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Abstract. It is proved that for every complex quadratic polynomial f
with Cremer’s fixed point z0 (or periodic orbit) for every δ > 0, there is
at most one periodic orbit of minimal period n for all n large enough,
entirely in the disc (ball) B(z0, exp−δn) (at most p for a Cremer orbit of
period p). Next, it is proved that the number of periodic orbits of period
n in a bunch Pn, that is for all x, y ∈ Pn, |f j(x) − f j(y)| ≤ exp−δn
for all j = 0, ..., n − 1, does not exceed exp δn. We conclude that the
geometric pressure defined with the use of periodic points coincides with
the one defined with the use of preimages of an arbitrary typical point.
I. Binder, K. Makarov and S. Smirnov (Duke Math. J. 2003) proved this
for all polynomials but assuming all periodic orbits were hyperbolic, and
asked about general situations. We prove here a positive answer for all
quadratic polynomials.

1. Introduction

In this paper we consider holomorphic maps f : U → C, where U ⊂ C is
an open domain in the Riemann sphere C, where C is the complex plane.
Usually f will be a rational function on U = C or just a quadratic polynomial
f(z) = fc(z) = z2 + c for a complex number c.

The following notions of geometric pressure for a rational function f :
C → C are of interest, see e.g. [PRS2] and [P-ICM18]. Let us start with
variational geometric pressure with ϕ = −t log |f ′| considered on X = J(f)
being Julia set for f , and for real t.

Definition 1.1 (variational pressure).

(1.1) Pvar(f, ϕ) = sup
µ∈M(f)

(
hµ(f) +

∫
X
ϕdµ

)
,

where M(f) is the set of all f -invariant Borel probability measures on X
and hµ(f) is measure theoretical entropy.
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Definition 1.2 (Tree pressure). For every z ∈ K and t ∈ R define

(1.2) Ptree(z, t) = lim sup
n→∞

1

n
log

∑
fn(x)=z, x∈K

|(fn)′(x)|−t.

These notions follow adequate notions in equilibrium statistical physics,
e.g. free energy for say generalizations of Ising model with a hamilton-
ian potential on the space of configurations over Zd, see e.g. [Ruelle] and
[Bowen].

Another definition is also natural:

Definition 1.3 (Periodic pressure). For every t ∈ R define

(1.3) Pper(t) = lim sup
n→∞

1

n
log

∑
fn(z)=z, z∈J(f)

|(fn)′(x)|−t.

It was proved e.g. in [PRS2], see also [P-conical], that for every z ∈ C
except in a zero Hausdorff dimension subset of C both pressures coincide.

It was proved in [PRS2, Theorem C], that for t ≥ 0 they coincide with the
periodic pressure for every rational function f if the following Hypothesis H
holds, see [PRS2] and [P-ICM18].

Denote the standard spherical metric on the Riemann sphere C by ρ. For
rational f denote by Pern the set of all periodic points of minimal period n
in the Julia set J(f).

Hypothesis H. For every rational function f : C → C, for every δ > 0
and all n large enough, if for a set P ⊂ Pern, for all x, y ∈ P and all
i : 0 ≤ i < n ρ(f i(x), f i(y)) < exp−δn, then #P ≤ exp δn.

We prove here, in Section 5, that Hypothesis H holds for all quadratic
polynomials. Therefore we conclude with

Theorem 1.4. For every quadratic polynomial f and real all t ≥ 0 geomet-
ric pressures for f acting in C, variational and tree ones, are equal to the
periodic pressure.

A condition stronger than Hypothesis H has been formulated in [BMS].
Namely

Hypothesis BMS. For every ϵ > 0 there exists r = r(f, ϵ) such that if
n ≥ n(f, ϵ) and x ∈ Pern, then

#{y ∈ Pern : ρ(f i(x), f i(y)) < r∀0 ≤ i < n} ≤ exp ϵn.

The authors of [BMS] proved it for all polynomials, but under the assump-
tion REP saying that all periodic orbits of f in J(f) are hyperbolic repelling,
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that is |(fn)′(x)| > 1 where n is a period of x. They used external rays,
as we do here, and Yoccoz’s puzzle structure (which we do not use). They
asked whether the assumption REP can be skipped. See [BMS, Lemma 7
and the comment preceding it].

As we already mentioned, we succeed here, proving the equality of pres-
sures in Theorem 1.4 for all quadratic polynomials, without assuming REP,
via proving a weaker than Hypothesis BMS, but sufficient for us, Hypothesis
H.

Hypothesis BMS, hence Theorem 1.4, hold also for all generalized mul-
timodal maps of interval, with all periodic orbits hyperbolic repelling, see
[PR, Section 5].

Let now f : U → C be a holomorphic mapping as above. Let z0 ∈ U be a
fixed point for f . We call it indifferent if |f ′(z0)| = 1. Then the derivative
f ′(z0) is either a root of unity in which case we call z0 parabolic, or not
a root of unity when we call z0 irrationally indifferent. In the latter case
if f is not holomorphically linearizable in a neighbourhood of z0 we call z0
Cremer. See e.g. [Milnor-book] for an introduction to this theory. We use
the same language for any periodic orbit of period n, replacing f by fn.

If z0 is a Cremer fixed point and f ′(z0) = expα2πi, where α is irrational
then its convergents pn/qn in the continued fraction algorithm satisfy

(1.4)

n≥1∑ log qn+1

qn
= ∞.

