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Abstract. Consided disjoint closed subintervals of the unit interval and consider an orientation
preserving expanding map which maps each of these subintervals to the whole unit interval. The
set of points where all iterates of this expanding map are defined is a Cantor set. Associated
with the construction of this Cantor set is the scaling function which records the infinitely deep
geometry of this Cantor set. This scaling function is an invarian€bfconjugation. Dennis
Sullivan posed the inverse problem: given a scaling function, determine the maximal possible
smoothness of any expanding map which produces it. We solve this problem in the case of
finite smoothness and in the real-analytic case.

AMS classification scheme numbers: 58F03, 58F08, 58F15

Preliminaries

Consider the spacE,; = {1,...,d}", with its standard shift-map
o(or...) = (a2...).

Denote bys, ! the d right-inverse ofo:
ai_l(otlocz o) = (logas...)

Our convention will be to use no separating commas in strings of symbols.
¥, with the product topology is a Cantor set. Consider an embeddiofjthe space
s = {1,...,d}N into R with the standard order:

h(a) > h(B) iff oy > Bu

wherem is the first integer for whichw,, # B,,. The image of: is also a Cantor set.
Denote byf the induced shift-map on the image fand byffl the d right-inverses of

f. Letr > 1. We say that is C" if each of the right-inverseg,~* haveC” extensions to

R which are contractions. We say then that the Cantor s€t is

Every C*¢ Cantor set has a scaling function, defined below, and there is a simple

characterization of those functions which are scaling functions for sG#ie Cantor set.

In this paper we describe those scaling functions which actually have@p'tarealizations.
Herek is any integer greater than or equal to 1 anetQ= < 1. We follow the convention
thate = 1 means a Lipschitz condition.
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The theory forr = 1 4 € is essentially due to Feigenbaum [F] and Sullivan [S] who
introduced the scaling function. It is defined in the following manner. Given an embedding
h, then the shift-map allows a canonical definition of the imagé af an intersection of
nested collections of intervals. More precisely, define for any finite sequence. j,)

I;, ;, asthe convex hullok({a : o1 = j,, ..., @, = j1}). Note the order in which the
indices occur. Then for anyo, Ij,j,..;, C I,..;, and the shift-map maps, ; to I;, ; ,.

For the empty string/ denotes the image @f. The sets thus constructed are not intervals,
but actually small pieces of the image &f It is however convenient to think of them as
intervals.

For any subsef in the reals denote byJ) its convex hull and byJ| the length of its
convex hull. We will in the remainder always assume tffatis the unit interval [0,1].

Denote the set of finite stringg, ... j, of lengthn by Egﬂf". The scaling function
(ratio geometry) at levet is a functionS”: '

I (U N

defined in the following manner. For eadgh...j, S(ji1...J,) records the geometrical
location of thed intervals{ (I, ;) }j=1.4 in {I; ;) by the ratios of lengths of thesé
intervals (firstd coordinates) and — 1 gaps (lastd — 1 coordinates) to the length of
(I,, ... In particular forjo =1, ...d the joth coordinate ofS is given by the following
formula:

Sy = il

1.

The sum of all ratios of lengths equals one. TherefSractually takes values in the
(2d — 2)-dimensional simplex Simp_, of (0, 1)2~1 where the sum of the coordinates
equals 1. Moreover lengths of intervals are determined by the scaling functions at all
levels:

gl =[] SGksa- - i
k

Consider two finite sequences = ji...j, and j° = j;...j,. There is a canonical
identification betweerd; and; defined as follows. Lej N j’ be the longest string which
agrees with both the beginning gfand the beginning of’. Then suitable iterates of the
shift-map mapl; to I;; respectivelyl; to I;; (see diagram):

Ljnj
/ N
Ly 1
The fundamental observation is that if the embeddingis¢ then the identification map
is close to being linear in the following precise sense. Define the nonlinearity of a
diffeomorphismf on an interval as

