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Abstract

Extending our results of [17], we confirm that Entropy Conjecture holds for every
continuous self-map of a compact K(π, 1) manifold with the fundamental group
π torsion free and virtually nilpotent, in particular for every continuous map of
an infra-nilmanifold. In fact we prove a stronger version, a lower estimate of the
topological entropy of a map by the logarithm of the spectral radius of an associated
”linearization matrix” with integer entries.

From this, referring to known estimates of Mahler measure of polynomials, we
deduce some absolute lower bounds for the entropy.

1 Introduction

Let M be a compact manifold and d be a metric on M consistent with the topology. Let
f : M → M a continuous self-map of M . The topological entropy htop(f), denoted shortly
by h(f), is defined as limǫ→0 lim supn→∞ 1/n log sup #Q, with the supremum taken over
all Q being (ǫ, n)-separated. Q is called (ǫ, n)-separated, if for every two distinct points
x, y ∈ Q, maxj=0,...,n d(f j(x), f j(y)) ≥ ǫ. In fact h(f) does not depend on the metric (cf.
[28]).

Entropy Conjecture, denoted shortly as EC, says that the topological entropy of f is
larger or equal to the logarithm of the spectral radius of the linear operator induced by f
on the linear spaces of cohomology of M with real coefficients. It was posed by M. Shub
in seventies who asked what suppositions on f and M imply EC.

A group π is called virtually nilpotent if it contains a finite index nilpotent subgroup.
We prove the following

Theorem A Assume that a compact manifold M is a K(π, 1)-space with the fundamental
group π being torsion free and virtually nilpotent. Then EC holds for every continuous
self-map f of M . In particular EC holds for every continuous self-map of any compact
infra-nilmanifold.

1



• We can assume that a nilpotent finite index subgroup in a virtually nilpotent group
π is a normal subgroup.

Indeed, for any pair of groups K ⊂ L, where K has a finite index in L, one has a
homomorphism ρ : L → Sym(L/K) into the symmetry group of the quotient space. Then
ker ρ is a normal subgroup of L, it has finite index, and is contained in K.

• One can replace the assumption that π is virtually nilpotent by the assumption that
π has polynomial growth, [9].

• Theorem A is a step towards proving a conjecture by A. Katok [11] saying that
EC holds for every continuous map if the universal cover of M is homeomorphic to an
Euclidean space R

d.
• One can even ask whether EC holds for every continuous self-map of a K(π, 1)

compact manifold (or a finite CW-complex).

1.1. Affine maps

We refer to the following theorem by A. Malcev and L. Auslander about the existence
of a model [7, p.76]:

Assume that π is finitely generated torsion free virtually nilpotent group. Then it
contains a finite index maximal nilpotent normal subgroup Γ. This subgroup can be
embedded as a lattice, i.e. a discrete co-compact subgroup, in a connected, simply con-
nected nilpotent Lie group G. The embedding can be extended to an embedding of π
in the group Aff(G) of affine mappings of G, so that π ∩ G = Γ. More precisely, if
C ⊂ Aut(G) denotes the maximal compact subgroup of the group of automorphisms of
G, then π ⊂ G ⋉ C ⊂ G ⋉ Aut(G); this embedding of π is called an almost Bieberbach
group.

It follows then from the definition that π acts on G properly discontinuously. (First
note that if α ∈ π has a fixed point z ∈ G, then αℓ(z) = z and αℓ ∈ Γ for ℓ = #(π/Γ).
Then αℓ = e the unity of π, hence α = e by the assumption that π is torsion free.)

The quotient manifold IN = G/π is called an infra-nilmanifold. It is regularly finitely
covered by the nilmanifold N = G/Γ, with the deck transformation group equal to H =
π/Γ.

Note that every compact manifold finitely covered by a nilmanifold, in particular every
infra-nilmanifold, satisfies the assumptions of Theorem A. Indeed, G is homeomorphic to
R

d, where d = dim M (cf. [22]). If π were not torsion free, a cyclic subgroup generated
by an element {g} ≃ Zp of a prime order would act freely on R

d. The latter is impossible,
as follows from the Smith theory (cf. [1]).