(So convergence of the series, Bryuno condition, implies the existence of a
so-called Siegel disc around z0, that is a rotation in a disc by the angle 2πα
in respective holomorphic coordinates.)

If additionally

(1.5)

n≥1∑ log log qn+1

qn
< ∞

then f has a sequence of periodic orbits converging to z0 of periods being a
subsequence of (qn). see [Perez-Marco1, Perez-Marco2].

A question arises how many at most such periodic orbits converging to z0
in full, may happen. In this paper we prove the following

Theorem 1.5. Set f = fc(z) = z2 + c. Let z = z0 ∈ C be a fixed point
for f . Then for every δ > 0 there exists r0 > 0 such that for every integer
n > 1 and rn = r0 exp−nδ there is at most one orbit of minimal period n,
entirely contained in B(z0, rn).

Theorem 1.6. Set f(z) = z2 + c as above. Let z = z0 ∈ C be a Cremer
periodic point for f , of minimal period p. Then for every δ > 0 there
exists r0 > 0 such that for every n and rn = r0 exp−nδ there are at most
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p orbits of minimal period np, entirely contained in the union of the open
discs

⋃
i=0,...,p−1B(f i(z0), rn).

By estimates in Section 5.2 the assumption ”entirely” can be replaced
by formally weaker (in fact equivalent) assumption ”at least one point of
each orbit” in a disc (ball) or union of the discs in Theorems 1.5 or 1.6
respectively.

Note that for every quadratic polynomial there is at most one Cremer
periodic orbit. See [Shishikura].

A combination of these two theorems, a version not mentioning Cremer
orbits, allows us to prove Hypothesis H, hence Theorem 1.4.

An advantage when one deals with polynomials is a possibility to use
external rays and angles (arguments), [Milnor], which makes the problem
partially real, considering the angle doubling map F (θ) := 2θ mod 2πZ, in
place of complex. This was pioneered in [BMS]. Here we apply Milnor’s
point of view of orbit portrait for a Cremer periodic orbit O(z0) of period p,
by rays starting at hyperbolic orbits of period n, close to O(z0), rather than
at O(z0) itself. For the reader’s convenience we provide Milnor’s approach
in Appendix. We prove preservation of cyclic order, but we are not able
to prove the unlinking property, which we fortunately can omit by a direct
argument.

We call sometimes the union of these rays, or various versions of truncated
ones, quasi-spiders, following a terminology by J. Hubbard and D. Schleicher
in [Hub-Sch], see Section 4.

Note that all our theorems proved here for quadratic polynomials hold
for all uni-critical polynomials, that is zd + c for d ≥ 2, with the same
proofs. A challenge is to verify them for all polynomials of degree at least
2; our approach might work. For rational functions Theorem 1.4 holds if
Hypothesis H holds. The latter holds easily under some weak hyperbolicity
assumptions, e.g. uniform exponential decay to 0 of diameters of pullbacks
under f−n of small discs, see e.g. [PRS1]. For a rational map the existence
of a geometric coding tree, see [P-ICM18], without self-intersections, could
make proving Hypothesis H doable, similarly to polynomials. But for general
rational maps new ideas seem to be needed.

Acknowledgement. I thank Genadi Levin for helpful discussions. Sup-
ported by National Science Centre, Poland, Grant OPUS 21 “Holomorphic
dynamics, fractals, thermodynamic formalism” , 2021/41/B/ST1/00461.
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2. Distortion for iterates

We shall need the following auxiliary

Lemma 2.1. Let z0 be a fixed point for a holomorphic function g : U → C
for a domain U ⊂ C, such that |g′(z0)| = 1. Then, for every α > 0 (in
particular close to 0) there exists n0 > 0 such that for all n ≥ n0 and
i = 0, ..., n and every

r ≤ rn = r0 exp−nδ

as above, it holds

(2.1) gi(B(z0), r) ⊂ B(z0, r expnδα).

Proof. Notice that except for a small neighbourhood of Crit(g) so r0 small
enough, for every n and η : 0 < η ≤ r0

(2.2) sup
x∈B(z0,r)

| log |g′(x)|| ≤ Lr

(or |g′(x)| ≤ 1 + Lr), where L is supx∈B(z0,η)
| log |g′(x)||

|x−z0| .

Let nα be the smallest integer which satisfies

(2.3) 2Lr0 exp(−nαδα) ≤ exp δα.

Then, for each j : 0 ≤ j ≤ n− nα, due to (2.2),

(2.4) g(B(z0, r exp(jδα))) ⊂ B(z0, r exp((j + 1)δα)).

Now compose (2.4), starting from j = 0 up to j = n− nα. We obtain for
all 0 ≤ i ≤ n− nα

(2.5) gi(B(z0), r) ⊂ B(z0, r exp(iδα).

Setting here i = n− nα and adding Aα arising from the last nα iterates we
can replace (n − nα)δα + Aα by the smaller nδ(1 − 2α). Indeed, the last
nα iterates, thus the addition of at most Aα := nαL, changes the upper
estimate to the bigger exp−nδ(1− 2α) for n large enough.

□

The inclusion (2.1) is self-reinforcing as follows:

Corollary 2.2.
gi(B(z0, rn)) ⊂ B(z0, rn(1 + λn))

for a constant λ : 0 < λ < 1, for all n large enough and i = 1, ..., n.
Moreover, the complex distortion of each gi on B = B(z0, rn) is at most of
order λn, i.e.