D
log sup / (x).
X,V XF#Yy Df(Y)
Then the nonlinearity of the identification map can be estimated from above in terms of the
length of the intermediary intervd} ;. But then if j N j’ is long (i.e. |I;» ;| small), the

subdivision of; is close to that off;. One concludes that there exists a unifopnsuch
that0< y < 1

ISGit -+ ) — SGip-- gl < p20nd,
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Here #(j N j’) denotes the length of N ;. Therefore for any infinite sequence
Jj = (jij2...) the scaling functiors:

S() = n|Lmoo S(a---Jn)
is well defined and has adfler modulus of continuity:
ISG) = SN < yPIn,

This scaling function is canonically defined on the dual Cantorzsjé'f', whose elements
are infinite sequenceas jz...). Each such sequence should be thought of as a prescribed
sequence of inverse branches of the shift-map.

Say that a map i€ if it is C1*< for somee.

Theorem. [S] EveryC'* embedding has a#lder continuous scaling function. The scaling
function is aC? invariant. Moreover it is aC**¢ complete invariant, namely twg*+<
embeddingsk( positive integer and < € < 1) with the same scaling function a@t+
isomorphic. Every lider continuous function on the dual Cantor set with valueSimp,,_,

is the scaling function of &+ embedding.

Here the Hlder continuity of the scaling function is defined with respect to a metric
on xdua:

ps(j, J") = exp(=88(j N j").

In the theorens (the metric onx 32U is not specified so we cannot specify

The problem which remained was to understand which functions occur as scaling
functions for C**< (concretee) and higher smoothness. Here we give necessary and
sufficient conditions for a functiols to arise as a scaling function for &+ (k positive
integer and O< ¢ < 1) embedding. The main observation is that, given an embedding,
we should be able to extend the identification map betweemd ;; to their convex hulls
(1;) and (I;/) to be C*¥*< close to affine provideg N j’ is long. Here close to affine is
measured after affinely rescalifg;) and (Z;/) to the unit interval. We refer to the process
of changing the map by rescaling domain and range to the unit interval as renormalization.

1. C**€ theory

We will first characterize those functions which are scaling function6'6f Cantor sets.
This is a special case of the main theorem. We state it separately because of its simpler
form. Given a functions : £9%& — Simp,, ,. We replace an arbitrary metrj on x3u&
with a metricpg so that for an embedding witki as scaling function there exisis so that
for everyj, j’:
1 < [injl <
K = ps(j, J)
This metric is defined as:

n=4(jNj")
ps(is i) =sup [ SGisaiesz. . jnw)-
w =1

(3) holds by (1) because any infinite taib changes the product by a uniformly bounded
factor (by (2)).
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Theorem 1. Fix 0 < € < 1. The following are equivalent:
1. There exists &< embedding with scaling functia
2.SisC< on (239 ps). (Here C! means Lipschitz).

Proof. That1 = 2 follows when one observes that a stronger form2)fholds:
1SGir- - Ju) = SGp--- i)l < K lLjnjplf

This inequality carries over to the scaling function. Next ap{@y.
That2 = 1, i.e. the construction of @€ Cantor set will be done in the proof of the
Main Theorem. O

Example 1. For every O< €1 < e, < 1 there existss admitting aCc'*t* embedding but not
C'+e2. We find it as follows: For an arbitrary @ v < <25 we can easily find a function
S to Simp,,_, which is C<+” but notC~" on £§“? with a standard metrips, § > logd.
We can find in factS so that for everyj € £%, i =1, ...d | —logS(j)i/8 —1| < v/ez.
This is chosen so that is Ct but notC< with respect to the metripg.

2. C**€ theory.

We now turn to the more intricate case of higher smoothness.

