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ITERATIONS OF HOLOMORPHIC COLLET-ECKMANN MAPS:

CONFORMAL AND INVARIANT MEASURES.

APPENDIX: ON NON-RENORMALIZABLE

QUADRATIC POLYNOMIALS

FELIKS PRZYTYCKI

Abstract. We prove that for every rational map on the Riemann sphere
f : C → C, if for every f -critical point c ∈ J whose forward trajectory does
not contain any other critical point, the growth of |(fn)′(f(c))| is at least of
order expQ

√
n for an appropriate constant Q as n → ∞, then HDess(J) =

α0 = HD(J).
Here HDess(J) is the so-called essential, dynamical or hyperbolic dimen-

sion, HD(J) is Hausdorff dimension of J and α0 is the minimal exponent for
conformal measures on J .

If it is assumed additionally that there are no periodic parabolic points

then the Minkowski dimension (other names: box dimension, limit capacity)
of J also coincides with HD(J).

We prove ergodicity of every α-conformal measure on J assuming f has
one critical point c ∈ J , no parabolic, and

∑∞
n=0 |(fn)′(f(c))|−1 <∞.

Finally for every α-conformal measure µ on J (satisfying an additional
assumption), assuming an exponential growth of |(fn)′(f(c))|, we prove the
existence of a probability absolutely continuous with respect to µ, f -invariant
measure.

In the Appendix we prove HDess(J) = HD(J) also for every non-renormal-
izable quadratic polynomial z 7→ z2 + c with c not in the main cardioid in the
Mandelbrot set.

0. Introduction

Let f : C → C be a rational mapping of the Riemann sphere C. Let HDess(J)
denote the essential Hausdorff dimension of the Julia set J = J(f). It is defined by

HDess(J) = sup{HD(µ) : µ is a probability, f -invariant measure on J, χ(µ) > 0}.
Here HD(µ) denotes the Hausdorff dimension of the measure µ, i.e. infimum of the
Hausdorff dimensions of sets of full measure µ.

The number χ(µ) =
∫

log |f ′|dµ denotes the Lyapunov exponent. The derivative

|f ′| is considered in the spherical Riemann metric on C.
One calls a map fm : Y → J a horseshoe (by analogy with a 2-dimensional

Smale’s horseshoe) if there exist pairwise disjoint compact sets Y1, ..., Yk ⊂ Y such
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that fm|Yj is an injection onto Y and |(f tm)′| > 1 for t large enough, for each j =
1, ..., k. It is easy to see that the set of points which never leave Y under iteration
of fm is an expanding isolated Cantor set. Expanding means that |(f tm)′| > 1 on
this set for t large enough. A set X is called isolated if there is an open set U ⊃ X
such that there is no forward f -invariant X ′ ⊂ U strictly bigger than X .

One can prove by A. Katok’s methods [K] the existence and abundance of horse-
shoes. More precisely one can prove

HDess(J) = sup{HD(X) : X ⊂ J, X being an f -invariant

isolated expanding Cantor set},(0.1)

see [PUbook, Ch.“Conformal measures”] for details.
A probability measure µ on J is called α-conformal if for every Borel B ⊂ J on

which f is injective µ(f(B)) =
∫
B |f ′|αdµ. In particular |f ′|α is the Jacobian for f

and µ. The number α is called the exponent of the conformal measure.
Conformal measures were introduced in holomorphic iterations by D. Sullivan [S],

who proved the existence of at least one such measure on J by Patterson’s method
borrowed from Kleinian group theory. M. Denker and M. Urbański introduced in
[DU1] the essential Hausdorff dimension (see the definition above ) and proved (up
to one gap filled in in [P1]) that there exists a smallest exponent α0 for which a
conformal measure exists and

α0 = HDess(f).(0.2)

A question raised in [DU1, Shi] and later in [P2] is whether for every f

HDess(J) = HD(J).(0.3)

The answer is for example positive if no critical point in J is reccurrent, proved
by M. Urbański in [U].

One considers also the so-called Minkowski dimension: lower and upper (other
names: box dimension, limit capacity) defined as follows:

For X a closed subset of a compact metric space the lower (upper) Minkowski
dimension is

Cap(X) (Cap(X)) := lim inf
ε→0

(lim sup)
logN (ε)

− log ε

where N (ε) is the minimal number of discs of radius ε whose union covers X .
It is clear and well known that HD(X) ≤ Cap(X) ≤ Cap(X).

We call a periodic point z = fn(z) ∈ J(f) parabolic if (fn)′(z) is a root of unity.

Notation. Write Crit(f) = {c ∈ C : f ′(c) = 0} for the set of all critical points.
Denote the set of all f -critical points in J whose forward trajectories do not meet
other critical points, by Crit′.

We prove the following:

Theorem A. Let f : C → C be a rational map and µ be an α-conformal measure
on the Julia set J . Assume that for every f -critical point c ∈ Crit′, for every1

Q > 0 there exists CQ > 0 such that for every n ≥ 0

|(fn)′(f(c))| ≥ CQ expQ
√
n.(0.4)

Then

1Actually a specific constant Q depending on f is sufficient.
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1. α ≥ HD(J(f)); hence HDess(J) = α0 = HD(J).
2. If one assumes also that there are no parabolic periodic points in J(f) then

α ≥ Cap(J(f)); hence HDess(J) = α0 = HD(J) = Cap(J) = Cap(J).

To prove Theorem A we control the µ-measure versus diameter in power α for
components of consecutive pre-images of an arbitrary, large, disc B: Compf−1(B),

Compf−1(Compf−1(B)), ... . The aim is to prove µ(B(x, r)) ≥ rα
′
for an arbitrary

α′ > α, every x ∈ J and sufficiently many r’s. An important point is the inequality

µ(Compf−1(A))

µ(A)
≥ Const

(diamCompf−1(A)

diamA

)α
,

for A in a neighbourhood of a critical value, Compf−1(A) a component of f−1(A)
near a critical point.

Assuming the non-recurrence of critical points Urbański [U] made an estimate
in both directions. We need only its easy “half” above so we do not need the
non-recurrence.

Recently E. Prado proved ergodicity of every conformal measure for every non-
renormalizable z 7→ z2 + c with c not in the main cardioid. The ideas go back
to [Guckenheimer] and [BL]. The same procedure proves ergodicity in our case.
Namely in Section 3 we prove

Theorem B. Let f : C → C be a rational map, not expanding on its Julia set J ,
and µ be an α-conformal measure on J . Assume that for every c ∈ Crit′

∞∑
n=0

|(fn)′(f(c))|−1 <∞.(0.4′)

Then the number of ergodic components of µ does not exceed the number of f -critical
points in J and of parabolic periodic orbits.

Corollary. If there is one f -critical point in J for f as in Theorem B and no
parabolic periodic points then every conformal measure on J is ergodic.

Notation. Let ν := sup{multiplicity of fn at c : n ≥ 1, c ∈ Crit(f) ∩ J}. Consid-
ering fn above rather than f makes a difference if the forward orbit of one critical
point hits another critical point. As it cannot happen fn(c) = c for c ∈ Crit(f)∩J ,
otherwise c would be a sink, we get ν ≤ deg(f)]Crit(f) = deg(f)(2 deg(f)− 2).

We shall write t̂ := sup{t ≥ 0 : f t(Crit(f) ∩ J) ∩ Crit(f) 6= ∅}.
In Section 4 we shall prove the following

Theorem C. Let f : C → C be a rational map and µ be an α-conformal measure
on the Julia set J = J(f) not having atoms at critical points2. Assume that there
are no parabolic periodic points in J(f) and that there exists C > 0 such that for
every n ≥ 1 for every c ∈ Crit′∫

dµ

dist(x, fn(c))(1−1/ν)α
< C−1(0.5)

and there exists Λ > 1 such that

|(fn)′(f(c))| ≥ CΛn for every n ≥ 0.(0.6)

2Added in revision: In the preprint version this substantial assumption was missing. I owe the
correction to J. Graczyk.
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Then there exists an f -invariant probability measure on J absolutely continuous
with respect to µ, (pacim).3

We prove this theorem by proving that there is a uniform bound for iteration of
the Perron-Frobenius-Ruelle operator L with potential −α log |f ′| on the constant
function equal to 1

Ln(1)(x) ≤ C1 + C2

∑
c∈Crit(f)∩J

∞∑
j=0

γj
|(f j−t̂)′(f t̂+1(c))|−α/ν

dist(x, f j(f(c)))(1−1/ν)α
.(0.7)

For j − t̂ ≤ 0 we write in this formula 1 instead of the above derivative. γ is
arbitrary greater than 1.

