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1 – Introduction

• Pioneer of statistical physics: Marian Smoluchowski 1872 –
1917 Vienna-Lvov-Cracow.
• Application of thermodynamic methods to dynamics: Yakov
Sinai, David Ruelle, Rufus Bowen 1960/70 -ties.

Lemma (finite variational principle)

For given real numbers φ1, . . . , φd , the function

F (p1, . . . pd) :=
∑d

i=1−pi log pi
entropy

+
∑d

i=1 piφi
average potential

on the simplex {(p1, . . . , pd) : pi ≥ 0,
∑d

i=1 pi = 1} attains its

maximum, called pressure equal to P(φ) = log
∑d

i=1 e
φi , at

the equilibrium
p̂j = eφj/

∑d
i=1 e

φi .

Hint:
∑d

i=1−pi log pi +
∑d

i=1 piφi =
∑d

i=1 pi log(eφi/pi).
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1 – Introduction: dynamics setting corresponding

notions
f : X → X a contin. map for a compact metric space (X , ρ),
φ : X → R a continuous function (potential).

Definition (variational topological pressure)

Pvar(f , φ) := sup
µ∈M(f )

(
hµ(f ) +

∫
X

φ dµ

)
,

where M(f ) is the set of all f -invariant Borel probability
measures on X and hµ(f ) is measure-theoretical entropy.

Any measure where sup is attained is called equilibrium state.

Definition (topological pressure via separated sets)

Psep(f , φ) := limε→0 limn→∞
1
n

log
(

supY

∑
y∈Y exp Snφ(y)

)
,

supremum over all Y ⊂ X such that for distinct x , y ∈ Y ,
ρn(x , y) := max{ρ(f i(x), f i(y)), 0 ≤ i ≤ n} ≥ ε.
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• hµ(f ) := supA limn→∞
1

n+1

∑
A∈A n −µ(A) log µ(A),

supremum over finite partitions A of X ,
A n :=

∨
j=0,...,n f

−jA .

Theorem (variational principle: Ruelle, Walters, Misiurewicz,
Denker, ...)

Pvar(f , φ) = Psep(f , φ).

FP & M. Urbański ”Conformal Fractals: Ergodic Theory
Methods” Cambridge 2010.
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Theorem (Gibbs measure – uniform case)

Let f : X → X be a distance expanding, topologically
transitive continuous open map of a compact metric space X
and φ : X → R be a Hölder continuous potential. Then, there
exists exactly one µφ ∈M(f ,X ), called Gibbs measure, s.t.

C <
µφ(f −nx (B(f n(x), r0))

exp(Snφ(x)− nP)
< C−1,

called Gibbs property, where f −nx is the local branch of f −n

mapping f n(x) to x and Snφ(x) :=
∑n−1

j=0 φ(f j(x)).

• µφ is the unique equilibrium state for φ. It is equivalent to
the unique exp−(φ− P)-conformal measure mφ, that is an
f -quasi-invariant measure with Jacobian exp−(φ− P) for a
constant P.

• P = P(f , φ) := limn→∞
1
n

log
∑

x∈f −n(x0) exp Snφ(x). This

normalizing limit exists and is equal Psep(f , φ) for every x ∈ X.
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2 – Introduction to dimension 1

Thermodynamic formalism is useful for studying properties of
the underlying space X . In dimension 1, for f real of class
C 1+ε or f holomorphic (conformal) for an expanding repeller
X , considering φ = φt := −t log |f ′| for t ∈ R, Gibbs property
gives, as exp Sn(φt) = |(f n)′|−t ,

µφt (f
−n
x (B(f n(x), r0))) ≈ exp(Snφ(x)− nP(φt)) ≈

diam f −nx (B(f n(x), r0))t exp−nP(φt).

The latter follows from a comparison of the diameter with the
inverse of the absolute value of the derivative of f n at x , due
to bounded distortion.