(2.6) sup
x,y∈B

∣∣(gi)′(x)
(gi)′(y)

− 1
∣∣ ≤ λn.
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The same for every r ≤ rn.

Proof. For all x ∈ B(z0, rn) we have, for i ≤ n− nα, due to (2.4) and (2.2)

gi(B(z0, rn) ⊂ B(z0, rn sup
x∈B(z0,rn)

|(gi)′(x)|)

with

(2.7) |(gi)′(x)| = exp log

i−1∏
j=0

|g′(gj(x))| ≤ exp

i−1∑
j=0

Lr0 exp(−nδ + jδα).

Hence for a constant Cδ,α,L > 0

gi(B(z0), rn) ⊂ B(z0, Cδ,α,Lrn exp(−nδ(1− 2α))

This includes all i ≤ n as at the end of Proof of Lemma 2.1 Thus, we prove
Corollary 2.2 with λ := (exp−δ(1 − 2α)) − 1. The inequality (2.6) follows
from the calculation as in (2.7):

□

3. Cremer fixed points

Proof of Theorem 1.5. Step 1. Preliminaries.
If z0 is repelling or parabolic, the theorem follows from the topological be-

haviour at its neighbourhood, see [Milnor-book, Camacho’s theorem]. There
are no periodic orbits there except z0. This holds for any holomorphic f .
So we need consider only Cremer points.

In presence of a Cremer fixed point, Julia set of fc is connected because it
contains the only critical point 0 n it. Hence Ac(∞), the basin of attraction
to∞ by the action of fc, is simply connected. Let Φc : {z : |z| > 1} → Ac(∞)
be Riemann (holomorphic injective) map from the outer disc in the Riemann
sphere onto Ac(∞), where f(∞) = ∞ and f ′(∞) = 1 (in the chart z 7→ 1/z).
Note that the function log |Φ−1

c | is Green’s function G = Gc on Ac(∞).
For every θ ∈ [0, 2π mod 2πZ] we call Φ(τ · (exp iθ)) for 1 < τ < ∞ the

external ray with the external argument θ. We denote this ray by Rθ and if
there exists a limit Rθ(τ) as τ ↘ 1 we say that the ray starts at this limit
point. We denote C compactified by the circle at infinity S(∞) of external

arguments, by C̃. We denote f extended continuously to C̃ by f̃ .

Fix an arbitrary positive integer n. Let O1, ..., OK be periodic orbits for
fc of minimal period n, all in the disc B(z0, r) with r ≤ rn. Each point x
in this family of orbits is a starting point of a nonempty finite number of
external rays, R(x, s). The existence is known as Douady-Eremenko-Levin-
Petersen theorem, see [P-accessibility] for generalizations. Finiteness is a
classical Douady-Hubbard easy observation. Namely f permutes the family
of the rays, hence external arguments, and the permutation restricted to
external arguments for each x ∈ Ok, k = 1, ...,K (leading to f(x) ∈ Ok) is
the doubling map F preserving cyclic order along S(∞), hence preserving
order and finite [Milnor, Definition preceding Theorem 1.1 and Lemma 2.3].
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We shall prove that the preservation of this cyclic order holds for the set of
all external arguments of the family

⋃
xR(x, s) (as if all R(x, s) started at

z0).

Step 2. Sub-rays.

Enumerate the external arguments according to the cyclic order, by j =
0, ...,m − 1, and denote the permutation induced by f (more precisely by
F ) by σ. For an arbitrary r : 0 < r ≤ 2rn, consider the part R′

j =

R′
j [r] (sometimes written just Rj [r]) of each Rj , j = 0, ...,m − 1 start-

ing at the last intersection with the circle S(r) := ∂B(z0, r) and going to
∞, numbered along the circle order. We shall consider domains sectors
Qj [r] ⊂ C, j = 0, ...,m− 1 bounded respectively by ∂Qj [r] consisting of R′

j ,

R′
j+1 mod m and the arc Γj [r] in the circle joining their starting points. We

can consider Qj [r] and Q̃j [r], the closures of Qj [r] in C or in C̃ respectively.
Note that the cyclic order of the arguments of R′

j at ∞ coincides with the

order of the rays’ beginnings along S(r) (use Jordan theorem). (The same
holds if S(r) is replaced by any small simple loop around z0.)

For all R′
j we can find sub-rays R̂j ⊂ R′

j , ending at ∞ and beginning

bR̂j in the disc B(z0, 2r), that is

(3.1) r ≤ |bR̂j − z0| < 2r

such that

(3.2) f(R̂j) ⊂ R̂σ(j)

for each j.
Indeed, for each R′

j we find jmax such that in its f -orbit the beginning of

R′
jmax

has maximal value of Green’s function Gc. Define for j = 0, ...,m− 1

R̂σj(jmax) = f j−jmax(R′
jmax

).

Since under the action by f the value of G grows by log 2, the inclusion (3.2)

holds (it is equality for j = 0, ...,m− 2). Moreover R̂j ⊂ R′
j holds. Finally

beginnings of all R̂j are in B(z0, 2r) by Corollary 2.2.

It will be convenient to replace each R̂j by its sub-ray (by (3.1)) R′
j [2r].