Theorem C is analogous to the Collet-Eckmann theorem [CE] on the existence of
pacim for maps of interval. There exists a theorem stronger than Collet-Eckmann’s
by Nowicki and van Strien [NS, N]. Nowicki and van Strien proved the existence of
pacim assuming instead of (0.6) only (for α = 1, f a non-flat S-unimodal map of
the interval)

∞∑
n=1

|(fn)′(f(c))|−1/ν <∞.

Unfortunately we do not know how to get rid of the factor γj in (0.7), introduced
to swallow constants from the distortion estimates.

We do not know how to get rid of the assumption (0.5). Maybe it always holds?
At least it holds in such a highly non-trivial case as J(f) = C with the standard
spherical area conformal measure with the exponent 2. There are several papers
on the existence of pacim in the complex case J(f) = C if critical points are non-
recurrent. The only one, to my knowledge, in which recurrence of critical points is
allowed, is [R]. It would be interesting to understand connections of [R] with our
paper.

The strategy of the Proof of Theorem C is the same as in [CE, NS] and [N].
A new element is that we learned how to cope with distortion in the complex
case. Similarly as in the interval case we rely on Koebe distortion estimate for
iterates f−n and the non-flatness of f at critical points. This allows us to prove
also Theorem A (see §2, Def.2.3).

In Appendix we prove the following

Theorem D. For every non-renormalizable quadratic polynomial z 7→ z2 + c, with
c not in the main cardioid in the Mandelbrot set, the assertion 1. of Theorem A
holds.

The geometry of Proof of Theorem D is surprisingly similar to that of Theorem
A, this is the reason we included it in this paper. We do not assume anything on
the growth of |(fn)′(c)|. Instead we use the Markov structure of the puzzle.

Theorem D is rather an easy corollary from a deep theory by M. Jakobson,
G. Świa̧tek, J. Graczyk [GS1] and M. Lyubich [L]. The holomorphic side of it grew
up from J.-Ch. Yoccoz ideas [Y].

3Added in revision: An estimate by C−1(Λ′)αn/ν in (0.5) for an arbitrary 1 < Λ′ < Λ would
be sufficient for Theorem C to hold. We need the majorating function in (0.7) to be µ-integrable.
To have this weaker condition will be crucial in the subsequent paper [P3].
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Note. In a preliminary version of the paper this theorem was proved under the
assumption that so-called cascades of central returns are short enough that all
annuli between consecutive puzzle pieces in the principal nest (see Appendix for
the terminology) have moduli bounded away from 0. That it is possible to cope
with the general non-renormalizable case by taking a non-principal nest of critical
puzzle pieces was suggested to me by J. Graczyk and M. Lyubich.

Notation. Const will denote various positive constants which may change from one
formula to another, even in one string of estimates.

Acknowledgements. I want to thank J. Graczyk, M. Lyubich (see Note above)
and J.-Ch. Yoccoz for discussions which helped me to figure out Theorem D,
M. Urbański for a fruitful criticism of a very first draft of Theorem A, finally J.
Graczyk and M. Urbański for corrections in Proof of Theorem B.

1. Controlling pre-images. Distortion

Lemma 1.1. For every integer K ≥ 0 and 0 < λ < 1 the following hold:
1. For every ε > 0 there exists δ0 > 0 such that for every disc B = B(x, δ)

with δ ≤ δ0, x ∈ J , for every n ≥ 0 and every connected component W =
Compf−n(B(x, δ)) such that fn|W has at most K critical points counted with mul-
tiplicities, for every component W ′ = Compf−n(B′) in W , for the disc B′ =
B(x, λδ)), we have

diamW ′ ≤ ε.

2. diamW ′ → 0 for n → ∞ uniformly (i.e. independently of the choices of B
and W ′).

Proof. This is a standard lemma, for one of its variants we could refer to [M]
(though here we assume x ∈ J rather than that x is far from parabolic points or
sinks, otherwise 2. would be false for B(x, δ) in a Siegel disc or a Herman ring).
Nevertheless for the completeness we shall prove it:

Let Bn = B(xn, δn) be a sequence of discs with xn ∈ J . Consider also a sequence
of components Wn = Compf−kn(Bn) with kn → ∞, as n → ∞ and number of
critical points of each fkn on Wn bounded by K. Then for each n there exists
L = L(n) : 0 ≤ L ≤ K such that there is no critical value of fkn |Wn in

P (n) =: B(xn, δn(λ+ (1− λ)
L+ 1

K + 1
)) \B(xn, δn(λ+ (1 − λ)

L

K + 1
)).

Let W ′
n be associate to Wn as in the statement of the lemma. Suppose that

diamW ′
n 6→ 0; i.e. there exists η > 0 such that diamW ′

n > η.
To prove 1. suppose that δn → 0.
Denote

W (1)
n =: Compf−kn(B(xn, δn(λ+ (1− λ)

L(n)

K + 1
))),

W (2)
n = Compf−kn(B(xn, δn(λ + (1− λ)

L(n) + 1

K + 1
)))

the components containing W ′
n,

Pn =: W (2)
n \W (1)

n
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and for every 0 ≤ m ≤ kn, i = 1, 2,

W (i)
n,m =: fkn−m(W (i)

n ), Pn,m =: fkn−m(Pn) = W (2)
n,m \W (1)

n,m.

Let, for each n, the number m = m(n) ≤ kn be the least integer such that

diamW (1)
n,m ≥ min(η, inf

c1,c2∈Crit(f),c1 6=c2
dist(c1, c2)).

So for every 0 ≤ t < m(n) the set Pn,t is a topological annulus. That is because
at each step back by f−1 from Pn,t−1 to Pn,t there is at most one branch point for

f−1 from W
(i)
n,t−1 to W

(i)
n,t, i = 1, 2.

All Pn,m(n)−1’s have moduli bounded from below by 2−K(1 − λ) 1
K+1 . So by

Montel’s Theorem there is a topological (maybe not geometric) annulus P contained
in all Pns,m(ns)−1’s for a subsequence ns, which bounds a disc D containing a point

y ∈ J . So D ⊂ W
(2)
ns,m(ns)−1; hence fm(ns)−1(D) ⊂ B(x, δn). By δn → 0 we have

also m(n) →∞. Thus we have arrived at a contradiction with y ∈ J . This proves
1.

To prove 2. observe that if for every n, δn ≤ δ and δ is small enough then

diamCompf−n(B(x, λδ))

is small for all n. This allows us to repeat the above proof that

diam Compf−n(B(xn, λ
2δ)) 6→ 0

leads to a contradiction.
(We do not need now m(n)’s so we do not need δn → 0.)

Now we shall discuss how annuli control distortion.
We start with a variant of Koebe’s Distortion Lemma:

Lemma 1.2. Given ε < diamC there exists a constant C = C(ε) such that for
every 0 < λ < 1, every disc B(z, δ) ⊂ C with δ ≤ ε, every holomorphic univalent
mapping g : B(z, δ) → C for which

(i) diamg(B(z, δ)) ≤ ε or at least (ii) diam(C \ g(B(z, δ))) ≥ ε,
and every x, y ∈ B(z, λδ) it holds:

|g′(x)|/|g′(z)| < C(1− λ)−1, |g′(z)|/|g′(x)| < C(1− λ)−1,

|g′(x)|/|g′(y)| < C(1− λ)−2.
(1.1)

Proof. Recall that we consider |g′| and diameters in the spherical metric. In the
standard Koebe Lemma in the complex plane the exponents are −3 rather than −1
in the first inequality and −4 rather than −2 in the last one [H]. Here assuming (i)
we can change coordinates and have g from the unit disc in C into a given bounded
region. Then one obtains the exponent −1 in the first inequality (use Cauchy’s
formula for g′, pass to absolute values, you arrive at Poisson kernel). If only (ii) is
assumed we choose two points a, b ∈ C \ g(B(z, δ)) far from g(x), g(y) and change
coordinates moving a, b to 0,∞, next apply a branch of the square root and again
a homography ending with a new g(B(z, δ)) bounded in C, the bound depending
on ε.

Later for g holomorphic on a neighbourhood U of X the number supx,y∈X
|g′(x)|
|g′(y)|

will be called the distortion of g. We shall denote it by Distor(g,X). For diamU ≤ ε
being an arbitrary constant less than diamC, the number supg Distor(g,X) over all
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univalent holomorphic g : U → C such that diam g(U) ≤ ε will be denoted by
DistorU,X .

