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ON HAUSDORFF DIMENSION OF POLYNOMIAL NOT

TOTALLY DISCONNECTED JULIA SETS

FELIKS PRZYTYCKI† AND ANNA ZDUNIK‡

Abstract. We prove that for every polynomial of one complex variable of
degree at least 2 and Julia set not being totally disconnected nor a circle, nor
interval, Hausdorff dimension of this Julia set is larger than 1. Till now this
was known only in the connected Julia set case.

We give also an (easy) example of a polynomial with non-connected Julia
set and all non one-point components being analytic arcs, thus contradicting
Ch. Bishop’s conjecture that such components must have Hausdorff dimension
larger than 1.

1. Introduction

Christopher Bishop in [1], commenting his result on the existence of an entire
transcendental function with one-dimensional Julia set, asked the following ques-
tion:

The connected components of the Julia set constructed in this paper are all either
points or continua of Hausdorff dimension one.(...) However, the situation for
polynomials is open. If a polynomial Julia set is connected, then it is either a
generalized circle/segment or has Hausdorff dimension strictly greater than 1 (this
follows from work of Zdunik [51] and Przytycki [36]). Is this also true of the non-
trivial connected components when the Julia set is disconnected? In other words,
if J (p) is disconnected, is every connected component either a point or a set of
Hausdorff dimension strictly greater than 1?

Let us note that a similar question was asked in [11]. In this article, we answer
the above questions and related ones.

We start with the following.

Theorem 1. Let f : C → C be a polynomial of degree d ≥ 2. If the Julia set J(f) is
disconnected then every non one-point connected component J ′ of J(f) is eventually
periodic, i.e. f ℓ(J ′) is periodic with period k for some integers ℓ, k. Furthermore,
either f ℓ(J ′) is an analytically embedded interval (i.e. analytic arc), and fk on it is
analytically conjugate to ± Chebyshev polynomial, or J ′ has Hausdorff dimension
greater than 1.

This theorem is proved in Section 2. In Section 3 we complete the picture,
including possible analytic components and proving the following.
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Theorem 2. Let f : C → C be a polynomial of degree d ≥ 2, such that J(f) is
not totally disconnected. Assume also that f is not complex affine conjugate to a
map z 7→ zd or a ± Chebyshev polynomial. Then HD(J(f)) > 1. Even more, the
hyperbolic dimension, HDhyp(J(f)) is larger than 1.

So, if J(f) is disconnected but it has a non-trivial connected component (that is,
not one-point component), then HDhyp(J(f)) > 1, even if the dimension of every
non-trivial component is equal to one. In the latter case the dimension larger than
1 is achieved due to a Cantor set of other components. To prove it, we follow
a strategy by Irene Inoquio-Renteria and Juan Rivera-Letelier in [6], where they
proved that geometric pressure P (t) is larger than t times Lyapunov exponent of
any probability invariant measure on Julia set of a rational function, provided the
exponent is positive. See Proposition 4 for the definition of the geometric pressure
and Remark 12.5 in [14].

Theorem 2 strengthens the result of [17], where the analogous theorem was
proved for polynomials with connected Julia set.

Recall that hyperbolic dimension of the Julia set J(f), analogously of any other
f -invariant subset of J(f), HDhyp(J(f)) is defined as supremum of Hausdorff di-
mensions of isolated hyperbolic forward invariant subsets of J(f). Thus, the in-
equality

HD(J(f)) ≥ HDhyp(J(f))

holds trivially. See [14] for the discussion on equivalent definitions of the hyperbolic
dimension.

Finally, we show in Section 4 that the situation we deal with in the proof of
Theorem 2 really may happen: in Proposition 10 we provide an example of a family
of polynomials of degree 3 with non-trivial components of the Julia set J(f), each
of them being an analytically embedded interval.

So, strictly speaking, the answer to Ch. Bishop’s question is negative.

2. Repelling boundary domains and proof of Theorem 1

Choose R so large that

(1) f−1(D(0, R)) ⊂ D(0, R).