Let A; and A, be two subsets of the unit interval,[Q@] such that both sets contain the
endpoints of [01] and both have equal cardinality. Denote #ib derivative operator by
DX and denote byD*(A;, A,) the space ofC* diffeomorphisms on [01] which mapA;
to A,. For every constan > 0 consider the space @f*-diffeomorphisms:

DEL(M) (A1, A)) = (¢ € D*(A1, Ap) i sup|D*¢(x) — D*¢(y)| (M}

Lemma. Assume tha#; and A, consist of2d points. Assume thdt < 2d. Then for each
£, gin DX _(M)(A1, A,) we have for all integer® < ¢ < k:

var
sup|D'f — D'g| < 2M

Proof. Consider two such mapg andg. Their difference vanishes oA;. Since 27)k,
there exists (mean value theorem) for eachpointx, in [0, 1] for which:

th(xz) - Dtg(x,) =0

The lemma follows by induction and integration. a
Given a functionS as above and a point in 9“8, ConsiderS(j). It encodes a
partition of [Q 1] in 24 — 1 intervals. Denote by () the 2d end points of these intervals.
Consider anyjo = 1, ...d and consider the poin; in zgua'. ThenS(joj) specifies how
the joth interval inj is subdivided. Consider two poingsand j’ in zgua' Every element in
D*(A()), A(j")) maps thejoth interval in the domain to thgth interval in the range, which
we again can renormalize. This defines a map (restrigptto interval and renormalize):

Rj,: DY(A(j), A(j")) — D*({0, 1}, {0, 1})

Main Theorem (C**< case).Supposé& < 2d. Suppose that we are given a functi®ms
above. The following are equivalent.
1. There exists &< embedding with scaling function S.
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2. There exists a constauit so that for allj and j’ in =9 and all jo = 1, ...d:

Do(C (joj. joi N(AGoj): AGjoj) N Riy(Dia(C(j. iNAG). A()) # B
where for allj, j' € T

C(j, j) = Cps(j, jHF 1

Discussion of statement of theoremThe statement of the theorem may appear obscure.
We briefly discuss in an informal manner how the scaling function records smoothness
beyondC?.

(1) Consider two stringg and ;" and the identification map betwedpand ;. The
scalingsS(;j) andS(;j’) record how 2/ specific points in/; map to 2/ specific points in/;..
Consider the renormalized identification map , and assume that we know that the variation
of the kth derivative of this identification map is small. Consider dany 1 of the 24
specific points. Since we know where these points map, we can compute a valuetf the
derivative (just as the standard mean value theorem computes a value of the first derivative
given 2 points and their values). Because the variation ofkthederivative is small, we
obtain combinatorial relations between any two choice¢ of 1 points. Condition2 of
the theorem captures this idea. It does not attempt to give an algebraic description of these
combinatorial relations

(2) In fact we do not need all 2 points which appear in the definition of the ratio
geometry to be involved in the definition db},, k + 1 would be enough (see lemma).

If we define these spaces in this way then condioseems to be vacuous for th@He
case, because = 1. In particular it gives the impression we do not need the geometry at
all. However, conditior2 in theorem 1 (hence property (4) in the proof of theorem 1) is
still hidden in condition2 in the Main Theorem. Without conditio® in theorem 1, a map

[0, 1] — [0, 1] in D%,.(A(joj), A(joj)), even a linear one, after renormalizing B}Zl may

not be extendible to a map belonging to the seconih 2 of the Main Theorem.

(3) The condition of the Main Theorem seems to imply that high smoothness is not
discussed whed is small. We can however replageby any positive powee!" in the
following manner.X, is canonically homeomorphic t8,;:, by the homeomorphism which
groups the digits of a point if,; in groups ofn digits. This homeomorphism conjugates
the nth iterate of the shift-map o, to the shift-map ors ..

Proof of Main Theorem. We first show thatl implies 2. Assume that we are given a
C**< embedding:. Denote the induced shift-map on the imagefyWe may assume that
its d right-inverses extend as* < contractions to the unit interval, the convex hull of the
image ofh. Denote byf;,; the identification betweefy;) and (I;) for finite stringsj, j’
and denote byF;; the renormalized identification defined on the unit interval. Tlign,
respectivelyFj,;, factors as a composition:

fini = Fiini © finjij
Fjj = Fjjnj o Fynjjj-

Since fjn; * (Iynj) — (Iy) is a composition ofC**< contractions the derivatives of
fiyn; are controlled by the first derivative.