We shall need also the following:

Lemma 1.3. For every rational function f : C → C there exists C3 > 0 such that
for every connected A ⊂ C and Compf−1(A)

diamCompf−1(A)

diamA
≤ C3 inf{|f ′(x)|−1 : x ∈ Compf−1(A)}(1.2)

and for A1 ⊂ A2 ⊂ C connected and components Compf−1(A1) ⊂ Compf−1(A2)

diam(Compf−1(A1))

diam(Compf−1(A2))
≥ C−1

3

diam(A1)

diam(A2)
.(1.3)

Proof. For large A (1.2) is trivial. Small Compf−1(A) far from Crit is taken care
of in Lemma 1.2. If Compf−1(A) is small close to c ∈ Crit(f) (1.2) is easily
calculable after a holomorphic change of coordinates in a neighbourhood of c so
that f becomes z 7→ zν(c). The inequality (1.3) follows from (1.2). Namely for

A = A2 we can replace the right side of (1.2) by diamCompf−1(A1)
diamA1

.

Now we give a K-critical variant of Lemma 1.2:

Lemma 1.4. In the situation of Lemma 1.1 there exist also constants L > 0 de-
pending only on K and C4 > 0 depending on K, ε such that for every x ∈ W ′ we
have

diamW ′ ≤ C4(1− λ)−L|(fn)′(x)|−1diamB′;(1.4)

for every B1 ⊂ B2 ⊂ B′ and components W 1 ⊂ W 2 ⊂ W ′ of their f−n-preimages
we have

diamW 1

diamW 2
≥ C−1

4 (1− λ)L
diamB1

diamB2
;(1.5)

on the other hand

diamW 1

diamW 2
≤ C4(1− λ)−L

(diamB1

diamB2

)2−K

.(1.5′)

Proof. Similarly as in Proof of Lemma 1.1 we divide B \B′ into K + 2 annuli and
choose that one which does not contain critical values for fn|W but not the most
external one. (This is why we took K+2 rather than K+1.) So from the beginning
we assume that there are no critical values for fn|W in P = B \B′ whose modulus
satisfies modP ≥ 1−λ

K+2 . As we removed the most external annulus we know by

Lemma 1 part 1, that for B small, all f j(W ), j = 0, 1, ..., n, are small so Lemma
1.2 will be applicable.

Let 0 < m1 < m2 < ... < mK′ ≤ n (K ′ ≤ K) be all consecutive integers m such
that fn−m(W ′) contain f -critical points. If mK′ < n consider also mK′+1 = n+ 1.
Then for each mt, t ≤ K ′,

diamfn−mt(W ′) ≤ C3diamfn−mt+1(W ′)|f ′(fn−mt(x)|−1(1.6)

by Lemma 1.3 (the inequality (1.2)).
We need to estimate distortions of fmt−mt−1−1 on fn−mt+1(W ′) for each t such

that mt−1 − mt > 1. It is clear that each annulus fm(W \W ′) has modulus at
least a = (1 − λ)2−K/(K + 2) (see an explanation later) but this is not enough
because this annulus need not be a geometric annulus. For a small one has only the
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distortion estimate in the encircled domain by Const exp(2/a). Take for example
D a unit disc and D′ := [−τ, τ ] for τ < 1, τ ≈ 1. Then mod(D \ D′) is of order
Const log(1/(1 − τ)) but the distortion on D′ of say the Koebe function z

(1−z)2 is

of order 1/(1− τ)2 (in the spherical metric).
Fortunately for modulus not too small this surprise does not happen. It is easy

to see that for every a > 0 there exists ϑ(a) such that if mod(D \ D′) > a then
DistorD,D′ < ϑ(a).

We obtain now the estimate of Distorfn−m(W ),fn−m(W ′) for m = m1−1,m2−1, ...
by induction making the following trick:

Cover (this is easy) B′ by a family of discs B = {B(zj, uj)} such that for every
j we have B(zj , 2uj) ⊂ B and

]B ≤ Const log(1/(1− λ)).(1.7)

Consider for each m ≤ n the family Bm of components of f−m(b), for all b ∈ B,
intersecting fn−m(W ′), and denote by 2Bm the family of corresponding components
of f−m(b) for b = B(zj , 2uj). For each V ∈ Bm and corresponding V ′ ∈ 2Bm , i.e.
obtained for the same j and containing V , either mod(V ′\V ) = mod(f(V ′)\f(V )),
which is the case if m 6= m1,m2, ...,mK′ , or mod(V ′ \ V ) ≥ 1

νmod(f(V ′) \ f(V ))
where ν majorates the multiplicities of f at critical points.

Observe also that

]Bm ≤ γ]Bm−1(1.8)

where γ = ν or 1 depending as m is one of the numbers m1,m2, ...,mK′ or not.
We conclude that for each m, in particular for m = mt − 1, t = 1, ..., K ′ + 1,

Distorfn−m(W ),fn−m(W ′) ≤
(
(ϑ(2−K))K

)]Bm ≤ Const(1− λ)−L
′

(1.9)

for an appropriate L′ by (1.7) and the composition of (1.8) for all m’s. This applied
to g = fmt−mt−1−1 on fn−mt+1(W ′) for each t, together with (1.6), gives (1.4) with
L = (K + 1)L′.

The estimate (1.5) follows similarly: For m = mt, t = 1, ..., K ′, take Ai in (1.3)
being fmt+1(W i) and Compf−1(Ai) = fmt(W i) and use (1.3). For m = mt−1, t =
1, ..., K ′ + 1, use (1.9).

In (1.5′) the difference in the proof is for m = mt, t = 1, ..., K ′. The root of the
diameter is taken then, according to the multiplicity of the critical point.

One can change the assumptions of Lemma 1.4 to obtain

Lemma 1.5. 4 For every ε > 0 and integer K ≥ 0 there exist positive constants
L,C4 such that for every δ > 0, 0 < λ < 1 and for every B,W,B′,W ′, Bi,W i, i =
1, 2, as in Lemma 1.1 for which

1. diam(C \ f j(W )) ≥ ε, j = 0, 1, ..., n,
2. each f j(W ) contains at most one critical point (maybe multiple),
the estimates (1.4),(1.5) and (1.5′) hold.

Proof. Proof is the same as for Lemma 1.4 except at the beginning. We have no
means to prove 1. and 2. above (which we need in order to know that all f j(W )
are simply-connected). This is the reason we just assumed 1. and 2.

4Added in revision: This modification of Lemma 1.4 was missing in the preprint version. But
in §2, in applying Def. 2.3, we shall keep δ fixed and maneuver with λ ≈ 1, so this modification
will be of use. See also the recent paper: F. Przytycki, S. Rohde: Porosity of Collet-Eckmann
Julia sets, preprint, 1996.
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2. Conformal measures. Proof of Theorem A

We shall need the following technical facts:

Lemma 2.1 (see [P1] or [DPU, Rule I]). For every f : C → C a rational mapping
on the Riemann sphere there exists κ > 0 such that if for a critical point c ∈ J(f)
and n > 0 we have dist(fn(c), c) < ε then n ≥ κ log 1/ε.

Lemma 2.2 (see [DPU]). There exist θ > 1, ρ > 0 such that for every x ∈ J(f), n
> 0 for every disc B = B(x, δ) and every component W of f−n(B) one has
diamW ≤ θnδρ.

(Lemma 2.2 is an elementary but a very non-trivial fact. It follows from Rule II,
see [DPU]. One can take ρ = 2−2 deg f+2.)

Let us pass now to the definition which provides a basic idea of the paper:

Definition 2.3. Fix a series of positive numbers
∑∞

n=1 bn = 1/2. For every disc
B = B(x, r) denote by B[n the disc B(x, (

∏n
j=1(1 − bj))r). We call n the es-

sential critical time for B and for a sequence of compatible components Wt =
Compf−t(B[t), compatible means f(Wt) ⊂ Wt−1, if there exists a critical point

c ∈Wn. The time n is called exposed if c ∈ Crit′.

The issue is that in backward iteration, for consecutive compatible components
Compf−n(B[n), if there is no critical c as above, we remove B[n \ B[n+1. In the
sequence of all essential critical times, for the first one, n, we have the “isolating”
annulus B[n−1 \ B[n, of modulus ≥ bn, which allows us to estimate distortion for

the appropriate branch of f−(n−1) on B[n and use (0.4). See Figure 1. In fact for
technical reasons we shall always consider a (K + 1)-th essential critical time. We
should take into account also the possibility that the forward orbit of one critical
point hits another critical point.