Let C be a connected component of the filled-in Julia setK(f). Denote by Un(C)
the unique connected component of f−n(D(0, R)) containing C. The boundary
∂Un(C) is disjoint from K(f) since ∂D(0, R) is, and f(K(f)) = K(f). Notice also
that by (1)

(2) Un+1(C) ⊂ Un(C).

Finally notice that all Un are simply-connected (topological discs) by Maximum
Principle.

Define C′ :=
⋂∞
n=0 Un(C). By Un(C) ⊃ C we get C′ ⊃ C. On the other hand

C′ =
⋂∞
n=0 Un(C) the intersection of a decreasing sequence of compact connected

sets, hence it is connected, hence as consisting from non-escaping points, i.e. con-
tained in K(f), a subset of C. We conclude with

C =

∞
⋂

n=0

Un(C).
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One fact pivotal for our paper is

Theorem A (Qiu & Yin [9], Kozlovski & van Strien [7]). For a polynomial f of
degree at least 2 if a component of filled-in Julia set K(f) is not a point, then its
forward orbit contains a periodic component containing a critical point.

In the proof of Theorem 2 we shall use in fact a weaker version, that if the
Julia set of a polynomial is not totally disconnected then there exists a periodic not
one-point critical periodic component of K(f).

Theorem A was proved for degree 3 polynomials by Branner and Hubbard [2]
and independently by Yoccoz, but for higher degree polynomials stayed unproved
for a long time.

Consider any non-trivial component of K(f). We can replace it by a periodic
component C which is its image under an iterate of f , i.e., fk(C) = C for some
k ≥ 1. Since replacing f by fk does not change the Julia set, we may assume and
we do assume from now on that f(C) = C.

Thus, consider any C being a component of K(f) such that f(C) = C. Notice
that for n arbitrary F := f |Un+1(C) maps Un+1(C) onto Un(C) since f(C) = C. So
since F is proper and due to (2), it is polynomial-like in the sense of [4].

Lemma 3. If C = f(C) is a non-trivial component of K(f), then for each n large
enough F defined above is polynomial-like with C being its filled-in Julia set, that is
C =

⋂∞
k=0 F

−k(Un(C)) namely the set of points whose forward trajectories do not
escape from Un+1(C). Moreover degree of F is at least 2.

Proof. Let us write here Un for Un(C) for all n. We claim that for n large enough
Un+1 is the only connected component of f−1(Un) contained in Un. Indeed, if
there is another such component in Un then there is a critical point of f in W :=

Un \ f−1(Un). Otherwise f : W → Un−1 \ Un = W ′ would be a covering map of
W to an annulus W ′. This contradicts the equality χ(W ) = deg(f |W )χ(W ′) for
Euler’s characteristics since χ(W ) is negative and χ(W ′) = 0. Since the number of
critical points of f is finite, the claim follows.

Finally, if degree of F were 1, then the moduli of all Un \Un+1 would be positive
equal to each other so C would be a point, contradiction. �

Below we recall the definition of RB-domain, which was introduced in [15].

Definition (RB-domain). Let Ω be a simply connected domain with #(C \Ω) > 2.
Assume there exists a holomorphic map defined on a neighborhood U of ∂Ω such
that

f(U ∩Ω) ⊂ Ω, f(∂Ω) = ∂Ω and

∞
⋂

k=0

f−k(U ∩ Ω) = ∂Ω.

Then Ω is called a repelling boundary domain (RB-domain).

Observation: The domain Ω := Ĉ\C together with f restricted to U := Un+1(C)
with n sufficiently large, as in Lemma 3, is a repelling boundary domain (RB–
domain). Indeed, by this Lemma, f |−1

Un
(C) = C which yields f(U ∩Ω) ⊂ Ω.

