\prime}$ there exists a sequence of positive integers $n_{j}=n_{j}(x), j=1,2, \ldots$, such that $j / n_{j} \geq \kappa$ and $f^{n_{j}}(x) \in \hat{E}_{\epsilon / 2}$ for all j (in fact, $\left\{n_{j}\right\}_{j=1}^{\infty}=\left\{n \in \mathbb{N}: f^{n}(x) \in \tilde{E}_{\epsilon / 2}\right\}$),
$\left(e_{4}\right)$ given $x \in J_{\infty}$ and $n \geq 0$, let $j_{n}(x)$ be the unique $1 \leq j<p_{n}$ such that $x \in f^{j}\left(J_{n}\right)$. Then $p_{n}-j_{n}(x) \rightarrow \infty$ as $n \rightarrow \infty$ uniformly in $x \in E_{\epsilon / 2}^{\prime}$,
(e_{5}) for $s_{n, j_{n}(x)}=\left[t_{n, j_{n}(x)}, t_{n, j_{n}(x)}^{\prime}\right] \cup\left[\tilde{t}_{n, j_{n}(x)}^{\prime}, \tilde{t}_{n, j_{n}(x)}\right]$, we have: $s_{n+1, j_{n+1}(x)} \subset s_{n, j_{n}(x)}$ and

$$
\left|t_{n, j_{n}(x)}-t_{n, j_{n}(x)}^{\prime}\right|=\left|\tilde{t}_{n, j_{n}(x)}^{\prime}-\tilde{t}_{n, j_{n}(x)}\right| \rightarrow 0
$$

as $n \rightarrow \infty$ uniformly in $x \in E_{\epsilon / 2}^{\prime}$.

Proof of $\left(e_{4}\right)-\left(e_{5}\right)$: assuming the contrary in $\left(e_{4}\right)$, we find some N and sequences $\left(n_{k}\right) \subset \mathbb{N}$ and $\left(x_{k}\right), x_{k} \in E_{\epsilon / 2}^{\prime}$, such that $p_{n_{k}}-$ $j_{n_{k}}\left(x_{k}\right)=N$, hence, $x_{k} \in f^{-N}\left(J_{n_{k}}\right)$, for all k. Since $E_{\epsilon / 2}$ is closed, one can assume $x_{k} \rightarrow x \in E_{\epsilon / 2}^{\prime} \subset J_{\infty}^{\prime}$. Hence, $x \in f^{-N}\left(K_{0}\right)$, a contradiction. Now, for $\left(e_{5}\right)$ using $\left(e_{4}\right), t_{n, j_{n}(x)}^{\prime}-t_{n, j_{n}(x)}=\tilde{t}_{n, j_{n}(x)}-$ $\tilde{t}_{n, j_{n}(x)}^{\prime}<\frac{1}{2^{p_{n}-j_{n}(x)}} \rightarrow 0$ uniformly in x.

3. External rays to typical points

We define a telescope following essentially [23]. Given $x \in J(f)$, $r>0, \delta>0, k \in \mathbf{N}$ and $\kappa \in(0,1)$, an (r, κ, δ, k)-telescope at $x \in J$ is collections of times $0=n_{0}<n_{1}<\ldots<n_{k}=n$ and disks $B_{l}=$ $B\left(f^{n_{l}}(x), r\right), l=0,1, \ldots, k$ such that, for every $l>0$: (i) $l / n_{l}>\kappa$, (ii) there is a univalent branch $g_{n_{l}}: B\left(f^{n_{l}}(x), 2 r\right) \rightarrow \mathbf{C}$ of $f^{-n_{l}}$ so that $g_{n_{l}}\left(f^{n_{l}}(x)\right)=x$ and, for $l=1, \ldots, k, d\left(f^{n_{l-1}} \circ g_{n_{l}}\left(B_{l}\right), \partial B_{l-1}\right)>$ δ (clearly, here $f^{n_{l-1}} \circ g_{n_{l}}$ is a branch of $f^{-\left(n_{l}-n_{l-1}\right)}$ that maps $f^{n_{l}}(x)$ to $\left.f^{n_{l-1}}(x)\right)$. The trace of the telescope is a collection of sets $B_{l, 0}=$ $g_{n_{l}}\left(B_{l}\right), l=0,1, \ldots, k$. We have: $B_{k, 0} \subset B_{k-1,0} \subset \ldots \subset B_{1,0} \subset$ $B_{0,0}=B_{0}=B(x, r)$.

By the first point of intersection of a ray R_{t}, or an arc of R_{t}, with a set E we mean a point of $R_{t} \cap E$ with the minimal level (if it exists).
Theorem 3.1. [23] Given $r>0, \kappa \in(0,1), \delta>0$ and $C>0$ there exist $M>0, \tilde{l}, \tilde{k} \in \mathbb{N}$ and $K>1$ such that for every (r, κ, δ, k) telescope the following hold. Let $k>\tilde{k}$. Let $u_{0}=u$ be any point at the boundary of B_{k} such that $G(u) \geq C$. Then there are indexes $1 \leq l_{1}<l_{2}<\ldots<l_{j}=k$ such that $l_{1}<\tilde{l}, l_{i+1}<K l_{i}, i=1, \ldots, j-1$ as follows. Let $u_{k}=g_{n_{k}}(u) \in \partial B_{k, 0}$ and let γ_{k} be an infinite arc of an external ray through u_{k} between the pint u_{k} and ∞. Let $u_{k, k}=u_{k}$ and, for $l=1, \ldots, k-1$, let $u_{k, l}$ be the first point of intersection of γ_{k} with $\partial B_{l, 0}$. Then, for $i=1, \ldots, j$,

$$
G\left(u_{k, l_{i}}\right)>M 2^{-n_{l_{i}}} .
$$

Next corollary of Theorem 3.1 is a key one.
Proposition 3.1. Given $\epsilon>0$ there exists a closed set E_{ϵ} as follows. First, $\mu\left(E_{\epsilon}\right)>1-\epsilon$ and $E_{\epsilon} \subset E_{\epsilon / 2}^{\prime}$ where $E_{\epsilon / 2}^{\prime}$ is the set defined in (E) and satisfies $\left(e_{1}\right)-\left(e_{5}\right)$. There exists $r=r(\epsilon)>0$ and, for each $\nu>0$ there is $C(\nu)>0$ as follows.
(1) Let $x \in E_{\epsilon}$. Then x is the landing point of an external ray $R_{t(x)}$ of argument $t(x)$. Moreover, the first intersection of $R_{t(x)}$ with $\partial B(x, \nu)$ has the level at least $C(\nu)$.
(2) for each n a branch $g_{n}: B(x, 2 r) \rightarrow \mathbf{C}$ of f^{-n} is well-defined such that $g_{n}(x)=x_{-n},\left|g_{n}\left(x_{1}\right) / g_{n}\left(x_{2}\right)\right|<2$, for every $x_{1}, x_{2} \in$ $B(x, r)$ and $n^{-1} \ln \left|D g_{n}(x)\right| \rightarrow-\chi(\mu)$ as $m \rightarrow \infty$ uniformly in $x \in E_{\epsilon}$,
(3) if $x^{\prime}=g_{n}(x) \in E_{\epsilon}$, then $f^{n}\left(R_{t\left(x^{\prime}\right)}\right)=R_{t(x)}$.

Proof. (1)-(2) will hold already for the set $E_{\epsilon / 2}^{\prime}$ which follows from Theorem 3.1 as in 23 and uses only that μ has a positive exponent; (3) will follow in our case as we shrink a bit the set $E_{\epsilon / 2}^{\prime}$ since each point $x \in J_{\infty}^{\prime}$ admits at most two external arguments. Here are details. Let $r=\rho(\epsilon)$ and $\kappa=\kappa(\epsilon)$ as in the properties $\left(e_{2}\right)-\left(e_{3}\right)$ of the set $E_{\epsilon / 2}^{\prime}$. Then, by $\left(e_{2}\right)-\left(e_{3}\right)$, there is $\delta>0$ such that, for each k, every $x \in E_{\epsilon / 2}^{\prime}$ admits (r, κ, δ, k)-telescope with the times $0=n_{0}<n_{1}<n_{2}<\ldots<n_{k}$ that appear in the property $\left(e_{3}\right)$ of $E_{\epsilon / 2}^{\prime}$. On the other hand, there exists $L_{r}>0$ such that for every $z \in J(f)$ there is a point $u(z) \in \partial B(z, r)$ with the level $G(u(z))>L_{r}$. Given this $C=L_{r}$, let M, \tilde{l} and \tilde{k} be as in Theorem 3.1.

Let $x \in E_{\epsilon / 2}^{\prime}$ and $n_{1}<n_{2}<\ldots<n_{k}<\ldots$ as in $\left(e_{3}\right)$. Fix $k>\tilde{k}$. Let $B_{k, 0}(x) \subset B_{k-1,0}(x) \subset \cdots \subset B_{1,0}(x) \subset B_{0,0}(x)$ be the corresponding trace. By Theorem 3.1, there are $1 \leq l_{1, k}(x)<l_{2, k}(x)<$ $\cdots<l_{j_{k}^{x}, k}(x)=k$ such that $l_{1, k}(x)<\tilde{l}, l_{i+1, k}(x)<K l_{i, k}(x)$, $i=1, \cdots, j_{k}^{x}-1$. Let $\gamma_{k}(x)$ be an arc of an external ray between the point $u_{k}(x):=g_{n_{k}}\left(u\left(f^{n_{k}}(x)\right)\right.$ and ∞. Let $u_{k, l}(x)$ be the first intersection of $\gamma_{k}(x)$ with $\partial B_{l, 0}(x)$. Then, for $i=1, \cdots, j_{k}^{x}-1$,

$$
\begin{equation*}
G\left(u_{k, l_{i, k}}(x)\right)>M 2^{-n_{l_{i, k}(x)}}>M 2^{-l_{i, k}(x) / \kappa} . \tag{3.1}
\end{equation*}
$$

For all $i=1, \cdots, j_{k}^{x}-1$,

$$
\begin{equation*}
i \leq l_{i, k}(x)<K^{i} \tilde{l} \tag{3.2}
\end{equation*}
$$

Denote by $t_{k}(x)$ the argument of an external ray that contains the $\operatorname{arc} \gamma_{k}(x)$.