The image of the embedding of π into G⋉C ⊂ Aut(G) will be denoted by πIN. It is a
deck transformation group of the cover pIN : G → G/πIN and, distinguishing an arbitrary
z ∈ G, it can be identified in a standard way with the fundamental group π1(IN, pIN(z))
of IN.

Consider now any M being K(π, 1) as in Theorem A. The group π acts properly
discontinuously on the universal cover space M̃ and it can be identified with πM , which
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is the deck transformation group of the universal cover pM : M̃ → M .
(Similarly to N → IN, we have a regular finite cover M̃/Γ → M = M̃/π, with the

deck transformation group H .)
Every continuous map f : M → M induces an endomorphism F = Ff of πM , unique

up to an inner authomorphism. To define this use f# : π1(M, z) → π1(M, f(z)) between
the fundamental groups and standard identifications of these groups with πM . For more
details see Section 3.

When we identify π with πIN, we can consider F as an endomorphism of π = πIN.
By K. B. Lee, [13, Th.1.1 and Cor 1.2], there exists an affine self-map Φ = Φf = (b, B)

of G, with b ∈ G, B ∈ End(G), such that for all x ∈ G, α ∈ πIN we have

Φ(α(x)) = F (α)(Φ(x)). (1)

Hence, in view of (1), there exists a factor φ = φf of Φ on IN under the action of
πIN. In general one calls factors of affine Φ on G satisfying (1), affine maps on IN. In
particular, φf is an affine map on IN.

Since both M and IN are K(π, 1)-spaces, they are homotopically equivalent, [26]. Let
h : M → IN be a homotopy equivalence that implements an identification between πM

and πIN. Then φ ◦ h is homotopic to h ◦ f , see [26, Section 8.1] and Section 3. Note, that
if M = IN, i.e. f is a self-map of an infra-nilmanifold IN, then φ is homotopic to f , [13].

Let Φ = Φf = (b, B) be an affine self-map of G associate to f : M → M (in fact to
the homomorphism F ). The differential at the unity, D(B)(e), is an endomorphism of G,
the Lie algebra of G. Denote D(B)(e) by Df . Let σ(Df) = {λ1, . . . , λd} be the set of all
its eigenvalues counted with multiplicities. Consider sp (∧∗Df ), the spectral radius of the

full exterior power ∧∗Df =
d

⊕
0
∧k Df of Df . Of course it is equal to

∏

j:|λj|>1 |λj|, where

λj ∈ σ(Df), provided at least one λj has absolute value larger than 1. Otherwise it is
equal to 1 (in ∧0Df ).

By [16], G containing Γ as a lattice, is unique. By [13] (see also Section 2) the
endomorphism B is unique up to an inner automorphism of G, so its choice does not
influence the spectra.

1.2. Linearization matrices

One can assign to an endomorphism Ff of the deck transformation group π (or f# for π
identified with the fundamental group) not only a linear map Df : R

d → R
d, G ≡ R

d, but
also an integer d × d matrix A[f ] called the linearization of the homotopy class [f ]. Note
that the inner conjugacy classes of endomorphisms of π are in one-one correspondence
with homotopy classes [f ] of self-maps of a K(π, 1)-space.

In general an endomorphism F : π → π does not preserve the nilpotent subgroup
Γ � π. But Γ contains a subgroup Γ′

� π such that Γ′ is nilpotent, has finite index in π
and is invariant for F . Γ′ will be defined in Proposition 5). See also [14]. Since Γ′ has
finite index in Γ it is also a lattice in G. By (1) the endomorphism B : G → G is an
extension of F : Γ′ → Γ′, see the end of Section 2.
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Let G be a nilpotent connected simple-connected Lie group and Γ a lattice in G.
The descending central series of commutators G0 = G , Gi+1 = [G, Gi] of G is finite with
the last group trivial Gk = {e} . For each i define Γi = Gi ∩ Γ. Each Γi is a lattice in
Gi, as follows from Malcev theorem [16, Theorem 1]. Consequently, if B : G → G is a
homomorphism of G preserving a lattice Γ it preserves each subgroup Γi. Thus it induces
an endomorphism Bi on each factor group Γi/Γi+1, 0 ≤ i ≤ k. Clearly Γi/Γi+1 is abelian
and torsion free of dimension di. Therefore the action of Bi on Γi/Γi+1 ≡ Z

di yields an
integer di × di matrix Ai which is uniquely defined up to a choice of basis, i.e. up to a
conjugation by a unimodular matrix.

