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Abstract. Considerd disjoint closed subintervals of the unit interval and consider an orientation
preserving expanding map which maps each of these subintervals to the whole unit interval. The
set of points where all iterates of this expanding map are defined is a Cantor set. Associated
with the construction of this Cantor set is the scaling function which records the infinitely deep
geometry of this Cantor set. This scaling function is an invariant ofC1 conjugation. Dennis
Sullivan posed the inverse problem: given a scaling function, determine the maximal possible
smoothness of any expanding map which produces it. We solve this problem in the case of
finite smoothness and in the real-analytic case.

AMS classification scheme numbers: 58F03, 58F08, 58F15

Preliminaries

Consider the space6d = { 1, . . . , d }N, with its standard shift-mapσ

σ(α1α2 . . .) = (α2 . . .).

Denote byσ−1
i the d right-inverse ofσ :

σ−1
i (α1α2 . . .) = (iα1α2 . . .)

Our convention will be to use no separating commas in strings of symbols.
6d with the product topology is a Cantor set. Consider an embeddingh of the space

6d = { 1, . . . , d }N into R with the standard order:

h(α) > h(β) iff αm > βm

wherem is the first integer for whichαm 6= βm. The image ofh is also a Cantor set.
Denote byf the induced shift-map on the image ofh and byf −1

i the d right-inverses of
f . Let r > 1. We say thath is Cr if each of the right-inversesf −1

i haveCr extensions to
R which are contractions. We say then that the Cantor set isCr .

Every C1+ε Cantor set has a scaling function, defined below, and there is a simple
characterization of those functions which are scaling functions for someC1+ε Cantor set.
In this paper we describe those scaling functions which actually have up toCk+ε realizations.
Herek is any integer greater than or equal to 1 and 0< ε 6 1. We follow the convention
that ε = 1 means a Lipschitz condition.
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The theory forr = 1 + ε is essentially due to Feigenbaum [F] and Sullivan [S] who
introduced the scaling function. It is defined in the following manner. Given an embedding
h, then the shift-map allows a canonical definition of the image ofh as an intersection of
nested collections of intervals. More precisely, define for any finite sequence(j1 . . . jn)

Ij1...jn
as the convex hull ofh({ α : α1 = jn, . . . , αn = j1 }). Note the order in which the

indices occur. Then for anyj0, Ij0j1...jn
⊂ Ij1...jn

and the shift-map mapsIj1...jn
to Ij1...jn−1.

For the empty string,I denotes the image ofh. The sets thus constructed are not intervals,
but actually small pieces of the image ofh. It is however convenient to think of them as
intervals.

For any subsetJ in the reals denote by〈J 〉 its convex hull and by|J | the length of its
convex hull. We will in the remainder always assume that〈I 〉 is the unit interval [0,1].

Denote the set of finite stringsj1, . . . jn of length n by 6dual
d,n . The scaling function

(ratio geometry) at leveln is a functionSn:

S : 6dual
d,n → (0, 1)2d−1

defined in the following manner. For eachj1 . . . jn S(j1 . . . jn) records the geometrical
location of thed intervals{ 〈Ij0j1...jn

〉 }j0=1...d in 〈Ij1...jn
〉 by the ratios of lengths of thesed

intervals (firstd coordinates) andd − 1 gaps (lastd − 1 coordinates) to the length of
〈Ij1, ...jn

〉. In particular forj0 = 1, . . . d the j0th coordinate ofS is given by the following
formula:

S(j1 . . . jn)j0 = |Ij0...jn
|

|Ij1...jn
| .