Remark 2.4. Note that, for n being the (K + 1)-th critical time, Wn contains only
one critical point. Moreover this holds for every smaller essential critical time. In
consequence we are in the position to use the assertion of Lemma 1.4, in particular
the estimate (1.4) for B = B[n−1, B

′ = B[n,W = f(Wn),W ′ = Wn−1; formally we
can use Lemma 1.5 (if also its condition 2. holds).

We prove this claim by induction over essential critical times. Suppose B[m

captures a critical point c ∈ Crit′. Then each f i(Wm−1), 0 < i ≤ m−1, contains at
most one critical point by the induction hypothesis. We apply Lemma 1.5; hence
(1.4) gives diamf(Wm) ≤ Constb−Lm |(fm−1)′(f(c))|−1. which is small by (0.4). (We
can assume m is large; for small m it is clear directly that diamWm is small if r is
small enough.) So Wm has small diameter. Hence it contains only one critical point.
Also all Wm+j , j = 1, 2, ..., t̂, have small diameter, so each one contains at most one

critical point (t̂ defined in Introduction). We have performed the induction step
because the next critical time will be again exposed (i.e. c ∈ Crit′). (In Sec. 3. the
reader will find related estimates; see also Step 3 of Proof of Theorem A.)

Condition 2. of Lemma 1.5 holds for r small enough that for each x ∈ J the set
C \B(x, r) contains at least two different points of an a priori fixed periodic orbit.
Then each f−n(B(x, r)) also misses two points of this orbit; hence 2. holds with ε
being the minimal distance between any pair of distinct points of this orbit.

Proof of Theorem A. We shall work under the assumption that there are no par-
abolic periodic points. Only at the last Step 6 shall we comment on the situation
where there are some.
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The crucial estimate will be

µ(B(x, r)) ≥ rα
′
.(2.1)

In order to cope with Minkowski dimension (Cap) it is sufficient to prove the
following:

For every α′ > α, β > 1 there exists ε0 > 0 such that for
every x ∈ J and 0 < ε < ε0 there exists r : εβ < r < ε
for which (2.1) is satisfied.

(∗)

Indeed, having proved (∗) we obtain for every ε < ε0, with the help of the
Besicovitsch covering theorem [Gu], a covering P of J with discs B(zj , rj) of radii
rj between εβ and ε, satisfying (2.1), such that each point belongs to at least M

such discs for a constant M depending only on the metric on C. Hence∑
j

rα
′

j ≤
∑
j

µ(B(xj , rj)) ≤M.

So M ≥∑j ε
βα′ = ]Pεβα′ ; hence log ]P

−βα′ log ε ≤ γ where γ > 1 is arbitrarily close to

1 for ε small enough. Hence Cap ≤ βα′. Due to the freedom of choice of β, α′ we
obtain Cap ≤ α.

(This is a standard consideration related to Frostman’s lemma, see [PUbook].)

Step 1. Basic construction. Fix arbitrary α′ > α. Fix ξ > 10 and δ > 0, depending
on ξ and α′ and on constants depending on f (the dependence will be explained
later). Fix also K = ]Crit ∩ J ≤ 2 deg f − 2.

The idea is to prove µ(U) ≥ (diamU)α
′

for every x, n and all the sets U := Un
which are components of f−n(B(x, δ)) such that f(Un) = Un−1. We do this more
or less recurrently, for n = 1, 2, ....

So fix arbitrary x and Un as above. (This x is not the one in (2.1)!)
We choose a sequence of integers nj , j = 0, 1, ..., (and other objects) by induction

as follows: n0 = 0. Suppose that all nj for j = 0, 1, ..., k are already chosen.

Denote Nk =
∑k

j=1 nj. Define Vk := B(z, ξk+1diamUNk
) with an arbitrary origin

z ∈ UNk
. We define n′k+1 as the K + 1-th essential critical time for Vk and for the

sequence of components Compf−n((Vk)[n) such that Compf−n((Vk)[n) ⊃ UNk+n.
For each c ∈ Crit ∩ J write t(c) for the largest non-negative integer such that
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c′ = f t(c)(c) ∈ Crit. Finally define nk+1 = n′k+1 − t(c) − 1 where c is the critical
point appearing in the definition of the essential critical time n = n′k+1. (There is
only one c for n, cf. Remark 2.4.) See Figure 1.

Of course nk+1 may not exist for certain k; i.e. there exist at most K essential
critical times. Then the sequence nj , j > 0, is of finite length k. Formally we set
then nk+1 = Nk+1 = ∞. Also a priori it is not clear that nj ’s are positive (so that
the construction makes sense). It will be proved in Step 3.

Step 2. Conformal measure versus diameter. Observe that for every k ≥ 0 and 0 ≤
m ≤ nk+1 by (1.4) applied to B = (Vk)[m, B

′ = B(z, diamUNk
) with z ∈ UNk

as in
the definition of Vk, W

′ ⊃ UNk+m, one obtains

diamUNk+m ≤ C42
L|(fm)′(x)|−1diamUNk

.

When writing here 2 in place of 1/(1−λ) we use the fact that ξ is large; i.e. UNk

sits well inside Vk hence also inside (Vk)[m. (We do not need here the delicate part
of (1.4) when λ ≈ 1.)

By integrating |(fm)′(x)|−1 and using the assumption that µ is α-conformal one
obtains (diamUNk+m

diamUNk

)α
≤ (C42

L)α
µ(UNk+m)

µ(UNk
)

.

In particular this holds for m = nk+1.
Combining these inequalities we obtain for Nk ≤ n ≤ Nk+1(diamUn

diamU0

)α
≤ (C42

L)α(k+1) µ(Un)

µ(U0)
.

Hence using the fact that µ is positive on open sets (because every rational function
maps every open set in the Julia set onto the Julia set after a few iterations) and
the assumption that U0 has a definite diameter 2δ we obtain

µ(Un)/(diamUn)
α ≥ Const(C42

L)−k.(2.2)

Step 3. Diameters of UNk
’s. We prove by induction, using (0.4) and distortion es-

timates, that nk’s are large and

diamUNk
≤ exp(−k2).(2.3)

So assume (2.3) for an arbitrary k. Then by definition diamVk ≤ 2ξk+1 exp(−k2).
By Lemma 2.2 the components Compf−m(Vk) ⊃ UNk+m satisfy

diamCompf−m(Vk) ≤ θmξρ(k+1) exp(−ρk2).

So by Lemma 2.1, to meet twice the same critical point (first with Compf−i(Vk)
and next with Compf−j(Vk) for some 0 < i < j ≤ n′k+1), it is necessary that for
l = max(i, j)

n′k+1 ≥ j − i ≥ κ log(θlξρ(k+1) exp(−ρk2))−1 = −κl log θ − κ(k + 1) log ξ + ρk2.

Replacing l by n′k+1 we obtain

n′k+1 ≥
−κ(k + 1) log ξ + ρk2

1 + κ log θ
≥ σk2(2.4)

for a constant σ > 0 and k ≥ k0, for a constant k0 resulting from the above
formula. For every k < k0 the estimate (2.3) holds automatically if the diameter
of U0, i.e. the constant δ, is small enough. This follows from Lemma 1.1, part 1.
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(Unlike in previous applications where we only needed ε sufficiently small to have a
definite constant for the distortion, for example C(ε) in Lemma 1.2, we need here
to maneuver with ε because we need to use Lemma 1.2 in k0 − 1 steps.)

For nk+1 we obtain the same estimate as (2.4):

nk+1 ≥ σk2(2.5)

(with slightly smaller σ by using the fact that n′k+1 − nk+1 ≤ supc∈Crit∩J t(c) are
uniformly bounded. By the way we have proved that nk are positive for k ≥ k0.
Again, for k < k0 it is so if diamU0 is small enough).

We know now that there exists a critical point c′ ∈ Compf−nk+1−1((Vk)[(nk+1+1))
(the component containing UNk+1+1), which satisfies (0.4). So by (1.4)

diamUnk+1
≤ diamCompf−nk+1((Vk)[(nk+1+1))

≤ diam(Vk)[(nk+1+1) × C4b
−L
nk+1+1 × |(fnk+1)′(f(c))|−1.

We could fix bn polynomially decreasing to 0 and then the latter expression can
be further majorized by

Const exp(−k2)ξk+1 exp(−1

2
Q
√
nk+1).

Next, using (2.4), we majorize the latter by

Const exp(−k2 + k log ξ − k
1

2
Q
√
σ) ≤ exp(−(k + 1)2)

if we assumed Q > log ξ+2√
σ

Thus the inductive step is done and (2.3) is proved.