When t = t0 is a zero of the function t 7→ P(φt), this gives

µφt0 (B) ≈ (diamB)t0

for all small balls B , hence HD(X ) = t0. Moreover, the
Hausdorff measure of X in this dimension is finite and nonzero. 6 / 36



A model application

Theorem (Bowen, Series, Sullivan)

For fc(z) := z2 + c for an arbitrary complex number c 6= 0
sufficiently close to 0, the invariant Jordan curve J (Julia set
for fc) is fractal, i.e. has Hausdorff dimension bigger than 1.

h

R2

R1

If HD(J) = 1, then 0 < H1(J) <∞ and h = R−1
2 ◦R1 on S1 is

absolutely continuous. gi := R−1
i ◦ fc ◦ Ri for i = 1, 2 preserve

length ` on S1 and are ergodic. Hence h preserves ` so it is a
rotation, identity for appropriate R1,R2. Hence R1 and R2 glue
together to a homography. Compare Mostov rigidity theorem. 7 / 36



complex case

In the complex case we consider f a rational mapping of degree
at least 2 of the Riemann sphere C. We consider f acting on
its Julia set K = J(f ) ( generalizing the z2 + c model).

Figure: Douady’s zoo: rabbit f (z) = z2 − 0.123 + 0.745i , dendrite

f (z) = z2 + i , basilica mated with rabbit f (z) = z2+c
z2−1

for

c = 1+
√
−3

2 with J(f ) being the boundary of black and white
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real case

Definition ( Real case, FP & Rivera-Letelier)

f ∈ C 2 is called a generalized multimodal map if defined on a
neighbourhood of a compact invariant set K , critical points
are not infinitely flat, bounded distortion property for iterates
holds, abbr. BD, f is topologically transitive and has positive
topological entropy on K .
Also K is a maximal forward invariant subset of a finite union
of pairwise disjoint closed intervals whose endpoints are in K .

This maximality corresponds to Darboux property. We write
(f ,K ) ∈ A BD

+ , where + marks positive entropy. In place of
BD one can assume C 3 (and write (f ,K ) ∈ A 3

+) and assume
that all periodic orbits in K are hyperbolic repelling. Then
changing f outside K allows to get (f ,K ) ∈ A BD

+ .

Examples: Basic sets in spectral decomposition via
renormalizations (de Melo, van Strien).
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3 – Hyperbolic potentials
Call φ : K → R satisfying P(f , φ) > supν∈M(f )

∫
φ dν

hyperbolic potential (Inoquio-Renteria, Rivera-Letelier: BBMS
2012). Equiv. P(f , φ) > supK

1
n
Snφ for some n.

Theorem (complex and real: Denker, Urbański, FP, Haydn,
Rivera-Letelier, Zdunik, Szostakiewicz, H. Li, Bruin, Todd)

. If φ is a Hölder continuous hyperbolic potential, then there
exists a unique equilibrium state µφ. For every Hölder
u : K → R, the Central Limit Theorem (CLT) and Law of
Iterated Logarithm (LIL) for the sequence of random variables
u ◦ f n and µφ hold.

CLT follows from sufficiently fast convergence of iteration of
transfer operator (spectral gap). LIL is proved via LIL for a
return map (inducing) to a nice domain related to µφ (Mañé,
Denker, Urbański) providing a Markov structure (Infinite
Iterated Function System) avoiding critical points, satisf. BD. 10 / 36



4 – Non-uniform hyperbolicity

a) CE. Collet-Eckmann condition. There exists λ > 1,C > 0

|(f n)′(f (c))| ≥ Cλn.

for all critical points c ∈ K whose forward orbit is disjoint from
Crit(f ). Moreover there are no indifferent periodic orbits in K .

(b) CE2(z0). Backward or second Collet-Eckmann condition
at z0 ∈ K . There exist λ > 1 and C > 0 such that for every
n ≥ 1 and every w ∈ f −n(z0) (in a neighbourhood of K in the
real case)

|(f n)′(w)| ≥ Cλn.
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(c) TCE. Topological Collet-Eckmann condition (FP & S.
Rohde, Fund. Math. 1998).
There exist M ≥ 0,P ≥ 1, r > 0 such that for every x ∈ K
there exist increasing nj , j = 1, 2, . . . , such that nj ≤ P · j and
for each j and discs B(·) below understood in C or R.

#{0 ≤ i < nj : Compf i (x) f
−(nj−i)B(f nj (x), r))∩Crit(f ) 6= ∅} ≤ M .

—————–

Each component of f −n(B) is called a pullback of B .
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(d) ExpShrink. Exponential shrinking of components. There
exist λ > 1 and r > 0 such that for every x ∈ K , every n > 0
and every connected component Wn of f −n(B(x , r)) for the
disc (interval) B(x , r) in C (or R), intersecting K

diam(Wn) ≤ λ−n.