Let us apply this construction to Γ′, using the fact it is invariant under B. We conclude

with A[f ] :=
k

⊕
i=0

Ai, which defines an integer d×d matrix, because
k

⊕
i=0

di = d. (See [12] and

[10] for some extensions to solvmanifolds.)
It is easy to show that σ(A[f ]) = σ(DB(e)), thus consequently σ(∧∗A[f ]) = σ(∧∗Df),

which implies sp (∧∗A[f ]) = sp (∧∗Df) (cf. [17], [10]).
In fact the matrix A[f ] can be defined directly, using F = f# : π → π, without

constructing G. One can use the series of isolators Γ
′

√

Γ′
i = {x ∈ Γ′ : (∃ℓ > 0) xℓ ∈ Γ′

i},
for Γ′

i being commutators in the descending central series for Γ′, i.e. Γ′
i+1 = [Γ′, Γ′

i], see

[2, Section 3] and for example [19, Lemma 11.1.8]. In fact Γ
′

√

Γ′
i = Gi ∩ Γ′ defined above,

see [3, Lemma 1.2.6].

1.3. Conclusion

We are in the position to formulate a sharper version of Theorem A, namely

Theorem B For every continuous self-map f of a compact manifold M which is a
K(π, 1)-space with the group π torsion free and virtually nilpotent,

h(f) ≥ log sp (∧∗Df) = log sp (∧∗A[f ]) .

In the case M is an infra-nilmanifold the equality holds for every affine map φ : M → M ,
a factor of an affine Φ satisfying (1), in particular for φf . In consequence for every
continuous self-map f of M we have h(f) ≥ h(φf), i.e. φf minimizes entropy in the
homotopy class of f .

Maybe considering of M is not needed and it is sufficient to consider only IN. Since
the topological entropy is an invariant of conjugation by a homeomorphism, this would
follow from Borel conjecture, which states that the fundamental group π of a manifold
which is a K(π, 1)-space determines M up to homeomorphism, This has been confirmed
by Farrell and Jones [5] for a class of groups that contains the almost-Bieberbach groups,
except in dimension 3.

Formulating Theorems A and B we have followed a suggestion by M. Shub [24], to
assume a discrete group point of view. Having given an endomorphism F = f# : π → π
of a finitely generated torsion free virtually nilpotent group, we associate to it a linear
operator Df , or an integer d×d matrix A[f ]. As suggested in [24] the logarithm of spectral
radius of sp (∧∗Df ), or sp (∧∗A[f ]), is ”a kind of volume growth” of f#. In Theorem A
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it is replaced by the spectral radius of the map induced on the real cohomologies of the
group π (that is the real cohomologies of M).

We shall present two proofs of Theorems A and B.
The first one, in Section 2, concludes Theorems A and B from analogous theorems in

[17], with f : N → N a continuous map of a compact nilmanifold. However this proof of
Theorems A and B does not work in dimension 3.

The second proof, in Section 3, holds for f on M and uses only a homotopy equivalence
between M and IN. It directly repeats the arguments of [17].

An important observation is that A[f ] is an integer matrix. This allows, in Section
4, to prove absolute estimates from below for sp (∧∗A[f ]), where f is an expanding map
of a compact manifold (without boundary) or an Anosov diffeomorphism of a compact
infra-nilmanifold. The latter uses number theory results estimating the Mahler measure
of an integer polynomial.

The authors would like to express their thanks to K. Dekimpe, E. Dobrowolski, T.
Farrell, A. Katok and M. Shub for helpful conversations.