Summarizing

(3.3) R′
j [r] ⊃ R̂j ⊃ R′

j [2r].

Note that the union
⋃

j ∂Qj [2r] has no self-intersections (as for any other

radius, not just 2r).
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Figure 1. No bottom returns

We can assume in our notation that Q0[r] is the only sector, called the
critical sector, containing the critical point 0. Denote the union of all other
sectors (together with the rays separating them), thus called the regular
sector, by Qreg[r]. Denote Γreg[r] :=

⋃
j=1,...,m−1 Γj [r].

Step 3. f -images of the sectors.

Consider now f(∂Qreg[2r]) ⊂ C. The only self-intersections points which
this curve could have, are the points of f(Γreg[2r])∩f(Rk[2r]), for k = k1, k2
and Rk[2r] being one of two boundary rays of Qreg[2r]. We shall analyze
two cases:

If the curve f(Rk[2r]) intersects f(Γ
reg[2r]) and the first intersection point

K comes from the side of f(B(z0, 2r)) then it must intersect S(r) before, to
be able to leave the sector Q between Rσ(k1) and Rσ(k2) when going back to
its beginning (the beginning of f(Rk[2r])). See Figure 1. Such intersection
is impossible by (3.2).

On the other hand each pointK of intersection of f(Rk[2r]) with f(Γreg[2r])
from C \ f(B(z0, 2r)) must be followed by an intersection K ′ back, since
otherwise f(Rk[2r]) must leave Q through S(r), again impossible. Consider
Jordan domain JK between this curve from K to K ′ and the curve ΓK from
K to K ′ in f(Rk[2r]). Each two such Jordan domains are either disjoint or
one is contained in the other, yielding the order by inclusion. Consider any
maximal JK . We can lift it by the branch g of f−1 mapping z0 to itself.
Indeed dist(JK , z0) > 3

2r if g is sufficiently close to id, i.e. r small, use
Corollary 2.2. So lifting starting from ΓK cannot leave Qreg[r]. It cannot
hit the critical point 0 which is in the critical sector Q0[r].
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More precisely, JK stays in a Jordan domain in f(Qreg[r]) bounded by
f(Rk[r]), k = k1, k2, f(Γ

reg[r]) and S(R) for R close to ∞ (or just R = ∞
in C̃), by Janiszewski Theorem B, [Janiszewski, Bing], saying

THEOREM B. The sum of two compact continua cuts the plane provided
their common part is not connected.

Here one continuum in Janiszewski’s Theorem is the union of the rays
above truncated at S(R) and of the adequate arc in S(R), the other is
f(Γreg[r]). Similarly te existence of K ′ follows, where the second continuum
is f(Γreg[2r]).

So the lifting is possible.
Lift a domain J ′

K ⊂ C slightly larger than JK . Do this for each K
(the family of K’s is finite by the analyticity). Let Q′ be Qreg[2r] slightly
extended in C. We obtain f acting as local homeomorphism on an open

topological disc U ′ = Q′ ∪
⋃

K g(J ′
K) in the complex plane C. Consider ∂̃U ′

the boundary of U ′ in C̃. It is a Jordan curve being union of ∂C ∈ C and
∂∞ the first being the boundary in C and an arc ∂∞ in S(∞). Assume it is
oriented counterclockwise

Claim. F is injective on ∂∞, that is the length |F (∂∞)| < 2π. Indeed,

otherwise the index with respect to the critical value indc(f̃(∂U
′)) is 1 or

2 (depending on which side of f(∂C) the critical value c is). But since the

only critical point 0 is not in U ′, hence ∂̃U ′ is contractible outside 0, and
there is no other pre-image of the critical value c in U ′ because 0 is its only
f -pre-image, the index above is 0. A contradiction. See Figure 3, right.

In conclusion f̃ is a homeomorphism between the Jordan curves (∂U ′)

and its f̃ -image. It extends continuously a local homeomorphism f between
the Jordan domains U ′ and f(U ′). The latter is the Jordan domain bounded

by f̃(∂U ′) by maximum principle, hence f is a homeomorphism (biholomor-
phic).

We also conclude (a posteriori) that the restriction of f to the closure of
Qreg[2r] is injective so f(∂Qreg[2r]) cannot have self-intersections. See also
Figure 2. Hence in particular the family of K’s is empty. See Figure 3, left.

By the injectivity in Claim, F = f |S(∞) preserves the cyclic order of the
boundary (in S(∞)) arcs of the non-critical sectors. We can complete it so
that σ maps ends of the critical arc to the ends of the arc missing in the
σ-images of the non-critical arcs, called also the critical value arc.

Note, there is no cycle of regular sectors under the induced permutation.
Otherwise the longest boundary arc in the cycle would be injectively mapped
to a twice longer arc, a contradiction. So the permutation σ has no cycles
of order less than m. So σ is just cyclic permutation of order m.
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Figure 2. Avoiding self-intersections

Figure 3. Impossible features

Since σ maps neighbour sectors (arcs at ∞) to neighbour sectors it must
be a ”rotation” (preserving cyclic order) permutation of our sectors and
rays.

In other words F induces an order preserving map on the family of the
lifts to R of the external angles of the rays (sides of the regular sectors,
that is all the rays Rj , and sectors bounded by them, since F is orientation
preserving on Qreg(∞) and since |Qreg(∞)| < π ”the last sector” cannot
jump over ”the first one”.