(e) LyapHyp. Lyapunov hyperbolicity. There is λ > 1 such
that the Lyapunov exponent χ(µ) :=

∫
K

log |f ′| dµ of any
ergodic measure µ ∈M(f ,K ) satisfies χ(µ) ≥ log λ.

(f) UHP. uniform hyperbolicity on periodic orbits. There
exists λ > 1 such that every periodic point p ∈ K of period
k ≥ 1 satisfies

|(f k)′(p)| ≥ λk .
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Theorem (..., Keller, Nowicki, Sands, FP, Rohde,
Rivera-Letelier, Graczyk, Smirnov)

Assume there are no indifferent periodic orbits in K. Then

1. The conditions (c)–(f) and else (b) for some z0 are
equivalent (in the real case under the assumption of weak
isolation: any periodic orbit close to K must be in K).

2. CE implies (b)–(f).

3. If there is only one critical point in the Julia set in the
complex case or if f is S-unimodal on K = I in the real case,
then all conditions above are equivalent to each other.

4. TCE is topologically invariant; therefore all other conditions
equivalent to it are topologically invariant.

For polynomials (b)-(f) are equivalent to
K = J(f ) = FrΩ∞(f ), the basin of ∞, being Hölder
(Graczyk, Smirnov).
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An order of proving the equivalences in Theorem above is, for
z0 safe,
CE2(z0)⇒ExpShrink⇒LyapHyp⇒UHP⇒CE2(z0)

Separately one proves ExpShrink⇔TCE using for ⇒ the
following

Lemma (Denker, FP, Urbański, ETDS 1996)

n∑
j=0

′ − log |f j(x)− c | ≤ Qn

for a constant Q > 0 every c ∈ Crit(f ), every x ∈ K and
every integer n > 0. Σ′ means that we omit in the sum an
index j of smallest distance |f j(x)− c |.
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Assumed UHP one proves CE2(z0) for safe and hyperbolic z0

by “shadowing”.

R

f nκ

f n
f N1

f N2

f N3

exp−εn

Definition (safe)

We call z ∈ K safe if z /∈ ⋃∞j=1(f j(Crit(f ))) and for every
ε > 0 and all n large enough
B(z , exp(−εn)) ∩⋃n

j=1(f j(Crit(f ))) = ∅.

Notice that this definition implies that all points except at
most a set of Hausdorff dimension 0, are safe.
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5 – Geometric variational pressure and equilibrium

states

For φ = φt := −t log |f ′|, the variational definition of pressure,
here

P(t) := Pvar(f , φt) = sup
µ∈M(f )

(
hµ(f )− t

∫
K

log |f ′| dµ
)

still makes sense by the integrability of log |f ′|. Moreover∫
K

log |f ′| dµ = χ(µ) ≥ 0,
for all ergodic µ even in presence of critical points where
φ = ±∞, [FP: PAMS 1993, Rivera-Letelier: arXiv 2012]. By
this definition t 7→ P(t) is convex, monotone decreasing.

We usually assume t > 0 later on.
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t
t0

P(t)

−χsup

−χinf

t
t0 t+

P(t)

−χsup

−χinf

t
t0 = t+

P(t)

−χsup

−χinf

Figure: The geometric pressure: LyapHyp with t+ =∞,
LyapHyp with t+ <∞, and non-LyapHyp.
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P(t) is equal to several other quantities (Complex: FP TAMS
1999, FP & Rivera-Letelier & Smirnov ETDS 2004). E.g.

Definition (hyperbolic pressure)

Phyp(t) := supX∈H (f ,K) P(f |X ,−t log |f ′|),
where H (f ,K ) is defined as the space of all compact forward
inv., i.e. f (X ) ⊂ X , expanding subsets of K , repellers in R.

Definition (hyperbolic dimension)

HDhyp(K ) := sup
X∈H (f ,K)

HD(X ).

For expanding f : X → X , t0(X ) = HD(X ). Passing to sup:

Proposition (Generalized Bowen’s formula)

The first zero t0 of t 7→ Phyp(K , t) is equal to HDhyp(K ).