2 Entropy Conjecture on infra-nilmanifolds

The proof of Theorems A and B we present in this section will hold for M finitely covered
by a nilmanifold and follows from two standard facts and the main theorem of [17] in
which the topological entropy of a continuous map of nilmanifold is estimated by the
corresponding quantities. We begin with the following

Proposition 1 Suppose that we have finite cover (M̂, p, M) of compact metric spaces,
i.e. M̂ is the total space of the cover, M the base space, and p : M̂ → M the covering
space. Let a pair (f̂ , f), f̂ : M̂ → M̂ , f : M → M , be a map of a this covering, i.e.
pf̂ = fp. Then

h(f) = h(f̂) .

Proof: It is elementary and is given in [6, Section I]. Briefly: The p-preimage of an
(n, ǫ) − f -separated set in M is (n, ǫ) − f̂ -separated in a metric d̂ on M̂ which is the lift
of a metric d on M chosen to define the entropy. Hence h(f) ≤ h(f̂) . (In fact only the
continuity of p was substantial in this proof).

Conversely, let Q be an (n, ǫ) − f̂ -separated set in M̂ consisting of points in a ball
B(z, ǫ/2). Let δ > 0 be a constant such that p is injective on every ball in M̂ of radius δ.
We prove that the set p(Q) is (n, ǫ) − f -separated. Indeed, take ǫ < δ and suppose that
for x, y ∈ Q we have d(f j(p(x)), f j(p(y))) < ǫ for all j = 0, 1, ..., n. Let j0 ≥ 0 be the
smallest j ≤ n such that d(f̂ j(x), f̂ j(y)) ≥ ǫ. Then d(f̂ j(x), f̂ j(y)) ≥ δ−ǫ (i.e. projections
by p are close to each other but the points are in different components of preimages of a
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small ball under the cover map). This is not possible for j = 0 by Q ⊂ B(z, ǫ/2). If it
happens for another j it means that the f̂ image of two points within the distance < ǫ
have distance ≥ δ − ǫ, which for ǫ small enough contradicts the uniform continuity of f̂ .
2

The same trick as above has been used in [17, Proof of Theorem 2.2], to which we
refer here in Section 3, in the setting of the projection p from the universal cover of M to
M .

Proposition 2 Let (M̂, p, M) be a regular finite cover over a finite CW-complex, e.g.
over a compact manifold with the deck transformation group H. Let next f : M → M be
a continuous map and f̂ : M̂ → M̂ its lift to M̂ .

Then σ(H∗(f)) ⊂ σ(H∗(f̂)) and consequently sp(H∗(f)) ≤ sp(H∗(f̂)).

Proof: The action of H on M̂ defines an action on the real cohomology space for any
g ∈ H given by g 7→ H∗(g) : H∗(M̂) → H∗(M̂). Since M is the orbit space of a free
action of a finite group H on M̂ , we have H∗(M ; R) ≃ H∗(M̂ ; R)H , when the latter is
the fixed point of action of H on the real cohomology spaces, i.e. the image of a linear
projection 1

|G|

∑

g∈H H∗(g) (cf. [1] Section III.2). Moreover this isomorphism is given by

the map H∗(p) : H∗(M ; R) → H∗(M̂ ; R) induced by the covering projection p. Since
p f̂ = f p, we have H∗(f̂)H∗(p) = H∗(p)H∗(f). This means that the linear subspace
H∗(M ; R) = H∗(M̂ ; R)H = im H∗(p) is preserved by H∗(f̂). Consequently H∗(f) can be
identified with a restriction of a linear map H∗(f̂) to an invariant linear subspace, which
shows that σ(H∗(f)) ⊂ σ(H∗(f̂)), and consequently proves the statement. (Note that f̂
is not an H-equivariant map in general.) 2

An immediate corollary is

Corollary 3 Let (M̂, p, M) be a regular finite cover over a finite CW-complex, e.g. over
a compact manifold. Let f : M → M be a continuous map which has a lift f̂ to M̂ and
EC holds for f̂ , then EC holds for f .