The conclusion is that there can be at most 2 orbits of rays in
⋃
R(x, s),

see [Milnor, Lemma 2.7], hence at most K = 2 periodic orbits of minimal
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period n in B(z0, r) In fact since the period of z0 is 1 in this Section, there
is just one orbit of rays for n > 1, so K = 1.

Writing the argument directly, we have proved that σ on the sectors,
hence on the rays, is transitive, hence has only one orbit. Hence the number
K of our periodic orbits of minimal period n is 1. □

Remark 3.1. Note that f on each regular Qj [r] is only a local homeo-
morphism onto its image; it is a priori not clear whether it is injective on
Qj [r] or Q

reg[r]. Though the rays cannot intersect one another, the sub-rays
f(Rj [r]) can intersect f(S[r]) (if Rj [r] pass close to {f−1(z0)}. So we do not
know a priori that the correspondence given by the rays f(Rj [r]) between
their ends Pj in f(S(r)) and Pj(∞) ∈ S(∞) preserves their order. Namely
it is not clear that such a ray does not meet (S(r)) again (between Pj and
Pj(∞)), i.e. that Pj is its last exit from f(B(z0, r)).

In other words, though the cyclic order of the beginnings Pj of R′
j in

S(r) coincide with the cyclic order of f(Pj) in f(S(r), it is a priori not clear
that f(Pj) are the last exit points from f(B(z0, r)), so it is not clear that
their order coincides with the order at ∞, as S(r) is not precisely invariant
under f (this difficulty is not present if all the rays start at one repelling
fixed point, in place of S(r)). We resolve it using Qreg[2r]. The rays R′

j

considered separately could sneak through gaps between f(S(r)) and S(r).

Here is an easy complementing

Proposition 3.2. For a Cremer fixed point z0 for a quadratic polynomial
fc and r > 0 small enough every orbit of period n ≥ 2 has the valence ν
equal at most 2, that is each its point is a limit of at most two external rays.

Proof. Let O = (x1, ..., xn) be a repelling periodic orbit in B(z0, r), with
period at least 2, Set g = fn. Let R1(x1), ...,Rν(x1) be all the external
rays starting at x1. Their set will be denoted by A1. Similarly we define
Aj , j = 1, ..., n LetQs(xj) be sectors between them, that is domains bounded
by R(xj , s),R(xj+1 mod ν , s) and ∞. Then g yields σ a cyclic (preserving
order in external arguments) permutation (combinatorial rotation) of the
rays and of the sectors close to z0.

More precisely for every simple loop γ around B(z0, r) close to it, we
can consider the truncated sectors Qs(xj)(γ) with the boundary consisting
of the parts of the ray R(xj , s) joining xj to the point Ps,j being the first
point of the exit of this ray from clB(z0, r), the analogous part of the ray
Rs+1(xj)) and the arc in γ joining Ps,j to Ps+1,j . For each j and γ the order
of Ps,j is the same in γ compatible with the order in S(∞) (the circle of
external arguments), f , hence g, preserve this order. To see this use γ and
f(γ). Compare [Milnor, Lemma 2.1].

Since x = x1 is fixed for g then x2 = f(x1) is fixed for g as well. But
then, since the sectors Qs,1 are pairwise disjoint, and g is a homeomorphism
near B(z0, r), the g images of the truncates sectors are contained in the
respective sectors Qσ(s),j So σ is the identity permutation.
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So for the diagram (phase portrait) A1, ..., Aj , the valence ν is 1, or 2
[Milnor, Lemma 2.7] – a primitive case. See also Appendix.

□

4. Cremer periodic orbits

For a Cremer periodic orbit Theorem 1.6 holds, generalizing Theorem 1.5.
This section is devoted to this. It will use arguments from Section 3.

We assume that r0, hence all rn, are small enough that all the closed discs
clB(f i(z0), rn), i = 0, ..., p−1 are pairwise disjoint (far from each other) and
far from the critical point 0. We write zi for f

i(z0), for z0 Cremer’s of period
p and i = 0, ..., p− 1.

To simplify notation assume that |f ′(f i(z0))| = 1 for all i = 0, ..., p − 1.
In general it is appropriate e.g. to consider the radii rn|(f i)′(z0)|, so that
the the differential of f maps each i-th disc to the i+1-th one, mod p. One
chooses z0 in the Cremer orbit so that |(f i)′(z0)| ≤ 1 for all i = 0, 1, ....
Compare Remark 5.4.

Lemma 4.1. For each orbit of minimal period np as in Theorem 1.6 the
valence of all its points (the number of external rays starting at it) is 1 or
2.

Proof. See Proof of Proposition 3.2. □

Below we shall prove Theorem 1.6. It will follow the proof of Theorem
1.5, with mild complications. Originally we attempted proving Milnor’s
”pairwise unlinked” condition (4), see Appendix. Unexpectedly proving that
condition occurred difficult (a ”proof” in the first version arXiv:2503.03738v1
was incomplete). Here we proceed directly, relying only on the preservation
of the cyclic order, Milnor’s condition (2), and the proof occurs easy.

Proof of Theorem 1.6. Fix an arbitrary n. Let O1, ..., OK be periodic orbits,
each of minimal period np, entirely contained in the union of the open discs
B(zi, r), for an arbitrary r ≤ rn. Here rn = r0 exp−δnp. We shall find an
upper bound for K.