The sum of all ratios of lengths equals one. ThereforeS actually takes values in the
(2d − 2)-dimensional simplex Simp2d−2 of (0, 1)2d−1 where the sum of the coordinates
equals 1. Moreover lengths of intervals are determined by the scaling functions at all
levels:

|Ij1...jn
| =

∏
k

S(jk+1 . . . jn)jk

Consider two finite sequencesj = j1 . . . jn and j ′ = j ′
1 . . . j ′

m. There is a canonical
identification betweenIj andIj ′ defined as follows. Letj ∩ j ′ be the longest string which
agrees with both the beginning ofj and the beginning ofj ′. Then suitable iterates of the
shift-map mapIj to Ij ∩ j ′ respectivelyIj ′ to Ij ∩ j ′ (see diagram):

Ij ′∩j

↗ ↖
Ij ′ Ij

The fundamental observation is that if the embedding isC1+ε then the identification map
is close to being linear in the following precise sense. Define the nonlinearity of a
diffeomorphismf on an interval as

log sup
x,y,x 6= y

Df (x)

Df (y)
.

Then the nonlinearity of the identification map can be estimated from above in terms of the
length of the intermediary intervalIj ∩ j ′ . But then ifj ∩ j ′ is long (i.e. |Ij ∩ j ′ | small), the
subdivision ofIj is close to that ofIj ′ . One concludes that there exists a uniformγ such
that 0 < γ < 1

|S(j1 . . . jn) − S(j ′
1 . . . j ′

m)| 6 γ ](j ∩ j ′).
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Here ](j ∩ j ′) denotes the length ofj ∩ j ′. Therefore for any infinite sequence
j = (j1j2 . . .) the scaling functionS:

S(j) = lim
n → ∞ S(j1 . . . jn)

is well defined and has a Ḧolder modulus of continuity:

|S(j) − S(j ′)| 6 γ ](j∩ j ′).

This scaling function is canonically defined on the dual Cantor set6dual
d , whose elements

are infinite sequences(j1j2 . . .). Each such sequence should be thought of as a prescribed
sequence of inverse branches of the shift-map.

Say that a map isC1+ if it is C1+ ε for someε.

Theorem. [S] EveryC1+ embedding has a H¨older continuous scaling function. The scaling
function is aC1 invariant. Moreover it is aCk+ε complete invariant, namely twoCk+ε

embeddings (k positive integer and0 < ε 6 1) with the same scaling function areCk+ε

isomorphic. Every H¨older continuous function on the dual Cantor set with values inSimp2d−2
is the scaling function of aC1+ embedding.

Here the Ḧolder continuity of the scaling function is defined with respect to a metric
on 6dual

d :

ρδ(j, j ′) = exp(−δ ](j ∩ j ′)).

In the theoremδ (the metric on6dual
d ) is not specified so we cannot specifyε.

The problem which remained was to understand which functions occur as scaling
functions for C1+ε (concreteε) and higher smoothness. Here we give necessary and
sufficient conditions for a functionS to arise as a scaling function for aCk+ε (k positive
integer and 0< ε 6 1) embedding. The main observation is that, given an embedding,
we should be able to extend the identification map betweenIj andIj ′ to their convex hulls
〈Ij 〉 and 〈Ij ′ 〉 to be Ck+ε close to affine providedj ∩ j ′ is long. Here close to affine is
measured after affinely rescaling〈Ij 〉 and 〈Ij ′ 〉 to the unit interval. We refer to the process
of changing the map by rescaling domain and range to the unit interval as renormalization.

1. C+ε theory

We will first characterize those functions which are scaling functions ofC1+ε Cantor sets.
This is a special case of the main theorem. We state it separately because of its simpler
form. Given a functionS : 6dual

d → Simp2d−2. We replace an arbitrary metricρδ on 6dual
d

with a metricρS so that for an embedding withS as scaling function there existsK so that
for everyj, j ′:

1

K
6 |Ij ∩ j ′ |

ρS(j, j ′)
6 K.

This metric is defined as:

ρS(j, j ′) = sup
w

n=](j∩ j ′)∏
t=1

S(jt+1jt+2 . . . jnw)jt
.

(3) holds by(1) because any infinite tailw changes the product by a uniformly bounded
factor (by(2)).



406 F Przytycki and F Tangerman

Theorem 1. Fix 0 < ε 6 1. The following are equivalent:
1. There exists aC1+ε embedding with scaling functionS.
2. S isCε on (6dual

d , ρS). (HereC1 means Lipschitz).