A problem in the general situation is the existence of the lift f̂ . Fortunately one can
go around it if M̂ is a nilmanifold, as follows

Definition 4 Let Γ ⊳ π be a normal nilpotent subgroup of finite index in π and let s be
an endomorphism of π. We say that a group Γ′ ⊂ Γ is s -admissible if

1) s(Γ′) ⊂ Γ′,

2) Γ′ ⊂ Γ is normal in π and [Γ : Γ′] < ∞, i.e. Γ′ has finite index in Γ.

Proposition 5 For a nilpotent group Γ normal and of finite index in a group π there
exists a group Γ′ ⊂ Γ, Γ′ ⊳ π, admissible for every endomorphism s of π. (Sometimes
such Γ′ is called a fully characteristic subgroup).
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Proof: Repeat verbatim the argument of Lemma 3.1 of [14] and define

Γ′ = group generated by {γk : γ ∈ π}, where k is the order of H = π/Γ .

This is clearly a normal subgroup of π preserved by every endomorphism of π.
Next we define a group

Γ(k) := group generated by {xk} : x ∈ Γ .

Of course Γ(k) ⊂ Γ′. It is enough to show that Γ(k) is of finite index in Γ. Apply an
argument used in [14]: Since Γ is nilpotent, it is polycyclic, [22]. But for any polycyclic
group Γ the corresponding group Γ(k) has a finite index, cf. [22, Lemma 4.1]. In particular
adapting the argument of Lemma 4.1 of [22] one shows the assertion for a nilpotent group,
by an induction over the length of nilpotency.

2

Note that the number k used to define the group Γ(k) is not unique, e.g. we can take
any its multiple getting a smaller group with the required property. To get a larger group
Γ′ than that of [14] we can use k equal to the LCM{#h : h ∈ H}, where #h is the order
of h, instead of k = #H , the order of H .

Corollary 6 For any compact manifold M finitely covered by a nilmanifold N there exists
a regular finite cover (N̂, p, M) of M by a nilmanifold N̂ such that every continuous map
f : M → M has a lift f̂ : N̂ → N̂, i.e. p f̂ = f p.

Proof: The assertion follows from Proposition 5 for π the fundamental group of M ,
N = G/Γ for Γ a subgroup of π and s = f#. We can assume that Γ is normal in π, see

Introduction. We define N̂ := G/Γ′. A lift f̂ exists, since the homomorphism f# : π → π

preserves Γ′ identified with p#π1(N̂), see [26]. 2

Together with Corollary 3 and EC for nilmanifolds, [17], this proves EC, i.e. Theorem
A, for all continuous self maps of M finitely covered by nilmanifolds, in particular for all
M being infranilmanifolds.

Proof of Theorem B (for M finitely covered by a nilmanifold G/Γ):
Consider Γ′ ⊂ Γ invariant for every endomorphism of π, defined above. Note that the

equality (1) for α = g ∈ Γ′ takes the form

B(g(x))b = F (g)B(x)b.

As the left hand side expression is equal to B(g)B(x)b, we get F (g) = B(g), i.e. F |Γ′ =
f#|Γ′ = B|Γ′ . (In fact B in (b, B) was found in [13] as an extension of f#|Γ

′ to G.)
This proof is similar to [13, Proposition 1.4]. Note that by the cause of F also B has

been found up to an inner automorphism.
This allows to define A[f ] as in Subsection 1.2.
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By Corollary 6 f lifts to f̂ : N̂ → N̂. We have h(f̂) ≥ log sp (∧∗A[f̂ ]) by [17]. This

implies h(f) ≥ log sp (∧∗A[f ]) . Indeed, A[f ] = A[f̂ ] since both matrices are defined with

respect to the same group Γ′, see Subsection 1.2, and h(f̂) = h(f) by Proposition 1.
Now h(f) ≥ log sp (∧∗DB(e)) follows from the equality sp Df = sp A[f ], discussed

already in Subsection 1.2.
Finally, if M = G/π is an infra-nilmanifold, then the factor φ̂ of (b, B) to G/Γ′ is a

lift of the affine map φ (homotopic to f , provided f was given a priori). The asserted
equality h(φ) = log sp (∧∗A[φ]) follows from h(φ̂) = log sp (∧∗A[φ̂]) proved in [17] and from

Proposition 1 for φ̂ and φ (in place of f̂ and f). As in the case of f we have A[φ] = A[φ̂].
2

3 Another proof of EC

Now we provide another proof of Theorems A and B without additional assumptions by
showing that a modification of the proof for nilmanifolds given in [17] works.