It may happen HDhyp(J(f )) < HD(J(f )) = 2 for f quadratic
polynomials, Avila & Lyubich. 19 / 36



Theorem (FP & Rivera-Letelier)

1. Real case (arXiv 2014, to appear in Memoir of the AMS).
Let (f ,K ) ∈ A 3

+, f -periodic orbits in K be hyperbolic
repelling. Then

• t 7→ P(t) is real analytic on an open interval (t−, t+) defined
by P(t) > supν∈M(f )−t

∫
log |f ′| dν

• For each t in this interval there is a unique invariant
equilibrium state µφt . It is ergodic and absolutely continuous
with respect to an adequate conformal measure mφt with
dµφt/dmφt ≥ Const > 0 a.e.

• If furthermore f is topologically exact on K (that is for every
V an open subset of K there exists n ≥ 0 such that
f n(V ) = K), then this measure is mixing, has expon. decay of
corr. and satisfies CLT for Lipschitz gauge functions.

This generalizes results by Bruin, Iommi, Pesin, Senti, Todd.
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Theorem (FP & Rivera-Letelier)

2. Complex case (Comm. Mat. Phys. 2011). The assertion is
the same. One assumes a very weak expansion: the existence
of arbitrarily small nice, or pleasant, couples and hyperbolicity
away from critical points.

Remark. For real f satisfying LyapHyp and K = Î , we have
the unique zero of pressure t0 = 1 and for − log |f ′| we
conclude that a unique equilibrium state exists which is
a.c.i.m. .

In general it holds assumed e.g. |(f n)′(f (c))| → ∞ for all
c ∈ Crit(f ) (Bruin & Rivera-Letelier & Shen & van Strien:
Inv. math 2008). For t > t+, LyapHyp, equilibria do not exist
(Rivera-Letelier & Inoquio 2012).

Proofs use inducing (Lai-Sang Young towers). For a different
proof, the real case, see a recent preprint by Dobbs and Todd.
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Pvar(t) allows to study dimension spectrum for Lyapunov
exponent via Legendre transformation, proving in particular

HD({x ∈ K : χ(x) = α}) = 1
|α| inft∈R (P(t) + αt) .

Proof of ≥. Given α consider t where inf is attained. The
tangent to P(t) at t is parallel to −αt and for µt the
equilibrium, it is hµt (f )− tχ(µt). So the infimum is hµt (f ),
see Fig. (By variational definition P(t) and hµ are mutual
Legendre type transforms.) Dividing by α gives ≥ using
Mañé’s equality HD(µ) = hµ(f )/χ(µ).

t

P(t)

HD

hµtα
(f )

−χ(µtα) = −α

Figure: Legendre transform
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Proof of ≤ uses conformal measures.

Use of the Legendre transform of P(t) allows also to give
formulas for HD of irregular sets

HD({χ(x) = α, χ(x) = β})
for β > 0 [Gelfert & FP & Rams: Math. Ann. 2010, ETDS
2016].

In analogy to χ(µ) ≥ 0 one has:

Theorem (Levin & FP & Shen: Inv.math. 2016))

If for a rational function f : C→ C there is only one critical
point c in J(f ) and no parabolic periodic orbits, then
χ(f (c)) ≥ 0.

For S-unimodal maps of interval this was proved much earlier
by Nowicki and Sands.
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6 – Other definitions of geometric pressure

Definition (tree pressure)

For every z ∈ K and t ∈ R define
Ptree(z , t) = lim supn→∞

1
n

log
∑

f n(x)=z, x∈K |(f n)′(x)|−t .

Theorem

Ptree(z , t) does not depend on z for z safe.

• In the complex case to prove Ptree(z1, t) = Ptree(z2, t) one
joins z1 to z2 with a curve not fast accumulated by critical
trajectories, FP: TAMS 1999, FP & Rivera-Letelier &
Smirnov: ETDS 2004.

• In the real case there is no room for such curves. Instead,
one relies on topological transitivity, FP & Rivera-Letelier:
arXiv 2014 & Memoir AMS 2019, FP: Monatsh. Math. 2018.
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• For φ = −t log |f ′| pressure via separated sets does not
make sense. Indeed, in presence of critical points for f , it is
equal to +∞. So it is replaced by Ptree.