Proof. That 1 ⇒ 2 follows when one observes that a stronger form of(2) holds:

|S(j1 . . . jn) − S(j ′
1 . . . j ′

n)| 6 K |Ij ∩ j ′ |ε
This inequality carries over to the scaling function. Next apply(3).

That 2 ⇒ 1, i.e. the construction of aC1+ε Cantor set will be done in the proof of the
Main Theorem. �

Example 1. For every 0< ε1 < ε2 6 1 there existsS admitting aC1+ε1 embedding but not
C1+ε2. We find it as follows: For an arbitrary 0< ν < ε2−ε1

2 we can easily find a function
S to Simp2d−2 which is Cε1+ν but notCε2−ν on 6dual

d,n with a standard metricρδ, δ > logd.
We can find in factS so that for everyj ∈ 6dual

d,n , i = 1, . . . d | − logS(j)i/δ − 1| < ν/ε2.
This is chosen so thatS is Cε1 but notCε2 with respect to the metricρS .

2. Ck+ε theory.

We now turn to the more intricate case of higher smoothness.
Let A1 andA2 be two subsets of the unit interval [0, 1] such that both sets contain the

endpoints of [0, 1] and both have equal cardinality. Denote thekth derivative operator by
Dk and denote byDk(A1, A2) the space ofCk diffeomorphisms on [0, 1] which mapA1

to A2. For every constantM > 0 consider the space ofCk-diffeomorphisms:

Dk
var(M)(A1, A2) = { φ ∈ Dk(A1, A2) : sup |Dkφ(x) − Dkφ(y)| 〈M}

Lemma. Assume thatA1 andA2 consist of2d points. Assume thatk < 2d. Then for each
f , g in Dk

var(M)(A1, A2) we have for all integers0 6 t 6 k:

sup |Dtf − Dtg| 6 2M

Proof. Consider two such mapsf andg. Their difference vanishes onA1. Since 2d 〉 k,
there exists (mean value theorem) for eacht a pointxt in [0, 1] for which:

Dtf (xt ) − Dtg(xt ) = 0

The lemma follows by induction and integration. �
Given a functionS as above and a pointj in 6dual

d . ConsiderS(j). It encodes a
partition of [0, 1] in 2d − 1 intervals. Denote byA(j) the 2d end points of these intervals.
Consider anyj0 = 1, . . . d and consider the pointj0j in 6dual

d . ThenS(j0j) specifies how
the j0th interval inj is subdivided. Consider two pointsj andj ′ in 6dual

d Every element in
Dk(A(j), A(j ′)) maps thej0th interval in the domain to thej0th interval in the range, which
we again can renormalize. This defines a map (restrict toj0th interval and renormalize):

Rj0 : Dk(A(j), A(j ′)) → Dk({0, 1}, {0, 1})

Main Theorem (Ck+ε case).Supposek < 2d. Suppose that we are given a functionS as
above. The following are equivalent.

1. There exists aCk+ε embedding with scaling function S.
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2. There exists a constantC so that for allj andj ′ in 6dual
d and all j0 = 1, . . . d:

Dk
var(C(j0j, j0j

′))(A(j0j), A(j0j
′)) ∩ Rj0(D

k
var(C(j, j ′))(A(j), A(j ′)) 6= ∅

where for allj, j ′ ∈ 6dual
d ,

C(j, j ′) = C ρS(j, j ′)k+ε−1.

Discussion of statement of theorem.The statement of the theorem may appear obscure.
We briefly discuss in an informal manner how the scaling function records smoothness
beyondC1.

(1) Consider two stringsj and j ′ and the identification map betweenIj and Ij ′ . The
scalingsS(j) andS(j ′) record how 2d specific points inIj map to 2d specific points inIj ′ .
Consider the renormalized identification map , and assume that we know that the variation
of the kth derivative of this identification map is small. Consider anyk + 1 of the 2d
specific points. Since we know where these points map, we can compute a value of thekth
derivative (just as the standard mean value theorem computes a value of the first derivative
given 2 points and their values). Because the variation of thekth derivative is small, we
obtain combinatorial relations between any two choices ofk + 1 points. Condition2 of
the theorem captures this idea. It does not attempt to give an algebraic description of these
combinatorial relations†.

