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WHEN DO TWO RATIONAL FUNCTIONS

HAVE THE SAME JULIA SET?

G. LEVIN AND F. PRZYTYCKI

(Communicated by Mary Rees)

Abstract. It is proved that non-exceptional rational functions f and g on
the Riemann sphere have the same measure of maximal entropy iff there exist
iterates F of f and G of g and natural numbers M,N such that

(G−1 ◦G) ◦GM = (F−1 ◦ F ) ◦ FN .(∗)
If one assumes only that f, g have the same Julia set and no singular or

parabolic domains of normality for the iterates, one also proves (∗).

Introduction

The most interesting dynamics of a rational function occurs on its Julia set and
a very natural invariant measure whose support is the Julia set is the measure of
maximal entropy (see [B], [CG], [ELyu]). We consider the following two problems:
to describe all pairs of rational functions f and g such that:

(A) f and g have the same measure of maximal entropy,

or the apparently weaker requirement:

(B) f and g have the same Julia set.

In the present paper we solve the problem (A) for an arbitrary pair of non-
exceptional (see the definition below) rational functions, and we solve the problem
(B) in the class Ξ of rational functions with Julia sets not the whole Riemann
sphere, a circle (or its arc), without parabolic periodic points and singular domains
of the complement of Julia set (see also Proposition 1 and Remark 6 below). By
solution of the problems we mean a functional equation between f and g, which
is equivalent to having the same measure of maximal entropy (maximal measure),
or the same Julia set. A corollary is that in the class Ξ the maximal measure is
determined by the common Julia set (rigidity of maximal measure). An application
to functional equations is done.

The problems (A) and (B) are closely related to the classical problem of com-
muting pairs of rational functions. In order to solve the latter problem, Fatou and
Julia independently applied what is called now the Julia set of a rational function,
introduced by them in [F1], [J1]. (Commuting rational functions have a common
Julia set J and a common maximal measure.) Discovering fundamental properties
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of J , Fatou and Julia described [F2], [J2] all commuting rational functions under
the restriction that the common Julia set J is not the whole Riemann sphere. Ritt
[R1], [R2] gave an algebraic solution of the problem in general: except for explicitly
described cases, if f and g commute, then they have a common iterate. These
exceptions are exactly the critically finite rational maps with parabolic orbifolds in
modern terminology [T], [DH], [E]. We call such functions exceptional. Recently
Eremenko [E] has completed the method by Fatou and Julia studying the common
maximal measure of commuting rational functions in the case J = C. Note that
the problems (A)–(B) do not reduce to the commuting case (see Example below).

The problems (A) and (B) have been studied in [BE], [B1], [B2], [E], [L], [Fe].
In the class of polynomials the solution is known [BE], [B] (see also Remark 1).

Note that for polynomials (A) is equivalent to (B) because the maximal measures
coincide with the harmonic measure for the basin of infinity. A similar idea will be
used in section 2.

Let f : C → C be a rational function on the Riemann sphere C. Let J(f) denote
its Julia set, and µ(f) its unique probability measure of maximal entropy, [FLM],
[Lyu], [M1]. Note that the support of µ(f) is J(f), and that each iterate of f has
the same Julia set and the same measure of maximal entropy. In what follows we
always assume that all rational functions are not critically finite with a parabolic
orbifold. The critically finite rational maps with parabolic orbifolds are completely
classified in [DH]. For such functions the theorems of the paper are not true.

1. Rational functions with the same maximal measure

Theorem A. Let f, g be two non-exceptional rational functions. The following
conditions are equivalent:

(A1) µ(f) = µ(g);
(A2) there exist iterates F of f and G of g, such that, for some natural numbers

M and N the following equality holds:

(G−1 ◦G) ◦GM = (F−1 ◦ F ) ◦ FN ,(∗)
where G−1 ◦ G and F−1 ◦ F denote some single-, or multi-valued function
obtained by the analytic continuation of a branch.

Moreover, in (A2) (degG)M = (degF )N .

Example. Let degf = 2. Consider the branch of the two-valued analytic function
h = f−1◦f , which is different from the identity. Then h is a Möbius transformation,
i.e. single-valued (singularities of h at the critical points of f are removable).
Moreover, the function g = h ◦ f is rational and µ(f) = µ(g). In this example
(g−1 ◦ g) ◦ g = (f−1 ◦ f) ◦ f , where g−1 ◦ g =id and f−1 ◦ f = h. It is interesting to
note that these functions do not commute: g ◦ f = h ◦ f2 6= f2 = f ◦ g. Moreover,
all iterates of f and g are different: gn = h ◦ fn 6= fn, n = 1, 2, . . . . Note also that
here h2 = id, by the definition.