Now, given a sequence

$$
\begin{equation*}
k_{1}<k_{2}<\ldots<k_{m}<\ldots \tag{3.3}
\end{equation*}
$$

such that $k_{1}>\tilde{k}$, we get a sequence of arguments $t_{k_{m}}(x)$ and a sequence of arcs $\gamma_{k_{m}}(x)$ of external rays of the corresponding arguments $t_{k_{m}}(x)$. Passing to a subsequence in the sequence $\left(k_{m}\right)$, if necessary, one can assume that $t_{k_{m}}(x) \rightarrow \tilde{t}(x)$, for some argument $\tilde{t}(x)$.

Fix any $\nu \in(0, r)$ and choose $\tilde{k}_{0}>\tilde{k}$ such that,

$$
2 \exp \left(-K^{\tilde{k}_{0}-2} \tilde{l} \chi(\mu)\right)<\nu \text { and let } C(\nu)=M\left(2^{-1 / \kappa}\right)^{\tilde{I} K^{\tilde{k}_{0}}} .
$$

Then, by Theorem 3.1, for each $k_{m}>k_{0}$, the first intersection of the ray $R_{t_{k_{m}}}(x)$ with the boundary of $B(x, \nu)$ has the level at least $C(\nu)$. It follows, for any $0<C<C(\nu)$, the sequence of arcs of the rays $R_{t_{k_{m}}(x)}$ between the levels C and $C(\nu)$ do not exit $B(x, \nu)$ for all $k_{m}>k_{0}$. As $t_{k_{m}}(x) \rightarrow \tilde{t}(x)$, it follows that the arc of the ray $R_{\tilde{t}(x)}$ between levels C and $C(\nu)$ stays in $B(x, \nu)$ too. As $\nu>0$ and $C \in(0, C(\nu))$ can be chosen arbitrary small, $R_{\tilde{t}(x)}$ must land at x and satisfy (1) with $t(x)$ replaced by $\tilde{t}(x)$.

Let us call the above procedure of getting $\tilde{t}(x)$ from the constants r, L_{r}, the point $x \in E_{\epsilon / 2}^{\prime}$ and the sequence (3.3) the $\left(r, L_{r}, x,\left(k_{m}\right)\right)$ procedure.

Note that (2) is property $\left(e_{2}\right)$ of the set $E_{\epsilon / 2}^{\prime}$.
In order to satisfy property (3), we shrink the set $E_{\epsilon / 2}^{\prime}$ and correct $\tilde{t}(x)$ changing it to some $t(x)$ (if necessary) as follows. Using the Birkhoff Ergodic Theorem and Egorov's theorem, choose a closed subset E_{ϵ} of $E_{\epsilon / 2}^{\prime}$ such that $\mu\left(E_{\epsilon}\right)>1-\epsilon$ and, for each $x \in E_{\epsilon}$, the set $\mathcal{N}(x):=\left\{N \in \mathbb{N}: f^{N}(x) \in E_{\epsilon / 2}^{\prime}\right\}$ is infinite. Note that $\mathcal{N}(x) \subset$ $\left\{n_{k}\right\}_{k=1}^{\infty}$. We have proved that, for each $N \in \mathcal{N}(x),(1)$ holds for the point $f^{N}(x)$ instead of x, in particular, $\tilde{t}\left(f^{N}(x)\right)$ is an argument of $f^{N}(x)$. On the other hand, by (D1), each $y \in E_{\epsilon}$ admits at most two external arguments, hence, all possible external arguments of the forward orbit $f^{n}(x), n \geq 0$, belong to at most two different orbits of $\sigma: S^{1} \rightarrow S^{1}$. Hence, there is one of those orbits, $O=\left\{\sigma^{n}(t(x))\right\}_{n \geq 0}$ for some $t(x)$, such that the intersection $O \cap\left\{\tilde{t}\left(f^{N}(x)\right): N \in \mathcal{N}(x)\right\}$ is an infinite set, so that $\tilde{t}\left(f^{n_{k_{m}(x)}}(x)\right)=\sigma^{n_{k_{m}(x)}}(t(x))$ for an infinite sequence $\left(k_{m}(x)\right)_{m \geq 1}$.

Let's start over with the $\left(r / 2, C(r / 2), x,\left(k_{m}(x)\right)\right)$-procedure for the point x and the sequence $\left\{k_{j}(x)\right\}$. Then, by the construction, $t_{k_{m}(x)}=t(x)$ for all m, hence, (1) holds with $t(x)$ instead of the previous $\tilde{t}(x)$. If $y \in E_{\epsilon}$ is any other point of the grand orbit $\left\{f^{n}(x): n \in \mathbb{Z}\right\}$ (remember that $f: J_{\infty}^{\prime} \rightarrow J_{\infty}^{\prime}$ is invertible), the $\left(r / 2, C(r / 2), y,\left(k_{m}\right)\right)$-procedure works for y with the same (perhaps, truncated) sequence $k_{1}(x)<k_{2}(x)<\ldots$, which ensures that (3) holds (for the corrected arguments) too.

Remark 3.2. Given $t(x)$, we cannot just set $t\left(f^{n}(x)\right)=\sigma^{n}(t(x))$ to satisfy property (3) because this would change κ in the definition of telescope, so we might loose property (1). Notice that
correcting (flipping) $\tilde{t}(x)$ to $t(x)$ does not change $C(\nu)$ The same for flipping any $t(y)$ in the grand orbit of x. But the flipping can make $f^{\ell}\left(R_{t(y)}\right)=R_{t\left(f^{N}(x)\right.}$ for $f^{\ell}(y)=f^{N}(x)$ where $N=n_{k_{m}}$ with $G\left(R_{t\left(f^{\ell}(y)\right)} \cap \partial B\left(f^{\ell}(y), r / 2\right)>L_{r / 2}\right.$, thus yielding (3).

4. LEMMAS

Lemma 4.1. Let $z_{k} \in \cup_{j=0}^{p_{n_{k}}-1} f^{j}\left(J_{n_{k}}\right)$ where $n_{k} \nearrow \infty$.
(a) If $z_{k} \rightarrow z$ then $z \in J_{\infty}$.
(b) $z \in J_{n, z} \cap J_{\infty}^{\prime}$ yields $z_{ \pm p_{n}} \in J_{n, x}$. If, additionally to (a), $z_{k} \in J_{\infty}^{\prime}$ for all k and $w_{k} \rightarrow w$ where $w_{k}=\left(z_{k}\right)_{e p_{n_{k}}}$, where e is always either 1 or -1 then z and w are in the same component of J_{∞}.
(c) If $z_{k} \in E_{\epsilon}$ for all k and $t\left(z_{k}\right) \rightarrow t$ (where $E_{\epsilon}, t\left(z_{k}\right)$ are defined in Proposition 3.1), then the ray R_{t} lands at the limit point z. In particular, given $\sigma>0$ there is $\Delta(\sigma)>0$ such that $\left|x_{1}-x_{2}\right|<\sigma$ for some $x_{1}, x_{2} \in E_{\epsilon}$ whenever $\left|t\left(x_{1}\right)-t\left(x_{2}\right)\right|<\Delta(\sigma)$.

Proof. (a) Assume the contrary. Then there is n such that $d:=$ $d\left(z, \cup_{j=0}^{p_{n}-1} J_{n}\right)>0$. As, for any $n_{k} \geq n, z_{k} \in \cup_{j=0}^{p_{n}-1} J_{n_{n}}$ where the latter union is a subset of $\cup_{j=0}^{p_{n}-1} J_{n}$), the distance between z and z_{k} is at least d, a contradiction.
(b) $z_{ \pm p_{n}} \in J_{n, x}$ by combinatorics and definitions of points z_{m}. In particular, for every k, z_{k} and w_{k} are in the same component $f^{j_{k}}\left(J_{n_{k}}\right)$ of $\cup_{j=0}^{p_{n_{k}}-1} f^{j}\left(J_{n_{k}}\right)$. By (a), any limit set A of the sequence of compacts $\left(f^{j_{k}}\left(J_{n_{k}}\right)\right)$ in the Hausdorff metric is a subset of J_{∞}. On the other hand, A is connected as each set $f^{j_{k}}\left(J_{n_{k}}\right)$ is connected. This proves (b).
(c) We prove only the first claim as the second one directly follows from it. Fix any $\nu \in(0, r)$ and choose k_{0} such that for any $k>$ $k_{0}, B\left(z_{k}, \nu\right) \subset B(z, 11 / 10 \nu)$. Then, by Proposition 3.1, part (1), for each $k>k_{0}$, the first intersection of the ray $R_{t\left(z_{k}\right)}$ with the boundary of $B(z, \nu)$ has the level at least $\tilde{C}(\nu):=C(11 / 10 \nu)$. It follows, for any $0<C<\tilde{C}(\nu)$, the sequence of arcs of the rays $R_{t_{z_{k}}}$ between the levels C and $\tilde{C}(\nu)$ do not exit $B(z, \nu)$ for all $k>k_{0}$. As $\nu>0$ and $C \in(0, \tilde{C}(\nu))$ can be chosen arbitrary small, R_{t} must land at z.

By lemma 4.1(c), if arguments $t(x), t\left(x^{\prime}\right)$ of $x, x^{\prime} \in E_{\epsilon}$ are close then x, x^{\prime} are close as well.

Definition 4.2. Given ϵ and ρ we define δ as follows. First, for $\hat{r} \in(0,1)$ and $\hat{C}>0$, we define $\hat{\delta}=\hat{\delta}(r, \hat{C})>0$. Namely, let $C_{0}>0$
be so that the distance between the equipotential of level C_{0} and $J(f)$ is bigger than 1 . Then $\hat{\delta}=\hat{\delta}(\hat{r} / 2, \hat{C})>0$ is such that for any $C \in\left[\tilde{C}, C_{0}\right]$, if w_{1}, w_{2} lie on the same equipotential Γ of level C and the difference between external arguments of w_{1}, w_{2} is less than $\hat{\delta}$ then the length of the shortest arc of the equipotential Γ between w_{1} and w_{2} is less than $\hat{r} / 2$. Apply Lemma 4.1 (c) with $\sigma=\rho / 4$ and find the corresponding $\Delta(\rho / 4)$. Let

$$
\delta=\delta(\epsilon, \rho):=\min \left\{\hat{\delta}(\rho, C(\rho / 2)), \Delta\left(\frac{\rho}{4}\right)\right\}
$$

where $C(\nu)$ is defined in Proposition 3.1.
In the next two lemmas we construct curves with special properties. The idea is as follows. Let $x \in E_{\epsilon} \cap J_{n, x}$. Then $x_{-p_{n}} \in J_{n, x}$. It is easy to get in curve γ in $A(\infty)$ starting with an arc from a point $b \in R_{t(x)}$ to $g_{p_{n}}(b)$ and then iterating this arc by $g_{p_{n}}$ so that $g^{p_{n}}(\gamma) \subset \gamma$ so that γ tends to a fixed point a of $f^{p_{n}}$. We show in the next lemma (in a more general setting) that if both points $x, x_{-p_{n}}$ are either in the range of the covering (2.2) (condition (I)) or in the range of the covering (2.3) (condition (II)) then $a \in J_{n, x}$. This implies that a has to be the β-fixed point of $f^{p_{n}}: J_{n, x} \rightarrow J_{n, x}$. In Lemma 4.5 assuming additionally that $f^{p_{n}}$ is satellite, we 'rotate' the curve γ by $g_{p_{n-1}}$ to put $J_{n, x}$ in a 'sector' bounded by γ and of of its 'rotations'. In Lemma 4.7.4.8 we consider the case of doubling for which the condition (II) usually does not hold.