(2) In fact we do not need all 2d points which appear in the definition of the ratio
geometry to be involved in the definition ofDk

var, k + 1 would be enough (see lemma).
If we define these spaces in this way then condition2 seems to be vacuous for theC1+ε

case, becausek = 1. In particular it gives the impression we do not need the geometry at
all. However, condition2 in theorem 1 (hence property (4) in the proof of theorem 1) is
still hidden in condition2 in the Main Theorem. Without condition2 in theorem 1, a map
[0, 1] → [0, 1] in Dk

var(A(j0j), A(j0j
′)), even a linear one, after renormalizing byR−1

j0
may

not be extendible to a map belonging to the secondD in 2 of the Main Theorem.
(3) The condition of the Main Theorem seems to imply that high smoothness is not

discussed whend is small. We can however replaced by any positive powerdn in the
following manner.6d is canonically homeomorphic to6dn , by the homeomorphism which
groups the digits of a point in6d in groups ofn digits. This homeomorphism conjugates
the nth iterate of the shift-map on6d to the shift-map on6dn .

Proof of Main Theorem. We first show that1 implies 2. Assume that we are given a
Ck +ε embeddingh. Denote the induced shift-map on the image byf . We may assume that
its d right-inverses extend asCk + ε contractions to the unit interval, the convex hull of the
image ofh. Denote byfj ′|j the identification between〈Ij 〉 and 〈Ij ′ 〉 for finite stringsj, j ′

and denote byFj ′|j the renormalized identification defined on the unit interval. Thenfj ′|j ,
respectivelyFj ′|j , factors as a composition:

fj ′|j = fj ′|j ′∩j ◦ fj ′∩j |j

Fj ′|j = Fj ′|j ′∩j ◦ Fj ′∩j |j .

Since fj ′|j ′∩j : 〈Ij ′∩j 〉 → 〈Ij ′ 〉 is a composition ofCk+ε contractions the derivatives of
fj ′|j ′∩j are controlled by the first derivative.

† Added in revision. In the analogous case of expanding mappings of the circle algebraic conditions are worked
out up to smoothness 3 by A Pinto and D Sullivan in [PS].
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More precisely, by a standard computation which we leave to the reader, there exists a
constantC so that for allj andj ′, all 1 6 τ 6 k + ε

|fj ′|j ′∩j |τ 6 C |fj ′|j ′∩j |1.
Here |.|τ denotes the sup-norm of theτ th derivative forτ integer and theα- Hölder norm
of the nth derivative ifτ = n + α, 0 < α 6 1.

But then:

|Fj ′|j ′∩j |τ = |Ij ′∩j |τ
|Ij ′ | |fj ′|j ′∩j |τ

6 |Ij ′∩j |τ−1 C.

The last inequality follows because:

|Ij ′ |
|Ij ′∩j | = Dfj ′|j ′∩j (x)

for some pointx ∈ Ij ′∩j and the bounded nonlinearity of the maps.
Now let j and j ′ be two distinct points in6dual

d . Denote byjn, respectivelyj ′
n, the

beginning strings of lengthn. Then forn large enoughj ∩ j ′ = jn ∩ j ′
n and the sequence

of maps{ Fj ′
n|j ′∩ j } is Ck + ε-equicontinuous (forε > 0). Since moreover:

Fj ′
n+m|j ′∩j = Fj ′

n+m|j ′
n

◦ Fj ′
n|j ′∩j

this sequence of maps is in factCk+ε convergent. Denote byFj ′|j ′∩ j the limit map. By the
same argumentFj |j ′∩ j is defined. Therefore the limiting map:

