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Summary. We introduce new variants of the notion of geometric pressure for rational
functions on the Riemann sphere, including non-hyperbolic functions, in the hope that
some of them will turn out useful to achieve fast approximation from below of the hyper-
bolic Hausdorff dimension of Julia sets.
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1. Introduction. Iterating a mapping f (roughly) increasing distances,
for example a rational function on a neighbourhood of its “chaotic” invariant
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Julia set, transforms its small subsets into large ones, roughly preserving
shapes (dynamical “escalator”). So long time behaviour under the action of
f provides an insight into the local structure of J(f)—here, in complex
dimension 1, into its Hausdorff dimension characteristic.

A tool is a geometric pressure with respect to the potential ϕ = ϕt =
−t log |f ′| on the Julia set, here for t > 0. The pressure (free energy) can be
defined for any ϕ in a variational way:

(1.1) Pvar(f, ϕ) = sup
µ

(
hµ(f) +

�
ϕdµ

)
,

with the supremum over all f -invariant probability measures µ on J(f);
hµ(f) means the measure-theoretical (Kolmogorov) entropy, and the µ for
which the supremum is attained (if it exists) is an equilibrium state. Be-
low we provide different definitions. There is an analogy with equilibria in
statistical physics, e.g. Ising model of ferromagnetics, where equilibria are
distributed on the space of all configurations of + or − over Z2 with a poten-
tial depending on a Hamiltonian function expressed in terms of interactions
between elements of the configuration.

The founders of applications of such models in dynamics are in particular
Y. Sinai, D. Ruelle and R. Bowen (SRB measures). Here we consider forward
trajectories, so the “configurations” are over N. In particular a geometric
application with the use of ϕt, hence expSn(ϕt) = |(fn)′|−t, is to relate
(roughly) an equilibrium measure (a mass) of a disc of diameter |(fn)′|−1 to
this diameter, for each t up to a normalizing coefficient expnP (f, ϕt). It is
equal to 1 if t = t0 is a zero of the pressure P (f, ϕt), denoted also P (f, t). This
t0 is called the hyperbolic Hausdorff dimension of J(f), HDhyp(f, t), defined
as the supremum of the Hausdorff dimensions of invariant hyperbolic subsets
of J(f).

An introduction to this theory is provided in [PU]. Closer to the content
of this paper are [P2] and [PRS2], where geometric pressure for general
rational functions was first defined and studied. See also [P3].

The aim of this note is to introduce more variants of this notion, in
particular, some notions close to McMullen’s pressure defined for hyperbolic
rational functions in [McM], useful to numerically calculate the Hausdorff
dimension of the underlying Julia sets, or estimate it from below.

The pressure function t 7→ P (f, t) will occur to be the limit from below
of a sequence of functions specific to each notion of pressure we introduce.
Therefore their first zeros will converge to HDhyp(f, t) from below. There are
two ideas in these notions of pressure:

(1) To replace a potential along each trajectory by a “fuzzy” one, mainly by
replacing the value at a point by the infimum of the values in a small
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neighbourhood, or the smaller of the values at two sampling points close
to it.

(2) To restrict the pressure to trajectories not passing too close to the set
of critical points.

The key issue we do not address here is how efficient is the calculation of
these functions and how fast are the convergences. This will be dealt with
in [DGT].

2. Definitions and the statement of the main theorem

2.1. Topological pressures. We start by recalling the basic definition
of topological pressure for a continuous transformation of a metric compact
space and a real continuous potential (see e.g. [Wal] or [PU]).

Definition 2.1 (Topological pressure via separated sets). Let f : X→X
be a continuous map on a compact metric space X, and ϕ : X → R a
continuous real-valued function (a potential) on X. For Sn defined in (2.2)
below, consider

(2.1) Psep(f, ϕ) := lim
ε→0

lim sup
n→∞

1

n
log

(
sup
Y

∑
y∈Y

expSnϕ(y)
)
,

where the supremum is taken over all (n, ε)-separated sets Y ⊂ X, that is,
such that ρn(y1, y2) ≥ ε for any distinct y1, y2 ∈ Y , where ρn is the metric
defined by ρn(x, y) = max {ρ(f j(x), f j(y)) : j = 0, . . . , n}.

We can slightly modify this definition, defining the fuzzy pressure or
inf-pressure P 0

sep(f, ϕ) by first replacing

(2.2) Snϕ(y) :=

n−1∑
j=0

ϕ(f j(y))

in (2.1) by

Sδ
nϕ(y) :=

n−1∑
j=0

inf {ϕ(z) : z ∈ B(f j(y), δ)},

obtaining P δ
sep(f, ϕ), and then defining

P 0
sep(f, ϕ) := lim

δ→0
P δ
sep(f, ϕ).

By the uniform continuity of ϕ, an easy calculation gives Psep(f, ϕ) =
P 0
sep(f, ϕ).



118 F. Przytycki

A related notion is tree pressure (or Gurevitch pressure), interesting for
a non-invertible f , defined for z ∈ X by

(2.3) Ptree(f, ϕ, z) = lim sup
n→∞

1

n
log

∑
y∈f−n(z)

expSnϕ(y),

which can also be defined in a “fuzzy” way as fuzzy tree pressure, or infimum
tree pressure,

(2.4) P 0
tree(f, ϕ, z) := lim

δ→0
P δ
tree(f, ϕ, z),

where

(2.5) P δ
tree(f, ϕ, z) := lim sup

n→∞

1

n
log

∑
y∈f−n(z)

expSδ
nϕ(y).

Later on we shall use the following easy result [PU, Chapter 4].

Remark 2.2. Suppose f : X → X is open, distance expanding, and
topologically exact : for every open U ⊂ X there exists n ∈ N such that
fn(U) = X. Also, let ϕ : X → R be continuous. Then all the above pressures
coincide and are independent of z. So we can denote them just by P (f, ϕ).

2.2. Geometric pressures. From now on we shall consider a rational
transformation of the Riemann sphere, f : C → C, and its restriction to the
Julia set J(f). We shall consider geometric potentials ϕ = ϕt = −t log |f ′|
for t > 0. Note that in this case we can write expSnϕt in Definition 2.1 in
the form |(fn)′|−t. The derivative f ′ will be considered only with respect to
the spherical Riemann metric. We shall use only its absolute value |f ′| so
there will be no ambiguity caused by its argument.

The points x ∈ C where f ′(x) = 0 are called critical and their set is
denoted by Crit(f). For c ∈ Crit(f), if f(z) = a(z − c)ν + b(z − c)ν+1 + · · ·
in the complex plane coordinates, with a ̸= 0, then ν = ν(c) is called the
multiplicity of f at c. We shall also consider the post-critical set

PC(f) :=

∞⋃
n=1

fn(Crit(f)).

If the forward trajectory of no critical point accumulates at J(f), that is,
there are f -critical points neither in J(f), nor attracted to parabolic periodic
orbits, then f |J(f) is open expanding. (Another term for this is hyperbolic.)
It means there exist C > 0 and λ > 1 such that |(fn)′(z)| > Cλn for all
z ∈ J(f) and n ∈ N. This is an easy case, covered by Remark 2.2.