1 Added in revision. In the analogous case of expanding mappings of the circle algebraic conditions are worked
out up to smoothness 3 by A Pinto and D Sullivan in [PS].
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More precisely, by a standard computation which we leave to the reader, there exists a
constantC so that forallj andj’, all 1 < 7 < k + €

[ fiinjle < Clfinjnjle

Here|.|; denotes the sup-norm of theh derivative fort integer and thex- Holder norm
of the nth derivative ift = n + @, 0 < o < 1.

But then:
[ L ]*

o il
||

[Fjjnjle =
< sl hC.
The last inequality follows because:
|1
[l
for some pointx € I;n; and the bounded nonlinearity of the maps.
Now let j and j’ be two distinct points inzgua'. Denote byj,, respectivelyj,, the

beginning strings of length. Then forn large enougly N j* = j, N j, and the sequence
of maps{ Fj;n;} is C¥*<-equicontinuous (foe > 0). Since moreover:

= Dfjyjn;j(x)

Fy ini = Fj i © Fipnj

this sequence of maps is in fact < convergent. Denote by ; the limit map. By the
same argument; ;n; is defined. Therefore the limiting map:

Fyj = Fyjnj o Fyjin;

is well-defined andC**+< (until herek > 1,¢ = 0 has been allowed). Sings(j, j) is
uniformly comparable t9/;~ ;| we obtain this limiting magF,; in DX, (C'ps(j, jHF<1)
for some uniform constar@’. Since moreover:

Rjy Fjnj = Fjojrijo
we automatically have an element in the intersect®mow follows.

We next show thaP implies 1. SinceS is given, we first construct an embedding of
the Cantor set witl§ as scaling function. We then show that this embedding‘is¢.

Fix an arbitrary infinite wordw. Construct a Cantor set in the unit interval [0 1] by
consecutively subdividing any interval;) according toS(jw). We obtain an embedding
with scaling functionS. Denote the induced shift-map on the imagefgy It is defined on
a Cantor seC. In order to show that this shift-map hasC4*< extension, we verify the
assumptions to Whitney’s Extension Theorem [Stein]. We will construct funcifans. f;
on C so that for allx, y in C andl = 0, . ...k (Whitney conditions):

t=k 1
— - _ t—I _ o k—l4e
fiy) = ; = O = 4 0y 2T,
These functionsfy, ... f; play the role of the firsk derivatives of /5.

The interval(I) = [0, 1] is subdivided ind intervals(l;), i = 1,...,d. On each of
the intervals,fo mapsl; = C N (I;[)tolI = C N {I) by fo. Now fixi = 1,...d. We
will work on each(l;) separately. For each= 1, ..., k define f; on I; as:

H t
fo= M DGy Yinein
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Heregj, ;.i: Iy i) — (L, ;) is any map whose renormalization is in

D (C(r- - juiw, j1-e- jaw)(A(1 - - juiw), A(J1. .. jaw)).

We need to see thaf; is in fact well-defined on the Cantor set. We first verify that
is defined point wise on the Cantor set. Consider a stying. j, and an elementjp.
Forx e Iy, j.i,» considerg;;, ;.i:(x) and¢; ;.(x) and theirtth derivatives. Then by
assumptior? and the lemma:

|D'@joj...jni (X) — D'y, i (x)]

|Ij0j1---jn |

< - w)k-‘ré—l
|Ij0j1'~~jni |

C ps(joji--- jniw, Joji--- Jn

< Cloju-- - jai) M.

Therefore we obtain the convergence on the Cantor set in fact exponentially fast.