In what follows, we use the following notation: given $p, q \in \mathbb{N}$, let

$$
E_{\epsilon, p, q}=\cap_{j=0}^{q-1} f^{j p}\left(E_{\epsilon}\right) .
$$

It is a closed subset of E_{ϵ} of points x such that $x_{-j p} \in E_{\epsilon}$ for $j=$ $0,1, \cdots, q-1$. As $f: J_{\infty}^{\prime} \rightarrow J_{\infty}^{\prime}$ is a μ-automorphism, $\mu\left(E_{\epsilon, p, q}\right)>$ $1-q \epsilon$. Notice that this bound is independent of p.

Lemma 4.3. Fix $\epsilon>0$ and consider the set E_{ϵ} with the corresponding constant $r(\epsilon)>0$. Fix $\rho \in(0, r(\epsilon) / 3)$. let $\delta=\delta(\epsilon, \rho)$ from Definition 4.2. For every $q \geq 2$ there exist \tilde{n}, \tilde{C} as follows. For every $n>\tilde{n}$ consider the closed set $E_{\epsilon, p_{n}, q}$. Let $x \in E_{\epsilon, p_{n}, q}$. Denote for brevity

$$
x^{k}:=x_{-k p_{n}} \text { and } R^{k}:=R_{t\left(x^{k}\right)}, \quad k=0,1, \ldots, q-1 .
$$

By Lemma 4.1(b), $x^{k} \in J_{n, x}$. Hence, $t\left(x^{k}\right) \in s_{n, j_{n}(x)} \subset S_{n, j_{n}(x)}$, $0 \leq k \leq q-1$. Fix $0 \leq i<j \leq q-1$.

Assume that either (I) $t\left(x^{j}\right)$ and $t\left(x^{i}\right)$ belong to a single component of $s_{n, j_{n}(x)}$, or (II) the map $\sigma^{j_{n}(x)-1}: S_{n, 1} \rightarrow S_{n, j_{n}(x)}$ is a homeomorphism and the length of the arc $S_{n, j_{n}(x)}$ is less than δ.

Then:
(a) the map $f^{(j-i) p_{n}}: g_{(j-i) p_{n}}\left(B\left(x^{i}, \rho\right)\right) \rightarrow\left(B\left(x^{i}, \rho\right)\right)$ has a unique fixed point $a=a_{n}$ and $a \in J_{n, x}$,
(b) there is a semi-open simple curve

$$
\gamma_{p_{n}, q, i, j}(x) \subset B\left(x^{i}, \rho\right) \cap A(\infty)
$$

such that:
(1) it lands at a and $g_{(j-i) p_{n}}\left(\gamma_{p_{n}, q, i, j}(x)\right) \subset \gamma_{p_{n}, q, i, j}(x)$. Another end point b of $\gamma_{p_{n}, q, i, j}(x)$ lies in R^{i} and $G(b)>\tilde{C} / 2$,
(2) $\gamma_{p_{n}, q, i, j}(x)=\cup_{l \geq 0} g_{(j-i) p_{n}}^{l}\left(L_{0} \cup L_{1}\right)$ where the 'fundamental arc' $L_{0} \cup L_{1}$ consists of an arc L_{0} of an equipotential of the level at least $\tilde{C} / 2$ that joins a point $b \in R^{i}$ with a point $b_{1} \in$ R^{j}, being extended by an arc L_{1} of the ray R^{j} between points b_{1} and $g_{(j-i) p_{n}}(b) \in R^{j}$; in particular, the Green function is not increasing along $\gamma_{p_{n}, q, i, j}(x)$,
(3) the point a is the landing point of a ray $R(a)$ which is fixed by $f^{(j-i) p_{n}}$ and which is homotopic to $\gamma_{p_{n}, q, i, j}(x)$ through a family of curves in $A(\infty)$ with the fixed end point a.
(4) arguments of all points of the curve $g_{(j-i) p_{n}}\left(\gamma_{p_{n}, q, i, j}(x)\right)$ lie in a single component of $s_{n, j_{n}(x)}^{1}$ in the case (I) and in a single component of $s_{n, j_{n}(x)}$ in the case (II) (recall that $s_{n, j_{n}(x)}^{1}$ has 4 components and $s_{n, j_{n}(x)}$ has 2 components, see Sect 2, (C)).
Besides,

$$
\begin{equation*}
\left|a-x^{j}\right| \rightarrow 0 \text { and } \log \frac{\left|\left(g_{(j-i) p_{n}}\right)^{\prime}\left(x^{j}\right)\right|}{\left|\left(g_{(j-i) p_{n}}\right)^{\prime}(a)\right|} \rightarrow 0 \tag{4.1}
\end{equation*}
$$

as $n \rightarrow \infty$, uniformly in x^{j} and q.
(c) if $j-i=1$ then $a=\beta_{n, j_{n}(x)}$ where $\beta_{n, j_{n}(x)}=f^{j_{n}(x)-1}\left(\beta_{n}\right)$, the non-separating fixed point of $f^{p_{n}}: J_{x, n} \rightarrow J_{x, n}$. Moreover,

$$
\chi\left(\beta_{n, j_{n}(x)}\right): \left.=\frac{1}{p_{n}} \log \left|\left(f^{p_{n}}\right)^{\prime}\left(\beta_{n, j_{n}(x)}\right)=\frac{1}{p_{n}} \log \right|\left(f^{p_{n}}\right)^{\prime}\left(\beta_{n}\right) \right\rvert\, \rightarrow \chi(\mu)
$$

as $n \rightarrow \infty$.
Remark 4.4. Note that $a \notin J_{\infty}$ while $x, x^{1}, \ldots, x^{q-1} \in J_{\infty}$.
Proof. Denote $G_{n}:=g_{(j-i) p_{n}}$ which is a holomorphic univalent function in $B\left(x^{i}, \rho\right)$. Since g_{m} are uniform contractions, there is n_{1} such that $G_{n}\left(\overline{B\left(x^{i}, \rho\right)}\right) \subset B\left(x^{i}, \rho / 2\right)$ whenever $n>n_{1}$. Let $\tilde{n}=\max \left\{n_{0}, n_{1}\right\}$.

Let $a=a_{n}$ be the unique fixed point of the latter map G_{n}. We construct the curve $\gamma_{p_{n}, q, i, j}(x)$ to the point a as follows. First, joint a point $b \in R^{i}, G(b)=(3 / 4) \tilde{C}$, to a point $b_{1} \in R^{j}$ by an $\operatorname{arc} L_{0}$ of the equipotential $\{G(z)=(3 / 4) \tilde{C}\}$. By the choice of $\delta>0, L_{0} \subset$ $B\left(x^{i}, \rho\right)$. Secondly, connect b_{1} to the point $g_{(j-i) p_{n}}(b) \in R^{j}$ by an arc $L_{1} \subset R^{j}$. Let now $\gamma_{p_{n}, q, i, j}(x)=\cup_{l \geq 0} g_{(j-i) p_{n}}^{l}\left(L_{0} \cup L_{1}\right)$. Then properties (1), (2) in (b) are immediate and (3) follows from general properties of conformal maps. Now, by Proposition 3.1(2) and (??), for all n big enough, $x^{j}=g_{(j-i) p_{n}}\left(x^{i}\right) \in g_{(j-i) p_{n}}\left(B\left(x^{i}, \rho\right)\right) \subset B\left(x^{i}, \rho\right)$, moreover, the modulus of the annulus $B\left(x^{i}, \rho\right) \backslash g_{(j-i) p_{n}}\left(B\left(x^{i}, \rho\right)\right)$ tends to ∞ as $n \rightarrow \infty$. Therefore, (4.1) follows from Koebe and Proposition 3.1(2).

It remains to show the property (3) and that $a \in J_{n, x}$. Consider the case (II), which is equivalent to say that the map $\sigma^{p_{n}}$: $s \rightarrow S_{n, j_{n}(x)}$ is a homeomorphism on each of two components s of $s_{n, j_{n}(x)}$. Let Λ be the set of arguments of points of the curve $\Gamma:=g_{(j-i) p_{n}}\left(\gamma_{p_{n}, q, i, j}(x)\right)$. Let s be a component that contains $t\left(x^{j}\right)$. Assume, by a contradiction, that Λ contains t which is in the boundary of s. Then t is the argument of a point of $G_{n}^{l}\left(L_{0}\right)$, for some $l \geq 1$, hence, $\sigma^{l(j-i) p_{n}}(t)$ is simultaneously the argument of a point of L_{0} and in the boundary of $S_{n, j_{n}(x)}$, a contradiction. The case (I) is similar. Property (3) is verified. In fact, we proved more: for $k=0,1, \cdots, j-i-1$, the set $\sigma^{k p_{n}}(\Lambda)$ is a subset of a single (depending on k) component of $s_{n, j_{n}(x)}$ in the case (II) and a single component of $s_{n, j_{n}(x)}^{1}$ in the case (I). This implies that all point $f^{k p_{n}}(a), 0 \leq k \leq j-i-1$, of the cycle of $f^{p_{n}}$ containing a belong to the closure of $U_{n, j_{n}(x)}$ in the case (II) and to the closure of $U_{n, j_{n}(x)-p_{n}}$ in the case (I). Therefore, this cycle lies in $J_{n, x}$, in particular, $a \in J_{n, x}$.

Proof of (c): if $j-i=1$ then a is a fixed point of $f^{p_{n}}: J_{x, n} \rightarrow J_{x, n}$ and, moreover, the ray $R(a)$ lands at a and is fixed by $f^{p_{n}}$. Hence, the rotation number of a w.r.t. the map $f^{p_{n}}: J_{x, n} \rightarrow J_{x, n}$ is zero. On the other hand, $\beta_{n, j_{n}(x)}$ is the only such a fixed point, i.e., $a=$ $\beta_{n, j_{n}(x)}$ as claimed. Then (4.1) implies that $\chi\left(\beta_{n, j_{n}(x)}\right) \rightarrow \chi(\mu)$.