From now on we shall consider the general case with critical points
whose forward trajectories can accumulate at J(f). The above definitions of
Ptree(f, ϕ, z) and P 0

tree(f, ϕ, z) make sense even though ϕt is infinite at crit-
ical points (yielding ∞) and for z outside J(f). The pressure Ptree(f, ϕt, z)
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does not depend on z ∈ C for non-exceptional z (not in or fast accumulated
by PC(f), see Definition 2.10). See [P2] and [PRS2]. So we can denote it just
by Ptree(f, t). The independence of P 0

tree(f, ϕ, z) from non-exceptional z also
holds, via Phyp(f, t) and Ptree(f, t), see Main Theorem 2.8(1).

To fix notation for ϕ = ϕt = −t log |f ′| let us rewrite:

Notation 2.3 (Geometric tree pressure).

(2.6) Ptree(f, t, z) = Ptree(f, ϕt, z) := lim sup
n→∞

1

n
log

∑
v∈f−n(z)

Πn(t, v),

where

(2.7) Πn(t, v) :=

n∏
k=1

|f ′(fn−k(v))|−t = |(fn)′(v)|−t.

Notation 2.4 (Geometric fuzzy tree pressure).

(2.8) P 0
tree(f, t, z)

:= lim
δ→0

lim sup
n→∞

1

n
log

∑
v∈f−n(z)

n∏
k=0

inf {|f ′(y)|−1 : y ∈ B(fn−k(v), δ)}.

We shall also introduce a new notion:

Definition 2.5 (Pullback infimum tree pressure).

(2.9) P pullinf
tree (f, t, z) := lim

r→0
lim sup
n→∞

1

n
log

∑
v∈f−n(z)

Πpullinf
n (t, v),

where

(2.10) Πpullinf
n (t, v)

:=
n∏

k=1

inf {|f ′(y)|−t : y ∈ Compfn−k(v) f
−k(B(fn(v), r))},

where Compx means the component containing x.
The limit as r → 0 exists since the relevant family is increasing as r → 0

because the infima in (2.10) are taken over shrinking sets.

Let the following definition of P (f,−t log |f ′|), called the hyperbolic pres-
sure, be considered as a default one, to be denoted P (f, t) (see e.g. [P3]):

Definition 2.6 (Hyperbolic pressure).

P (f, t) = Phyp(f, t) := sup
X∈H (f,J(f))

P (f |X ,−t log |f ′|),

where H (f, J(f)) is defined as the family of all compact forward f -invariant
(f(X) ⊂ X) hyperbolic topologically exact subsets of J(f) and repelling
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for f , that is, if a forward trajectory of a point is in a sufficiently small
neighbourhood of X then it is entirely in X.

The repelling assumption can be omitted without affecting Phyp(f, t).
A direct proof is, given X maybe not repelling, to find a Cantor hyperbolic
repeller X ′ in a neighbourhood of X with

P (f |X′ ,−t log |f ′|) ≥ P (f |X ,−t log |f ′|)

by shadowing, as in [PU, Theorem 11.6.1] (but simpler due to uniform hy-
perbolicity).

2.3. Hausdorff dimension. The definition and Bowen’s formula saying
that, for every hyperbolic repeller X, the Hausdorff dimension HD(X) is the
only zero of the function t 7→ P (f |X , t) [Bow] immediately yield

Proposition 2.7 (Generalized Bowen formula). The first zero t0 of the
function t 7→ Phyp(t) is equal to the hyperbolic dimension HDhyp(J(f)), de-
fined by

HDhyp(J(f)) := sup
X∈H (f,J(f))

HD(X).

Note that this zero exists, since all P (f |X ,−t log |f ′|) are decreasing,
hence their limit Phyp(f, t) is decreasing and HD(X) ≤ 2 since X ⊂ C,
which is of dimension 2.

2.4. Main Theorem. We shall prove the following (some definitions
will be provided later on):

Theorem 2.8 (Main Theorem). Let f : C → C be a rational function of
degree at least 2. Then:

(1) P (f, t) = Ptree(f, t, z) = P 0
tree(f, t, z) for all non-exceptional z ∈ C.

(2) P (f, t) = P̂McM(f, t) = P 0
McM(f, t) ≤ PMcM(f, t) (restricted and fuzzy

McMullen pressures) provided for the puzzle structure P in the defini-
tion of McMullen’s pressures the diameters of the puzzle pieces of the
renormalizations RN (P) tend uniformly to 0 as N → ∞.

(3) P (f, t) = P pullinf
tree (f, t) for all r small enough, provided f is backward

uniformly asymptotically stable. Moreover for all r small enough, all
non-exceptional z and every backward trajectory (zn) of z (that is, f(zn)
= zn−1 for all n ∈ N, and z0 = z)

(2.11)
1

n
log

(
Πpullinf

n (t, zn)

|(fn)′(zn)|−t

)
→ 0

as n → ∞, uniformly with respect to the backward trajectory (zn), where
z0 = z.
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The equalities in (1) say in particular that the pressures there do not
depend on z for all non-exceptional z.

Definition 2.9. f is said to be backward uniformly asymptotically stable
(buas) if there exists r0 > 0 such that for each z ∈ J(f), the diameters of all
pullbacks of B(z, r0) (components of preimages) under fn tend to 0 uniformly
fast, with respect to z and to the pullback, as n → ∞.

Notice that this property is hereditary, that is, if it holds for r, then it
holds for every r̃ ≤ r.

Definition 2.10. We call a point z ∈ C non-exceptional if for each
ϵ > 0 and n large enough B(z, exp(−nϵ)) is disjoint from f j(Crit(f)) for
all j = 1, . . . , n. In particular, the point z is not post-critical, that is, z /∈
PC(f) =

⋃∞
n=1 f

n(Crit(f)). The other points are called exceptional and the
set of all exceptional points is denoted by E.

It is clear from the definition that the exceptional set E ⊂ Ĉ has Haus-
dorff dimension 0. Sometimes it is convenient to consider z ∈ C \ J(f) so
close to J(f) that it cannot be post-critical itself or accumulated by the
post-critical set. Then of course it must be non-exceptional.

Remark 2.11. The lim supn→∞ in the definition (2.3) can be replaced
by lim, which always exists [PU, Remark 12.5.18]. So the limits exist also in
the definition of P pullinf

tree (f, t, z) for z ∈ J(f), provided f is buas. This will
follow easily from the proof of Theorem 2.8 (see (2.11) and (3.4)). The same
holds for P infW

tree (f, t, z), to be defined in (3.5).

3. Fuzzy (infimum) and pullback infimum tree pressures

Proof of Theorem 2.8(1). The result follows immediately from known
theory and easy observations.