Now we rely on:
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Theorem B (See [11] and [16]). If Ω is an RB-domain then either HDhyp(∂Ω) > 1
or ∂Ω is an analytic Jordan curve or an analytically embedded interval, where f is
topologically conjugate to zd or to a ± Chebyshev polynomial, respectively.

Theorem B was stated as a conjecture in [15]. A comparison of harmonic measure
ω on ∂Ω to H1 which is the Hausdorff measure in dimension 1, is the key. For ω
absolutely continuous it is was proved in [16] that ∂Ω were analytic. It was also
claimed in [16] that for ω singular HD(∂Ω) > 1 can be proved by adapting the
methods of [17]. A detailed proof of this appeared in [11]. Analogously to [17], the
proof not only showed that HD(∂Ω) > 1, but, actually, the hyperbolic dimension
of f restricted to ∂Ω was larger than 1. For a survey see [13].

Combining the above Observation and Theorem B, concludes the proof of Theo-
rem 1, except it does not exclude C being a Jordan domain with an analytic Jordan
boundary. In such a case use as Ω the bounded (internal) component Ω′ of C \ ∂C

rather than the external one Ĉ \ C above. It is forward invariant for f (as we
replaced f by its adequate iterate). Moreover, as repelling to the side of Ω, ∂C is
repelling to the side of Ω′ by symmetry, i.e. Ω′ is an RB-domain, so the immediate
basin of attraction to a sink. So ∂C is a circle and f(z) = zd in some complex
affine coordinates by [3, Lemma 9.1]. See also [11, Theorem A] or [13, Theorem
8.1]. This contradicts the assumption that J(f) is disconnected.1

3. Proof of Theorem 2

We shall use a version of Bowen’s formula, which can be found in [10], see also
[14, Section 12.5], for a strengthened version.

Proposition 4. Let f be a rational map of degree d ≥ 2. There exists an excep-
tional set E ⊂ Ĉ of Hausdorff dimension 0, such that for every t ≥ 0 (even every
real t) and for every z /∈ E the limit

P (t, f ; z) = lim
n→∞

1

n
log

∑

v∈f−n(z)

1

|(fn)′(v)|t

exists, and is independent of z ∈ Ĉ \ E. Denote the common value as P (t, f). It
is called the geometric pressure. The function t 7→ P (t, f) is continuous and non-
increasing. Moreover P (0, f) is positive (equal to log d > 0, the topological entropy).
The following formula holds:

HDhyp(J(f)) = inf{t > 0 : P (t, f) ≤ 0}.

In words, HDhyp(J(f)) is the first zero of P (t, f).

In view of Theorem 1, to prove Theorem 2 it is sufficient to prove the following

Proposition 5. Let f : C → C be a polynomial of degree d ≥ 2 with disconnected
Julia set. Suppose there exists a periodic connected component C of K(f) being an
analytic arc. Then HDhyp(J(f)) > 1.

1We are grateful to Fei Yang for paying our attention to this absence of analytic Jordan curves.



DIMENSION OF JULIA SETS 5

Proof. We shall prove that P (1, f) > 0, which implies, by Proposition 4, that
HDhyp(J(f)) > 1. Consider F = f : Um+1(C) → Um(C), with some fixed m large
enough, so that F is a polynomial-like map and C its Julia set, see Lemma 3 (there
m was denoted n).

For x ∈ Um \ C denote

(3) Ln(F, x) := log
∑

Fn(y)=x

exp(− log |(Fn)′(y)|) = log
∑

Fn(y)=x

|(Fn)′(y)|−1.

To continue the proof of Proposition 5 we need two lemmas, which we formulate
and prove below. (Lemma 6 and Lemma 7)

Lemma 6. There exists C0 > 0 such that for all x ∈ Um \C and n > 0

(4) Ln(F, x) ≥ −C0.

Proof. Let Ω = C \ C. We know from the proof of Theorem 1 that Ω is an RB-
domain. Recall that C = ∂Ω is an analytically embedded interval.