We need to check that the Whitney conditions hold on the Cantor setx hatly be
distinct points in the Cantor set iff;). Consider the first time that they wind up in different
intervals in the subdivision:

x € (Ligjy.juids Y € Ujgjnjui) Jjo # Jo-
Then again by2:
t=k 1
5 () = Bt () = D 5 D'y i) (=2 < C e — y e
t=0 "

(and similarly for the higher derivatives) wher€ is a uniform constant. Since
ID'¢j, ji(x) — fitx)] < Clx — y[**¢=!, we can take limits and obtain the Whitney
conditions for the familyfo, fi, ..., fi. Consequently there existsG*¢ extension off
to each(l;) and we have produced@& "¢ embedding ofx,; with scaling functions. 0O

Corollary t. Assume thak; and i, are C-equivalentC*+¢ embeddings#, o Ayt is C*.
Thenhy o hitis CF*e.

Proof. To show that the conjugady, o h;l has ac**< extension, it suffices to construct

its higher derivatives on the Cantor set and apply the Whitney Extension Theorem. This
can be achieved using the same manner as that employed in the second half of the proof
of the Main Theorem. Both embeddings have the same scaling funstisa , as the
embeddings ar€**<, the ratio geometries on finite levels are close to one another in the
sense of conditior2 of the Main Theorem. O

Remark. The preceding is not totally satisfactory; for example we do not understand how
to extractC*-smoothnessk(integer!) from the ‘finite condition’ on scaling function. This
is because in the previous scheme everything which needs to be controlled is dominated by
geometric series. More refined finite smoothness categoriesChke's™*¢ can however
be treated in much the same way.

Finally, for everyk, d, e with k < 2d — 1, 0< ¢ <1 andk + ¢ > 1, we construct
an example of a scaling function with @ *¢ realization and none of higher degree of
smoothness.

1 Added in revision. This is a part of Sullivan’s theorem formulated in the preliminary section. A detailed proof
along Sullivan’s line appeared recently in [BF] and will appear also in [PS].
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Example 2. Let J; = [2=2,2i-1] j =1 ...,4.

i 2d-1’2d-1
Fore > 0 definef : U; J; — J = [0,1] as
f(x) = A((2d — 1) x + x**9 x € J1

while f is affine ontoJ on eachJ;, i > 2. Here the the constamt is chosen so that
fW) =J.

Of course the resulting Cantor set@@*<. We will show that its scaling function on
the dual Cantor set has o T« realization for alle; > ¢, by explicitly checking that
condition2 of the Main Theorem does not hold fér+ ¢;.

Let w be any element ir)jgua' which does not contain the symbol 1. Denote hytiie
string of lengthn consisting of 1s only:

1, = 11...1.

Consider the infinite stringg = 1,w and;’ = 1,1w = 1,,;w. Consider the subdivision
A(j), respectivelyA(j’), of the unit interval dictated by§(j) and S(j’). Let &, be
any map inDX (A(j), A(j")) for which its renormalized restrictioR,® is in fact in
DE.(A(1j), A(1j"). We will bound the variation of théth derivative of®, from below
and conclude that conditio®. of the Main Theorem is not satisfied with+ ¢;.

We denote byA(j),, the mth point from the left inA(j). Because& < 2d — 1 there
existsx € [A(j)2, A(j)24] such that:

DFji(x) = D* @, (x).

Recall thatF;; is the renormalization of;,; for the mapf defined above. See the notation
of the proof of the Main Theorem. Similarly there existse [A(1j)1,..., A(1j)24_1] SO
that

D*Fijinj(y) = DM(Ri®,)(y).
We have that:
Dij’Ij(x) = B (2d — 1) k=146 e

(note that(2d — 1)™ ~ ps(j’, j)). The mapFyjq; is just the renormalization of the
restriction of the limit mapFj,; to the left most interval4(j)1, A(j)2] in the unit interval.
Let y’ be the point in the interval4{(j)1, A(j)], corresponding ta after rescaling the unit
interval back to A(j)1, A(j)2]. Then we have that:

DF(Fi)(y) = B (2d — 1)"*k=1+0) (y/)¢

where B is a computable constant.
But [x — y'| > const (2d — 1)~2. Consequently:

D*®,(x) — D*®,(y) = const (2d — 7" ) (x¢ — ()
and is comparable to

sy e
i.e. the variation ofD*®, is at least on the order ofo,(j’, j)*"1+¢.
Since
ps(j', Yt

N o TR T
condition2 of the theorem cannot be satisfied for
CG's ) = Cps(f', ).