Indeed, the inequality Phyp(f, t) ≤ Ptree(f, t, z) follows from the trivial
observation that for every X ∈ H (f, J(f)) in Definition 2.6 and z ∈ X,

Ptree(f |X ,−t log |f ′|) ≤ Ptree(f,−t log |f ′|, z)
since in the former pressure we count only backward trajectories in X of
a non-exceptional z ∈ X, whereas in the latter we count all trajectories
in J(f). A non-exceptional z ∈ X exists since HDhyp(J(f)) > 0, hence in its
definition it is sufficient to consider only X satisfying HD(X) > 0, and we
have HD(E) = 0.

The same reasoning holds for Phyp(f, t, z) ≤ P 0
tree(f, t, z), defined in (2.8).

Take into account that for every backward trajectory (zn) of z in X we have
log |f ′(zk)| ≤ log |f ′(v)|+ ϵ for every v ∈ C with ρ(xk, v) ≤ δ, for every ϵ and
δ small enough. This is so because X is disjoint from Crit(f), hence, being
compact, bounded away from it.
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The inequality P 0
tree(f, t, z) ≤ Ptree(f, t, z) holds trivially for every z since

inf {|f ′(y)|−1 : v ∈ B(zk, δ)} ≤ |f ′(zk)|−1 for all k. The latter also implies
the monotone increasing of P δ

tree(f, t, z) as δ → 0.
The proof that Ptree(f, t, z) ≤ Phyp(f, t) for non-exceptional z ∈ J(f)

is harder, but fortunately it is known. First one assumes that z is non-
exceptional and additionally hyperbolic, which means by definition that there
exist r > 0 and λ > 1 such that for every disc B(z, τ) there exists n ∈ N
such that |(fn)′(y)| ≥ λn for every y ∈ B(z, τ), fn|B(z,τ) is univalent and
fn(B(z, τ)) ⊃ B(fn(z), r) [PRS2, Proposition 2.1]. An idea of the proof is
to capture a large hyperbolic set using “shadowing”.

Next one proves that Ptree(f, t, z
1) = Ptree(f, t, z

2) for any two non-
exceptional z1 and z2 ([P2, Theorem 3.3] and [PRS1, Geometric Lemma]).
The idea is to find a curve (or a curve for each n) joining z1 to z2 in C not
fast accumulated by fn(Crit(f)), therefore with a controllable distortion for
all branches of f−n on appropriate neighbourhoods.

So one gets equality of the tree pressures for all non-exceptional z, which
justifies the definition of tree pressure:

(3.1) Ptree(f, t) := Ptree(f, t, z)

for every non-exceptional z.

Proof of Theorem 2.8(3). The inequality P pullinf
tree (f, t, z) ≤ Ptree(t, f, z)

holds trivially for every z ∈ C as before since obviously

inf {v ∈ Wk,zk,r : |f
′(y)|−1} ≤ |f ′(zk)|−1

for all k. Here Wk,x,τ is the pullback Compx f
−k(B(fk(x), τ)).

So let us prove the opposite inequality for every non-exceptional z in J(f),
namely

P pullinf
tree (f, t, z) ≥ Ptree(f, t, z).

Write rn := supz∈J(f), v∈fn(z) diamWn,v,r and rmax := max {rn : n =
1, 2, . . .} for all n = 1, 2, . . . . Notice that

(∗) rmax → 0 as r → 0.

Indeed, by backward uniform asymptotic stability, for all r ≤ r0 as in Defi-
nition 2.9,

∀ϵ > 0 ∃n(ϵ) ∀n ≥ n(ϵ) ∀Wn,v,r, diamWn,v,r ≤ ϵ.

Notice also that for every δ > 0 there exists δ′ > 0 such that for every z ∈ C
and every component we have diamComp f−1(B(z, δ′)) ≤ δ. By iterating a
number of times smaller than n(ϵ) we conclude that there exists 0 < r′ ≤ r
such that diamWn,v,r′ ≤ ϵ for every n < n(ϵ). Thus, (r′)max ≤ ϵ. This
proves (∗).
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Having chosen z ∈ J(f) consider an arbitrary backward trajectory (zn).
To simplify notation assume that z is non-periodic, hence zn determines n.

Consider r such that 2rmax < r0. We define inductively a sequence of
integers kj . Let k1 be the least k ≥ 1 such that

W̃ k,1 := Wk,zk,2r

contains a critical point. Note the coefficient 2 of r; it will guarantee bounded
distortion on discs of radius r of the branches f−k, k = 1, . . . , k1 − 1, map-
ping z to zk.

Having defined kj we consider the least k = kj+1 > kj such that

W̃ kj+1,j+1 := Wkj+1−kj ,zkj+1
,2 diamWkj,zkj

,r

contains a critical point.
Let C be an upper bound of the distortion of fkj+1−kj−1 on

f(Wkj+1,zkj+1
,r); by the Koebe distortion lemma it is universal for all r ≤ r0

[PU, Lemma 6.2.3]. Notice also that, for another C,
diamWkj+1,zkj+1

,r

diam f(Wkj+1,zkj+1
,r)

≤ C|f ′(y)|−1

for all y ∈ Wkj+1,zkj+1
,r and j, and C depending on the maximal degree of

criticality at critical points.
Finally, notice that since diamWkj ,zkj ,r

→ 0, by (∗),

diam W̃ kj+1,j+1 → 0

as j → ∞, uniformly with respect to the backward trajectories (xn) for
x ∈ J(f). So kj+1 − kj → ∞ uniformly if the same critical point above
appears, since otherwise the trajectory (xn) would not be in J(f) (see e.g.
[P1, Lemma 1]). Taking into account that f has only a finite number of
critical points, we conclude that #{j : kj ≤ n}/n → 0.

Thus, for every y ∈ Wn,zn,r,

(3.2) Πn(1, y) = |(fn)′(y)|−1 ≥ Πpullinf
n (1, zn) ≥ exp(−nϵ)

diamWn,zn,r

r

for all n ≥ n(ϵ) uniformly with respect to the backward trajectory (zn), for
all ϵ > 0.

Finally, we shall use the assumption that y is non-exceptional, set v = zn,
and prove an inequality roughly opposite to (3.2):

diamWn,zn,r

r
≥ C exp(−nϵ)

diamCompzn f
−n(B(z, C exp(−nϵ)))

C exp(−nϵ)
(3.3)

≥ const · exp(−nϵ)|(fn)′(zn)|−1.
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The latter inequality follows from the bounded distortion of the confor-
mal mapping f−n : B(z, C exp(−nϵ)) → Compzn f

−n(B(z, C exp(−nϵ))) for
a constant C > 0 and every n since z is non-exceptional.

In other words, for all r > 0 small enough,

(3.4) lim
n→∞

1

n
log

(
Πpullinf

n (1, zn)

|(fn)′(zn)|−1

)
= 1,

the convergence being uniform over all backward trajectories of z.
Raising suitable expressions in (3.2) and (3.3) to the power t, summing

over zn and letting n → ∞ and ϵ → 0 yields equality of the pressures in
Theorem 2.8.