Given a rational function f of degree 2, one can construct the map h explicitly
as follows. Let c1 and c2 be different critical points of f , and let M be a Möbius
transformation such that M(0) = c1 and M(∞) = c2. Then h = M ◦ (−M−1).
(In new coordinates it is just z → −z.) Indeed, the critical points of the rational

function f̃ = M−1 ◦ f ◦ M are 0 and ∞. Since degf̃ = 2, it has to have the

form f̃(z) = (az2 + b)/(cz2 + d), ad− bc 6= 0, i.e. f̃(−z) = f̃(z). We conclude that

f ◦h(z) = M ◦f̃ ◦M−1◦M(−M−1(z)) = M ◦f̃(−M−1(z)) = M ◦f̃ ◦M−1(z) = f(z).
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We should also point out that the group of all Möbius transformations, which
are symmetries on the Julia set J of any rational function, is finite [L]. (A Möbius
transformation L is defined to be a symmetry on J if L(J) = J and, in the case J
is the whole Riemann sphere, a circle, or an interval, if L preserves the measure µ.
See also Remark 4.)

Remark 1. Let f and g be polynomials with the same Julia sets J . Such polyno-
mials have been completely described in [BE], [B]. Let, for example, the degrees of
f and g be equal (if not, we can consider f ◦ g and g ◦ f instead of f and g, as in
[BE], or just pass to iterates of f and g). Then g = L ◦ f , where L is a linear trans-
formation (this immediately implies L(J) = J because x ∈ J iff g ◦ f−1(x) ∈ J).
See [BE], [B2] for details; here is an outline of the proof as it follows from our
paper: We can apply Theorem A (because µ(f) = µ(g) =harmonic measure from
∞ in this case), or simply Proposition 1 of the next section. Since F and G are
polynomials, F−1 ◦ F and G−1 ◦ G are asymptotically rotations around infinity,
and we obtain from (∗) that the Bottcher coordinates for f and g must coincide: if
f(z) = azp+ . . . , g(z) = bzq + . . . , then there exists a univalent at infinity function
B (the Bottcher coordinate function) such that B(z)/z → 1 as z →∞ and

B ◦ f(z) = a[B(z)]p, B ◦ g(z) = b[B(z)]q.

If the degrees p and q are equal, we can proceed as in [BE]: B ◦ f = γB ◦ g,
γ = b/a, and, comparing positive powers of z in the expansions at ∞, we get:
g(z) + c = γ(f(z) + c), where c is some number (in fact, B(z) = z + c+O(1/z) at
infinity).

Remark 2. It is an interesting question whether (∗) can be simplified. For example,
when (or whether) does the equation (∗) yield that F−1◦F and G−1◦G are Möbius
transformations, as in the Example above? We should draw the reader’s attention
that it is not true in general that FN = GM is equivalent to saying that both
functions F and G are iterates of a common rational function (up to rotations).
(See [R1] for an example, where Ritt writes: “...so that there exist permutable pairs
of fractional functions which come neither from the multiplication theorems of the
periodic functions, nor from the iteration of a function.”) Let us make some more
remarks. First, (∗) can be rewritten as:

GM ◦ (G ◦ F−1) = (G ◦ F−1) ◦ FN ,

where the “conjugacy” G ◦ F−1 between GM and FN is, in general, multi-valued.
Second, iterating (∗), we can replace there M and N by jM and jN respectively,
j = 1, 2, . . . . This implies that any pre-periodic point for f is also pre-periodic for
g.

The main ingredients of the proof of Theorem A will be given by Lemma 1 and
Lemma 2 below.