Fj ′|j = Fj ′|j ′∩ j ◦ F−1
j |j ′∩ j

is well-defined andCk+ε (until herek > 1, ε = 0 has been allowed). SinceρS(j, j ′) is
uniformly comparable to|Ij ′∩ j | we obtain this limiting mapFj ′|j in Dk

var(C
′ρS(j, j ′)k+ε−1)

for some uniform constantC ′. Since moreover:

Rj0 Fj ′|j = Fj0j ′|j0j

we automatically have an element in the intersection.2 now follows.
We next show that2 implies 1. SinceS is given, we first construct an embedding of

the Cantor set withS as scaling function. We then show that this embedding isCk + ε .
Fix an arbitrary infinite wordw. Construct a Cantor setC in the unit interval [0, 1] by

consecutively subdividing any interval〈Ij 〉 according toS(jw). We obtain an embedding
with scaling functionS. Denote the induced shift-map on the image byf0. It is defined on
a Cantor setC. In order to show that this shift-map has aCk+ε extension, we verify the
assumptions to Whitney’s Extension Theorem [Stein]. We will construct functionsf1, . . . fk

on C so that for allx, y in C and l = 0, . . . . k (Whitney conditions):

fl(y) =
t=k∑
t=l

1

(t − l)!
ft (x)(y − x)t−l + O(|y − x|k−l+ε).

These functionsf1, . . . fk play the role of the firstk derivatives off0.
The interval〈I 〉 = [0, 1] is subdivided ind intervals〈Ii〉, i = 1, . . . , d. On each of

the intervals,f0 mapsIi = C ∩ 〈Ii〉 to I = C ∩ 〈I 〉 by f0. Now fix i = 1, . . . d. We
will work on each〈Ii〉 separately. For eacht = 1, . . . , k defineft on Ii as:

ft = lim
n → ∞ { Dtφj1...jn,j }(j1...jn)
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Hereφj1...jn,i : 〈Ij1...jni〉 → 〈Ij1...jn
〉 is any map whose renormalization is in

Dvar
k (C(j1 . . . jniw, j1 . . . jnw)(A(j1 . . . jniw), A(j1 . . . jnw)).

We need to see thatft is in fact well-defined on the Cantor set. We first verify thatft

is defined point wise on the Cantor set. Consider a stringj1 . . . jn and an elementj0.
For x ∈ Ij0j1...jni , considerφj0j1...jni (x) and φj1...jni (x) and theirt th derivatives. Then by
assumption2 and the lemma:

|Dtφj0j1...jni (x) − Dtφj1...jni (x)|

6 |Ij0j1...jn
|

|Ij0j1...jni |t
C ρS(j0j1 . . . jniw, j0j1 . . . jnw)k+ε−1

6 C |I (j0j1 . . . jni)|k+ε−t .

Therefore we obtain the convergence on the Cantor set in fact exponentially fast.
We need to check that the Whitney conditions hold on the Cantor set. Letx andy be

distinct points in the Cantor set in〈Ii〉. Consider the first time that they wind up in different
intervals in the subdivision:

x ∈ 〈Ij0j1...jni〉, y ∈ 〈Ij ′
0j1...jni〉 j0 6= j ′

0.

Then again by2:

|φj1...jni (y) − φj1...jni (x) −
t=k∑
t=0

1

t !
Dtφj1...jni (x)(y − x)t | 6 C |x − y|k+ε

(and similarly for the higher derivatives) whereC is a uniform constant. Since
|Dtφj1...jni (x) − ft (x)| 6 C |x − y|k+ε−t , we can take limits and obtain the Whitney
conditions for the familyf0, f1, . . . , fk. Consequently there exists aCk+ε extension off
to each〈Ii〉 and we have produced aCk+ε embedding of6d with scaling functionS. �

Corollary †. Assume thath1 and h2 are C1-equivalentCk + ε embeddings:h2 ◦ h−1
1 is C1.

Thenh2 ◦ h−1
1 is Ck+ε .