Let us remind the notation. M is a compact manifold, being K(π, 1) for a virtually
nilpotent torsion free group π. G is a connected simply connected nilpotent Lie group and
IN = G/π where π is embedded in Aff(G) as πIN, acting discontinuously on G so that
IN is an infra-nilmanifold. See Existence of a Model Theorem in Introduction. We have
the universal covers pM : M̃ → M and pIN : G → IN.

Note that we use the right action, thus IN = G/π, instead for π\G used in [13]. Then
the action of an affine map (d, D), d ∈ G, D ∈ Endo(G), is given as (d, D)x = (Dx)d.

We assume that all metrics under consideration are induced by Riemannian metrics.
We need the following

Lemma 7 [Lemma on the equivalence of metrics on G] Any right invariant metric ρ on
G is equivalent to τG (i.e. the mutual ratios are bounded) being a lift of an arbitrary
metric τIN on an infra-nilmanifold IN = G/π.

Proof: By compactness the lift τΓ of τIN to G/Γ, where Γ = G ∩ π, is equivalent to ρΓ,
the projection of ρ to G/Γ. Therefore the lifts to G are also equivalent. 2

Let us stop for a while on the homotopy equivalence between M and IN making some
explanations from Introduction more precise.

Lemma 8 There exists a homotopy equivalence h : M → IN. Moreover for every con-
tinuous f : M → M there exists an affine mapping φ : IN → IN such that φ ◦ h ≃ h ◦ f ,
where ≃ means: homotopic.

Proof: The action πM of π on M̃ can be identified, chosen an arbitrary distinguished
point z̃0 ∈ M̃ , with the fundamental group π1(M, pM(z̃0)) by projecting by pM of curves
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joining πM(z̃0) to z̃0. Similarly πIN can be identified with π1(IN, pIN(w̃0)) for an arbitrary
distinguished point w̃0 ∈ G.

Let h : M → IN be a homotopy equivalence; its existence follows from [26, Section
8.1]. Choose its lift h̃ : M̃ → G and distinguish z̃0, w̃0 such that h̃(z̃0) = w̃0. Denote
z0 = pM(z̃0) and w0 = pIN(w̃0). We have h# : π1(M, z0) → π1(IN, w0) which yields, with
respect to distinguished z̃0, w̃0, an isomorphism between the deck transformation groups
H : πM → πIN.

Let f̃ : M̃ → M̃ be a lift of f . Define FM : πM → πM , with respect to z̃0 and f̃(z0)
(similarly to the way we defined H). Finally define F = FIN := H ◦ FM ◦ H−1 and affine
maps Φ and φ as in Introduction, relying on [13].

By construction we get FIN ◦ H = H ◦ FM . Denote x1 = Φ(h̃(z̃0)) and x2 = h̃(f̃(z̃0)).
If x1 = x2 then φ#h# = h#f# on π1(M, z0), hence φ ◦ h ≃ h ◦ f , by [26, Section 8.1,
Theorem 11]. Otherwise one can consider k : IN → IN homotopic to identity and its lift
k̃, such that k̃(x1) = x2. It gives (with respect to distinguished x1, x2) identity on πIN.
Hence k#φ#h# = h#f# on π1(M, z0), hence again we deduce φ ◦ h ≃ h ◦ f . 2

Proof (of Theorems A and B): Consider metrics τM̃ , τG on M̃, G respectively, being
lifts to the universal covers pM : M̃ → M and pIN : G → IN of arbitrary metrics τM , τIN
on M, IN.