Lemma 1. Let ν be an ergodic invariant measure on the Julia set J(f) with positive
Lyapunov exponent χ =

∫
log |f ′|dν. Then for every small positive σ there exists a

set E of ν-measure 1− σ and numbers r > 0, K > 1 and T0 > 0 as follows:
For every point x ∈ E there exists R(x), a subset of the set of real numbers, such

that for every T > T0 the set RT := R(x)∩ [0, T ] occupies at least 5/8 of the length
of [0, T ], i.e. the Lebesgue measure Leb(RT ) > 5

8T and for every τ ∈ R(x) there
exists n ∈ N such that the following hold:
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(a) the map fn : B(x, exp(−τ)) → C is injective and has bounded distortion:

1/2 < |(fn)′(x)/(fn)′(y)| < 2,

for all y ∈ B(x, exp(−τ)),
(b) B(fn(x), r/K) ⊂ fn(B(x, exp(−τ))) ⊂ B(fn(x), r),
(c) n→∞ as τ →∞.

Proof of Lemma 1. (A) Consider the inverse limit (natural extension in Rohlin ter-

minology [Ro]) (J̃ , f̃ , ν̃) of (J, f, ν).

Denote by π : J̃ → J the projection on the 0 coordinate and by πn the projection
on n-th coordinate. Then for ν̃-almost every x̃ ∈ J̃ there exists r = r(x̃) > 0 such
that there exist univalent branches Fn of f−n on B(π(x̃), r) for n = 1, 2, . . . for
which Fn(π(x̃)) = π−n(x̃) and

1

2
<
|F ′n(π(x̃))|
|F ′n(z)| < 2

for every z ∈ B(π(x̃), r), n > 0 (distances and derivatives in the Riemann metric
on C).

Moreover r is measurable functions of x̃.
((A) follows easily from Pesin’s theory [Pe]. It is stated explicitly in [PZ, Lemma

1] and a proof of its variant can be found in [Led1] or [P2, Sec.2]. See also [ELyu],
[Led2], [M2], [P1, Sec.3]. The above distortion estimate can be deduced also from
Koebe’s Distortion Theorem.)

(B) Let us consider an arbitrary positive σ < χ
8 logL (≤ 1/8) where L := sup |f ′|

and find two subsets Ẽ, Ẽ0 of J̃ as follows:
(B1) Ẽ ⊂ Ẽ0, ν̃(Ẽ0) > 1− σ/2, ν̃(Ẽ) > 1− σ;

(B2) ν(E) > 1− σ, where E = π(Ẽ);

(B3) there exists r > 0 not depending on x̃ ∈ Ẽ0 such that univalent branches
Fn of f−n on B(π(x̃), r) for n = 1, 2, . . . for which Fn(π(x̃)) = π−n(x̃) exist, and

1

2
<
|F ′n(π(x̃))|
|F ′n(z)| < 2

for every z ∈ B(π(x̃), r), n > 0;
(B4) 1

n log |(fn)′(x)| → χ as n→∞ uniformly on x ∈ E0 (Egoroff’s Theorem);

(B5) Write Ax̃,N := {n : 1 ≤ n ≤ N, f̃n(x̃) ∈ Ẽ0} and write D(x̃, Ẽ0, N) :=

]Ax̃,N . Then D(x̃, Ẽ0, N)/N → ν̃(Ẽ0) as N → ∞ uniformly on x̃ ∈ Ẽ (Birkhoff
Ergodic Theorem and Egoroff’s Theorem).

(C) Fix an arbitrary x̃ ∈ Ẽ. Denote π(x̃) by x. For every n = 1, 2, . . . write
a(n) := log |(fn)′(x)|. Observe that

(C1) a(n + 1) ≤ a(n) + logL and by (B4), (B5) and (B1) there exists N0 such
that for every N ≥ N0;

(C2) a(N) ≥ Nχ/2;

(C3) D(x̃, Ẽ0, N)/N ≥ 1− σ;
(C4) Note that the sequence a(n) need not be monotone increasing. In the sequel

we shall consider only such N that a(n) ≤ a(N) for every n < N .

(D) For every n = 1, 2, . . . write In := [a(n), a(n) + logL]. Hence
⋃N
n=1 In ⊃

[logL, a(N) + logL].
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Write A′x̃,N := [1, N ] \ Ax̃,N . Then by (C3)
∑

n∈A′
x̃,N

|In| ≤ σN logL. Hence,

with the use of (C2), denoting PN :=
⋃
n∈Ax̃,N

In

Leb(PN ) ≥ a(N)− σN logL ≥ a(N)− 2σ(logL)a(N)/χ = a(N)(1 − 2σ logL

χ
).