Consider, as in Section 3, all external rays R(x, s) with their starting
points x ∈

⋃
k Ok with arguments θs(x), s = 0, ...m− 1, where Knp ≤ m ≤

2Knp. The constant 2 due to Lemma 4.1.
Now, for each ray R(x, s) consider τ(x, s) being the largest τ so that

R(x, s)(τ) ∈ clB(zi, r)where x ∈ B(zi, r). For each i and x ∈ B(zi, r) define
the truncated ray R′(x, s)) = R′(x, s)[r], running from R(x, s)(τ(x, s)) to
∞, as in Section 3.

For each i consider the cyclic order in the family of all the rays R′(x)
over x ∈ B(zi, r) along the circle ∂B(zi, r) coinciding with the cyclic or-
der of the set Ai of their arguments (angles) in S(∞), compare Section
3. Then the doubling map F restricted to Ai maps it 1-to-1 to Ai+1.

http://arxiv.org/abs/2503.03738
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It preserves the cyclic order, by the arguments the same as in Proof of The-
orem 3.

As we already mentioned we would be happy to apply [Milnor, Lemma
2.7]. The sets Ai would play the role of the respective sets in the formal
orbit portrait in [Milnor, Lemma 2.3]. For the comfort of the reader we
provide the portrait definition in Appendix. This would give the estimate
of the number of periodic orbits of minimal period np being exp−δn close
to our Cremer’s orbit, at most 2, that is K ≤ 2. However we cannot prove
Milnor’s property (4), even for a large f -invariant part of the family of rays,
namely that all Ai’s are pairwise unlinked. Miraculously we do not need it
and the proof of Theorem 1.6 using the proof of Theorem 1.5 happens to be
easy.

We use notation from Section 3. To distinguish objects related to zi such
as e.g. Rj [r] starting in ∂B(zi, r) we write Rj [r]i, where i is mod p. Here
j enumerates in cyclic order of our external rays (arguments) starting in
B(z0, r)]. As mentioned above f preserves this order so it is the same cyclic
for each i. Write Γj [r]i and Qj [r]i for the corresponding arcs in B(zi, r),
defined as in Section 3, and sectors bounded by Rj [r]i,Rj+1[r]i and Γj [r]i.

Denote the mapping induced by the doubling map F from Ai to Ai+1 by
σi. For each i denote the arcs in S(∞) between cyclic consecutive points of
Ai by Sji(∞), j = 0, ...,m− 1. Call them angle arcs. Each is the S(∞ part
of the boundary of the sector Qj [r]i. We call the arc (the sector) regular
if Qj [r]i does not contain the critical point 0. For each i the arc (sector)
containing 0 is called critical. Compare Section 3.

We shall consider trajectories of the angle arcs, remembering that F is a
homeomorphism between Sji(∞) and Sσij(i+1)(∞) for Sji(∞) regular, and
makes an additional round along S(∞) otherwise. For Sji(∞) critical there

is no choice of the next arc. It must be the arc (gap) S(∞)\
⋃m−1

j=0 F (Sji(∞)
by the preservation of the cyclic order. We conclude that the trajectories
are disjoint.

When iterating f , for each i : 0 ≤ i < p the point 0 serves one sector. So
for the period of our rays np or 2np (common, as for rotations), at most p
trajectories of the angle arcs can be served.

But trajectories of only regular arcs cannot exist because they are periodic
so the length of the arcs doubles at each step tending to ∞, in particular
exceeding 2π, which is not possible. So the number of the trajectories of the
angles or rays must be upper bounded by p. So, after projecting onto the
set of the beginnings of the rays,

⋃K
k=1Ok, we obtain K ≤ p. Compare the

end of the proof of Theorem 1.5.
□

.

Example 4.2. The period 3 primitive renormalization example f(z) =
z2−7/4 has orbit portrait at period 3 parabolic orbit A1 = {3/7, 4/8}, A2 =
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{6/7, 1/7}, A3 = {5/7, 2/7} with two trajectories of arcs defined above, one
meeting a critical arc (sector) once, the other twice, see [Milnor, Figure 6].
This is the primitive case in Lemma 6.1.

.

Remark 4.3. The proof above holds for any polynomial, provided F : Ai →
Ai+1 preserves cyclic order for each i. Then K ≤ pd where d is the number
of critical points in C.

Remark 4.4. Similarly to Theorem 1.6 one proves that for a Siegel S disc
fixed for quadratic f with the critical point 0 /∈ ∂S and ∂S being a Jordan
curve, there are few periodic orbits exponentially close to S. The same for
any periodic Jordan Siegel disc.

5. Hypothesis H

Here we prove

Theorem 5.1. Hypothesis H holds for all quadratic polynomials, with ♯P ≤
2n.

As announced in Introduction, Section 1, Theorem 5.1 implies Theorem
1.4 (equality of pressures) due to [PRS2].

The proof of Theorem 5.1 is similar to the one in Section 3 and in a version
of a Cremer periodic orbit in Section 4, though some additional observations
are needed, caused by a possible interference of the critical points. Let us
start with two lemmas similar to Lemma 2.1 and Corollary 2.2. They repeat
in fact [PRS2, Proposition 3.10] with slightly different proofs; we provide
them for completeness.