We recall the final step of the proof (see [11] and [16]): knowing that C is an
analytically embedded interval, with endpoints, say −1, 1, we consider the ramified
covering map Π onto C, ramified over −1 and 1: Π(z) = 1

2 (z+
1
z
) and the preimage

γ = Π−1(C). Then γ is an analytic Jordan curve, as proved in [16].2 The curve γ

divides the sphere into two disc D1, D2, and Π(D1) = Π(D2) = Ĉ \ C. The map
F : Um+1 \ C → Um \ C can be lifted to a holomorphic map G defined on the set
Π−1(Um+1 \ C) in a way that for W1 := D1 ∩ Π−1(Um+1 \ C)), G(W1) ⊂ D1.

By Carathéodory’s Theorem (local version), see e.g. [5, Ch.II.3, Theorem 4’], and

Schwarz reflection principle, we can extend G holomorphically from D1 to Ĝ acting
on a neighbourhood of γ. It is expanding on γ because of uniform convergence of
Ĝ−n on a neighbourhood of γ to γ which is a nowhere dense set, which implies that
limit functions are constant, hence uniform convergence of derivatives (Ĝ−n)′ to 0,
by normality, see e.g. [12, Section 7] or [3, Proof of Theorem 6.5]. The domain D1

bounded by γ is an RB-domain for the action of Ĝ.

Here is a different argument for the existence of the extension of G from W1 be-
yond γ: Consider lift of F on say Um+1 to G onW := Π−1(Um+1), a neighbourhood
of γ, for the branched covering Π. It can be defined by

(5) G := Π−1 ◦ F ◦Π.

Formally, first define G : W1 → D1 as above. Fix an arbitrary z ∈ W1 and denote
w = G(z). Next extend G along curves in W starting from z mapped to w, using
(5), the curves omitting

A := Π−1(Crit(F ) ∪ {−1, 1}),

where Crit(F ) is the set of F -critical points. Notice that A is precisely the set
mapped by F ◦Π to 1 or −1, the critical values of Π, namely where Π−1 has singu-
larities. This is so because F is topologically conjugate to ± Chebyshev polynomial.
So all the singularities of G defined by (5) are holomorphically removable.

2The property of a closed continuous arc joining−1 and 1, that Jordan curve being its preimage
under Π is analytic, can be assumed to be a definition of the analyticity of the arc (called therefore
an analytic arc or an analytically embedded interval).
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Notice finally that W is a topological annulus, with the fundamental group
generated by the homotopy class of any curve γ′ in W1 starting and ending at z
running once along W1. The growth of the prolongation G along γ′ is 0, because it
starts and ends at w. It is so because γ′ ⊂W1, where G has been well-defined.

So G being an analytic continuation along curves is a well-defined (single-valued)
holomorphic function on W .

In fact this G coincides with the extension Ĝ found before, since these maps are
holomorphic and coincide in D1.

Let now x ∈ Um \ C. Our aim is to estimate Ln(F, x). Denote by w the
unique preimage of x under Π in D1. The map Π gives a bijection between the set
{v ∈ G−n(w)} and {y ∈ F−n(x)}. Putting y = Π(v) we obtain:

(Fn)′(y) = (Gn)′(v) ·
Π′(w)

Π′(v)

and, consequently,

(6)
∑

y∈F−n(x)

1

|(Fn)′(y)
=

1

|Π′(w)|
·

∑

v∈G−n(w)

1

|(Gn)′(v)|
· |Π′(v)|.

Let us estimate the expression above, but without Π′, that is let us estimate
Ln(G,w) (defined for G as (3) for F ). First assume w ∈ γ. Denote by Le the
length of curves in γ. There exists a constant c > 0 such that for each n and every
w ∈ γ, choosing an arbitrary w′ ∈ γ \ {w}, denoting by γ(w) the open arc γ \ {w′}
we have

(7)
∑

Gn(v)=w

|(Gn)′(v)|−1 ≥ c ·
∑

Gn(v)=w

Le(G−n
v (γ(w)))/Le(γ(w)) ≥

c · Le(γ)/Le(γ) = c > 0.