Let f : M → M be a continuous map and f̃ its lift to M̃ .
Let h : M → IN be a homotopy equivalence such that h◦f ≃ φf ◦h, for h and φ = φf

as in Lemma 8. Let h̃ : M̃ → G be a lift of h. Then the distance in τG between h̃ ◦ f̃ and
Φ ◦ h̃ is bounded, by a constant ξ1 > 0 (since the lifts are joined by a lift of a homotopy,
up to a deck transformation, that is up to an isometry).

Let xn, n = 0, 1, 2, ... be an f̃ trajectory. Then wn = h̃(xn) is a ξ1 − Φ-trajectory in
the metric τG, hence, by Lemma 7, a ξ2 −Φ-trajectory in ρ, the right invariant metric on
G, for a constant ξ2 > 0.

Finally for Φ = (b, B) the sequence wn is a ξ3 − B′-trajectory for B′ = b−1Bb, i.e.
B′(x) = b−1 · B(x) · b, for a constant ξ3 > 0.

Indeed, ρ(Φ(w), B′(w)) = ρ(B(w)b, B′(w)) = ρ(bB′(w), B′(w)) = ρ(b, e), the latter
equality by the right invariance of ρ. Hence wn is a ξ2 + ρ(b, e) trajectory for B′.

Note that the spectra of the derivatives (linearizations) of DB(e) and DB′(e) coincide
as these operators are conjugate.

Now we define a mapping Θ : M̃ → Gu, the unstable subgroup for B′, by proceeding
as in [17]: Let x = x0 ∈ M̃ . Let (xn, n = 0, 1, ...) be its f̃ -trajectory and wn = h̃(xn).
For each n define wn 7→ πu(wn), the ”projection” to Gu, i.e. we write wn = gcs · gu where
gcs ∈ Gcs the central stable subgroup and πu(wn) := gu ∈ Gu. Finally Θ(xn), in particular
Θ(x), is defined as the unique B′-trajectory in Gu subexponentially ”shadowing” πu(wn).
Here we need to consider the whole sequence (wn), rather than each wn separately. As
in [17, Proposition 2.10] we prove that Θ maps M̃ , and even h̃−1(Gu), onto Gu. This is a
crucial point which uses the fact that h̃ is onto, since |deg h| = 1. Compare Remark 4.8
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in [17]. We get also by construction Θ ◦ f̃ = B′ ◦ Θ.
The proof concludes as follows. For an arbitrary ǫ > 0, for ((1 + ǫ)j, n)−B′-separated

points in Gu, j = 0, ..., n, (contained in a small disc), i.e. such that for some j their j-th
images under B′ are within the distance at least (1 + ǫ)j , we choose points x in their
Θ|h̃−1(Gu)-preimages (also in a small disc). If for two distinct points x, y chosen in this
way pM(x), pM(y) are (ǫ, n) − f -close (i.e. not separated), then so are x, y (cf. Proof of
Proposition 1). Hence h̃(x) and h̃(y) are (ξ4, n)-close (with respect to Φ, hence B′) in ρ
for a constant ξ4. Hence, the Θ-images of x, y are ((1 + ǫ)j, n) −B′-close, a contradiction
(for details see [17]). 2

Note that we did not use the admissible group constructed in Proposition 5.

Remark 9 The statement of Theorem A, in a weaker form for flat manifolds, was posed
as a question by A. Szczepański in [27]. Earlier, a very special case of Entropy Conjecture
for an affine map of a compact affine manifold was proved by D. Fried and M. Shub in
[8].

4 Absolute estimates of entropy

The famous Lehmer’s conjecture in number theory states that there exists a constant C,
called Lehmer constant, such that for every integer polynomial w(x) = a0x

d + a1x
d−1 +

+ · · · + ad, not being a product of cyclotomic polynomials (all zeros being roots of 1) or
xk, for the Mahler M(w) measure of w we have

M(w) := |a0|
∏

λi

max(1, |λi|) ≥ C ,

where the product is taken over all zeros of w(x).