For the rest of the paper, let us fix $Q, \epsilon, r, \rho, \tilde{n}, \tilde{C}$ and δ as follows:
$Q \in \mathbb{N}, Q>3$, is such that

$$
Q>4 \log 2 / \chi(\mu)
$$

This choice is motivated by the following

Fact ([21], [13], [8]): if a repelling fixed point z of f^{n} is the landing point of q rays, then $\chi(z):=(1 / n) \log \left|D f^{n}(z)\right| \leq(2 / q) \log 2$. Hence, if $\chi(z)>\chi(\mu) / 2$, then $q<Q$.

Furthermore, fix $\epsilon>0$ such that $2^{100} Q \epsilon<1$, apply Proposition 3.1 and Lemma 4.3 and find, first, $r=r(\epsilon)$, then fix $\rho \in$ ($0, r / 32$) and find the corresponding \tilde{n}, \tilde{C} and δ.

Let

$$
X_{n}=E_{\epsilon, p_{n}, 4} \cap E_{\epsilon, p_{n-1}, Q}=\cap_{i=0}^{3} f^{i p_{n}}\left(E_{\epsilon}\right) \cap_{k=0}^{Q-1} f^{k p_{n-1}}\left(E_{\epsilon}\right) .
$$

Let us analyze several possibilities.
Lemma 4.5. There is $n_{*}>\tilde{n}$ as follows. Let $n>n_{*}$ and $x \in X_{n}$. Consider $J_{n, x}=f^{j_{n}(x)}\left(J_{n}\right) \subset f^{j}\left(J_{n-1}\right)$ so that $x \in J_{n, x}$.

Let $x^{0}=x$ and $x^{1}=x_{-p_{n}}$. Assume that either (I) $t\left(x^{0}\right), t\left(x^{1}\right)$ belong to a single component of $s_{n, j_{n}(x)}$, or (II) the map $\sigma^{j_{n}(x)-1}$: $S_{n, 1} \rightarrow S_{n, j_{n}(x)}$ is a homeomorphism and the length of the $\operatorname{arc} S_{n, j_{n}(x)}$ is less than δ.

Then:
(i) $\chi\left(\beta_{n, j_{n}(x)}\right)=\chi\left(\beta_{n}\right) \rightarrow \chi(\mu)$ as $n \rightarrow \infty$ and $\chi\left(\beta_{n}\right)>\chi(\mu) / 2$ for $n>n_{*}$.
(ii) assume that $f^{p_{n}}$ is satellite, i.e., (by Lemma 2.1) β_{n} has period $p_{n-1}, q_{n} \geq 2$ in the rotation number k_{n} / q_{n} of β_{n}, and $\beta_{n, j_{n}(x)}$ is the α (i.e., separating) fixed point of $f^{p_{n-1}}: J_{n-1, x} \rightarrow J_{n-1, x}$. Then $q_{n}<Q$ and
$\left|\beta_{n, j_{n}(x)}-x_{-k p_{n-1}}\right| \rightarrow 0, n \rightarrow \infty$, uniformly in $x \in X_{n}, 1 \leq k \leq q_{n}$.
There exist two simple semi-open curves $\gamma(x)$ and $\tilde{\gamma}(x)$ that satisfy the following properties:
(1) $\gamma(x)$ and $\tilde{\gamma}(x)$ tend to $\beta_{n, j_{n}(x)}$ and $\gamma(x), \tilde{\gamma}(x) \subset B\left(x^{0}, \rho\right) \cap$ $A(\infty)$,
(2) $\gamma(x), \tilde{\gamma}(x)$ consist of arcs of equipotentials and external rays; the start point $b_{1}=b_{1}(x)$ of $\gamma(x)$ lies in an arc of $R_{t\left(x^{1}\right)}$ and the start point $\tilde{b}_{1}=\tilde{b}_{1}(x)$ of $\tilde{\gamma}(x)$ lies in an arc of $R_{t(\tilde{x})}$ where $\tilde{x}=x_{-i p_{n-1}}$ for some $i=i(x) \in\left\{1, \cdots, q_{n}-1\right\}$, such that levels of b_{1} and \tilde{b}_{1} are equal and at least $\tilde{C} / 4$,
(3) one of the two curves (say, $\gamma(x)$) is homotopic, through curves in $A(\infty)$ tending to $\beta_{n, j_{n}(x)}$, to the ray $R_{t_{n, j_{n}(x)}}=$ $f^{j_{n}(x)-1}\left(R_{t_{n}}\right)$, and another one - to the ray $R_{\tilde{t}_{n, j_{n}(x)}}=f^{j_{n}(x)-1}\left(R_{\tilde{t}_{n}}\right)$;
(4) $\gamma(x), \tilde{\gamma}(x) \subset U_{n-1, j_{n-1}(x)}$,
(5) $\gamma(x) \subset U_{n, j_{n}(x)}, \tilde{\gamma}(x) \subset U_{n, j_{n}(\tilde{x})}$, in particular, $\gamma(x), \tilde{\gamma}(x)$ are disjoint; being completed by their common limit point $\beta_{n, j_{n}(x)}$ and two other arcs: an arc of the ray $R_{t\left(x^{1}\right)}$ from $b_{1} \in \gamma(x)$ to ∞ and an arc of the ray $R_{t(\tilde{x})}$ from $\tilde{b}_{1} \in \tilde{\gamma}(x)$ to ∞, they split the plane into two domains such that one of them contains $I:=J_{n, x} \backslash \beta_{n, j_{n}(x)}$ and another one contains all $q_{n}-1$ other different iterates $f^{k p_{n-1}}(I), 1 \leq k \leq q_{n}-1$. The intersection of closures of all those q_{n} sets consists of the fixed point $\beta_{n, j_{n}(x)}$ of $f^{p_{n-1}}$.

Remark 4.6. Beware that the point x that determines both curves $\gamma(x), \tilde{\gamma}(x)$ does not belong to either of these curves.

Proof. (i) follows from Lemma 4.3 where we take $i=0, j=1$. Fix $n_{*}>\tilde{n}$ such that $\chi\left(\beta_{n}\right)>\chi(\mu) / 2$ for all $n>n_{*}$.

Let us prove (ii). Here we build a "flower" of arcs at the β fixed of the satellite $f^{p_{n}}$ starting with an arc which is fixed by $f^{p_{n}}$ and then "rotate" this arc by a branch of $f^{-p_{n-1}}$ (for which the same β point is also a fixed point, see (C)). Let $\gamma^{\prime}(x):=\gamma_{p_{n}, 1,0,1}(x)$ where the latter curve is defined in Lemma 4.3. Then properties (1)-(3) of the curve $\gamma(x)$ are satisfied also for $\gamma^{\prime}(x)$. In particular, $\gamma^{\prime}(x)$ is homotopic to $R_{t_{n, j_{n}(x)}}$.

As both $\tilde{t}_{n, j_{n}(x)}, t_{n, j_{n}(x)}$ are external arguments of $\beta_{n, j_{n}(x)}$ which is a p_{n-1}-periodic point of f, there is $i \in\left\{1, \cdots, q_{n}-1\right\}$ such that $\sigma^{i p_{n-1}}\left(\tilde{t}_{n, j_{n}(x)}\right)=t_{n, j_{n}(x)}$. Now we use that $x \in E_{\epsilon, p_{n-1}, Q}$ and that $q_{n}<Q$ to prove 4.2). Indeed, for each $k=\left\{1, \cdots, q_{n}\right\}$, since $f: J_{\infty}^{\prime} \rightarrow J_{\infty}^{\prime}$ is a homeomorphism and $x_{-k p_{n-1}} \in E_{\epsilon}$, we have: $g_{p_{n}}=g_{\left(q_{n}-k\right) p_{n-1}} \circ g_{k p_{n-1}}$. Hence, if $\beta^{\prime}=g_{k p_{n-1}}\left(\beta_{n, j_{n}(x)}\right)$, then $\beta_{n, j_{n}(x)}=g_{\left(q_{n-1}-k\right) p_{n-1}}\left(\beta^{\prime}\right)$ implying that $\beta^{\prime}=f^{\left(q_{n}-k\right) p_{n-1}}\left(\beta_{n, j_{n}(x)}\right)=$ $\beta_{n, j_{n}(x)}$. Then $\beta_{n, j_{n}(x)}, x_{-k p_{n-1}} \in g_{k p_{n-1}}(B(x, \rho))$ which along with Proposition 3.1, part (2) imply (4.2).

In turn, 4.2) implies that, provided n is big, $g_{k p_{n-1}}: B(y, \rho / 2) \rightarrow$ $B(y, \rho / 2)$ uniformly in $k=0,1, \cdots, q_{n}$ where y is either $\beta_{n, j_{n}(x)}$ or $x_{-k p_{n-1}}$.

Now we consider a curve $g_{i \tilde{p}_{n}}\left(\gamma^{\prime}(x)\right)$ that starts at $x_{-i \tilde{p}_{n}}$ and tends to $\beta_{n, j_{n}(x)}$. By Proposition 3.1 coupled with (4.2), one can join $x_{-i p_{n-1}}$ by an arc of the ray $\bar{R}_{t\left(x_{-i p_{n-1}}\right)}$ inside of $B(x, \rho / 2)$ up to a point of level $\tilde{C} / 4$. This will be the required curve $\tilde{\gamma}(x)$. To get the curve $\gamma(x)$ we modify $\gamma^{\prime}(x)=\gamma_{p_{n}, 1,0,1}(x)=\cup_{l \geq 0} g_{p_{n}}^{l}\left(L_{0} \cup L_{1}\right)$ by cutting off the arc L_{0} of an equipotential: $\gamma(x)=\gamma^{\prime}(x) \backslash L_{0}$ (see Lemma 4.3 for details about L_{0}). Properties (1)-(5) follow.

Given a point $x=x^{0}$ and n such that $x \in f^{j}\left(J_{n}\right) \cap E_{\epsilon, p_{n}, 1}$, where $j=j_{n}(x)$, let $x^{1}=x_{-p_{n}}$ and $t\left(x^{0}\right), t\left(x^{1}\right)$ the arguments of x^{0}, x^{1} as in Proposition 3.1. We call $x n$-friendly if $t\left(x^{0}\right)$ and $t\left(x^{1}\right)$ lie in the same component of $s_{n, j}$ and n-unfriendly otherwise (or simply friendly and unfriendly if n is clear from the context). The name reflects the fact that for an n-friendly point x the condition (I) of Lemma 4.5 always holds for $x^{1}=x$ and $x^{2}=x_{-p_{n}}$, so Lemma 4.5 always applies.