This is due to bounded (by c from below) distortion for iterates (or by Koebe dis-
tortion lemma), see [14, Section 6.2]. The subscript v at G−n means the component
containing v. Due to bounded distortion w ∈ γ can be replaced by an arbitrary
point w in a neighbourhood of γ.

We could define so-called transfer operator (Perron-Frobenius-Ruelle) for poten-
tial ψ := − log |G′| acting on continuous ϕ

Lψ(ϕ)(w) :=
∑

G(v)=w

(expψ(w)))ϕ(w).

Then the expression estimated in (7) could be written as Lnψ(11).

To continue (6) we need to estimate from below the value Lnψ(ϕ)(w) for potential

− log |G′|, where ϕ = |Π′|. The function ϕ has value zero at two points, but L2
ψ(ϕ)

is positive, thus bounded from below by some constant c1 > 0. So,

Lnψ(ϕ)(w) = Ln−2
ψ (L2

ψ(ϕ))(w) ≥ Ln−2
ψ (c1 · 11)(w) = c1 · L

n−2
ψ (11)(w),

and the last term is bounded below by c > 0 as in (7).
Since 1

Π′(w) is bounded away from 0 in Π−1(Um), since Π′ is upper bounded, we

are done.
�
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Lemma 7. There exists an integer N1 > 0 and a connected component V of
f−N1(Um), such that V ⊂ Um \ Um+1.

Proof. Denote Fn = f |Un
for each n ∈ N. Since J(f) is not connected, degF <

deg f . So there exists k : 0 ≤ k < m such that degFm−k+1 < degFm−k. Hence
there exists a component U ′ ⊂ Um−k of f−1(Um−k) in Um−k, different from
Um−k+1.

This is so because degree of f on Um−k and on full f−1(Um−k) ∩ Um−k (i.e.
union of all its components) must be the same.

Define V ′ := (fk|Um
)−1(U ′). It is a subset of Um and fm+1(V ′) = U0 = D(0, R)).

It is disjoint from Um+1, hence bounded away from C. In consequence V , defined
as an arbitrary component of f−(m+1)(Um) in V ′, satisfies the assertions of our
Lemma. We set N1 := m+ 1. �

Notice also that V intersects J(f) because U0 does and J(f) is completely in-
variant for f . Moreover, V containes branched holomorphic images of C.

Having Lemmas 6 and 7 at our disposal, we continue the proof of Proposition 5.
In order to simplify the notation, we pass again to the iterate of f , replacing now f
by fN1 and F by FN1 . Recall again that this modification does not change the Julia
set. To simplify further the notation, denote U0 := Um(C), U1 := Um+N1

(C). So,
from now on, after this modification, the component V becomes just a component
of f−1(U0) in U0 different from U1 = U1(C). We denote f |V by FV . This pairs up
with F on U1 denoted also as FU1

.

First, we build an infinite collection of multivalued maps φℓ, ℓ ∈ N, as follows:
Let us note that FV : V → U0 is a holomorphic proper map onto U0. Since the
degree of this map may be greater than one, the inverse may be not well defined.
However, we shall use the notation h : U0 → V to denote the multivalued inverse
of FV . Thus, h assigns to a point x ∈ U0 a collection of its preimages for FV .

Consider now a family of multivalued maps φℓ : U0 → U0, ℓ = 0, 1, . . . , defined
as multivalued (branched) inverses F−ℓ ◦ h where F−ℓ : U0 → Uℓ are multivalued
holomorphic maps given by multivalued (branched) inverses of F ℓ. Since F−ℓ is
pre-composed by h it is meaningful even when restricted to V .

So, each multivalued map φℓ assigns to a point x ∈ U0 some collection of its
preimages under fn, with n = nℓ = ℓ+ 1, all of them being in U0, even in Uℓ.