• One can consider however spanning geometric pressure
Pspan(t) using (n, ε)-spanning sets and infimum.
Assumed weak backward Lyapunov stability it is indeed equal
to P(t) in the complex case (FP: Monatsh. Math. 2018).
• This is not so in the real case (where wbls always holds if all
periodic orbits hyperbolic repelling). It happens Pspan(t) =∞
if some x with big |(f n)′(x)|−1 is well ρn-isolated.

Definition (weak backward Lyapunov stability, wbls)

f is weakly backward Lyapunov stable if for every δ > 0 and
ε > 0 for all n large enough and every disc B = B(x , exp−δn)
centered at x ∈ K , for every 0 ≤ j ≤ n and every component
V of f −j(B) intersecting K , it holds that diamV ≤ ε.

Question. Does wbls hold for all rational maps?
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0 f 2(c) f (c)c 1

K ⊂ Î1 ∪ Î2
Î1 Î2

f ni

gaps
f 2
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7 – Boundary dichotomy
• Let f : C→ C be a rational map with deg(f ) ≥ 2. and let
Ω = Ωp(f ) be a simply connected immediate basin of
attraction to a fixed point p. Let R : D→ Ω be a Riemann
map R(0) = p and g : D→ D defined by g := R−1 ◦ f ◦ R ,
extended conformaly beyond FrΩ (Schwarz symmetry), thus
expanding on ∂D.

• Consider harmonic measure ω = R∗(l), where l is
normalized length measure on ∂D and R is radial limit, defined
l -a.e. l is g -invariant, hence ω is f -invariant. Denote by H1

Hausdorff measure in dimension 1.

R

R∗
l ω

D Ω

g = R−1 ◦ f ◦ R f

p
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Theorem (FP, Urbański, Zdunik: 1985 – 2006)

For f ,Ω as above, HD(ω) = 1. One of two cases holds:
1) ω⊥H1, which implies HDhyp(FrΩ) > 1;
2) ω � H1 and f is a finite Blaschke product or a two-to-one
holomorphic factor of a Blaschke product in some holomorphic
coordinates on C.
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Consider ψ := log |g ′| − log |f ′| ◦ R . Notice that∫
∂D ψ dl = 0, hence HD(ω) = 1.

The latter was proved in 1985 by Makarov without assuming
existence of f .

Consider the asymptotic variance
σ2 = σ2

ν(ψ) := limn→∞
1
n

∫
∂D(Snψ)2 dl .

Then ω⊥H1 is equivalent to σ2 > 0 and equivalent to ψ not
being cohomologous to 0 (not of the form u ◦ f − u).

Theorem (LIL-refined-HD for harmonic measure, FP, Urbański,
Zdunik: Ann. Math. 1989, Studia Math. 1991)

For f ,Ω with σ2 > 0, there exists c(Ω) > 0, such that for
αc(r) := r exp(c

√
log 1/r log log log 1/r)

i) ω⊥Hαc for the gauge function αc , for all 0 < c < c(Ω);
ii) µ� Hαc for all c > c1(Ω).

This theorem applies also e.g. to snowflake-type Ω’s,
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Proofs.
We can find X with HD(X ) ≥ HD(ω)− ε by Katok method
and using HD = h/χ. But we can do better:

σ2 > 0 yields by CLT large fluctuations of the sums∑n−1
j=0 ψ ◦ ς j from 0, allowing to find expanding X with

HD(X ) > HD(ω). One builds an iterated function system, for
which X is the limit set. A special care is needed to get
X ⊂ FrΩ.

Substituting in LIL n ∼ (log 1/rn)/χ(ω) for rn = |(f n)′(x)|−n,
comparing log |(gn)′| − log |(f n)′| ◦ R with

√
2σ2n log log n for

a sequence of n’s, we get

Lemma (Refined Volume Lemma)

For ω-a.e. x

lim sup
n→∞

ω(B(x , rn)

αc(rn)
=

{
∞, for 0 < c < c(ω),

0, for c > c(ω).
.

yielding the Theorem.
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Using R = f −n ◦ R ◦ gn one obtains

Theorem (radial growth)

For Lebesgue a.e. ζ ∈ ∂D

G+(ζ) := lim sup
r↗1

log |R ′(rζ)|√
log(1/1− r) log log log(1/1− r)

= c(Ω).

Similarly G−(ζ) := lim inf · · · = −c(Ω).