Step 4. Diameters of intermediate Un’s. Fix arbitrary Nk ≤ n ≤ Nk+1, k ≥ 2.
Denote r = diamUNk

. For z which is the origin of Vk = B(z, ξk+1r) (see Step 1)
we have by the definitions

B(z, ξkr) ⊂ (Vk)[n−Nk
.

We now apply the estimate (1.5′) of Lemma 1.4 to

B1 = UNk
, B2 = B′ = B(z, ξk−1r), B = B(z, ξkr)

and obtain

diamUn
diamCompf−(n−Nk)(B(z, ξk−1r))

≤ C42
Lξ−(k−1)2−K .

So for C5 := C42
Lξ2−K and ξ̂ := ξ2

−K
we have

diamUn ≤ C5ξ̂
−k.(2.6)

If ξ is large then also ξ̂ is large.
(To apply (1.4) we worked hard to know that UNk

”maps” by f−nk+1 to UNk+1

together with a wide collar, with bounded criticality. The estimate (2.3) of diamUNk

stronger than (2.4) is an interesting byproduct which will not be used in this paper.)
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Step 5. Conclusion. We have for Nk ≤ n ≤ Nk+1 (including the case Nk+1 = ∞)
by (2.2) and (2.6)

µ(Un)

(diamUn)α′
=

µ(Un)

(diamUn)α
1

(diamUn)α
′−α ≥ Const(C42

L)−αk ξ̂k(α
′−α) ≥ Const

(2.7)

if ξ̂k(α
′−α) > (C42

L)α. For that we should take Q in (0.4) large enough.
Now for every x ∈ J(f) we produce Un(x) by taking Un 3 x for U0 = B(fn(x), δ)

as above. In (2.7) we can replace each Un by the disc B(x, diamUn) which gives
(2.1) up to a constant (even larger constant than that in (2.7)). Of course we can
get rid of this constant by taking bigger α′ and considering r small enough.

Observe that

diamUn(x) → 0 as n→∞.(2.8)

Indeed, if k(n) satisfying Nk(n) ≤ n ≤ Nk(n)+1 grows to ∞ as n → ∞, then (2.8)
holds by (2.6).

Otherwise however, in case there exists k with Nk = ∞, we obtain diamUn(x) →
0 from Lemma 1.1, part 2.

The only thing we should still check is a part of (∗), that there are sufficiently
many discs constructed above:

Consider an arbitrary Un(x) with diameter arbitrarily small, less than δ where
δ is the constant fixed in Step 3. Let m be the least positive integer such that

diamUm(fn−m(x)) < δ. Denote fn−m(x) by y. So Um(y) ⊂ U0(y), but diamUm(y)
diamU0(y) >

Const. See Figure 2.
Write V0(y) := B(y, 2δξ), which is compatible with notation V0 from Step 1; we

just exhibit the origin.
Apply now from Lemma 1.4 the estimate (1.5), first to B = (V0(y))[t with

t = N1 = N1(y), B
′ = B(y, δξ), B2 = U0(y), B

1 = Um(y) and f−t-preimages and
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next k more times, where k is such that Nk ≤ n − m ≤ Nk+1, similarly to the
procedure in Step 2.

We conclude that

diamUn(x)

diamUn−m(x)
≥ Const(C−1

4 2−L)k.

Now apply (2.6), which gives that diamUn−m(x) < Constξ̂k. We can assume

that ξ̂ is arbitrarily large, depending on β. We immediately obtain diamUn(x) >
(diamUn−m(x))β .

Thus for the disc Dn = B(x, diamUn(x)) we have found a larger disc D′
n =

B(x, diamUn−m(x)) such that both discs satisfy (2.1) and (diamD′)β < diamD.
When we continue this procedure we end up with a disc of radius at least δ. This
proves (∗) and finishes Proof of Theorem A in the absence of parabolic periodic
points.

Step 6. Parabolic points. Every critical point out of J has its forward orbit either
separated from J(f) or converging to the set P of parabolic points. Now proceeding
as in the no parabolic points situation we see there are no problems with (2.2) and
(2.6) if U0 is far from P . There are only problems with proving (2.1) for sufficiently
many r’s. However for every x ∈ J(f) \ ⋃∞n=0 f

−n(P ) there exists a sequence
nj → ∞ such that fnj (x) is far from P . So (2.1) holds for a sequence of discs
B(x, rj) with rj → 0. This is sufficient for Hausdorff dimension. We conclude
HD(J(f) \ ⋃∞n=0 f

−n(P )) ≤ α. But
⋃∞
n=0 f

−n(P ) is countable so of Hausdorff
dimension 0. Hence HD(J(f)) ≤ α. Proof of Theorem A is finished.

Remark 2.5. In presence of parabolic periodic points in J I can prove α ≥ Cap(J)
in Theorem A under the additional assumption that α ≤ 1.

In Step 5 to obtain a lot of discs satisfying (2.1), if z = fn(x) hits close to
a parabolic point p, one uses the estimate µ(B(z, r)) ≥ Constrα obtainable for
every r > dist(f(z), z) by hand, by summing up the respective inequalities for
Bj = B(f j(z), dist(f j−1(z), f j(z))) for adequate j’s (including negative ones and
considering right branches of f−1). The latter inequalities are true by bounded
distortion when obtaining Bj from large scale sets by backward iteration of f . See
[DU2].

3. Ergodicity

We shall prove Theorem B here. Let us start with Lemma 3.1 whose assertion is
similar to one concerning non-renormalizable quadratic polynomials [Prado] and to
a corresponding fact for maps of the interval, see for example [CEbook, Th.2.5.2.3.].

Denote the set of parabolic periodic points by P = P (f).

Lemma 3.1. Let f : C → C be a rational map satisfying (0.4′). Then for every α-
conformal measure µ on J(f) and ε > 0, for Aε := {x ∈ J(f) : dist(fn(x),Crit(f)∪
P (f)) ≥ ε for every n = 0, 1, ...}, µ(Aε) = 0.

Proof. Consider an arbitrary x ∈ Aε, y = fm(x), small r > 0, and for y(j) :=
fm−j(x), j = 0, 1, ...,m, consider the sequence of components

Bj = Compy(j)f
−j(B(y, r)),
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i.e. the components such that y(j) ∈ Bj , j = 1, 2, ...,m. We prove first that
Bj ∩Crit(f) = ∅ for every j = 1, ...,m . (Compare Mañé’s [M], where the assertion
is similar, but the assumptions different.)

Observe that we do not need to bother about critical points not in J because
their only forward limit points in J can be parabolic periodic points. So the forward
orbits of these critical points do not hit B(y, r) for r small enough.

Denote W = W0 = B(y, 10r). If r is small one can find a large N ≤ m such
that fN |Compy(N)f

−N (W ) has no critical points. Let Wj denote the component of

f−j(W[j) containing Bj respectively. Let n′ be the first essential critical time with
a critical point c for the sequence Wj (cf. Section 2, Definition 2.3) with bj := 0 for
j < N, bj := b′j/2ΣN for j ≥ N , where b′j = supq |(f j)′(f(q))|−1, the supremum
taken over all critical points q ∈ J whose forward orbits do not meet other critical
points, and ΣN :=

∑
j≥N b′j .

Denote n := n′−1. As n′ > N , we have b−1
n |(fn)′(f(c))|−1 ≤ Const. Hence using

Lemma 1.2 we obtain dist(f(c), fm−n(x)) ≤ ConstΣNr. So dist(f(c), fm−n(x)) ≤
Const r , where the latter Const is arbitrarily close to 0 for N large (i.e. for r

small). Hence dist(c, fm−n
′
(x)) ≤ Const r1/ν . If r was taken so that r1/ν < ε we

obtain a contradiction with dist(fm−n
′
(x),Crit) ≥ ε.

In particular we obtain Bj ∩ Crit = ∅ for every j = 0, ...,m. In fact we obtain
more: because, as we proved, there is no essential critical time ≤ m, the distortion
of the respective branch of f−m on B(y, r) is bounded by a constant.

Observe also that by Lemma 1.1 with K = 0 we have diamBn → 0 as m ≥ n→
∞ uniformly independently of y = fn(x).