(E) Observe that by our definitions the following holds:
(E1) B(fn(x), r/4L) ⊂ fn(B(x, r2 exp−t)) ⊂ B(fn(x), r) for every t ∈ PN ; more

precisely t ∈ In where n ∈ Ax̃,N .
This translates to
(E2) B(fn(x), r/4L) ⊂ fn(B(x, exp−τ)) ⊂ B(fn(x), r) for n = n(τ) for every

τ ∈ PN − log r
2 .

(F) Define R(x) :=
⋃∞
N=1 PN − log r

2 ; formally the construction depends on x̃
but in fact only on x.

We conclude that for every T ≥ a(N0)− log(r/2)+ logL and RT := R(x)∩ [0, T ]
for a(N) − log r

2 + logL ≤ T ≤ a(N + 1) − log r
2 + logL, for every τ ∈ RT (E2)

holds and by (C4) PN − log r
2 ⊂ [0, T ]. Hence using (C1) we estimate

LebRT ≥ a(N)(1− 2σ logL

χ
) ≥ (a(N + 1)− logL)(1− 2σ logL

χ
)

≥ (T − 2 logL+ log
r

2
)(1− 2σ logL

χ
) ≥ T (1− 2σ logL

χ
)−Q ≥ 3

4
T −Q

for the constant Q = (2 logL− log r
2 )(1− 2σ logL

χ ).

Thus, if T is big enough we obtain

LebRT ≥ 5

8
T.

The proof is over.

Remark 3. In fact we have not used fully the µ-regularity of x, namely (B4) and
(B5). We used only lim inf 1

n log |(fn)′(x)| > 0 and (B3), more precisely the exis-
tence of the branch of f−n from a big neighbourhood of fn(x) to a neighbourhood
of x for a big proportion of n’s. This might give a chance to get rid of measures in
further considerations, i.e. to solve problem B without assuming there are no para-
bolic or singular domains in C\J , under some non-uniform expanding assumptions.
Compare [P3].

Lemma 2. Let J be the Julia set of a non-exceptional rational function f . Fix a
ball B = B(x, r) centered at x ∈ J . Let Hn be a sequence of holomorphic functions
in B such that:

1. The sequence Hn tends to a holomorphic function H in B.
2. For every n and z,

z ∈ B ∩ J ⇐⇒ Hn(z) ∈ Hn(B) ∩ J.
3. If J is the whole Riemann sphere, a circle, or an interval (in some holomor-

phic coordinates), then additionally, for every n, there is a constant α > 0
so that µ(Hn(A)) = αµ(A), where µ = µ(f) and A is any set such that
Hn : A→ C is injective.

Then either the limit function H is constant, or Hn = H for all big n.
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Remark 4. A map with the properties 2. and 3. is called in [L] a local symmetry
on J . Note that without the assumption 3 Lemma 2 is false; all appropriate
translations or rotations are local symmetries for J Riemann sphere, interval or a
circle.

Proof of Lemma 2 (see [L]). For the sake of completeness we reproduce the main
steps of the proof here. An idea is to construct many shifts which leave the Julia
set invariant. For this we consider a semi-group generated by the local symmetries
Hn and f−n in neighborhoods of repelling periodic points of f .

I. Let (Φn) be any sequence of holomorphic functions univalent on a ball B(0, ε)
such that qn = Φn(0) 6= 0, n = 1, 2, . . . , and Φn → id as n → ∞. Given |λ| > 1,
there are a 6= 0, δ > 0 and positive integers sequences li, ni such that for every
m ∈ N and all big i the mappings

Ψi(z) = λli−mΦni(
Φ−1
ni (z)

λli−m
)

are defined in B(0, δ) and

Ψi(z) → z +
a

λm

as i→∞.
Indeed, choose li and ni such that λliqni → a 6= 0. Then we use the expansions

λlΦn(
Φ−1
n (z)

λl
) = λlqn + α

(n)
1 Φ−1

n (z) +

∞∑
k=2

α
(n)
k (

Φ−1
n (z)

λl(1−1/k)
)k,

where α
(n)
k are the coefficients of the power series expansion of Φn at 0. We have

Cauchy’s inequalities: |α(n)
k | < C/(ε/2)k, for some C > 0 and all k. With the

chosen li →∞ and ni, it gives us the statement.
II. Let z belong to a half plane {<z > M0} and φ(z) = z + 1 + o(|z|−γ), γ > 0,

as z → ∞. Given |λ| > 1 and c > 0, there are sequences li, ni and M > M0 such
that

λ−niφli(λniz) → z + c,

i→∞, if z ∈ Π = {<z > M}.
To prove it, we choose a sequence ni so that argλni → 0 and then set li = [c|λ|ni ].