Denote by Crit(f) the set of all critical points of f in J(f). For each n
consider the metric ρn(x, y) := maxi=0,...,n−1 ρ(f

i(x), f i(y)), where ρ is the
spherical metric, see Introduction.

Lemma 5.2. Let f : C → C be a rational function and P ⊂ Pern the set
of all periodic points of period n in J(f) as in Hypothesis H with ρn(x, y) <
exp−δn, for n large enough and all x, y ∈ P. Then there exists ϵ > 0 (not
depending on n) and there exists P ′ ⊂ P such that

(5.1) #P ′ ≥ exp(nδ/2),

and for an arbitrary x ∈ P ′

(5.2) ρ(f i(x),Crit(f)) ≥ exp(−nδ/2)

for all i except at most a = a(δ) of ”bad” ones for a constant a, and for
”bad” i and every y ∈ P ′

(5.3) ρ(f i(x), f i(y)) ≤ (exp−nϵ)ρ(f i(x),Crit(f)).
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Proof. There exists C > 0 depending only on f , such that
B(Crit(f), exp−Cn) ∩ Pern = ∅. This follows from so called Rule I in
[P-Lyapunov, Lemma 1], saying that for any critical point cr ∈ J(f) and
x, fN (x) ∈ B(cr, r) it holds N ≥ C−1 log 1/r, applied for n = N and r =
exp−n.

Suppose for simplification f(z) = z2+ c so there is only one critical point
0 in J(f). Consider the annulus A = B(0, exp(−nδ/2)) \ B(0, exp(−Cn)).
In the logarithmic coordinates A (more precisely logA, with the branch of
logarithm with range in {x+ iy : −π < y ≤ π}), can be covered by

2π(Cn− nδ/2)

exp−2nϵ
≤ exp 3ϵn

squares of sides of length exp−nϵ for n large enough. Enumerate them by
Qs.

If i is bad, then f i(x) belongs to one of these squares. We select s = s(i)
with the largest number of points in f i(P) belonging to it, so

s(i) ≥ exp δn

exp 3ϵn
= expn(δ − 3ϵ).

This (first) selection defines

P ′
1 := {y ∈ P : fs(i)(y) ∈ Qs}.

Next, for another bad i we make a selection in P ′
1 and obtain P ′

2, etc.
until P ′

a having at least
exp(n(δ − 3aϵ))

elements for n large enough.
Here a is the number of returns of the trajectory f i(x)i=1,...,n−1 to

B(0, exp(nδ/2)), which is inverse of smallest gap between consecutive times
of bad returns, which by Rule I is bounded below by C−1nδ/2. Thus a ≤
2C/δ.

We conclude (5.1) for ϵ < δ2/6C. The inequalities (5.2) and (5.3) follows
immediately from the definitions.

□

Lemma 5.3 (small distortion). Let f : C → C be a rational function.
Then for every δ > 0 there exist ϵ > 0 and β > 0 such that for all n large
enough the following holds. Let f i(x), f i(y), i = 0, ..., n−1 be two f -periodic
orbits of minimal period n which are rn = exp−nδ close, that is such that
ρn(x, y) ≤ rn. Write ρ(x, y) := r ≤ rn.

Assume that the conditions either (5.2) or (5.3) are satisfied for each i,
as in Lemma 5.2.

Then, all f i(B(x, (1 + β)nr)), i = 0, ..., n − 1 are uniformly boundedly
distorted, with distortion of order at most 1 + exp(−nϵ) and

dist(f i(B(x, (1 + β)nr)),Crit(f)) ≥ exp(nϵ) diam f i(B(x, (1 + β)nr)).

In particular f i is injective on B(x, (1 + β)nr) for each i = 0, ..., n.
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Geometrically, f i is almost a similarity on B(x, (1 + β)nr) for each i =
0, ..., n.

Proof. Notice that due to (5.2) and (5.3)∣∣∣ |ρ(f i+1(x0), f
i+1(y0))/ρ(f

i(x0, y0))

|f ′(f i(x0))|
− 1

∣∣∣ ≤ exp−nϵ

.
Repeat the proofs of Lemma 2.1 and Corollary 2.2 estimating complex

f ′(xi) consecutively. The orbit (x = x0, ..., xn−1, xn = x0) plays the role of
Cremer’s periodic (z0, ..., zn = z0).

□

Remark 5.4. In the periodic orbit of x we can choose a point, say x0, such
that

(5.4) ρ(f i(x0), (f
i(y0)) ≤ ρ(x0, y0)

Indeed, choose k for which ρ(fk(x), (fk(y)) attains maximum.

Proof of Theorem 5.1. Fixed n consider for x = x0 ∈ P ′ the disc Bn :=
B(x, r) for r ≤ rn = r0 exp−δn as in Lemma 5.3 (we can omit r0 for n large
enough), that is all f i, i = 0, ..., n are almost similarities on B(x, (1+ β)nr),
compare notation in Theorem 1.6. Here P ′ is as in Lemma 5.2, in particular
satisfying (5.1).
Write Bn,i := f i(Bn).

We take C > 1 large enough that the proof below makes sense. Let i = k1
be the first time of return of x under the action by f i to CBn = B(x,Cr).
Since fn(x) = x ∈ CBn, k1 ≤ n. There are two cases now

I. k1 = n. Then we have te situation similar to that in Theorem 1.6. The
quasi-discs f i(B(x, 14Cr)) for all 0 < i < n are disjoint from B(x, 14Cr). In
particular Bn,i are well disjoint from Bn for C large enough.