The result is that f |Aε is expanding. Let us cover Aε by small discs D1, ..., DJ ⊂
C with origins at x1, ..., xJ respectively, and replace f by its iterate F := fk so
that each branch Gj,s, s = 1, ..., Sj , of F−1 on Dj such that Gj,s(Dj) intersects Aε

maps the closure of Dj into some Di. We make a choice: i = η(j, s). We consider

a 1-sided Markov chain M of
∑J

j=1 Sj symbols, pairs (i, s), with the 0-1 matrix

M : M(i,s),(i′,s′) = 1 iff i = η(i′, s′). Denote the shift to the left on M by σ. In
a standard way M projects to an F -invariant repeller A containing Aε, namely
π((in, sn)∞n=0) :=

⋂∞
n=0 Gj0,s0 ◦ ... ◦Gjn,sn(Djn). Observe that this projection π is

finite-to-one. (Compare [PUZ, Sec.3, Remark 9].)
We can assume M is mixing; i.e. an iterate of M has all entries positive. (Other-

wise we considerM′ :=
⋂
j≥0 σ

j(M); hence σ mapsM′ onto itself. Next decompose

M′ into a finite union of topological Markov chains Mj mixing for an iterate of σ.
µ(π(Mj)) = 0 for each j implies µ(π(M)) = 0.)

Take a point y ∈ Aε ∩D1 and its backward trajectory γ in J \Crit containing a
point having distance to Crit ∩ J much smaller than ε, in particular the point not
in A, next γ converging to Aε. This allows a construction of an expanding repeller
A′ strictly containing A. We just take new branches of F−1, namely G1,S1+1 on
D1, next GJ+1,1 on DJ+1 := G1,S1+1(D1), next GJ+2,1 on DJ+2 := GJ+1,1(DJ+1)
etc. along γ until GJ+n,1 ◦ ... ◦ GJ+1,1 ◦ G1,S1+1(D1) is back in some Dj , j ≤ J .
If D1 were taken small enough no critical points obstruct taking these branches.
We obtain an extension of M to a mixing topological Markov chain M′. Define
A′ := π(M′).

For the set of all sequences ((in, sn)kn=0) such that M(in,sn),(in+1,sn+1) = 1, n =
0, ..., k − 1, we use the symbol M(k). We use the analogous notation M′(k) for
M′.



732 FELIKS PRZYTYCKI

So for every n

µ(Aε) ≤ Const
∑

(j0,s0),...,(jn,sn)∈M(n)

|(Fn)′(G(j0,s0) ◦ ... ◦G(jn,sn)(xjn)|−α

≤ Constλn
∑

(j0,s0),...,(jn,sn)∈M′(n)

|(Fn)′(G(j0,s0) ◦ ... ◦G(jn,sn)(xjn)|−α

≤ Constλnµ(A′)

for a number λ < 1. Hence µ(Aε) = 0.

Proof of Theorem B. Our plan is to find for µ-a.e. x ∈ J a large family of “bound-
edly distorted” topological discs Bx,∆, with origins at x, diameters tending to 0 so
that iterates of f map them with bounded distortion to geometric discs with origins
at critical points.

Consider first an arbitrary x ∈ J such that ω(x) ∩ Crit(f) 6= ∅ and x /∈⋃
n≥0 f

−n(Crit).

Let for every t ≥ 0 ct denote a critical point closest to f t(x) and

∆t := dist(f t+t(ct)+1(x), f t(ct)+1(ct)),

where t(c) is the largest non-negative integer so that f t(c)(c) ∈ Crit(f) (compare
Section 2, Basic construction). Let ts be the recursively defined sequence of all
consecutive integers such that ∆ts < ∆t for all t < ts.

Denote for every c ∈ Crit∩J the multiplicity of f t(c)+1 at c by ν(c), and denote

r(c,∆) := K(c)∆1/ν(c),

for K(c) defined by

dist(f t(c)+1(z), f t(c)+1(c)) = (K(c)−1dist(z, c))ν(c) + o(dist(z, c)ν(c)).

Consider arbitrary s with ∆ts small and ∆ts ≤ ∆ < ∆ts−1 . Denote cts by c′.
For B0 := B(f ts(x), 3r(c′,∆)),W := B(f ts(x), 10r(c′,∆)) we roughly repeat the

Proof of Lemma 3.1. Let n′ be the first essential critical time and c the related
critical point. If ∆ts−1 is small then n′ is large. The modification of the construction
compared with that in Lemma 3.1 is that when defining bj, in place of b′j we write
max(b′j , b

′
j+1, ..., b

′
j+t̂+1

). For n = n′ − 1 we obtain

dist(f(c), f ts−n(x)) ≤ Const b−1
n |(fn)′(f(c))|−1r(c′,∆)

≤ Const(b′n+t(c′)+1)
−1ΣN |(fn+t(c′)+1)′(f(c))|−1∆ < Const∆ < ∆ts .

The latter Const can be arbitrarily small as it includes ΣN . This contradicts the
definition of ts (we obtained the distance of an image of x from critical values, in
the ∆t’s sense, smaller than ∆ts−1 before the time ts + t(c′) + 1).

The conclusion is that there exists no essential critical time n′.
Now for every s and ∆ts ≤ ∆ < ∆ts−1 we define

Bx,∆ := f−tsx (B(cts , r(cts ,∆))),

where f−tsx stands for the branch of f−ts mapping f ts(x) to x.
If x ∈ ⋃n≥0 f

−n(Crit) then for t the first nonnegative integer such that f t(x) ∈
Crit, denoting f t(x) by c, we define Bx,∆ := f−tx (B(c, r(c,∆))).
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Consider now X := {x ∈ J : cl
⋃
n≥0 f

n(x) ∩ Crit 6= ∅}. Suppose there are
pairwise disjoint f -invariant sets A1, A2, ..., Am ⊂ X of positive measure µ. The
family Bx,∆ is a Besicovitch basis; hence the Besicovitch covering theorem holds
for it [Gu, Section 1.1, Remark (4), Section 2.2]. An easy conclusion is that this is
a density basis; in particular for µ-a.e. x ∈ Aj , j = 1, ...,m,

lim
∆→0

µ(Bx,∆ ∩ Aj)

µ(Bx,∆)
= 1.(3.1)

If m > ](Crit ∩ J) then there exist ∆ arbitrarily close to 0 and x ∈ Ai, y ∈
Aj , i 6= j, satisfying (3.1) such that both Bx,∆ and By,∆ use the same critical point
c′ in the definition. We obtain for ∆ small enough and r = r(c′,∆)

µ(B(c′, r) ∩Ai)

µ(B(c′, r))
> 1/2 and

µ(B(c′, r) ∩ Aj)

µ(B(c′, r))
> 1/2

which is a contradiction because µ(X) ≤ 1.
Now consider x /∈ X such that ω(x) ∩ P (f) 6= ∅. We define the sequence ts of

times of consecutive closest approaches to P similarly to the Crit case. We take
branches f−tsx on B(p,∆) and consider Bx,∆ := f−tsx (B(p,∆)). By the “flower”
dynamics close to P , each f ts−1(x) is far from P ; hence critical points from outside
J do not interfere. We prove there is no essential critical time for ∆ small enough
similarly to the Crit case (with the use of Lemma 1.1).

We prove as in the Crit case that the number of f -invariant pairwise disjoint sets
of positive µ measure in J \X \⋃ε>0 Aε does not exceed the number of periodic
parabolic orbits. This together with µ(

⋃
ε>0 Aε) = 0, see Lemma 3.1, finishes the

proof of Theorem B.

Remark 3.2. As a by-product the above considerations imply for every B(x, r), x ∈
J \ P , r small enough, that diamCompf−n(B(x, r)) → 0 uniformly.

We remarked this already in §2, see (2.8). Here however our assumption on the
growth of |(fn)′(f(c))| is weaker than (0.4), so we need to be careful. This is the
reason for modifying the construction instead of referring to Lemma 1.4 where the
exponent −L appeared; here we need the exponent −1).

4. Probability absolutely continuous invariant measures

Proof of Theorem C. We shall prove (0.7) by induction with respect to n, more

precisely (0.7) with
∑n−1

j=0 rather than
∑∞

j=0. The constants C1 and C2 will be
defined in the course of the proof, independent of n of course.

For n = 0 (0.7) is trivial (it holds with C1 = 1, C2 = 0). So assume (0.7) for an
arbitrary k ≤ n, n ≥ 0 and prove it for n + 1. Our plan is to prove it first for x
such that the time after which the forward orbit of every critical point may hit a
small neighbourhood of x is long.

Recall that t̂ denotes the largest nonnegative integer such that f t̂(Crit(J)∩J)∩
Crit(J) 6= ∅.