For e = 0 we consider, sayf(x) = A((2d — D)x + x/logx).
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3. Real-analytic theory

Here we shall characterize scaling functions which admit real-analytic embeddings. This
characterization will be of an ‘infinite’ type. In example 3 we will present a scaling function
which has a smooth realization but no real-analytic one.

Given a scaling functiorS on zgua' we define a scaling functiod with values in
embeddings o, in [0, 1] rather than in Simg_,. For eachj = ji ... € 2% we define
an embedding by induction as follows.

Suppose foii, ...ip an intervalJ;, ;, € [0, 1] is already defined (for the empty string
we setJ = [0, 1]). Then for everyi,.1 = 1,...,d we defineJ;, ., i, C Ji i, as an
interval which after an affine rescaling @f __,, to [0, 1] becomes th&2i,,, — 1)th interval
of the partition of [01], determined byS(i,is...ioj). Then S(j) is the embedding of
g . (giy...) — ﬂfj"zo Ji,..i,- We denote the image Cantor set ié(.j)(Ed) by Car(j).
(Observe that this is the same construction as in section 2, Proof of Main Theorem, with
j=w)

Remark. For everyj, $(j) has the same scaling functishon £gua.

Main Theorem (real-analytic case). Suppose we are given a scaling functiSn The
following are equivalent:

1. There exists & (real-analytic) embedding with scaling functich

2. For every j,j € zgua' there exists a real-analytic orientation preserving
diffeomorphismd;; : [0, 1] — [0, 1] mappingCan(j) onto Car(;").

Proof. 1implies 2 because give, j' € £3'# we can taked; ;; = lim,_. Fj;, as in the
proof of the Main TheoremF;,; are defined on a fixed complex neighbourhood of1J0
and the sequence is even exponentially convergent bedgyse, and Fj; ;; converge
exponentially to the identity.

2 implies 1 in a trivial way. Just take as the Cantor set we are looking for(Qafor
an arbitraryj. The extensions of the shift are renormalizations of analytic niagps; to
maps fromJ;,, io=1,...,d to [0, 1].

Now we will show the existence of a scaling function which admit§°a embedding
but noC®

Example 3. Take f as in example 2 except that nat((2d — 1)x + x”*1) is replaced by
A((2d — 1)x + exp(—1/x)).

Suppose tha? holds, i.e. there exists a real-analytig,1,, : [0, 1] — [0, 1] mapping
Can(lw) onto Cariw). From the fact,,1,, coincides withF,,1,, on Carflw) we conclude
that their all derivatives coincide on sequences of points converging to O.FBuf is
defined with the use of the same formula (5) fagup to a renormalization) so all theh
derivatives » > 1, of Fy, 1, hence®, are 0 at 0. This implie® is not real-analytic.

Remark (added in revision). One can simplify section 2 by writing an ‘infinite’ condition
as above, instead & in the Main Theorem. For example:

There existsi € X3 such that for everyo = 1,...,d ®;;,; mapping Catij) onto
Can(j) is Ckte,

This includesk > 1,¢ = 0. One obtains in particular a corollary fer= 0,k > 2 !
Indeed assuming; andh, are C* embeddings with the same scaling functigthey have
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the same scaling functiof. So Fﬂz‘j o FjlwJ is aC*-conjugacy. £ denotes the renormalized
f as in section 2, the superscript is 1 or 2 depending as one considers the embgdating
hy, j is an arbitrary infinite stringd is the length 0 string.)
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