Notice that in P pullinf
tree some components Wn,zn,r can contain many ele-

ments of f−n(z), thus being counted many times, but these multiplicities
are upper bounded by exp τn for τ arbitrarily small and n large, again due
to scarcity of “critical” times: kj+1 − kj → ∞ for each critical point. This
justifies

Definition 3.1 (Pullback infimum W-tree pressure).

(3.5) P pullW
tree (f, t, z)

:= lim
r→0

lim sup
n→∞

1

n
log

∑
W∈Wn

n∏
k=1

inf {|f ′(y)|−t : y ∈ fn−k(W )},

where Wn is the family of all pullbacks of B(z, r) for fn. The limit in (3.5)
as r → 0 exists due to obvious monotonicity (cf. Definition 2.5).

Thus we obtain

Corollary 3.2. P pullW
tree (f, t, z) = Ptree(f, t) for every non-exceptional z.

Remark 3.3. The inequality (3.2) was proved in [P4] and named a “tele-
scope lemma”. However, there the exponential convergence of |(fn)′(v)|−1

to 0 was assumed and nothing was assumed on diamWn,zn,r. Here the uni-
form convergence diamWn,zn,r → 0 is a priori assumed, but we assume
nothing about the derivatives.

Remark 3.4. In P 0
tree(f, t) the fraction∏n

k=0 inf {|f ′(y)|−t : y ∈ B(fn−k(zn), δ)}
|(fn)′(zn)|−t

can be very close to 0, unlike in (2.11). So an analogue of (2.11) need not
hold. See Remark 4.6 and Section 5.

4. McMullen’s pressures. We now define McMullen’s pressure. As-
sume there is a puzzle structure for f (a Markov partition with singu-
larities). Namely there exists a covering of a neighbourhood of J(f) by a
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family P of closed topological Jordan discs Pi, small enough that none of
them contains more than one critical point, with interiors IntPi intersecting
J(f) and mutually disjoint, and such that if f(IntPi) intersects IntPj then
f(IntPi) ⊃ IntPj . We also assume that all the maps f |IntPi are proper. We
allow critical points to belong to the boundaries of Pi.

Note that this definition differs somewhat from McMullen’s. Firstly, we
do not use any measure in it. Secondly, McMullen assumed an expanding
property, while we do not. On the other hand, he assumed f to be continuous
(conformal) only piecewise, on each Pi.

Following McMullen [McM] define a refinement R(P) to be

cl(Comp Int f−1(P) ∨ P),

that is, the family of the closures of all components of the sets f−1(IntPj)∨
IntPi. This is also a covering of a neighbourhood of J(f) (maybe smaller
than the one for P) by the complete f -invariance of J(f), and has a puzzle
structure. We consider the consecutive refinements RN (P) and assume that
the diameters of their elements shrink to 0 uniformly.

For N = 0, 1, . . . and PN,i, PN,j ∈ RN (P) denote by sN (i, j) the number
of components of IntPN,i∩Int f−1(PN,j). If N is fixed we write simply s(i, j).
Of course the number s(i, j) of components is larger than 1 if and only if there
is an f -critical point c ∈ IntPN,i \ Int f−1(PN,j) (remember that we assume
the puzzle pieces are so small that each contains at most one f -critical point
in IntPN,i). In that case s(i, j) = ν(c) (the multiplicity of f at c). If the
above intersection is empty, we set s(i, j) = 0. In this notation the number
of elements of RN+1(P) is

∑
i,j s(i, j).

In McMullen’s hyperbolic setting all s(i, j) are 0 or 1 since there are no
critical points present. The same holds in Example 6.11 below.

For each P and N = 1, 2, . . . as above we distinguish a point yN,i in each
IntPN,i (1). With RN (P) we associate the matrix RN (T ) with entries

(4.1) aij =

{
|f ′(yN,i)|−1 if s(i, j) > 0,

0 if s(i, j) = 0.

Similarly for N = 0 a matrix T is associated to P, with distinguished
points y0,i. Observe that all the entries of these matrices are non-negative.
(Note that writing R(T ) is an abuse of notation (harmless), since it is not
derived only from T , but from R(P) which carries more information.)

If T is an M ×M matrix (a dimension M square matrix), then R(T ) is
a dimension

∑M
i,j=1 s(i, j) matrix. Similarly we define RN+1(T ) for RN (T )

in place of T .

(1) Another variant is to distinguish yN,i,j ∈ IntPN,i ∩ Int f−1(PN,j) whenever this
set is non-empty. The same in Definition 4.2 later on (cf. [DGT]).
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We can consider a simplified integer-valued square matrix T̂ of dimen-
sion M , with each ij entry equal to s(i, j). It can be interpreted as the di-
rected graph Γ (T̂ ), with vertices corresponding to the numbers i = 1, . . . ,M
and every pair of vertices i, j joined with multiplicity s(i, j), i.e. by s(i, j)
edges starting at i and ending at j. Then we can consider the derived graph
R(Γ (T̂ )) := Γ (R(T̂ )), that is, the directed graph where vertices are the
edges of Γ (T̂ ) and edges are ordered pairs of edges of Γ (T̂ ) such that the end
of the former coincides with the beginning of the latter, with newly gained
multiplicities. See [Ore]. These simplified matrices play here an explanatory
role. We shall not use them.

Note that there is no need here to consider for N = 1, 2, . . . the partitions
just of the form RN (P) with the associated matrices RN (T ). See Remark
6.10. But for computational simplicity it is better to produce everything
from one matrix T (the partition P).

Let λ(RN (T )) denote the spectral radius of RN (T ). For each t > 0 we
use the notation T t for the matrix with each entry being the corresponding
entry of T raised to the power t. Similarly we define RN (T )t. In particular,
we denote its spectral radius by λ(RN (T )t). Due to the topological exactness
of f on J(f),

(4.2) λ(RN (T )t) := lim
n→∞

n

√
∥(RN (T )t)n∥ = lim

n→∞
n

√
((RN (T )t)n)ij

independently of 1 ≤ i, j ≤ dim(RN (T )t). Indeed, in our situation the topo-
logical exactness says that all the matrices RN (T ) are primitive, that is,
((RN (T ))n)ij > 0 for n large enough and all i, j. Let us call the sequence
(i0, . . . , in) admissible if RN (T )ikik−1

> 0 for all k = 1, . . . , n. We can then
say that RN (T ) is primitive if for all n large enough and all i, j there exists
an admissible sequence (path) (i0, . . . , in) such that i0 = j and in = i.

Convergence to the spectral radius in (4.2) (the second equality) follows
from the fact that for matrices with non-negative entries, one can replace the
norms by suprema of the entries. Next consider paths related to the iterates
of the matrices. It is visible that considering e.g. all of them, or only those
starting at i and ending at j, gives the same limit due to primitivity.

Finally, we define McMullen’s pressure (see [McM] in the hyperbolic case)
by

(4.3) PMcM(f, t) := lim sup
N→∞

log λ(RN (T )t).