Next fix δ > 0 smaller than 1
3δ0 from Lemma 1.1 for K = 0, λ = 1/2. We shall

specify other properties of δ later on.
We estimate Lm(1)(x) for an arbitrary m ≤ n+ 1. The point x ∈ J is arbitrary;

only at the end shall we specify it according to the plan mentioned above.
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We shall denote |(f s)′(y)|−1 = λ(y, s). Write

Lm(1)(x) =
∑
(y,s)

λ(y, s)αLm−s(1)(y)(4.1)

where we sum over all pairs (y, s) such that f s(y) = x and one of the following two
cases holds:

1. (singular) There exists an essential critical time 0 < s′ ≤ s for B = B(x, 3δ)
and for the sequence of compatible components Compf−t(B[t), t = 0, 1, ..., s′, with

f s−s
′
(y) ∈ Compf−s

′
(B[s′). Let s′ denote the first such time and the integer s be

defined by s = min(m, s′ + t̂).
Here we use the notation of Definition 2.3. We do not specify bj for most of the

proof; only at the end do we set

bj :=
bj

10(1− b)
,

for b < 1 arbitrarily close to 1.
2. (regular) s = m and there is no essential critical time for the sequence

Compf−t(B[t), t = 1, ...,m, with y ∈ Compf−m(B[m).

We call each pair (y,m) as in the case 2. regular. (This follows Nowicki, van
Strien terminology.) In this case there exists a branch gy,m of f−m on B[m such
that gy,m(x) = y. As the distortion of gy,m on B(x, δ) is bounded by a constant C
(cf. Lemma 1.2) we obtain

λ(y,m)α ≤ Cαµ(gy,m(B(x, δ)))

µ(B(x, δ))
.

So ∑
(y,m) regular

λ(y,m)α ≤ Cαµ(B(x, δ))−1.

We set in (0.7) C1 := Cα(infx∈J µ(B(x, δ)))−1.
Now we pass to a harder part of the proof, estimating

λ(y, s)α|Lm−s(1)(y)|

≤ λ(y, s)α
(
C1 + C2

∑
q∈Crit(f)∩J

m−s−1∑
j=0

γj
|(f j−t̂)′(f t̂+1(q))|α/ν

dist(y, f j+1(q))(1−1/ν)α

)(4.2)

for each singular (i.e. not regular) (y, s).

Observe that W := Compy(B[s′) is small. Indeed for y′ := fs−s
′+1(y)

diamgy′,s′−1(B[s′)

diamB[s′
≤ Constλ(y′, s′ − 1)b−1

s′−1.

Here Const includes the distortion constant C from Lemma 1.2, applied under
assumption (ii). This assumption (ii) holds if δ is small enough because then there
is an ε > 0 such that B(x, 3δ) is disjoint from a periodic orbit having two points
at least ε apart. This is so for each x ∈ J and obviously this implies the same for
f−t(B(x, 3δ)) for each t ≥ 0.

Denote f s−s
′+1 by F . As W is small it contains only one F -critical point, which

we denote by c. Denote the degree of F at c by ν(c).
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We have

λ(y, s− s′ + 1) = |F ′(y)|−1 ≤ Constdist(F (c), F (y))1/ν(c) −1(4.3)

where Const depends on |F ′′c)| in the Riemann metric and depends on ν(c). So

λ(y, s)α ≤ Const
( λ(F (y), s′ − 1)

(dist(F (c), F (y)))1−1/ν(c)

)α
≤ Const

(λ(F (y), s′ − 1)1−1/ν(c)λ(F (y), s′ − 1)1/ν(c))α

(dist(F (c), F (y)))(1−1/ν(c))α

≤ Const
b−αs′−1λ(F (c), s′ − 1)α/ν(c)

(dist(fs(c), f s(y)))(1−1/ν(c))α

(4.4)

After replacing ν(c) by ν (4.4) gives the estimate of the λ(y, s)αC1 summand of
(4.2).

Now we shall consider an arbitrary summand

λ(y, s)αC2γ
jλ(f t̂+1(q), j − t̂)α/ν

dist(y, f j+1(q))(1−1/ν)α
for q ∈ J(f) ∩ Crit(f), 0 ≤ j < m− s.

We know that f j+1(q) 6= c. Otherwise f j+1+t̂(q) = c′ is an f -critical point, which
contradicts the definition that t̂ is the largest integer t such that the f t-image of a
critical point can hit a critical point.

Denote f j+1(q) by q′. We shall consider 2 cases:

Case I. (i) dist(q′, c) ≤ 2dist(y, c) and (ii) q′ ∈ Compyf
−s(B[s′)). (The index y

indicates the component containing y.)

Observe that by (i) dist(F (y),F (q′))
dist(y,q′) ≤ Const|F ′(y)|. Hence

1

dist(y, q′)1−1/ν
|F ′(y)|−1 ≤ Const

|F ′(y)|−1/ν

dist(F (y), F (q′))1−1/ν
.

Hence as in (4.4)

λ(y, s)α
λ(f t̂+1(q), j − t̂)α/ν

dist(y, f j+1(q))(1−1/ν)α
≤ Const

λ(f t̂+1(q), s+ j − t̂)α/νb−αs′−1

dist(x, f s+j+1(q))(1−1/ν)α
.

Case II. dist(q′, c) > 2dist(y, c) or q′ /∈ Compyf
−s(B[s′).

The second condition together with F (c) = f(c′) ∈ gy′,s′−1(B[s′) implies by
Lemma 1.2

dist(F (q′), F (y)) ≥ Constb2s′−1dist(F (c), F (y));

hence

dist(q′, y) ≥ Constb2s′−1dist(c, y).

Of course the first condition also implies this. Using the triangle inequality we
obtain also

dist(q′, y) ≥ 1

2
dist(q′, y) +

1

2
Constb2s′−1dist(c, y) ≥ Constb2s′−1dist(q′, c).
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Denote w := ν(c)−1
ν−1 . We obtain

1

dist(q′, y)1−1/ν
≤ Constb

−2(1−1/ν)
s′−1

1

dist(c, y)(1−1/ν)(1−w)

1

dist(q′, c)(1−1/ν)w

≤ Constb
−2(1−1/ν)
s′−1 dist(F (y), F (c))−(1/ν(c))(1−1/ν)(1−w)

|F ′(q′)|−(1/(ν(c)−1))(1−1/ν)w

= Constb
−2(1−1/ν)
s′−1 dist(F (y), F (c)))1/ν−1/ν(c)) × |F ′(q′)|−1/ν

= Constb
−2(1−1/ν)
s′−1 A×B.

We have |F ′(y)|−1A ≤ Const 1
dist(F (c),F (y))1−1/ν (see (4.3)) and λ(f t̂+1(q), j− t̂)1/νB

= λ(f t̂+1(q), j+1)1/ν . Multiplying by λ(F (y), s′−1) we obtain finally , as in (4.4),
our summand bounded by

Constγjb
−2α(1−1/ν)−α
s′−1 λ(f t̂+1(q), j + 1)α/ν

λ(F (c), s′ − 1)α/ν

dist(x, f s′(c′))(1−1/ν)α
.

Observation 1. Formally each pole f t(q) for the function Lm(1) can occur in the
above consideration (case I) for many singular pairs (where t > s). However it
appears in fact at most ν times. Indeed, let (y1, s1), (y2, s2) be two singular pairs
for which f t(q) appears, for say t > s1 ≥ s2. Then s′1 = s1− t̂, s′2 = s2− t̂. Both sets

A := Compf−s
′
2(B[s′2) and B := f s

′
1−s′2(Compf−s

′
1(B[s′1)), where the components

contain f t̂(y1), f
t̂(y2) respectively, contain the point f t−s

′
2(q) = f s

′
1−s′2f t−s

′
1(q).

Hence A ⊃ B, so s′2 is the first essential critical time for (y1, s1); hence s1 = s2, and
Compy1f

−s1(B[s′1) = Compy2f
−s2(B[s′2) contain both y1, y2 and F (y1) = F (y2)

As all pairs for given t, q have the same s′ = s1 + t̂ = s2 + t̂ we can write
s′ = s′(q, t).

Observation 2. Given singular (y, s) the pole f s(c) may appear many times, when
other poles f t(q), t > s, are replaced by it (case II). However for each t there are at
most ](Crit(f) ∩ J) such poles. So we obtain the coefficient at 1

(dist(x,fs(c)))α(1−1/ν)

bounded by

Const b
−2α(1−1/ν)−α
s′−1 λ(F (c), s′ − 1)α/ν

∑
q∈Crit(f)∩J, 0≤j≤m−s−1

γjλ(f t̂+1(q), j + 1)α/ν

≤ Const b
−2α(1−1/ν)−α
s′−1 λ(F (c), s′ − 1)α/ν .

This is so because the series converges (exponentially) to a constant.