Now the asymptotic φl(z) = z+l+o(l) if z →∞ and l→∞ leads to the conclusion.
III. There is no open domain U such that U

⋂
J is diffeomorphic to the product

of an interval and a Cantor set. A proof (due to A. Eremenko) can be found in [L].
IV. Assume that a limit function H of Hn is not a constant. We can set H =id.

We can assume also that Hn are defined and univalent in a ball B centered at a
repelling fixed point b of f (passing to an iterate) with multiplier λ = f ′(b). Let F
be a branch of f−1 on B contracting to b. We let

Fn = H−1
n ◦ F ◦Hn.

Denote bn = H−1
n (b). Then Fn(bn) = bn and F ′n(bn) = 1/λ.

Consider the case bn = b for some n. Let R = f ◦ Fn. Then R(b) = b and
R′(b) = 1. If J coincides with C, a circle S, or an interval I, then R preserves the
measure µ by the assumption 3. Looking at the corresponding Leau flower for R,
we see that R =id. Now let J not be C, S, and I. Assume R 6=id. We make two
changes of variable. First, we may assume that locally f(z) = λz. Second, after a
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change w = Az−p, with some A > 0 and p ∈ N, the map R turns to a map of the
form of p.II, and f turns to w 7→ λ−pw. Then applying p.II and returning to the
original coordinate z, we see that for each point x ∈ J close to b, J contains also an
analytic arc joining x to b, which corresponds to a horizontal ray in the coordinate
w. Then by III J is C, S, or I. A contradiction. (Another argument is that in the
case of a Cantor set of rays in J to b, for a periodic point b′ 6= b close to b one has
again a Cantor set of arcs to b′ which implies J = C).

Thus the remaining case is bn 6= b for all n. We can linearize each Fn by
a holomorphic Schroeder map hn, hn(0) = bn, and F by h, h(0) = b (so that
hn = H−1

n ◦ h). Then for passage maps Φn = h−1 ◦ hn we apply I. If λ is not real
we can walk in J in arbitrarily small steps in two different directions which gives
J = C. If λ is real we walk at least in the direction a. We conclude that J is either
C or an interval, or J is locally diffeomorphic to the product of a Cantor set and
an interval. The latter case is ruled out by III. In the first two cases the measure
µ is invariant under the shifts (by I). It is possible only if f is critically finite with
parabolic orbifold (see [E]).

V. Thus F = Fn, i.e. F (a branch of f−1 in a neighborhood of the repelling
periodic point of f) and all Hn commute. So each Hn is linear in some coordinates
linearizing F in which b becomes 0. If we apply the result F = Fn to another
repelling periodic point of f close to b, we obtain Hn =id. (In [L] the reader can
find a different argument.)

Proof of Theorem A. (A1) Let µ = µ(f) = µ(g), J = J(f) = J(g). Since the
Lyapunov exponents χf and χg are positive, we can apply Lemma 1. Take σ < 1/2,
satisfying Lemma 1 for f and g and find the set E1, and numbers r1 > 0, K1 > 1
and T 1

0 for f and r2 > 0, K2 > 1 and T 2
0 for g. There is a point x ∈ E1

⋂
E2. For

this point find the sets R1
T for f and R2

T for g, for all T big enough. Since each of
these sets occupies more that half of the interval [0, T ] one can find a sequence of
numbers ti → ∞, and two sequences of indexes n1

i → ∞, n2
i → ∞ such that the

maps

fn
1
i : B(x, exp(−ti)) → C,

gn
2
i : B(x, exp(−ti)) → C

are injective and

B(fn
1
i (x), r1/K1) ⊂ fn

1
i (B(x, exp(−ti))) ⊂ B(fn

1
i (x), r1),

B(gn
2
i (x), r2/K2) ⊂ gn

2
i (B(x, exp(−ti))) ⊂ B(gn

2
i (x), r2).

It is clear now that there exist a ball B = B(a, r), with a ∈ J , and an infinite
sequence of maps Hi, which are of the form gli ◦f−ki , univalent on B and such that
each Hi(B) contains a ball of a fixed positive radius and is contained in another
such ball (of a fixed radius). It means that {Hi} is normal in B and the limit
functions are not constants.