Warning. Unfortunately, in the presence of critical points in J(f) this
notion has deficiencies if the distinguished points are critical or close to crit-
ical, making PMcM(f, t) too big, bigger than P (f, t). A remedy is to consider
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Definition 4.1 (Restricted McMullen pressure). Define the restricted
McMullen pressure as

(4.4) P̂McM(f, t) := lim
N→∞

log λ(R̂N (T )t),

where in each R̂N (T ) all the entries at positions ij such that

(4.5)
dist(PN,i,Crit(f))

diamPN,i
≥ A(N)

are the same as in RN (T ), and all others are 0. Here A(N) is an arbitrary
sequence of numbers tending to ∞ as N → ∞ such that A(N) diamRN (P)
→ 0; here diam denotes the supremum of the diameters of the sets of a
partition.

The limit in (4.4) exists since the dimensions of the matrices are grow-
ing, acquiring a growing number of non-zero rows (puzzle pieces), where
the puzzle pieces already considered become split with growing N ; the dis-
tinguished points may move but they move a distance decreasing to 0. A
detailed proof relies on (4.8) and (4.9). In fact, we do not need the existence
of a limit a priori to prove that any limit (for a convergent subsequence)
is equal to P (f, t) as in the proof of Theorem 4.4. Still a deficiency of this
notion is that with yN,i arbitrary, even far from Crit(f), there is no reason
for the sequence to be increasing, or for its elements not to exceed P (f, t)
slightly.

So, we also consider versions suggested in [DGT] (see Example 6.11 here).

Definition 4.2 (Fuzzy McMullen pressures). To define P 0
McM(f, t), the

fuzzy McMullen pressure (or infimum McMullen pressure), just replace
|f ′(yN,i)|−t by infy∈PN,i

|f ′(y)|−t, for each N and PN,i, in aij in the defi-
nition of McMullen’s pressure (see (4.1)). Then consider the corresponding
matrices (RN (T )t)inf and their spectral radii λinf

N,t and set

(4.6) P 0
McM(f, t) := lim

N→∞
log λinf

N,t.

The limit exists since the sequence is increasing, because when the puzzle
pieces split for N growing, the infima are taken over smaller sets.

Definition 4.3 (Fuzzy restricted McMullen pressure). To define this
pressure, denoted P̂ 0

McM(f, t), keep unchanged the entries aij in the matrices
accompanying P 0

McM(f, t) for i satisfying (4.5), putting 0 elsewhere. The
monotonicity holds as before.

Now we can complete the proof of Theorem 2.8.

Theorem 4.4. In the setting above, for each t > 0,

P (f, t) = P̂McM(f, t) = P̂ 0
McM(f, t) = P 0

McM(f, t) ≤ PMcM(f, t).
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Proof. We prove that for any non-exceptional z ∈ J(f),

(4.7) Phyp(f, t) ≤ P̂McM(f, t) = P̂ 0
McM(f, t)

≤ P 0
McM(f, t) ≤ Ptree(f, t, z) ≤ Phyp(f, t).

Consider an arbitrary set X ∈ H (f, J(f)). and an arbitrary δ ≪
dist(X,Crit(f)), so that |f ′(x)|

|f ′(v)| is close to 1 for v ∈ B(x, δ) and each x ∈ X.
This is possible since log |f ′| is uniformly continuous in B(X, δ). (Compare
e.g. (4.8) or the proof of Theorem 5.1 for more detailed estimates taking into
account distance from Crit(f).)

Let N be so large that every PN,i ∈ RN (P) has diameter less than δ.
Consider now only the puzzle pieces intersecting X. Consider any integer
n ≥ 0 and any (n, δ)-separated set Y ⊂ X for f |X (see Definition 2.1). We
can assume that Y ⊂

⋃
PN,ι∈RN (P) IntPN,ι by first taking Y 2δ-separated

and next correcting it to be in the union of the interiors of puzzle pieces.
Notice that for any distinct z1, z2 ∈ Y , the admissible sequences ik,

k = 0, 1, . . . , n, such that fk(z) ∈ IntPN,ik ∩ Int f−1(PN,ik−1
) for z = z1, z2

are different. Use now |f ′(fk(z))|
|f ′(yN,ik

)| ≈ 1 (namely ≥ exp(−ϵ) with ϵ > 0 close
to 0 for δ close to 0). Thus each z ∈ Y contributes

n∏
k=1

|f ′(yN,ik)|
−t ≥ |(fn)′(z)|−t × exp(−ϵn)

to the matrix (R̂N (T )t)n.
Thus, letting n → ∞ and next δ → 0 with respective N → ∞, fi-

nally taking the supremum over X, we obtain (4.4) (with lim supN ), hence
Phyp(f, t) ≤ P̂McM(f, t).

Similarly, considering the puzzle pieces PN,i satisfying (4.5) and distin-
guished yN,i in them, we prove the equality P̂McM(f, t) = P̂ 0

McM(f, t). Clearly
only the ≤ part is non-trivial. Here is the proof:

For any v ∈ P = PN,i we have, close to a critical point c of multiplicity ν,
assuming for simplification that f(x) = (x− c)ν , and writing y for yN,i,

(4.8)
∣∣∣∣( |f ′(v)|

|f ′(y)|

)1/(ν−1)

− 1

∣∣∣∣ ≤ ∣∣∣∣dist(v, c)dist(y, c)
− 1

∣∣∣∣
≤ |dist(v, c)− dist(y, c)|

dist(y, c)
≤ diamP

dist(P, c)
≤ A(N)−1

(see (4.5)). So |f ′(v)|
|f ′(y)| → 1 as N → ∞. Without the above simplification we

can write f(z) = a(z−c)νh(z) for an analytic map h(z) = 1+a1(z−c)+ · · ·
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in a neighbourhood of c, so

(4.9) f ′(z) = aν(z − c)ν−1h(z) + a(z − c)νh′(z)

= a(h(z)ν + (z − c)h′(z))(z − c)ν−1

= a
(
(1 + a1(z − c) + · · · )ν + (z − c)(a1 + · · · )

)
(z − c)ν−1

= aν(z − c)ν−1(1 +O(z − c)).

So for dist(P, c) small enough, for all N , |f ′(v)/f ′(y)| ≤ 2A(N)−1. Farther
away from c, i.e. in a domain bounded away from Crit(f), log |f ′| is uniformly
continuous, so for large N , dist(v, y) small implies

∣∣log |f ′(v)| − log |f ′(y)|
∣∣

small, so |f ′(v)/f ′(y)| is close to 1, namely it tends to 1 as N → ∞.
The inequality P̂ 0

McM(f, t) ≤ P 0
McM(f, t) is obvious because the matrices

associated to the former have just zeros replacing some non-zero terms in
the latter.