When the rotation number of α_{n} is equal to $1 / 2$ we have:
Lemma 4.7. There is $\tilde{C}_{3}>0$ (depending only on fixed ϵ and ρ) as follows. Suppose that, for some $n>\tilde{n}$, the rotation number of the separating fixed point α_{n} is equal to $1 / 2$. Let $z=z^{0} \in$ $f^{j}\left(J_{n}\right) \cap E_{\epsilon, p_{n}, 3}$ and $z^{i}=z_{-i p_{n}}, i=1,2,3$. Assume that all three points z^{0}, z^{1}, z^{2} are n-unfriendly.

Then there exist two (semi-open) curves $\gamma_{n}^{1 / 2}(z)$ and $\tilde{\gamma}_{n}^{1 / 2}(z)$ consisting of arcs of rays and equipotentials with the following properties:
(i) $\gamma_{n}^{1 / 2}(z) \subset B(z, \rho), \tilde{\gamma}_{n}^{1 / 2}(z) \subset B\left(z^{1}, \rho\right)$, moreover, arguments of points of $\gamma_{n}^{1 / 2}(z)$ lie in one 'window' of $s_{n, j}$ while arguments of points of $\tilde{\gamma}_{n}^{1 / 2}(x)$ lie in another 'window' of $s_{n, j}$,
(ii) $\gamma_{n}^{1 / 2}(z)$ and $\tilde{\gamma}_{n}^{1 / 2}(z)$ converge to a common point $\alpha_{n, j}^{*}$ which is a fixed point of $f^{p_{n}}: f^{j}\left(J_{n}\right) \rightarrow f^{j}\left(J_{n}\right)$ (i.e., $\alpha_{n, j}^{*}$ is either the non-separating fixed point $\beta_{n, j}$ or the separating fixed point $\alpha_{n, j}$,
(iii) start points of $\gamma_{n}^{1 / 2}(z), \tilde{\gamma}_{n}^{1 / 2}(z)$ have equal Green level which is bigger than \tilde{C}_{3},
(iv) $z^{k}-\alpha_{n, j}^{*} \rightarrow 0,0 \leq k \leq 3$, as $n \rightarrow \infty$.

Proof. As $z \in E_{\epsilon}$, lengths of 'windows' of $s_{n, j_{n}(z)}$ tend uniformly to zero as $n \rightarrow \infty$. It follows from the definition of friendly-unfriendly points that $t\left(z^{0}\right), t\left(z^{2}\right)$ are in one 'window' of $s_{n, j}$ and $t\left(z^{1}\right), t\left(z^{3}\right)$ are in another 'window' of $s_{n, j}$. Therefore, condition (I) of Lemma 4.3 holds for each pair z^{0}, z^{2} and z^{1}, z^{3}. Now, apply Lemma 4.3 to $z \in E_{\epsilon, p_{n}, 3}$, first, with $i=0, j=2$, and then with $i=1, j=3$. Let $\gamma_{n}^{1 / 2}(z)=\gamma_{p_{n}, 3,0,2}(z)$ and $\tilde{\gamma}_{n}^{1 / 2}(z)=\gamma_{p_{n}, 3,1,3}(z)$. Then (i),(iii) hold. To check (ii), note that these curves converge to some points $\alpha, \tilde{\alpha} \in f^{j}\left(J_{n}\right)$ which are fixed by $f^{2 p_{n}}$ On the other hand, since the rotation number of α_{n} is $1 / 2, f^{p_{n}}: f^{j}\left(J_{n}\right) \rightarrow f^{j}\left(J_{n}\right)$ has no 2-cycle. Therefore, one must have either $\alpha=\tilde{\alpha}=\beta_{n, j}$ or $\alpha=\tilde{\alpha}=\alpha_{n, j}$, i.e., (ii) holds too. As $t\left(z^{0}\right)-t\left(z^{2}\right) \rightarrow 0$ and $t\left(z^{1}\right)-t\left(z^{3}\right) \rightarrow 0$ as $n \rightarrow \infty, z^{0}-z^{2}, z^{1}-z^{3} \rightarrow 0$, too, by Lemma 4.1. Besides, by
(4.1), $z^{2}-\alpha, z^{3}-\tilde{\alpha} \rightarrow 0$ as $n \rightarrow \infty$. As $\alpha=\tilde{\alpha}=\alpha_{n, j}^{*}$, (iv) also follows.

The following is a consequence of Lemmas 4.3 and 4.7 .
Lemma 4.8. Let $n>\tilde{n}$. Assume that $f^{p_{n}}$ is satellite and doubling, i.e., $\beta_{n}=\alpha_{n-1}$ and the rotation number of α_{n-1} is equal to $1 / 2$ (in particular, $p_{n}=2 p_{n-1}$). For some $1 \leq j \leq p_{n-1}$, denote $J:=$ $f^{j}\left(J_{n-1}\right)$. Let $J^{1}:=f^{j}\left(J_{n}\right), J^{0}:=f^{j+p_{n-1}}\left(J_{n}\right)$ be the two small Julia sets of the next level n which are contained in J (note that J^{0} contains the critical point and J^{1} contains the critical value of the map $\left.F:=f^{p_{n-1}}: J \rightarrow J\right)$. Let $x \in J^{1} \cap E_{\epsilon}$ be such that all its 5 forward iterates $x_{k p_{n-1}}=F^{k}(x) \in E_{\epsilon}, k=1,2,3,4,5$. Then there exist two simple semi-open curves $\Gamma_{n}^{1 / 2}(x), \Gamma_{n}^{1 / 2}(x)$ consisting of arcs of rays and equipotentials that satisfy essentially conclusions of the previous lemma where n is replaced by $n-1$, i.e.:
(i) $\Gamma_{n}^{1 / 2}(x), \tilde{\Gamma}_{n}^{1 / 2}(x) \subset B(x, 3 / 2 \rho)$, moreover, arguments of points of $\Gamma_{n}^{1 / 2}(x)$ lie in one 'window' of $s_{n-1, j_{n-1}(x)}$ while arguments of points of $\tilde{\Gamma}_{n}^{1 / 2}(x)$ lie in another 'window' of $s_{n-1, j_{n-1}(x)}$,
(ii) $\Gamma_{n}^{1 / 2}(x)$ and $\tilde{\Gamma}_{n}^{1 / 2}(x)$ converge to a common point $\beta_{n-1, j_{n-1}(x)}^{*}$ which is a fixed point of $f^{p_{n-1}}: f^{j}\left(J_{n-1}\right) \rightarrow f^{j}\left(J_{n-1}\right)\left(i . e ., \beta_{n-1, j_{n-1}(x)}^{*}\right.$ is either the non-separating fixed point $\beta_{n-1, j_{n-1}(x)}$ or the separating fixed point $\alpha_{n-1, j_{n-1}(x)}$,
(iii) start points of $\Gamma_{n}^{1 / 2}(x), \tilde{\Gamma}_{n}^{1 / 2}(x)$ have equal Green level which is bigger than \tilde{C}_{3},
(iv) $x_{k p_{n-1}}-\beta_{n-1, j_{n-1}(x)}^{*} \rightarrow 0,0 \leq k \leq 3$ as $n \rightarrow \infty$ uniformly in x.

Remark 4.9. Condition $F^{k}(x) \in E_{\epsilon}, 0 \leq k \leq 5$, is equivalent to the following: $x \in f^{-5 p_{n-1}}\left(E_{\epsilon, p_{n-1}, 6}\right)$.

Proof. To fix the idea let's replace $f^{p_{n-1}}: f^{j}\left(J_{n-1}\right) \rightarrow f^{j}\left(J_{n-1}\right)$, using a conjugacy with a quadratic polynomial, by a quadratic polynomial (denoted also by F) so that now $F: J \rightarrow J$ where $J=J(F)$ and F^{2} is satellite with two small Julia sets J^{0}, J^{1} that meet at the α-fixed point of F and rays of arguments $1 / 3,2 / 3$ land at α. Here $0 \in J^{0}, F(0) \in J^{1}, F: J^{1} \rightarrow J^{0}$ is a homeomorphism while $F: J^{0} \rightarrow J^{1}$ is a two-to-one map. If a ray R_{t} of F has its accumulation set in J^{1} then $t \in[1 / 3,5 / 12] \cup[7 / 12,2 / 3]$ and if R_{t} accumulates in J^{0} then $t \in[1 / 6,1 / 3] \cup[2 / 3,5 / 6]$. This implies that if R_{t} lands at $x \in J^{1}$ and t lies in one of the two 'windows' $[0,1 / 2)$, $(1 / 2,1]$ then $R_{\sigma(t)}$ lands at J^{0} where $\sigma(t)$ must be in a different
'window' (in other words, points of J^{0} are 'unfriendly'). Coming back to $f^{p_{n-1}}$ this means that, for $x \in J^{1}, t(x), t(F(x))$ are always in different components (where by 'component' we mean a component of $\left.s_{n-1, j}\right)$. Besides, for $y \in J_{\infty} \cap J, y$ and $F(y)$ are always in different $J^{i}, i=0,1$. This leaves us with the only possibilities:
(i) $t(F(x)), t\left(F^{2}(x)\right)$ are in different components; this implies that $t(x), t(F(x))$ are in different components and $t(F(x)), t\left(F^{2}(x)\right)$ are in different components, that is, points $F^{3}(x), F^{2}(x), F(x)$ are all unfriendly;
(ii) $t(F(x)), t\left(F^{2}(x)\right)$ are in the same components; there are two subcases:
(ii') $t\left(F^{3}(x)\right), t\left(F^{4}(x)\right)$ are in different components, i.e., (i) holds with x replaced by $F^{2}(x)$ which implies that $F^{5}(x), F^{4}(x), F^{3}(x)$ are all unfriendly;
(ii") $t\left(F^{3}(x)\right), t\left(F^{4}(x)\right)$ are in the same component which then means that $F^{2}(x)$ and $F^{4}(x)$ are both friendly.