Above theorems hold for every connected, simply connected
open Ω ⊂ C, different from C, without existence of f . Of
course one should add ess sup over ζ ∈ ∂D and over z ∈ FrΩ
in Refined Volume Lemma and reformulate the case i) . There
is a universal Makarov’s upper bound CM <∞ for all c(Ω),
CM ≤ 1.2326 (Hedenmalm, Kayumov: PAMS 2007). In 1989 I
gave a weaker estimate.
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Geometric coding trees, g.c.t.

• Above theorems hold in an abstract setting of a geometric
coding tree in U for f : U → C, f (U) ⊃ U proper, giving a
coding π : Σd → Λ to the limit set Λ (in place of
R : ∂D→ FrΩ), provided f extends holomorphically beyond
clΛ called then a quasi-repeller.

. . . b(α)

z1

z2
z3

z

γ1

γ2
γ3

γ0(α)
γ1(α)

γ2(α)

Curves γj : [0, 1]→ f (U), j = 1, . . . , d , join z to z j

γ0(α) := γα0 ,
f ◦ γn(α) = γn−1(ς(α)),
γn(α)(0) = γn−1(α)(1).
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• For a Hölder potential φ : Σd → R (in place of − log |g ′|)
and Gibbs measure µφ one gets a dichotomy for µ := π∗(µφ)
on Λ.

• For a constant potential µ = µmax a measure of maximal
entropy on Julia set J(f ) for f : C→ C rational. Then

1) If σ2 > 0 then HDhyp(J(f )) > HD(µmax).

2) If σ2 = 0 then for each x , y ∈ J(f ) not postcritical, if
z = f n(x) = f m(y) for some positive integers n,m, the orders
of criticality of f n at x and f m at y coincide. In particular all
critical points in J(f ) are pre-periodic, f is postcritically finite
with parabolic orbifold, in particular zd , Chebyshev or some
Lattès maps, (Zdunik, Inv. math. 1990).

• In the Ω version it is sufficient to assume f is defined only in
a neighbourhood of ∂Ω repelling on the side of Ω, called
RB-domain.

• This applies to f polynomial and simply connected Ω = Ω∞
giving again the dichotomy on FrΩ.
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integral mean spectrum

• For a simply connected domain Ω ⊂ C one considers the
integral means spectrum:

βΩ(t) := lim sup
r↗1

1

| log(1− r)| log

∫
ζ∈∂D
|R ′(rζ)|t |dζ|.

This, in presence of f , e.g. for an RB-domain Ω and for
φ = − log |f ′| for g(z) = zd , e.g. Ω being a simply connected
basin of ∞ for a polynomial of degree d , satisfies

βΩ(t) = t − 1 + P(tφ)
log d

. (Makarov, FP & Rohde)

One considers

σ2(logR ′) := lim sup
r↗1

∫
∂D | logR ′(tζ)|2 |dζ|
−2π log(1− r)| .

It holds σ2(logR ′) = 2d2βΩ(t))
dt2 |t=0 (O. Ivrii). It is related to the

Weil-Petersson metric (McMullen).

Recall σ2
µ(tφ) = d2P(f ,tφ)

dt2 for µ Gibbs in expanding case, Ruelle:
Thermodyn. Formalism, FP & Urbański: Conformal Fractals. 34 / 36



8. Accessibility

Theorem (Douady-Eremenko-Levin-Petersen, accessibility of
periodic sources; FP, the general case: Fund. Math. 1994)

Let Λ be a limit set for a g.c.t. T for holomorphic f : U → C.
Assume diam(γn(α))→ 0, as n→∞, uniform shrinking with
respect to α ∈ Σd . Then every good q ∈ clΛ is a limit of a
convergent branch b(α), i.e. q ∈ Λ. In particular, this holds for
every q with χ(q) > 0 satisfying a local backward invariance.

Corollary (lifting of measure, FP 1994 & Proc. ICM18)

Every non-atomic hyperbolic probability measure µ, i.e.
χ(µ) > 0, on clΛ, is the π∗ image of a probability ς-invariant
measure ν on Σd , assumed uniform shrinking, T has no
self-intersections and µ-a.e. local backward invariance of U.
In part. a lift ν exists for every completely invariant
RB-domain, e.g. for µ on FrΩ∞ for f polynomial.
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