Hence, for 0 ≤ i < n, Bn,i are pairwise disjoint, with annuli separating
each of the from the others of modulus at least 1

2π logC/3.
The pairwise disjointness follows, since otherwise, for some 0 < i < k < n,

we would have fn−i(Bn,i) ∩ fn−i(B̂n,k) ̸= ∅. The latter quasi-discs are con-

tained in B(x, 2r) and fk−i(B(x, r) which therefore intersect. Contradiction.
The same consideration holds for moduli

Finally we apply Theorem 1.6 with p = n. So the number of periodic
orbits of minimal period n in C′ we have discussed, does not exceed n. This
contradicts (5.1).

Note that no Cremer periodic orbit is involved; it is not needed. See
Theorem 5.5

II. k1 < n.
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Figure 4. Moduli

See Figure 4 below.

Consider
⋃n/k1

i=0 f ik1(B(x, 2Cr)) and the discB1
n := B(x, n8Cr) containing

it. This containing follows from Remark 5.4, for a right choice of x in its
orbit. Let i = k2 ≤ k1 be the first time i of return of x under the action by
f i to CB1

n. Then either
I2. k2 = k1. Then analogously to the case I. we consider the pairwise

disjoint quasi-discs B1
n,i := f i(B1

n) for i = 0, ..., k1 − 1 and we consider
p = k1

or
II2. k2 < k1. Then we define B2

n and B2
n,i for i = 0, ..., k2 − 1.

Etc. until ks = ks−1 or ks = 1 for certain s.
Notice that s ≤ log2 n, since for each time i < s we have ki+1 ≤ ki/2.

Notice that due to our construction diamBs
n,i ≤ r(4C)s

∏s−1
i=0 ki/ki+1,

where k0 := n. So, for each i : 0 ≤ i < n,

(5.5) diamBs
n,i ≤ r(4C)log2 nn ≤ rnlog2 4C+1,

where nlog2 4C+1 grows slower than exponentially with n, in particular slower
than (1 + β)n.

So, if ks = 1 then we have the situation as in Section 3 and B(z0, r) and r
exponentially small. If ks = ks−1 we have the situation as in Section 4 with
p = ks. Again we receive the number of periodic orbits we have discussed
does not exceeding p ≤ n. This contradicts (5.1).

□
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Actually we do not refer above to Theorems 1.5 and Theorem 1.6 directly,
because those theorems treat the situations in presence of Cremer fixed point
(or periodic orbit).

Instead we apply the following fact having the same proof:

Theorem 5.5. For every quadratic polynomial f = fc, for every δ > 0
there exist C > 0 and r0 > 0 such that for every integers p and n and every
sequence of (quasi)discs Bi, i = 0, ..., p− 1 such that

• diamBi ≤ r0 exp(−δnp)dist(CBi,Crit(f)),
• in particular diamBi ≤ r0 exp(−δnp),
• and CBi are pairwise disjoint,

there are at most p points x ∈ B0 of minimal period np, such that fkp+i(x) ∈
Bi for each k : 0 ≤ k < n and i : 0 ≤ i < p.

6. Appendix. Orbit portraits, following [Milnor]

Let A1, ..., Ap be subsets of the circle of arguments (angles) at ∞. This
collection is called the formal orbit portrait if the following conditions are
satisfied:

(1) Each Ai is a finite subset of R/2πZ.
(2) For each i mod p, the doubling map F : θ → 2θ( mod 2πZ) carries

Ai bijectively onto Ai+1 preserving cyclic order around the circle,
(3) All of the angles in A1 ∪ ... ∪ Ap are periodic under doubling, with a

common period rp, and
(4) the sets A1, ..., Ap are pairwise unlinked; that is, for each i ̸= k the

sets Ai and Ak are contained in disjoint sub-intervals of R/2πZ.

Figure 5. Formal orbit portrait, [Milnor, Fig. 2]
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Here at Figure 5, is Milnor’s schematic diagram illustrating the formal
orbit portrait associated to z 7→ z2 + c for c = 1

4e
2πi/3 − 1 for a period 2

parabolic orbit, with its external ray orbit of period 6.
A1/2π = {22/63, 25/63, 37/63} and A2/2π = {11/63, 44/63, 50/63}. The
critical value c lies in the smallest sector. Compare [Milnor, Figures 1 and
2].

Lemma 6.1 (Milnor, Lemma 2.7, primitive vs satellite). Any formal orbit
portrait of valence ν > r must have ν = 2 and r = 1. It follows then that
there are just two possibilities:

Primitive Case. If r = 1 so that every every ray which lands on the period
p orbit is mapped by to itself by fp, then at most two rays land on each orbit
point.

Satellite Case. If r > 1, then ν = r, so that exactly r rays land on each
orbit point, and all of these rays belong to a single cyclic orbit.

The number r is defined as the number of points in each Ai in one F -orbit
(by (3) it does not depend on the orbit nor i).
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00-656 Warszawa, Poland

Email address: feliksp@impan.pl


	1. Introduction
	2. Distortion for iterates
	3. Cremer fixed points
	4. Cremer periodic orbits
	5. Hypothesis H
	6. Appendix. Orbit portraits, following Milnor
	References