To prove P 0
McM(f, t) ≤ Ptree(f, t), first select an arbitrary non-exceptional

point zN,i in each PN,i ∈ RN (P). Consider an arbitrary admissible sequence
of integers i0, . . . , in, that is, such that IntPN,ik ∩ f−1(PN,ik−1

) ̸= ∅ for all
k = 1, . . . , n. It contributes to the matrix (RN (T )t)n because it corresponds
to the path in the related directed graph with edges joining consecutively
the vertices in, . . . , i0.

Choose an arbitrary zn ∈
⋂n

k=0 f
−(n−k)(IntPN,ik) (this set may be dis-

connected!) and zk := fn−k(zn) for all k = n − 1, . . . , 0, with common
z = z0 = zN,i0 . In fact, the number of possible points zn is equal to∏n−1

k=0 deg(f |PN,k+1∩f−1(PN,k)) (cf. Remark 4.5).

Now P 0
McM(f, t) ≤ Ptree(f, t, z) follows from the obvious inequality

infy∈PN,ik
|f ′(y)|−1 ≤ |f ′(zk)|−1 for each k = 1, . . . , n. Indeed, the only issue

is that we took care only of the sequences (i0, . . . , ik) with common i0. If we
consider all sequences, the constant factor #(RN (P)) appears. However, it
disappears as n → ∞ in the definition of the spectral radius.

The last inequality in (4.7) is known if z ∈ J(f) is hyperbolic and non-
exceptional, with a proof via capturing hyperbolic subsets via shadowing; it
was mentioned in the proof of Theorem 2.8(1), referring to [PRS2].

Finally, notice that P 0
McM(f, t) ≤ PMcM(f, t) is obvious.

Remark 4.5 (Fuzzy multiple McMullen pressure). Notice that replacing
the sequence yN,ik for admissible (i0, . . . , in) we do not exploit all appropri-
ate zn. So in the definition of the matrix RN (T ) or (RN (T )t)inf we could
consider each entry aij multiplied by deg(f |PN,i

). The related notion of pres-
sure, to be called fuzzy multiple McMullen pressure, denoted P 0

multMcM(f, t),
is also upper bounded by Ptree(f, t).
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Remark 4.6. For a sequence i0, . . . , in admissible for the matrix RN (P),
we can prove neither the inequality

(4.10) lim inf
N→∞

lim inf
n→∞

1

n
log

(∏n
k=1 |f ′(yN,ik)|
|(fn)′(zn)|

)
≤ 0,

nor the opposite one with liminf replaced by limsup, unlike in e.g. (3.4).
The problem is that the expressions |(fn)′(zn)| must be replaced by the
product

∏n
k=1 |f ′(yN,ik)|, where the domains of f ′ to which yN,ik respectively

belong are larger than the components of f−k(B(fn(zn), r)) for large k, so
the latter products can be too large or too small. Namely the choices of yN,ik

for PN,ik close to Crit(f) are much farther away from Crit(f) than zk, or
much closer.

A way out would be to replace one telescope in the proof of (3.4) by
a sequence of telescopes. But for this, to prove e.g. ≤ 0 in (4.10) we need
to know that each znj starting a new telescope is non-exceptional (with the
same constants) to obtain (3.3), which may be impossible.

So, to avoid
∏n

k=1 |f ′(yN,ik)| too large, we have chosen to just get rid
of the trouble-making backward trajectories, by considering the restricted
McMullen pressure.

A way to avoid
∏n

k=1 |f ′(yN,ik)| too small, that is,
∏n

k=1 |f ′(yN,ik)|−1

too large, is to consider fuzzy McMullen pressure replacing |f ′(yN,i)|−1 by
inf{|f ′(y)|−1 : y ∈ PN,i} (see Definition 4.2). Without this it can just hap-
pen that PMcM(f, t) > P (f, t): see the Warning before Definition 4.1 (or
the restricted one as in that definition). For another remedy, replacing the
infimum or one point yN,i by pairs of distinguished points, see Section 6.

Remark 4.7. Consider sets of the form

(4.11) XN =

∞⋂
n=1

⋃
i0,...in

n⋂
k=0

f−(n−k)(PN,ik),

with the union over all (i0, . . . , in) admissible for the restricted matrix, i.e.
R̂N (T ) (see (4.5)).

Notice that each XN is hyperbolic for f |XN
. Indeed, the inverses of

(f |IntPN,i0,...,in
)n, where PN,i0,...,in :=

⋂n
k=0 f

−(n−k)(PN,ik), exist by (4.5). For
each in they form a Montel normal family of holomorphic maps on PN,in .
This is so, because the ranges omit more than two points in C, e.g. a neigh-
bourhood of Crit(f). So their limits must be points since otherwise a limit
domain U would not intersect J(f) (since otherwise all fn(U ′) with an open
U ′ ⊂ U intersecting J(f) and with n large enough are bounded in PN,in ,
contradicting the definition of the Julia set). On the other hand, U must
intersect J(f) by its backward invariance and compactness. This implies
uniform convergence of |(fn)′|−n on XN to 0, hence hyperbolicity.
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Notice however that XN need not be repelling, as in Definition 2.6, or
equivalently, the maps f |XN

need not be open. See [PU, Example 4.5.5]
where the question of a small extension of XN to an invariant set on which
f is open was discussed.

Notice finally that the sequence of the sets XN is increasing with respect
to inclusion and that the pressures satisfy

P (f |XN
,−t log |f ′|) = log λ(R̂N (T )t).

5. Restricted fuzzy tree pressure. One more definition of pressure
might be useful for computations, close to the restricted McMullen pres-
sure and to the fuzzy tree pressure as in (2.4) and (2.5), for the potentials
−t log |f ′|, making sense for all rational maps. Namely define

(5.1) P̂ 0
tree(f, t, z) := lim

∆→0
P̂∆
tree(f, t, z),

where

(5.2) P̂∆
tree(f, t, z) := lim sup

n→∞

1

n
log

∑
v

Π̂δ(v),

where the sum is over all v ∈ f−n(z) such that dist(fn−k(v),Crit(f)) > ∆
for all 1 ≤ k ≤ n with

(5.3) Π̂δ(v) :=
n∏

k=1

|f ′(v̂k)|−t

where v̂k is a point in clB(fn−k(v), δ) where |f ′|−1 takes the infimum, and
(5.4) δ = o(∆).

Assume the function ∆ 7→ δ is monotone. Then existence of the limit in
(5.1) follows by monotonicity, which is obvious since the infima are taken
over shrinking sets, whose family is growing. Notice that if we do not care
about monotonicity, we can choose v̂k arbitrarily (randomly) in the ball.

Theorem 5.1. P̂ 0
tree(f, t, z) does not depend on non-exceptional z. There-

fore (omitting z) we have

P̂ 0
tree(f, t) = P (f, t).

Proof. The proof is similar to the proof of Theorem 4.4. The inequality
P̂ 0
tree(f, t, z) ≤ P 0

tree(f, t, z) is obvious, just more backward branches of z in
the latter pressure are considered. Also P 0

tree(f, t, z) ≤ Ptree(f, t, z) is obvious,
as already mentioned in Theorem 2.8(1).