Proof. To show that the conjugacyh2 ◦ h−1
1 has aCk+ε extension, it suffices to construct

its higher derivatives on the Cantor set and apply the Whitney Extension Theorem. This
can be achieved using the same manner as that employed in the second half of the proof
of the Main Theorem. Both embeddings have the same scaling functionS so , as the
embeddings areCk+ε , the ratio geometries on finite levels are close to one another in the
sense of condition2 of the Main Theorem. �

Remark. The preceding is not totally satisfactory; for example we do not understand how
to extractCk-smoothness (k integer!) from the ‘finite condition’ on scaling function. This
is because in the previous scheme everything which needs to be controlled is dominated by
geometric series. More refined finite smoothness categories likeC1+zygmund can however
be treated in much the same way.

Finally, for everyk, d, ε with k < 2d − 1, 0 6 ε < 1 andk + ε > 1, we construct
an example of a scaling function with aCk + ε realization and none of higher degree of
smoothness.

† Added in revision. This is a part of Sullivan’s theorem formulated in the preliminary section. A detailed proof
along Sullivan’s line appeared recently in [BF] and will appear also in [PS].
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Example 2. Let Ji = [ 2 i − 2
2d − 1, 2 i − 1

2d − 1], i = 1, . . . , d.

For ε > 0 definef : ∪i Ji → J = [0, 1] as

f (x) = A ((2d − 1) x + xk+ε) x ∈ J1

while f is affine ontoJ on eachJi, i > 2. Here the the constantA is chosen so that
f (J1) = J .

Of course the resulting Cantor set isCk+ε . We will show that its scaling function on
the dual Cantor set has noCk + ε1 realization for allε1 > ε, by explicitly checking that
condition2 of the Main Theorem does not hold fork + ε1.

Let w be any element in6dual
d which does not contain the symbol 1. Denote by 1n the

string of lengthn consisting of 1s only:

1n = 11. . . 1.

Consider the infinite stringsj = 1nw andj ′ = 1n1w = 1n+1w. Consider the subdivision
A(j), respectivelyA(j ′), of the unit interval dictated byS(j) and S(j ′). Let 8n be
any map inDk

var(A(j), A(j ′)) for which its renormalized restrictionR18 is in fact in
Dk

var(A(1j), A(1j ′). We will bound the variation of thekth derivative of8n from below
and conclude that condition2. of the Main Theorem is not satisfied withk + ε1.

We denote byA(j)m the mth point from the left inA(j). Becausek < 2d − 1 there
existsx ∈ [A(j)2, A(j)2d ] such that:

DkFj ′|j (x) = Dk 8n(x).

Recall thatFj ′|j is the renormalization offj ′|j for the mapf defined above. See the notation
of the proof of the Main Theorem. Similarly there existsy ∈ [A(1j)1, . . . , A(1j)2d−1] so
that

DkF1j ′|1j (y) = Dk(R18n)(y).

We have that:

DkFj ′|j (x) = B (2d − 1)−n(k−1+ε) xε

(note that(2d − 1)−n ∼ ρS(j
′, j)). The mapF1j ′|1j is just the renormalization of the

restriction of the limit mapFj ′|j to the left most interval [A(j)1, A(j)2] in the unit interval.
Let y ′ be the point in the interval [A(j)1, A(j)2], corresponding toy after rescaling the unit
interval back to [A(j)1, A(j)2]. Then we have that:

Dk(Fj ′|j )(y ′) = B (2d − 1)−n(k−1+ε) (y ′)ε

whereB is a computable constant.
But |x − y ′| > const (2d − 1)−2. Consequently:

Dk8n(x) − Dk8n(y
′) = const (2d − 1)−n(k−1+ε) (xε − (y ′)ε

and is comparable to

ρs(j
′, j)k−1+ ε

i.e. the variation ofDk8n is at least on the order of:ρs(j
′, j)k−1+ ε .

Since

lim
n → ∞

ρs(j
′, j)k−1+ ε1

ρs(j ′, j)k−1+ ε
= 0

condition2 of the theorem cannot be satisfied for

C(j ′, j) = C ρS(j
′, j)k−1+ ε1.