Now we use Lemma 2. Its assumption 3 holds because the Jacobians Jacµ(f) f
and Jacµ(g) g are constant (see [M1]). (We say that for an arbitrary measure ν on
J and a mapping h : X → J for X ⊂ J , a Jacobian Jacν h exists and is equal to a
function ϕ if for every Borel set A ⊂ X on which h is injective, ν(h(X)) =

∫
X ϕdν.)
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As we assumed µ(f) = µ(g) = µ, JacµHn is constant. (So in Lemma 2 we could

state the assumption 3 for every case, not only J = C interval or a circle. This
would simplify the proof. However in Section 2, Prop. 1, this is not so.)

Therefore, by Lemma 2, for some natural numbers m,n, k, and l, and for some
branches f−n and f−(n+l) defined in B,

gm ◦ f−n = gm+k ◦ f−(n+l)

identically in B. Rewrite it in the form

f−n ◦ fn+l = g−m ◦ gm+k

on f−(n+l)(B) and compose nm times.
Then we can set: G = gm, F = fn, M = nk, and N = ml.
(A2) Let, conversely,

(G−1 ◦G) ◦GM = (F−1 ◦ F ) ◦ FN .

Observe that this implies

(G−1 ◦G) ◦GiM = (F−1 ◦ F ) ◦ F iN

with the same functions G−1 ◦ G and F−1 ◦ F for all i = 1, 2, . . . . Because of
the uniqueness of the measure of maximal entropy, it is enough to show that the
measure µ = µ(F ) is the balanced measure for GM too; i.e. the Jacobian exists
and is constant (see [M1], [Lyu]). Denote by dF and dG the degrees of F and G.
Let us fix any small open domain A. Let B = GM (A) and let A′ be a component
of G−M (A). Then

µ(A′) = d−2N
F µ((F−1 ◦ F ) ◦ F 2N (A′))

= d−2N
F µ((G−1 ◦G) ◦G2M (A′)) = d−2N

F µ((G−1 ◦G)(B)).(3)

Similarly

µ(A) = d−NF µ((G−1 ◦G)(B)).(4)

Hence µ(A′) = d−NF µ(A), where GM : A′ → A is one-to-one (by the choice of A).
It follows that degGM = dNF (see [M1]). The proof is completed.

2. Rational functions with the same Julia set

Theorem B (On rigidity of maximal measure). Let f,g be two rational functions
without parabolic periodic points and singular domains (Siegel discs, Herman rings),
Julia sets not C, a circle or an interval (in some holomorphic coordinates). Then
the following conditions are equivalent:

(B1) J(f) = J(g);
(B2) µ(f) = µ(g);
(B3) there exist iterates F of f and G of g, such that, for some natural numbers

M and N the following equality holds:

(G−1 ◦G) ◦GM = (F−1 ◦ F ) ◦ FN ,

where G−1 ◦ G and F−1 ◦ F denote some single-, or multi-valued function
obtained by the analytic continuation of a branch.

Moreover, in (B3) (degG)M = (degF )N .
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In fact, we prove a more general statement:

Proposition 1. Let f, g be two arbitrary rational functions with the same Julia set
J = J(f) = J(g) not being a circle or interval. Suppose there exist periodic sinks
p, q for f, g and components U, V of their basins such that gm(U) = V , for some
m ≥ 0. Then the condition (B3) of Theorem B holds.

Remark 5. This proposition yields Theorem B as follows. The assumptions of The-
orem B imply there exists a periodic sink p of f . Its immediate f -basin Wf is
eventually periodic under an iterate of g [S]; i.e. gm(Wf ) is a basin of a periodic
sink of g. So the assumptions of Proposition 1 are satisfied. (Note that the as-
sumptions of Theorem B do not mean that f, g are hyperbolic; these assumptions
do not exclude the presence of critical points in J .)

Proof of Proposition 1. Denote by U ′, V ′ some periodic components of the basins
of p, q and f s(U) = U ′, gt(V ) = V ′. Let ν with index U,U ′, V, V ′ be harmonic
measure on the appropriate boundary, viewed from p, q in the case of U ′, V ′.

Then νU ′ , νV ′ are ergodic invariant measures with positive Lyapunov exponents
for f and g respectively. (By passing to iterations one can assume p, q are fixed
points.)