It remains to prove Phyp(f, t) ≤ P̂ 0
tree(f, t, z). For this, consider an ar-

bitrary hyperbolic X ⊂ J(f). It is enough to consider a non-exceptional
point z ∈ X (or just a preimage under an iterate of f , arbitrarily close
to X, of an priori given point z). We prove Ptree(f |X , t, z) ≤ P̂ 0

tree(f, t, z).
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It is a repetition of the proof of P̂McM(f, t) ≤ P̂ 0
McM(f, t) in Theorem 4.4.

For ∆ = dist(X,Crit(f)) we use δ = o(∆) to ensure that for x ∈ X and
y ∈ B(x, δ), with x, y close to a critical point c ∈ C for f with multiplicity ν,
the ratio

|f ′(x)|/|f ′(y)| ≤ const ·
(
|x− c|/|y − c|)

)ν−1 ≤ 1 + const ·
(

δ

∆

)ν−1

is close to 1 (cf. (4.8); for more details see (4.9)). In other words, the difference
of potentials −t log |f ′(x)| − (−t log |f ′(y)|) is small.

Remark 5.2. Introducing P̂ 0
tree between Phyp and P 0

tree shows directly
how to omit the problem for individual backward trajectories; see the proof
of Theorem 2.8(1) in Section 3, Remark 3.4, and compare Remark 4.6.

6. Final remarks, more geometric pressures and examples

6.1. On convergence

Remark 6.1. It is clear that the sequence of functions t 7→ P̂∆
tree(f, t, z)

in (5.1) converges uniformly (locally) as ∆ → 0 (cf. Section 5) and the limit
P (f, t) is non-increasing, e.g. by the definition of Phyp(f, t)). So calculating
these functions and their first zeros we obtain as the limit the first zero
of P (f, t), which is HDhyp(J(f)) (see Proposition 2.7). Unfortunately, we
do not know the speed of convergence for general f . For some classes of
maps f the situation is better, e.g. for topological Collet–Eckmann maps,
see Remark 6.3.

Remark 6.2. It might be worthy to use instead the functions

t 7→ log λ(R̂N (T )t),

as N → ∞, and their zeros.
Note that the zeros can be calculated as solutions of the equation λ(Λt)

= 1 if all the entries of a primitive matrix Λ are non-negative, here for
Λ = R̂N (T ) [McM, Practical considerations]. See also Remark 4.7.

Remark 6.3. It may happen that HDhyp(J(f)) < HD(J(f)) [Lyu, Sec-
tion 2.13.2], so the methods here are unsuitable to estimate HD(J(f)), unless
e.g. f is topological Collet–Eckmann (see e.g. [P3]), where P (f, t) has only
one zero, say t0, and HDhyp(J(f)) = HD(J(f)).

Notice that in this case (dP/dt)(t0) < 0 so the convergence of approxi-
mations, say HD(XN ) → t0, is faster than if the left derivative of t 7→ P (f, t)
at t0 were 0.

Conclusions and comments. As noted in Section 1, our aim is to ap-
proximate the geometric pressure P (f, t) from below by quantities depending
on a parameter δ for tree pressures, or on N for McMullen’s pressures. If
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approximating quantities exceed P (f, t), and if we do not know how far they
are from the limit, we do not know how big an error might be in our estimates
of P (f, t) from below. In these estimates we use P (f, t) = Ptree(f, t, z). To
be on the safe side we want also the numbers under the lim supn (see (2.6))
to be as small as possible. To this end we can choose any z close to J(f) but
outside it (cf. [DGT]), hence not only non-exceptional, but not accumulated
by forward trajectories of critical points at all. Notice that if z1, z2 are like z
and belong to the same component B of the Fatou set, then all the ratios
Πn(t, v1)/Πn(t, v2) for corresponding vi ∈ f−n(zi), i = 1, 2 are uniformly
bounded (corresponding in the sense that for a curve γ joining z1 to z2 in
B \PC(f) the points v1 and v2 are the end points of a lift of γ for fn). This
happens for polynomials, where both zi belong to the basin of ∞.

As noted in Section 1, among the notions of geometric pressures we in-
troduced to calculate HD(J(f)), or approximate it from below, the infimum
(fuzzy) pressures and/or restricted pressures are appropriate, in particular
P̂ 0
McM(f, t), P 0

McM(f, t), P 0
multMcM(f, t), P̂ 0

tree(f, t, z) and P 0
tree(f, t, z) might

turn out to be useful, since elements of the sequences defining them, depend-
ing on δ or N , do not exceed P (f, t).

The pressure P̂McM(f, t) is “almost” increasing, because of bounded dis-
tortion in the puzzle pieces satisfying (4.5). This distortion, responsible for
possible decreasing, shrinks to 0 as N → ∞ with speed depending on A(N).

Some notions may increase the speed of approximation, but may lead
to results exceeding P (f, t), as it may happen with PMcM(f, t) (see (4.3)).
This is so because of the use of distinguished points where |f ′| can be too
small (its inverse too large). See Remark 4.6. On the other hand, considering
P pullinf
tree (f, t) requires finding infima in sets shrinking with the number of

iterations, which might be computationally awkward.

6.2. Double sampling pressures. A remedy to avoid the quantities
exceeding P (f, t) and an excessive complexity of calculations would be some-
thing in between, e.g. double (or multiple) sampling variants.

Definition 6.4. Define the double sampling tree pressure P ∗
tree(f, t, z)

similarly to P 0
tree(f, t, z) but replacing infima by minima over two points:

P ∗
tree(f, t, z) := lim sup

δ→0
P ∗,δ
tree(f, t, z), where(6.1)

P ∗,δ
tree(f, t, z) := lim sup

n→∞

1

n
log

∑
v∈f−n(z)

Π∗δ
n (v),

where

Π∗δ
n (v) :=

n∏
k=1

min(|f ′(vk,1)|−t, |f ′(vk,2)|−t),
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where vk,1, vk,2 ∈ B(fn−k(v), δ) are symmetric to each other with respect to
vk = fn−k(v) and dist(vk,1, vk,2) ≥ δ. Compare (5.3). Thus in place of one
distinguished point in B(vk, δ), we choose two.

If there is a critical point c close to vk, then at least one vk,i is farther
away from c than vk. Even |f ′(vk,i)| ≥ |f ′(vk)|, hence |f ′(vk,i)|−t ≤ f ′(vk)|−t.
At other points vk, for which δ = o(dist(vk,Crit(f))), this inequality holds
up to a factor 1 + ϵ, where ϵ = O(δ). Then |f ′(vk,i)|−t/|f ′(vk)|−t ≈ 1 for
i = 1, 2. So

(6.2)
Π∗δ

n (v)

|(fn)′(v)|−t
≤ 1 + ϵ.

So, taking n → ∞, then summing over v and letting δ → 0 we obtain

Proposition 6.5. For every non-exceptional z,

Phyp(f, t) ≤ P ∗
tree(f, t, z) ≤ Ptree(f, t, z).