In the case (i) and (ii'), apply Lemma 4.7 with $n-1$ instead of n to $z=F^{3}(x)$ and to $z=F^{5}(x)$, respectively, letting $\Gamma_{n}^{1 / 2}(x)=$ $\gamma_{n-1}^{1 / 2}\left(F^{3}(x)\right), \tilde{\Gamma}_{n}^{1 / 2}(x)=\tilde{\gamma}_{n-1}^{1 / 2}\left(F^{3}(x)\right)$ and $\Gamma_{n}^{1 / 2}(x)=\gamma_{n-1}^{1 / 2}\left(F^{5}(x)\right)$, $\tilde{\Gamma}_{n}^{1 / 2}(x)=\tilde{\gamma}_{n-1}^{1 / 2}\left(F^{5}(x)\right)$, respectively. In the case (ii"), apply Lemma 4.3 with $p_{n-1}, q=1, i=0, j=0$, first, to the point $F^{2}(x)$ and then to the point $F^{4}(x)$ letting $\Gamma_{n}^{1 / 2}(x)=\gamma_{p_{n-1}, 1,0,1}\left(F^{2}(x)\right), \tilde{\Gamma}_{n}^{1 / 2}(x)=$ $\gamma_{p_{n-1}, 1,0,1}\left(F^{4}(x)\right)$.

5. Proof of Theorem 1.1

Every invariant probability measure with positive Lyapunov exponent has an ergodic component with positive exponent. So let μ be such an ergodic f-invariant measure component supported in J_{∞}. First, we have the following general

Remark 5.1. Given $x \in J_{\infty}^{\prime}$ such that $\tilde{r}(x)>0$ as in Proposition 2.3, and given n, the set $J_{n, x}=f^{j_{n}(x)}\left(J_{n}\right)$ cannot be covered by $B(x, \tilde{r}(x))$ because otherwise the branch $g_{p_{n}}: B(x, \tilde{r}(x)) \rightarrow \mathbf{C}$ of $f^{-p_{n}}$, which sends x to $x_{-p_{n}} \in J_{n, x}$ meets the critical value along the way so cannot be well-defined. Thus diam $J_{n, x}>\tilde{r}(x)$, for each n, and $\operatorname{diam} K_{x}=\lim \operatorname{diam} J_{n, x} \geq \tilde{r}(x)$. In particular, $\operatorname{diam} J_{n, x} \geq$ $r(\epsilon)$ for all $x \in E_{\epsilon}$ and n.

We need to prove that f has finitely many satellite renormalizations. Assuming the contrary, let \mathcal{S} be an infinite subsequence such that $f^{p_{n}}$ is a satellite renormalization of f for each $n \in \mathcal{S}$.

We arrive at a contradiction by considering, roughly speaking, two alternative situations. In the first one, we find a point $x \in E_{\epsilon}$, n, and two curves in $B \cap A(\infty)$ where $B:=B(x, \tilde{r}(x))$ that tend to the β-fixed points of $J_{n, x}$ such that another ends of the curves can be joined by an arc of equipotential in B thus 'surrounding' $J_{n, x}$ by a 'triangle' in B which would be a contradiction as in Remark 5.1. The second situation is when the first one does not happen. Then we use several curves to 'surround' $J_{n, x}$ by a 'quadrilateral' in B, ending by the same conclusion. The curves we use have been constructed in Lemmas 4.5, 4.8.

The first situation happens in cases A and B1, and the second one in B2.

Case A: \mathcal{S} contains an infinite sequence of indices of non-doubling renormalizations. Passing to a subsequence one can assume that $f^{p_{n}}$ is satellite not doubling for every $n \in \mathcal{S}$.

Fix $\zeta=1 / 4$. By Lemma 2.2, for each $n \in \mathcal{S}$ and each $j=$ $1, \cdots,\left[\zeta p_{n}\right]$, the map $\sigma^{j-1}: S_{n, 1} \rightarrow S_{n, j}$ is a homeomorphism and the length $\left|S_{n, j}\right| \rightarrow 0$ as $n \rightarrow \infty$ uniformly in j. Fix N such that $\left|S_{n, j}\right|<\delta$ for each $n>N, n \in \mathcal{S}$. For $n \in \mathcal{S}$, let

$$
\mathcal{C}_{n}=\left\{f^{j}\left(J_{n}\right) \mid 1 \leq j \leq\left[\zeta p_{n}\right]\right\} .
$$

Let $n, m \in \mathcal{S}, m<n$. Denote $p=p_{m}, P=p_{n}, q=p_{n} / p_{m}$. The intersection $\mathcal{C}_{n} \cap \mathcal{C}_{m}$ contains all $f^{j+k p}\left(J_{n}\right)$ with $1 \leq j \leq[\zeta p]$, $j+k p \leq[\zeta P]$. Hence,

$$
\begin{gathered}
\#\left(\mathcal{C}_{n} \cap \mathcal{C}_{m}\right) \geq \sum_{j=1}^{[\zeta p]}\left[\zeta q-\frac{j}{p}\right] \geq[\zeta q-1][\zeta p] \geq \\
P\left\{\frac{\zeta p-1}{p} \frac{\zeta q-1}{q}-\frac{\zeta}{q}\right\} \sim \zeta^{2} P
\end{gathered}
$$

as $p, q \rightarrow \infty$. Therefore, fixing $\kappa=\zeta^{2} / 2=1 / 8$, there are m_{0}, k_{0} such that for each $n, m \in \mathcal{S}, m>m_{0}, n>m+k_{0}$,

$$
\mu\left(\mathcal{C}_{n} \cap \mathcal{C}_{m}\right)>\kappa .
$$

Fix such n, m, assume also that $m>\max \left\{N, n_{*}\right\}$ where n_{*} is defined in Lemma 4.5 and recall the set

$$
X_{n}=E_{\epsilon, p_{n}, 4} \cap E_{\epsilon, p_{n-1}, Q}=\cap_{i=0}^{3} f^{i p_{n}}\left(E_{\epsilon}\right) \cap_{k=0}^{Q-1} f^{k p_{n-1}}\left(E_{\epsilon}\right) .
$$

Since $\mu\left(X_{n}\right)>1-(Q+4) \epsilon>1-\kappa$, there is $x \in X_{n} \cap \mathcal{C}_{n} \cap \mathcal{C}_{m}$ and, by the choice of n, the assumption (II) of Lemma 4.5 holds for x. Therefore, there exist two simple semi-open curves $\gamma(x)$ and $\tilde{\gamma}(x)$ that satisfy the following properties: $\gamma(x)$ and $\tilde{\gamma}(x)$ tend to $\beta_{n, j_{n}(x)}, \gamma(x), \tilde{\gamma}(x) \subset B(x, \rho) \cap A(\infty)$ and $\gamma(x), \tilde{\gamma}(x)$ consist of arcs
of equipotentials and external rays; the start point b_{1} of $\gamma(x)$ and the start point \tilde{b}_{1} of $\tilde{\gamma}(x)$ have equal levels which is at least $\tilde{C} / 4$; $\gamma(x), \tilde{\gamma}(x) \subset U_{n-1, j_{n-1}(x)}$; finally, being completed by their common limit point $\beta_{n, j_{n}(x)}$ and arcs of rays from $b_{1} \in \gamma(x)$ to ∞ and from $\tilde{b}_{1} \in \tilde{\gamma}(x)$ to ∞, they split the plane into two domains such that one of them contains $I:=J_{n, x} \backslash \beta_{n, j_{n}(x)}$ and another one contains all other iterates $f^{k p_{n-1}}(I), 1 \leq k \leq q_{n}-1$. Now, since $U_{n-1, j_{n-1}(x)} \subset$ $U_{m, j_{m}(x)}$ and by the choice of m, the distance between arguments of the points b_{1} and \tilde{b}_{1} inside of $S_{n-1, j_{n-1}(x)}$ is less than δ. By the definition of δ, b_{1} and \tilde{b}_{1} can be joined by an arc A_{n} of equipotential inside of $B(x, \rho) \cap U_{n-1, j_{n-1}(x)}$. Consider a Jordan domain Z_{n} with the boundary to be the arc A_{n} and semi-open curves $\gamma(x), \tilde{\gamma}(x)$ completed by their common limit point $\beta_{n, j_{n}(x)}$. Then $Z_{n} \subset B(x, \rho)$. By the properties of the curves, $Z_{n} \cup \beta_{n, j_{n}(x)}$ contains either $J_{n, x}$ or its iterate $f^{k p_{n-1}}\left(J_{n, x}\right)$, for some $1 \leq k \leq q_{n}-1$, in a contradiction with Remark 5.1.

Complementary to A is
Case B: for all big n, every satellite renormalization $f^{p_{n}}$ is doubling, i.e., $\beta_{n}=\alpha_{n-1}$ and $p_{n}=2 p_{n-1}$ for every $n \in \mathcal{S}$.

Let $Y_{n-1}=E_{\epsilon, p_{n-1}, 6}$ and $\tilde{Y}_{n-1}=f^{-5 p_{n-1}}\left(Y_{n-1}\right)$. Note that $\mu\left(Y_{n-1}\right)=$ $\mu\left(\tilde{Y}_{n-1}\right)>1-6 \epsilon$.

For every $n \in \mathcal{S}$, let

$$
L_{n}=\left\{0<j<p_{n-1} \left\lvert\, \mu\left(f^{j}\left(J_{n-1}\right) \cap \tilde{Y}_{n-1}\right)>\frac{1-2^{12} \epsilon}{p_{n-1}}\right.\right\} .
$$

As $\mu\left(\tilde{Y}_{n-1}\right)>1-6 \epsilon$, it follows,

$$
\# L_{n}>\left(1-3 / 2^{11}\right) p_{n-1}
$$

Since we are in case B, each $f^{j}\left(J_{n-1}\right)$ contains precisely two small Julia sets $f^{j}\left(J_{n}\right), f^{j+p_{n-1}}\left(J_{n}\right)$ of the next level n each of them of measure $1 /\left(2 p_{n-1}\right)$. Hence, the measure of intersection of each of these small Julia sets with \tilde{Y}_{n-1} is bigger than $\left(1 / 2-2^{10} \epsilon\right) / p_{n-1}>0$. By Lemma 4.8, choosing for every $j \in L_{n}$ a point $x_{j} \in f^{j}\left(J_{n-1}\right) \cap$ \tilde{Y}_{n-1} we get a pair of curves $\Gamma_{n}^{1 / 2}\left(x_{j}\right), \tilde{\Gamma}_{n}^{1 / 2}\left(x_{j}\right)$ consisting of arcs of rays and equipotentials as follows: (i) $\Gamma_{n}^{1 / 2}\left(x_{j}\right), \tilde{\Gamma}_{n}^{1 / 2}\left(x_{j}\right) \subset B\left(x_{j}, 3 / 2 \rho\right)$, moreover, arguments of points of $\Gamma_{n}^{1 / 2}\left(x_{j}\right)$ lie in one 'window' of $s_{n-1, j}$ while arguments of points of $\tilde{\Gamma}_{n}^{1 / 2}\left(x_{j}\right)$ lie in another 'window' of $s_{n-1, j}$, (ii) $\Gamma_{n}^{1 / 2}\left(x_{j}\right)$ and $\tilde{\Gamma}_{n}^{1 / 2}\left(x_{j}\right)$ converge to a common point $\beta_{n-1, j}^{*}$ which is a fixed point of $f^{p_{n-1}}: f^{j}\left(J_{n-1}\right) \rightarrow f^{j}\left(J_{n-1}\right)$ (i.e.,
$\beta_{n-1, j}^{*}$ is either the non-separating fixed point $\beta_{n-1, j}$ or the separating fixed point $\alpha_{n-1, j}$, (iii) start points of $\Gamma_{n}^{1 / 2}\left(x_{j}\right), \tilde{\Gamma}_{n}^{1 / 2}\left(x_{j}\right)$ have equal Green level which is bigger than \tilde{C}_{3}, (iv) $x_{j}-\beta_{n-1, j}^{*} \rightarrow 0$ as $n \rightarrow \infty$ uniformly in j and x_{j}. We add one more property as follows. Let

$$
\Gamma_{n, j}=\Gamma_{n}^{1 / 2}\left(x_{j}\right) \cup \beta_{n-1, j}^{*} \cup \tilde{\Gamma}_{n}^{1 / 2}\left(x_{j}\right)
$$