For ε = 0 we consider, say,f (x) = A((2d − 1)x + x/ logx).
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3. Real-analytic theory

Here we shall characterize scaling functions which admit real-analytic embeddings. This
characterization will be of an ‘infinite’ type. In example 3 we will present a scaling function
which has a smooth realization but no real-analytic one.

Given a scaling functionS on 6dual
d we define a scaling function̂S with values in

embeddings of6d in [0, 1] rather than in Simp2d−2. For eachj = j1 . . . ∈ 6dual
d we define

an embedding by induction as follows.
Suppose forin . . . i0 an intervalJin...i0 ∈ [0, 1] is already defined (for the empty string

we setJ = [0, 1]). Then for everyin+1 = 1, . . . , d we defineJin+1in...i0 ⊂ Jin...i0 as an
interval which after an affine rescaling ofJin...i0 to [0, 1] becomes the(2in+1 − 1)th interval
of the partition of [0, 1], determined byS(ini1 . . . i0j). Then Ŝ(j) is the embedding of
6d : (i0i1 . . .) 7→ ⋂∞

n=0 Jin...i0. We denote the image Cantor set i.e.Ŝ(j)(6d) by Can(j).
(Observe that this is the same construction as in section 2, Proof of Main Theorem, with
j = w.)

Remark. For everyj , Ŝ(j) has the same scaling functionS on 6dual
d .

Main Theorem (real-analytic case). Suppose we are given a scaling functionS. The
following are equivalent:

1. There exists aCω (real-analytic) embedding with scaling functionS.
2. For every j, j ′ ∈ 6dual

d there exists a real-analytic orientation preserving
diffeomorphism8j ′|j : [0, 1] → [0, 1] mappingCan(j) onto Can(j ′).

Proof. 1 implies 2 because givenj, j ′ ∈ 6dual
d we can take8j |j ′ = limn→∞ Fj ′

n|jn
as in the

proof of the Main Theorem.Fj ′
n|jn

are defined on a fixed complex neighbourhood of [0, 1]
and the sequence is even exponentially convergent becauseFjn|jn+1 and Fj ′

n+1|j ′
n

converge
exponentially to the identity.

2 implies 1 in a trivial way. Just take as the Cantor set we are looking for Can(j) for
an arbitraryj . The extensions of the shift are renormalizations of analytic maps8j |i0j to
maps fromJi0, i0 = 1, . . . , d to [0, 1]. �

Now we will show the existence of a scaling function which admits aC∞ embedding
but noCω

Example 3. Takef as in example 2 except that nowA((2d − 1)x + xr+1) is replaced by

A((2d − 1)x + exp(−1/x)).

Suppose that2 holds, i.e. there exists a real-analytic8w|1w : [0, 1] → [0, 1] mapping
Can(1w) onto Can(w). From the fact8w|1w coincides withFw|1w on Can(1w) we conclude
that their all derivatives coincide on sequences of points converging to 0. ButFw|1w is
defined with the use of the same formula (5) asf (up to a renormalization) so all therth
derivatives ,r > 1 , of Fw|1w, hence8, are 0 at 0. This implies8 is not real-analytic.

Remark (added in revision). One can simplify section 2 by writing an ‘infinite’ condition
as above, instead of2 in the Main Theorem. For example:

There existsj ∈ 6dual
d such that for everyi0 = 1, . . . , d 8j |i0j mapping Can(i0j) onto

Can(j) is Ck+ε .
This includesk > 1, ε = 0. One obtains in particular a corollary forε = 0, k > 2 !

Indeed assumingh1 andh2 areCk embeddings with the same scaling functionS, they have
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the same scaling function̂S. SoF 2
∅|j ◦F 1

j |∅ is aCk-conjugacy. (F denotes the renormalized
f as in section 2, the superscript is 1 or 2 depending as one considers the embeddingh1 or
h2, j is an arbitrary infinite string,∅ is the length 0 string.)
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