Unfortunately, we cannot prove the monotonicity of P ∗,δ
tree(f, t, z) as δ → 0,

nor P ∗,δ
tree(f, t, z) ≤ P ∗

tree(f, t, z). For vk close to a critical point c, if dist(vk, c)
= Cδ, we have

dist(vk,i, c) ≥ δ
√

C2 + 1/2 = dist(vk, c)

√
C2 + 1/4

C
for i = 1 or 2. Hence

|f ′(vk,i)|−t

f ′(vk)|−t
≤

(
C√

C2 + 1/4

)tν(c)

(1 +O(δ)).

However, we cannot achieve this far away from Crit(f). A remedy would be
to consider triple sampling tree pressures, with vk,i, i = 1, 2, 3, at the vertices
of an equilateral triangle centered at vk. Then f ′ in a small neighbourhood
of vk is almost affine, so the inequality |f ′(vk,i)| ≥ f ′(vk)| holds for some i
provided there is no point x0 where f ′′(x) = 0. If the latter occurs, assume
f ′(x) = a(x − x0)

m(x) + · · · for a ̸= 0 and an integer m(x) > 1. To cope
with this case, consider m-sampling tree pressure, with vk,i, i = 1, . . . ,m, at
the vertices of a regular m-gon centered at vi. Then, for m = 3max {m(x) :
f ′′(x) = 0}, there exists i such that |f ′(vk,i)| ≥ |f ′(vk)|. So we can skip ϵ in
(6.2) and then conclude with P ∗,δ

tree(f, t, z) ≤ P (f, t) for each δ for m-sampling
tree pressure.

Definition 6.6 (Double sampling McMullen pressure). Similarly we
define the double sampling McMullen pressure P ∗

McM(f, t). For P = PN,i

for which IntPN,i ∩ f−1(IntPN,j) ̸= ∅ we consider two points vP,1, vP,2 ∈
B(P, rN,P ) where rN,P := A(N) diamP for an arbitrary sequence
A(N) → ∞ as N → ∞, but A(N) diamRN (P) → 0 (cf. (4.5)). The points
vP,1, vP,2 are chosen symmetric with respect to an arbitrary point z∗P in P
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and dist(vP,1, vP,2) ≈ rN,P (i.e. far from P compared to its diameter). We
distinguish such a pair only for P such that dist(P,Crit(f)) ≤ rN,P . In this
case we need to do so because of the arbitrariness of the choices of z∗P .

Now define the matrices RN (T )∗ by changing in RN (T ) defined at the
beginning of Section 4 the entries |f ′(yN,i)|−1 with distinguished points yN,i

to aij = min(|f ′(vP,1)|−1, |f ′(vP,2)|−1) for P close to Crit(f) as above. Fi-
nally, define

(6.3) P ∗
McM(f, t) = lim

N→∞
log λ((RN (T )∗)t).

Consider now an arbitrary non-exceptional z ∈ J(f) not belonging to the
boundary of any puzzle piece of any generation. Then for each zk ∈ f−k(z) ∈
PN,i, we have atij ≤ |f ′(zk)|−t(1 + ϵ), where ϵ → 0 as N → ∞ (cf. (6.2)). So
indeed we have

Proposition 6.7. Phyp(f, t) ≤ P ∗
McM(f, t) ≤ Ptree(f, t, z) = Ptree(f, t).

Definition 6.8. In fact, we could distinguish vP,1, vP,2 ∈ IntP . Indeed,
assume d := dist(vP,1, vP,2) ≥ 1

2 diamP . So dist(zk, vP,ι) ≤ 2d for zk ∈ P for
both ι = 1 and ι = 2. But dist(c, vP,ι) ≥ d/2 for ι = 1 or ι = 2 for each
point c close to P , in particular a critical one. So for such ι we get due to the
triangle inequality, skipping indices, dist(c, z) ≤ dist(c, v) + dist(v, z), hence

dist(c, z)

dist(c, v)
≤ 1 +

dist(v, z)

dist(c, v)
≤ 1 +

2d

d/2
≤ 5.

So, for ν denoting the multiplicity of f at c,
|f ′(zk)|−1

|f ′(vP,ι)|−1
≥ const·5−(ν−1), hence |f ′(vP,ι)|−1 ≤ const−15ν−1|f ′(zk)|−1.

Since this happens rarely with N large the constant const−15ν−1 does not
matter.

Note that the shape of P can be very distorted, making finding vP,1, vP,2 ∈
IntP difficult. So instead we can consider taking vP,1, vP,2 ∈ B(P,diamP ).

Unfortunately, these constructions allow one to prove neither monotonic-
ity nor that the elements of the sequence in (6.3) do not exceed P (f, t)
(though discrepancies seem low), unless we modify the definition to an m-
sampling McM-pressure, as in the tree pressure case in Definition 6.4.

6.3. Examples

Example 6.9. For each non-renormalizable polynomial f , say with con-
nected Julia set and all periodic orbits repelling, one considers Yoccoz’s
puzzle construction, namely a covering P of a neighbourhood of J(f) whose
pieces have boundaries consisting of equipotential lines for the Green’s func-
tion in the basin of ∞ and closures of external rays to fixed points dissecting
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J(f). Assume these points are not post-critical. The diameters of the consec-
utive pullbacks of these pieces shrink uniformly to 0, so the assumptions of
Theorem 2.8(2) are satisfied. See e.g. [KvS] for this and more general cases.

Remark 6.10. There is no need in the definition of McMullen’s pres-
sures that the consecutive puzzle structures are of the form RN (P). One
can just take any sequence PN of puzzle structure coverings such that the
diameters of their elements tend uniformly to 0. Then in Example 1 one may
allow the infinitely renormalizable case, with the so-called a priori complex
bounds condition, guaranteeing the existence of such a sequence (see [Lyu]
and references therein).

Example 6.11. For the Feigenbaum map fFeig(z) = z2 + cFeig where
c ≈ −1.40155, infinitely renormalizable, where cFeig is the limit of the de-
creasing sequence of the period doubling real parameters, a different puzzle
structure is used (see [DS] and references therein). The critical point 0 is
in the boundary of four first generation puzzle pieces adjacent to it, so all
restrictions of fFeig to interiors of all generations puzzle pieces are injective,
and s(i, j) = 0 or 1 (see beginning of Section 4). In [DGT] it is announced
for f = fFeig that HDhyp(J(f)) = limN→∞ δN , where δN is the first zero t of
log λinf

N,t (see Definition 4.2), is equal to δcr(f) denoting the critical exponent
of the Poincaré series, equal to the Minkowski dimension (box dimension) of
J(f) provided the area of J(f) is zero (which is the case by [DS] for fFeig);
for this see [Bish]. (There, Whitney’s critical exponent appears, but it is
straightforward that it is the Minkowski dimension of J(f), by Koebe’s 1/4
lemma. In [Bish], actions by Kleinian groups were considered.)
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