Then: (v) $\Gamma_{n, j}$ is a simple curve; the level of $z \in \Gamma_{n, j} \backslash\left\{\beta_{n-1, j}^{*}\right\}$ is positive and decreases (not strickly) from \tilde{C}_{3} to zero along $\Gamma_{n}^{1 / 2}\left(x_{j}\right)$ and then increases from zero to \tilde{C}_{3} along $\tilde{\Gamma}_{n}^{1 / 2}\left(x_{j}\right)$; moreover, if $j_{1}, j_{2} \in L_{n}, j_{1} \neq j_{2}$, then $\Gamma_{n, 1}, \Gamma_{n, j_{2}}$ are either disjoint or meet at the unique common point $\beta_{n-1, j_{1}}=\beta_{n-1, j_{2}}$ and then disjoint with all others $\gamma_{n-1, j}, j \neq j_{1}, j_{2}$. This is because, by property (i), $\Gamma_{n, j} \subset \overline{U_{n-1, j}}$ where (by (C), Sect 2 any two $\overline{U_{n-1, j}}, \overline{U_{n-1, \tilde{j}}}, j \neq \tilde{j}$, are either disjoint or meet at $\beta:=\beta_{n-1, j}=\beta_{n-1, \tilde{j}}$ in which case $f^{p_{n-1}}$ is satellite. In the considered case, any satellite is doubling so $\beta \neq \beta_{n-1, i}$ for all i different from j, j.

We assign, for the use below, a 'small' Julia set $I_{n, j}$ to each $\Gamma_{n, j}$ as follows: by the construction, $\beta_{n-1, j}^{*}$ is either the β-fixed point of $f^{j}\left(J_{n-1}\right)$, or the α-fixed point of $f^{j}\left(J_{n-1}\right)$. In the former case, let $I_{n, j}=f^{j}\left(J_{n-1}\right)$, and in the latter case, $I_{n, j}=f^{j}\left(J_{n}\right)$ (one of the two small Julai sets of the next level n that are contained in $f^{j}\left(J_{n-1}\right)$. Observe that $I_{n, j} \cap \Gamma_{n-1, j}=\left\{\beta_{n-1, j}^{*}\right\}$ and is disjoint with any other $\Gamma_{n, j^{\prime}}$ provided $\Gamma_{n, j}, \Gamma_{n, j^{\prime}}$ are disjoint.

There are two subcases B1-B2 to distinguish depending on whether arguments of end points of $\Gamma_{m, j}$ become close or not. If yes, then one can join the end points of some $\Gamma_{n, j}$ by an arc of equipotential inside of $B\left(x_{j}, 2 \rho\right) \supset \Gamma_{m, j}$ to surround a small Julia set as in case A, which would lead to a contradiction. If no, the construction is more subtle: we build a domain ('quadrilateral') in $B\left(x_{j}, 2 \rho\right)$ bounded by two disjoint curves as above completed by two arcs of equipotential that join ends of different curve, so that the obtained quadrilateral again contains a small Julia set.

B1: $\lim \inf _{n \in \mathcal{S}, j \in L_{n}}\left|S_{n-1, j}\right|<\delta$.
By property (i) listed above and the definition of δ, there are a sequence $\left(n_{k}\right) \subset \mathcal{S}, j_{k} \in L_{n_{k}}$ and $x_{j_{k}}$ as above, such that two ends of each curve $\Gamma_{n_{k}, j_{k}}$ can be joined inside of $B\left(x_{j_{k}}, \rho\right)$ by an arc A^{k} of equipotential of fixed level \tilde{C}_{3} such that all arguments of points in A^{k} belong to $S_{n_{k}-1, j_{k}}$. Then we arrive at a contradiction as in case A.

B2: $\left|S_{n-1, j}\right| \geq \delta$ for all big $n \in \mathcal{S}$ and all $j \in L_{n}$.

Figure 1. Top: Case A and Case B1, bottom: Case B2
Fix $n, m \in \mathcal{S}, m-n \geq 3$. Define a subset of L_{n} as follows:

$$
L_{n}^{m}=\left\{0<j<p_{n-1} \left\lvert\, \mu\left(f^{j}\left(J_{n-1}\right) \cap\left(\tilde{Y}_{n-1} \cap \tilde{Y}_{m-1}\right)\right)>\frac{1-2^{12} \epsilon}{p_{n-1}}\right.\right\}
$$

As $\mu\left(\tilde{Y}_{n-1} \cap \tilde{Y}_{m-1}\right)>1-12 \epsilon$,

$$
\# L_{n}^{m}>\left(1-3 / 2^{10}\right) p_{n-1} .
$$

For each $j \in L_{n}^{m}$ we define further
$L_{n, j}^{m}=\left\{0<k<p_{n-1} \mid f^{k}\left(J_{m-1}\right) \subset f^{j}\left(J_{n-1}\right), \mu\left(f^{k}\left(J_{m-1}\right) \cap\left(\tilde{Y}_{n-1} \cap \tilde{Y}_{m-1}\right)\right)>\frac{1-2^{16} \epsilon}{p_{m-1}}\right\}$.
Then

$$
\# L_{n, j}^{m} \geq 5
$$

as otherwise $\# L_{n, j}^{m} \leq 4$ and, therefore, $\left(1-2^{12} \epsilon\right) / p_{n-1}<4 / p_{m-1}+$ $\left(p_{m-1} / p_{n-1}-4\right)\left(1-2^{16} \epsilon\right) / p_{m-1}=2^{18} \epsilon / p_{m-1}+\left(1-2^{16} \epsilon\right) / p_{n-1}$, i.e., $p_{m-1} / p_{n-1}<2^{18} \epsilon /\left(2^{16} \epsilon-2^{12} \epsilon\right)=4 /\left(1-2^{-4}\right)<8$, a contradiction because $p_{m-1} / p_{n-1} \geq 2^{m-n} \geq 2^{3}$.

Fix $j \in L_{n}^{m}$. Thus $L_{n, j}^{m}$ contains 5 pairwise different indices k_{i}, $1 \leq k \leq 5$. As $L_{n, j}^{m} \subset L_{m}$, we find 5 curves $\Gamma_{m-1, k_{i}}$. By property (v), if two of them meet, they are disjoint with all others. Therefore, there are at least 3 of them denoted by $\Gamma_{m-1, r_{i}}, i=1,2,3$, which are pairwise disjoint. Let $w_{i}, \tilde{w}_{m, i}$ be two ends of $\Gamma_{m-1, r_{i}}$.

For each $i=1,2,3$, arguments of points of $w_{m, i}, \tilde{w}_{m, i}$ lie in different 'windows' of $s_{m-1, r_{i}}$. On the other hand, by the choice of
$j, s_{m-1, r_{i}} \subset s_{n-1, j} \subset S_{n-1, j}$. As n is big enough, lengths of 'windows' of $s_{n-1, j}$ are less than δ. But since we are in case B2, the length of $S_{n-1, j}$ is bigger than δ. One can assume, therefore, that, for $i=1,2,3$, arguments of $w_{m, i}$ lie in one window of $s_{n-1, j}$ while arguments of $\tilde{w}_{m, i}$ are in another window. Therefore, differences of arguments of all $w_{m, i}$ tend to zero as $m \rightarrow \infty$, and the same for $\tilde{w}_{m, i}$. As all $w_{m, i}, \tilde{w}_{m, i} \in E_{\epsilon}$, this implies by Lemma 4.1 that $\max _{1 \leq i, l \leq 3}\left|w_{m, i}-w_{m, l}\right| \rightarrow 0$. This along with property (iv) implies that $\gamma_{m-1, r_{i}} \subset B\left(w_{m, 1}, 2 \rho\right), i=1,2,3$, for all big m. Since, for big m, differences of arguments of all $w_{m, i}$ are less than δ, and the same for $\tilde{w}_{m, i}$, one can joint all $w_{m, i}$ by an arc D^{m} of equipotential of level \tilde{C}_{3} and all $\tilde{w}_{m, i}$ by an arc \tilde{D}^{m} of equipotential of the same level \tilde{C}_{3} such that $D^{m}, \tilde{D}^{m} \subset B\left(w_{1}, 2 \rho\right)$. Let the end points of D^{m} be, say, $w_{m, 1}$ and $w_{m, 3}$, so that $w_{m, 2} \in D^{m}$ is in between. Since all 3 curves $\Gamma_{m-1, r_{i}}, i=1,2,3$, are pairwise disjoint, the end points of \tilde{D}^{m} have to be then $\tilde{w}_{m, 1}$ and $\tilde{w}_{m, 3}$, so that $\tilde{w}_{m, 2} \in \tilde{D}^{m}$ is in between. Therefore, we get a 'big' quadrilateral $\Pi_{m}^{0} \subset B\left(w_{m, 1}, 2 \rho\right)$ bounded by $D^{m}, \tilde{D}^{m}, \Gamma_{m, 1}, \tilde{\Gamma}_{m, 3}$. The curve $\Gamma_{m, 2}$ splits Π_{m} into two 'small' quadrilaterals Π_{m}^{1}, Π_{m}^{2} with a common curve $\Gamma_{m, 2}$ in their boundaries. Recall now that the curve $\Gamma_{m, 2}$ comes with a small Julia set $I_{m, 2}$ of level either $m-1$ or m, such that $I_{m, 2} \cap \Gamma_{m, 2}$ is a single point while $I_{m, 2}$ is disjoint with $\Gamma_{m, 1}, \Gamma_{m, 3}$. Therefore, $I_{m, 2} \subset \Pi_{m}^{0} \subset B\left(w_{m, 1}, 2 \rho\right)$, a contradiction with Remark 5.1.