Invariance (see for example [P2]): For every continuous ϕ : U ′ → R we have∫
ϕdν = ϕ̃(p) = ϕ̃(f(p)) = ϕ̃ ◦ f(p) =

∫
ϕ ◦ fdν,

where tilde denotes the harmonic extension to U ′ (solution of Dirichlet’s problem)
and ν = νU ′ .

Ergodicity: If ϕ ◦ f = ϕ (modν) on ∂U ′ then ϕ ◦ fn = ϕ for every n ≥ 0. Hence

ϕ̃ ◦ fn = ϕ̃ ◦ fn = ϕ̃ on U ′. Applying this for n → ∞ we obtain ϕ̃(p) = ϕ̃(z) for
every z ∈ U ′. So ϕ is constant.

Lyapunov exponent: It is not less than half of the entropy hν (by [Ru], cf. [M1],
[P2]). Next recall that hν(f) > 0 iff f is not an automorphism (in ν), [Pa, Corollary
5.16].

Finally we prove that indeed f is not an automorphism (in ν). To that end it
is sufficient to prove that for every Borel set A ⊂ ∂U ′ with ν(A) > 0, contained
in a disc B(z, r) so that the disc B(z, 2r) does not contain critical values for f ,
there exist two different branches F1, F2 of f−1 so that ν(Fi(A)) > 0 for i = 1 and
i = 2. Let us use the notation ν(Ω, w,K) for the harmonic measure of K ⊂ ∂Ω
viewed from w ∈ Ω for a connected domain Ω. Going back to our situation we
have ν(U ′, w,A) ≤ C < 1 for a constant C and every w ∈ ∂(B(z, 2r) ∩ U ′).
Now ν(A) = ν(U ′, p, A) > 0 implies there exists w0 ∈ B(z, 2r) ∩ U ′ such that
C < ν(U ′, w0, A). Denote by W the component of B(z, 2r) ∩ U ′ containing w0.
Then by the comparison of harmonic functions

ν(W,w0, A) ≥ 1

1− C
(ν(U ′, w0, A)− C) > 0

because the first inequality holds, by the definitions, on ∂W . Hence for Fi, i = 1, 2,
being branches of f−1 mapping W in U ′ we obtain

ν(U ′, Fi(w0), Fi(A)) ≥ ν(Fi(W ), Fi(w0), Fi(A)) = ν(W,w0, A) > 0,

so ν(U ′, p, Fi(A)) > 0. The proof that f is not an automorphism in ν is over.



2188 G. LEVIN AND F. PRZYTYCKI

In general since f, g are holomorphic, their compositions and inverse branches
map sets of positive harmonic measure to the sets of positive harmonic measure.
So we can use Lemma 1 to construct an infinite sequence of local symmetries Hi

of J in a neighborhood of a point a ∈ ∂U ′ of the form Hi = gli+t+m ◦ f−ki−s (see
Proof of Theorem A). We just find x ∈ ∂U ′ such that x and gt(f−s)(x) satisfy the
assertions of Lemma 1 for iteration of f and g respectively. Next we find a ∈ ∂U ′

as a limit of fki(x), as in Proof of Theorem A.

Remark 6. Theorem B can be extended to rational functions with parabolic peri-
odic points having simply connected immediate basins, by [PSV].

3. Functional equations

A classical result on commuting rational functions f and g states:

f ◦ g = g ◦ f =⇒ fm = gn,

for some m > 0, n > 0 (if f and g are not critically finite with the same parabolic
orbifold) (see Introduction).

Consider another functional equation:

f2 ◦ g = f ◦ g ◦ f,
i.e., f commutes with f ◦ g. It yields

fm = (f ◦ g)n
(if f and f ◦ g are not critically finite with the same parabolic orbifold). This gives
no direct information about g.

On the other hand, Theorem A gives a way to separate the functions f and g in
an appropriate functional equation. Indeed, if f commutes with f ◦ g, then

µ(f) = µ(f ◦ g) = µ(g)

(because Jacµ g = Jacµ(f ◦ g)/(Jacµ f) ◦ g = Const, where µ = µ(f) = µ(f ◦ g)),
and the equation (∗) holds (again, if f and g are not critically finite with the same
parabolic orbifold).

The above is true of course for every functional equation between rational func-
tions f and g whenever one can derive from the equation the coincidence of the
maximal measures of f and g.
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