For x ∈ U0 and ℓ ∈ N we write
∑

|φ′ℓ(x)| to denote the summation of derivatives
which runs over all branches of the multivalued map φℓ. If a critical point c and its
f -image are met then we can put in this sum ∞, as inverse of forward derivative
0. In fact it does not matter since we can restrict to x not post-critical (not in the
forward f -trajectory of an f -critical point).

For every ℓ ∈ N and x ∈ U0 denote

L∗
ℓ (f, x) = log

∑

|φ′ℓ(x)|

where the summation runs over all branches of the multivalued map φℓ. Denote
also by ℓ a sequence ℓ = (ℓ1, . . . ℓk), and put

nℓ = nℓ1 + · · ·+ nℓk

Finally, for a sequence ℓ = (ℓ1, . . . ℓk), denote
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(8) Lℓ(f, x) := L∗
ℓk
(f, yk−1) + ...+ L∗

ℓ2
(f, y1) + L∗

ℓ1
(f, x),

where y1 = φ1(x), ..., yk−1 = φk(yk−2) (remember that the maps φj are multivalued,
so we consider sums over their values). The star ∗ means we consider only preimages
along first h and next F−ℓi . In other words, more formally,

Lℓ(f, x) = log
∑

|φ′ℓ(x)|,

where the summation runs over all branches of the multivalued function

φℓ = φℓk ◦ φlk−1
◦ · · · ◦ φℓ1 .

It is important to note that all the multivalued functions φℓ are mutually distinct,

compare free Iterated Function System in [6]. Indeed, let ℓ 6= ℓ′, but nℓ = nℓ′ . Let
i be the first integer such that ℓi 6= ℓ′i. Then, supposing that nℓi > nℓ′

i
we compose

in ℓ′ after ℓ′i with h with range in V , whereas in ℓ still within ℓi with F
−1 having

range U1. Further compositions by branches of f−1 preserve distinction.

Denote by Σ∗ the set of all finite sequences ℓ = (ℓ1, . . . ℓk), k ≥ 1. For an
arbitrary x ∈ U0 denote

ΛN(x) =
∑

ℓ∈Σ∗:nℓ=N

expLℓ(f, x).

The star ∗ again means we consider only preimages along first h next F−1.

Proposition 8. For every N ≥ 1 and non-exceptional, in particular not postcriti-
cal, x ∈ U0,

P (1, f ;x) ≥ lim inf
N→∞

1

N
log ΛN(x).

Proof. In view of Proposition 4 it is sufficient to prove
∑

y∈f−N (x)

1

|(fN )′(y)|
≥ ΛN (x)

This is however obvious, because on the left hand side all y ∈ f−N (x) appear,
whereas on the right hand side only selected ones. �

Proposition 9. Let ΛN := infx∈U0
ΛN (x). Then

lim inf
N→∞

1

N
log ΛN > 0.

Proof. Put a := infx∈U0
(
∑

|h′(x)|), and b := exp(−C0) where C0 comes from
Lemma 6.

Consider all sequences ℓ = (ℓ1, . . . ℓk) such that nℓ = N , for each k ≤ N . The
number of such sequences can be calculated in the following way:

For each k ≤ N , there are
(

N−1
k−1

)

ways of choosing k − 1 positions m1, . . .mk−1

from the set {1, . . .N − 1}. Having these positions chosen, we assign to them the
values ℓ1 = m1−1, ℓ2 = (m2−m1)−1, ℓk = (N −mk−1)−1 and the (multivalued)
map φℓ with ℓ = (ℓ1, . . . ℓk) and nℓ = (ℓ1 + 1) + (ℓ2 + 1) + · · ·+ (ℓk + 1) = N .

Then we have the estimate

expLℓ(f, x) ≥ akbk
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and, consequently,

∑

ℓ∈Σ∗:nℓ=N

expLℓ(f, x) ≥
N
∑

k=1

(

N − 1

k − 1

)

(ab)k = ab(1 + ab)N−1.