6. Proof of Corollaries $1.1-1.2$

Corollary 1.1 follows directly from the following
Proposition 6.1. Let f be an infinitely renormalizable quadratic polynomial. Then conditions (1)-(4) are equivalent:
(1) $f: J_{\infty} \rightarrow J_{\infty}$ has no invariant probability measure with positive exponent,
(2) for every neighborhood W of P and every $\alpha \in(0,1)$ there exist m_{0} and n_{0} such that, for each $m \geq m_{0}$ and $x \in \operatorname{orb}\left(J_{n}\right)$ with $n \geq n_{0}$,

$$
\frac{\#\left\{i \mid 0 \leq i<m, f^{i}(x) \in W\right\}}{m}>\alpha ;
$$

additionally, $f: P \rightarrow P$ has no invariant probability measure with positive exponent,
(3) every invariant probability measure of $f: J_{\infty} \rightarrow J_{\infty}$ is, in fact, supported on P and has zero exponent,
(4) for every invariant probability ergodic measure μ of f on the Julia set J of f, either $\operatorname{supp}(\mu) \cap J_{\infty}=\emptyset$ and its Lyapunov exponent $\chi(\mu)>0$, or $\operatorname{supp}(\mu) \subset P$ and $\chi(\mu)=0$.

Proof. (1) $\Rightarrow(2)$. Assume the contrary. Let $E=\mathbb{C} \backslash W$. Since W is a neighborhood of a compact set P, the Euclidean distance $d(E, P)>0$. By a standard normality argument, as all periodic points of f are repelling, there are $\lambda>1$ and $k_{0}>0$ such that $\left|\left(f^{k}\right)^{\prime}(y)\right|>\lambda$ whenever $y, f^{k}(y) \in E$ and $k \geq k_{0}$. As (2) does not hold, find $\alpha \in(0,1)$, a sequence $n_{k} \rightarrow \infty$, points $x_{k} \in \operatorname{orb}\left(J_{n_{k}}\right)$ and a sequence $m_{k} \rightarrow \infty$ such that, for each k,

$$
\frac{\#\left\{i: 0 \leq i<m_{k}, f^{i}\left(x_{k}\right) \in E\right\}}{m_{k}} \geq \beta:=1-\alpha .
$$

Fix a big k such that $\beta m_{k}>3 k_{0}$ and consider the times $0 \leq i_{1}^{k}<$ $i_{2}^{k}<\ldots i_{l_{k}}^{k}<m_{k}$ where $l_{k} / m_{k} \geq \beta$ such that $f^{i}\left(x_{k}\right) \in E$. Let $z_{k}=f_{1}^{i_{1}^{k}}\left(x_{k}\right)$ so that $z_{k} \in E \cap \operatorname{orb}\left(J_{n}\right)$. Therefore, by the choice of λ and $k_{0},\left|\left(f^{m_{k}-i_{1}^{k}}\right)^{\prime}\left(z_{k}\right)\right| \geq \tilde{\lambda}^{m_{k}} \geq \tilde{\lambda}^{m_{k}-i_{1}}$ where $\tilde{\lambda}=\lambda^{\frac{\beta}{2 k_{0}}}>1$. In this way we get a sequence of measures $\mu_{k}=\frac{1}{m_{k}-i_{1}^{k}} \sum_{i=0}^{m_{k}-i_{1}^{k}-1} \delta_{f^{i}\left(z_{k}\right)}$ such that the Lyapunov exponent of μ_{k} is at least $\log \tilde{\lambda}>0$. Passing to a subsequence one can assume that $\left\{\mu_{k}\right\}$ converges weak-* to a measure μ. Then μ is an f-invariant probability measure on $J_{\infty}=\cap \operatorname{orb}\left(J_{n}\right)$ with the exponent at least $\log \tilde{\lambda}>0$, a contradiction with (1).
$(2) \Rightarrow(3)$, by the Birkhoff Ergodic Theorem along with [22].
$(3) \Rightarrow(4)$: let μ be as in (4) and $\bar{U} \cap P=\emptyset$ for some open set U with $\mu(U)>0$. Let $F: U \rightarrow U$ be the first return map equipped with the induced invariant measure μ_{U}. By the Birkhoff Ergodic Theorem and by an argument as in $(1) \Rightarrow(2)$, the exponent $\chi_{F}\left(\mu_{U}\right)$ of F w.r.t. μ_{U} is strictly positive. Hence, $\chi(\mu)=\mu(U) \chi_{F}\left(\mu_{U}\right)$ is positive too. This proves the implication.

And (4) obviously implies (1).

Proof of Corollary 1.2. If $\bar{\chi}(x)$ were strictly positive, for some $x \in$ J_{∞}, that would imply, by a standard argument (see the proof of Corollary 1.1), the existence of an f-invariant measure with positive exponent supported in $\omega(x) \subset J_{\infty}$, with a contradiction to Theorem 1.1. This proves (1.1). By [14], $\lim _{\inf }^{n \rightarrow \infty}$ $\frac{1}{n} \log \left|\left(f^{n}\right)^{\prime}(c)\right| \geq 0$. On the other hand, by (1.1), $\bar{\chi}(c) \leq 0$, which proves (1.2).

References

[1] A. Blokh, G. Levin, L. Oversteegen, V. Timorin: The modulus of renormalization of rational functions: high periods imply small moduli., 2022, https://arxiv.org/pdf/2205.03157.pdf
[2] L. Carleson, T. Gamelin: Complex Dynamics. Springer-Verlag, 1993
[3] D. Cheraghi, M. Pedramfar, slides of talk at workshop "On geometric complexity of Julia sets", 18-23 March 2018, Będlewo, Poland, and video of talk at virtual workshop "Many faces of renormalization", Simons Center for Geometry and Physics, 8-12 March 2021
[4] D. Cheraghi, M. Shishikura: Satellite renormalization of quadratic polynomials. https://arxiv.org/abs/1509.07843
[5] A. Douady, J. H. Hubbard: On the dynamics of polynomial-like mappings. Ann. Sci. Ec. Norm. Super. (4) 18 (1985), no. 2, 287-343.
[6] M. Feigenbaum: Quantitative universality for a class of nonlinear transformations. Journal of Statistical Physics. 19 (1) (1978), 25-52.
[7] J. Hu, Y. Jiang: The Julia set of the Feigenbaum quadratic polynomial is locally connected. Preprint, 1993.
[8] J. H. Hubbard: Local connectivity of Julia sets and bifurcation coci: three theorems of J.-C. Yoccoz. In: "Topological Methods in Modern Mathematics." Houston, TX:Publish or Perish, 1993.
[9] G. Levin, F. Przytycki: No hyperbolic sets in J_{∞} for infinitely renormalizable quadratic polynomials. Israel Journal of Mathematics, to appear.
[10] G. Levin: Multipliers of periodic orbits of quadratic polynomials and the parameter plane. Israel Journal of Mathematics 170 (2009), 285-315.
[11] G. Levin: Rigidity and non-local connectivity of Julia sets of some quadratic polynomials. Comm. Math. Phys. 304 (2011), 2, 295-328.
[12] G. Levin: Addendum to: Rigidity and non-local connectivity of Julia sets of some quadratic polynomials. Comm. Math. Phys. 325 (2014), 3, 11711178.
[13] G. M. Levin: Bounds for multipliers of periodic points of holomorphic mappings. (Russian) Sibirsk. Mat. Zh. 31 (1990), no. 2, 104-110; translation in Siberian Math. J. 31 (1990), no. 2, 273-278.
[14] G. Levin, F. Przytycki, W. Shen: The Lyapunov exponent of holomorphic maps. Invent. Math. 205 (2016), 363-382.
[15] M. Lyubich: Feigenbaum-Coullet-Tresser universality and Milnor's Hairiness Conjecture. Ann. Math. 149 (2) (1999), 319-420
[16] J. Milnor: Dynamics in one complex variable. Princeton University Press, 2006
[17] J. Milnor: Local connectivity of Julia sets: expository lectures. The Mandelbrot set, theme and variations, 67-116, London Math. Soc. Lecture Note Ser., 274, Cambridge Univ. Press, Cambridge, 2000.
[18] J. Milnor: Periodic orbits, external rays and the Mandelbrot set: an expository account. "Geometrie Complex et Systemes Dynamiques". Colloque en l'honnoeur d'Adrien Douady (Orsay, 1995). Asterisque 261, 277-331 (2000).
[19] C. McMullen: Complex Dynamics and Renormalization. Annals of Mathematical Studies, 135. Princeton Univ. Press, Princeton, New Jersey, 1994.
[20] C. McMullen: Renormalization and 3-Manifolds Which Fiber over the Circle. Annals of Mathematical Studies, 142. Princeton Univ. Press, Princeton, New Jersey, 1996.
[21] Ch. Pommerenke: On conformal mapping and iteration of rational functions. Complex Variables 5 (2-4) (1986), 117-126.
[22] F. Przytycki: Lyapunov characteristic exponents are nonnegative. Proc. Amer. Math. Soc. 119 (1993), no. 1, 309-317.
[23] F. Przytycki: Accessibility of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps. Fund. Math. 144 (1994), no.3, 259-278
[24] F. Przytycki, M. Urbański: Conformal Fractals: Ergodic Theory Methods. Cambridge, 2010
[25] M. Rees: One hundred years of complex dynamics. Proc. R. Soc. A 472 (2016)
[26] D. E. K. Sorensen: Infinitely renormalizable quadratic polynomials with non-locally connected Julia set. J. Geom. Anal. 10 (2000), 169-208.
[27] D. Sullivan: Bounds, quadratic differentials and renormalization conjectures. In: Mathematics into the Twenty-First Century, AMS Centennial Publications 2, Providence, RI: Amer. Math. Soc., 1991

Institute of Mathematics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel

Email address: levin@math.huji.ac.il
Institute of Mathematics, Polish Academy of Sciences, Śniadeckich St., 8, 00-956 Warsaw, Poland

Email address: feliksp@impan.pl

[^0]: ${ }^{1}$ A more complete description of $f: P \rightarrow P$ should follow from the methods developed in [3].
 ${ }^{2}$ The "robustness" can happen without "complex bounds" as it follows from [3] combined with (1).