There are estimates of the Mahler measure which depend on the degree of an irre-
ducible polynomial (the degree of an algebraic number). Using an estimate given by
Voutier in 1996 (cf. [29]),

M(w) > τ(d) := 1 +
1

4

( log log d

log d

)3

,

which is the best known valid for every d > 1, not only asymptotically, we get the following

Theorem 10 Let f : M → M be a continuous map of a compact infra-nilmanifold of
dimension d. Then

a) either h(φf ) = 0,

b) or h(f) > log τ(d).
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Proof: Let w(x) = w1(x) · w2(x) · · · wk(x), dj = deg wj, d1 ≤ d2 ≤ · · · ≤ dk, be a
decomposition of the characteristic polynomial of the linearization matrix Af into irre-
ducible terms. If h(φf) > 0 then by Theorem B at least one eigenvalue of Af has the
absolute value larger than 1. Hence, by Theorem B, using the property the sequence τ(n)
is decreasing with respect to n,

h(f) ≥ log
∏

1≤j≤k

M(wj(x)) ≥ log M(wk(x)) ≥ log τ(d).

2

For other estimates of Mahler measure see for example [4].
In particular from Smyth’s theorem [25] (which is a partial answer to the Lehmer

conjecture) it follows

Theorem 11 Let f : M → M be a continuous map of a compact infra-nilmanifold of
dimension d. If the characteristic polynomial of Af is non-reciprocal, i.e. the set of zeros
is not invariant under the symmetry λ 7→ λ−1, and if h(φf) > 0, then

h(f) ≥
∏

λj∈roots wj(x)

max(1, |λj
i |) > τ0 ,

where τ0 is the real root of polynomial τ 3 − τ − 1. 2

One can check that the latter τ0 is greater that 1.32471795. In particular, τ0 does not
depend neither on w(x) nor on its degree d.

Note that h(f) ≥ h(φf ), f ∼ φf , Af = A[f ] assert that Theorem 11 is a statement
about a homotopy property of f . A special case is when Af is a hyperbolic matrix
invertible over integers, i.e. φf is an Anosov automorphism, and d, the dimension of
M , is odd. Then obviously the characteristic polynomial of Af is non-reciprocal, hence
Theorem 11 applies and we obtain

h(f) ≥ 1.32471795.

This is in fact an easy case whose proof does not need the use of Theorem B. Namely
one can refer to Franks’ theorem [7, Theorem 2.2], saying that such a map f is semicon-
jugate to φf , i.e. there exists a continuous map θ : M → M such that θ ◦ f = φf ◦ θ.
This θ is found to be homotopic to identity, hence ”onto”. Therefore h(f) ≥ h(φf), see
Proposition 1. It is easy to check that if f is an Anosov diffeomorphism then Af is a
hyperbolic invertible matrix.

Other remarks

• The ”projection – shadowing” construction of Θ in the proof of Theorem B in Section
3 and in [17] can be considered as a strengthening of Franks’ theorem to the case central
direction exists.
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• It is sufficient to assume Af is a hyperbolic endomorphism, i.e. without eigenvalues
of absolute value 1, and without zero eigenvalues, to apply Franks’ theorem. Then φf

is an Anosov endomorphism and the semiconjugacy holds between the inverse limits, cf.
[23] and [20].

• In the expanding case, i.e. if all the eigenvalues of Af have absolute values larger
than 1, the product is at least 2. Therefore h(f) ≥ log 2. In this case, instead of Theorem
B, one can refer to Shub’s theorem [23] saying that f is semiconjugate to φf .

• Finally, if f itself is metric expanding on a compact orientable manifold (i.e. it
expands all the distances between points close to each other, at least by a constant factor
larger than 1) or at least if f is forward expansive, i.e. ∃δ > 0 such that ∀x 6= y ∃n ≥ 0
with d(fn(x), fn(y)) ≥ δ (as this implies expanding in an appropriate metric, see [21,
Section 3.6]), then for its degree d(f) one has immediately h(f) ≥ log |d(f)| ≥ log 2, see
[28].

Note that f expanding (in a metric induced by a Riemannian metric) can happen only
on infra-nilmanifolds, [9].

• In general h(f) ≥ log |d(f)| for all f being C1, see [18]. However the assumption
that f is C1 is essential in absence of the expanding property, namely there are easy
examples of continuous, but not smooth maps f for which h(f) < log | deg(f)|.
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