�

Remark. Let us note that a calculation in a similar spirit appeared in [6] and in
[8]. The authors used a method of generating functions (some power series with
coefficients related to a value similar to ΛN ). Our case is simpler, in a sense that
the set of admissible values nℓ forms an arithmetic sequence. So, the straightforward
calculation provided above is sufficient.

Obviously, combining Proposition 8 and Proposition 9 we conclude the proof of
Proposition 5.

�

4. Example

To complete the answer to the question of Ch Bishop, it remains to ask whether
there exists a polynomial with disconnected Julia set, and a connected component
of J(f) being an analytically embedded interval.

In the following proposition we provide a family of maps with this property.

Proposition 10. Consider a family of cubic polynomials

(9) fε,β(z) = εz3 + z2 − β,

with ε and β real. Then there exists a smooth curve Γ of parameters (ε, β), pass-
ing through the point (0, 2) such that for every (ε, β) ∈ Γ the Julia set of fε,β is
disconnected, and contains infinitely many components being analytic arcs.

Proof. We start with the Chebyshev polynomial f(z) = z2 − 2. Its Julia set is just
the interval I := [−2, 2].

Consider now the polynomials fε,β with ε real and close to 0, and β real and
close to 2. The map fε,β has a real repelling fixed point pε,β close to p0,2 = 2 and
0 is a (not moving) critical point of fε,β.

Lemma 11. There exists a smooth curve Γ of parameters (ε, β), passing through
the initial parameters point (0, 2) for which

f2
ε,β(0) = pε,β .

Proof. This is a straightforward calculation. Denoting γ(ε, β) = f2
ε,β(0), we have

γ(ε, β) = −εβ3 + β2 − β, so

gradγ(0, 2) = [−8, 3].

Denoting by p(ε, β) the fixed point of fε,β close to 2, we calculate (differentiating
the implicit function)

gradp(0, 2) = [−8/3, 1/3].

Thus,

grad(γ − p)(0, 2) 6= (0, 0)
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and therefore, there exists a smooth curve of parameters (ε, β), passing through the
initial parameters point (0, 2) for which

f2
ε,β(0) = pε,β .

�

Notice that fε,β(0) = −β. The interval Iε,β = [−β, pε,β ] is thus invariant under
fε,β and the map f : Iε,β → Iε,β is two-to-one, with critical point at 0. Let us note
that the Julia set J(fε,β) is not connected, as the trajectory of the second critical
point c = − 2

3ε tends to infinity. Denote by C the connected component of J(fε,β)
containing Iε,β , so in particular it is fixed under fε,β and is not one-point.

By Lemma 3, there exist connected neighbourhoods of C,

C ⊂ U1 ⊂ U1 ⊂ U0,

such that the map F := (fε,β)|U1
: U1 → U0 is a polynomial-like map, and C is its

filled-in Julia set. Since the Julia set of f is disconnected, the degree of F
is not maximal, so it is equal to 2. By [4] F is quasiconformally conjugate to a

true quadratic polynomial. Therefore, preimages of every point in C are dense in
C. But the preimages under F of points from Iε,β remain in Iε,β , which implies
that

C = Iε,β .

So, each map fε,β with (ε, β) ∈ Γ is a polynomial of degree 3 with disconnected
Julia set, for which the Julia set has an invariant component being a true interval
on which the degree of the map is equal to 2. So, for each such map the filled-in
Julia set, here equal to the Julia set, has a collection of countably many non-trivial
components, each of them being an analytic arc; this collection is formed by the
invariant analytic arc and all its preimages under the iterates of fε,β .

Note also that these are the only non-trivial components of the filled-in Julia set
K(fε,β). Indeed, by Theorem A all non-trivial components are eventually periodic
and by Lemma 3 every non-trivial periodic component of the filled-in Julia set has to
contain a critical point in its orbit. In our situation, there are two critical points;
one of them is escaping, and the other one is already contained in the invariant
interval Iε,β .

�
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