Conclusion of estimates. Replacing b
−2α(1−1/ν)−α
s′−1 by Constγ(s′−1)/2 we obtain

|Lm(1)(x)| ≤

C1 + Const(C1 + C2)
∑

q∈Crit(f)∩J,0≤t<m
γt−s

′(q,t)γs
′(q,t)/2 λ(f t̂+1(q), t− t̂− 1)α/ν

(dist(x, f t+1(q))α(1−1/ν)
.

If the minimal s′ in this sum is large then γs
′/2<<γs

′
. So instead of γt−s

′(q,t)γs
′(q,t)/2

we can write γt and replace Const(C1 + C2) by a small number C6. (We can have
just C6 = C1 and assume in our induction C1 = C2.)
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The minimal s′ is large if x ∈ B(
⋃t̂
t=0 f

−t(Crit1), η), where Crit1 := {c ∈
Crit(f) ∩ J : f t(q) 6= c for every t > 0 q ∈ Crit}, η is small enough and δ is

small enough. So we first make the induction step for x ∈ B(
⋃t̂
t=0 f

−t(Crit1), η).
(Note that we can assume s′ is so large that Const becomes swallowed but we

cannot make C6 arbitrarily small without changing δ in the course of induction.
This is so because to guarantee s′ large we need δ small, which makes C1 large. We
can only obtain C6/C1 arbitrarily small.)

Next take an arbitrary x ∈ J . If δ is small enough (this is our last condition
on δ) then for every singular pair (y, s) we have diam(Compyf

−s(B[s′)) < η; hence

y ∈ B(
⋃t̂
t=0 f

−t(Crit1), η). So the induction hypothesis is satisfied with our C6. So
we end up with ConstC6.

Invariant measure. We take m a weak* limit of a subsequence S of the sequence

of measures µn = 1
n

∑n−1
j=0 f

j
∗ (µ). Due to this definition m is f -invariant. Observe

next that for every n ≥ 0

dfn∗ (µ)/dµ = Ln(1).

This is so because for every borel E ⊂ J and E′ :=
⋃n
j=1 f

j(Crit(f))

µ(f−n(E)) =
∑
t

µ(f−nt (E \ E′)) =
∑
t

∫
E\E′)

|(f−nt )′|dµ =

∫
E

Ln(1)dµ.

We use the property that µ(E′) = µ(f−n(E′)) = 0. This follows from the as-
sumption that µ is conformal and has no atoms at f -critical points. f−nt denote
branches of f−n. We can divide E into small sets and assume even that f−nt are
holomorphic. (If there were an atom at c ∈ Crit(f) ∩ J , then we could not remove
E′ and µ(c) 6= |f ′(c)|−1µ(f(c)) = 0 · ∞.)

Now as all the functions 1
n

∑n−1
j=0 Lj(1) are uniformly bounded by a µ-integrable

function h (the right-hand side expression of (0.7)) we arrive at m(E) ≤ ∫
E
hdµ;

hence m � µ. (This is standard: one can approximate the indicator function χE
by continuous functions due to the regularity of our measures and use the weak*
convergence of S.)

Appendix. Non-renormalizable quadratic polynomials.

Proof of Theorem D

Let us recall the terminology [GJ, L]: Let V 0 ⊃ V 1 ⊃ ... be the principal nest of
critical puzzle pieces, i.e. pieces containing the critical point 0. That is,

V k := Compf−q(k)(V k−1), the component containing 0, where q(k) is the first
time f q(k)(0) ∈ V k−1. Also mod(V 0 \ V 1) > 0.

If f q(k)(0) ∈ V k, k ≥ 1, we call k a central return integer; in the opposite case
we call it non-central. Denote by K the set of all non-central return integers and
number them 0 = k(1) < k(2) < . . . . Observe that for every k(s) ∈ K, for every
k(s) + 1 ≤ k ≤ k(s + 1), we have q(k) = q(k(s) + 1). Denote this integer by qs.
Finally denote mod(V k−1 \ V k) by modk.

Lemma App1. Consider an arbitrary x ∈ C. Suppose that fm(x) ∈ V k and
k′ := sup{l : there exists 0 ≤ j < m such that f j(x) ∈ V l} ≤ k. Let s be so that
k(s) ≤ k′ < k(s + 1).
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Then fm has no critical points in Compxf
−m(V k(s)) (Compx denotes the com-

ponent containing x).

Proof. Let M be the largest non-negative integer less than m such that fM (x) ∈
V k(s) (supposing it exists). Then

fM (x) /∈ V k(s)+1.(App.1)

Indeed suppose that fM (x) ∈ V t \ V t+1 where k(s) + 1 ≤ t < k(s + 1). Denote

m′ = M + qs. Then fm
′
(x) ∈ V t−1 \ V t. In particular fm

′
(x) /∈ V k because k ≥ t.

Of course for M < j < m′ we have f j(x) /∈ V k as well, because f j(x) /∈ V k(s).
Hence m′ < m which contradicts the definition of M .

Denote Ai := Compfi(x)f
−(m−i)(V k(s)), for each i = 0, 1, 2, ...,m.

For each 0 < j < m −M , Am−j contains fm−j(x) /∈ V k(s); hence it is disjoint

from V k(s) by the Markov property of the puzzle. (By the way this proves Lemma
in the case M does not exist.) We show also that

Am−M ⊂ V k(s) \ V k(s)+1.(App.2)

Indeed, the disjointness of Am−M from V k(s)+1 follows from (App.1) and the fact
that both Am−M and V k(s)+1 are components of the set returning to V k(s) under
the first return map under iteration of f . Am−M ⊂ V k(s) follows from the Markov
structure of the puzzle.

Let 0 ≤ m1 < m2 < ... < mT = M < m be the sequence of all consecutive
integers between 0 and m for which fmj ∈ V k(s). Suppose that for an integer j > 1
we have proved already that Am−mj ⊂ V tj \V tj+1 for certain k(s) ≤ tj < k(s+1).
We have already checked this backward induction hypothesis for j = T , i.e. mj =
M . Then:

If fmj−1(x) ∈ V k(s)+1, we obtain fmj (x) ∈ V k(s) and mj −mj−1 = qs. Hence
in fact fmj−1(x) ∈ V tj+1 \ V tj+2 and moreover Amj−1 ⊂ V tj+1 \ V tj+2, with
tj + 2 ≤ k(s + 1).

If fmj−1(x) ∈ V k(s) \ V k(s)+1 then we use (App.1) and obtain as in (App.2),
using the induction hypothesis, that

Amj−1 ⊂ Compfmj−1 (x)f
−(mj−mj−1)(V k(s)) ⊂ V k(s) \ V k(s)+1.

Finally as mentioned above Ai ∩ V k(s) = ∅ for every i 6= m1,m2, ...,mT , 0 ≤ i <
m.

Thus none of Ai, i = 0, 1, ...,m− 1, contains the critical point 0. This proves our
Lemma.

Corollary App2. For each s = 1, 2, 3, ... the branch Gs+1 of f−(qs+1−1) from
V k(s+1) to f(V k(s+1)+1) extends to V k(s).

Proposition App3. P := Comp0f
−1Gs+1(V

k(s)) ⊂ V k(s+1). Moreover

mod(V k(s+1) \ P ) ≥ Const mod(V k(s)−1 \ V k(s)).(App.3)

This proposition is related to (and in fact follows from) [L, Corollary 6] and
the considerations preceding it. We shall use this proposition only in the case
k(s)− k(s− 1) = 1 so that the modulus on right-hand side in (App.3) is bounded
away from 0 ([L, Corollary 6], Note that it can be very small if the cascade of
central returns is long, i.e. k(s) − k(s − 1) is large). We shall prove however this
proposition in the general case because it looks interesting in itself.
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Proof of Proposition App3. Let 0 < n < qs+1 be the first integer for which
fn(0) ∈ V k(s) \ V k(s)+1. It exists since qs+1 > qs. By Lemma App.1, fn(P ) ⊂
V k(s) \ V k(s)+1.

If fn(P ) is pre-critical, i.e. the first return to V k(s)−1 maps fn(P ) into V k(s),
then

mod(V k(s) \ fn(P )) ≥ modk(s).

If fn(P ) is not pre-critical we obtain an even better estimate, cf. [L, Lemma 3].
Now, if k(s+1)−k(s) = 1 we obtain mod(V k(j+1) \P ) ≥ 1

2modk(s) which proves
(App.3).

If k(s + 1)− k(s) > 1, then

mod(V k(s) \ V k(s)+2 \ fn(P )) ≥ Constmin(modk(s),modk(s)+2)

By the first mod we mean here the maximal modulus for annuli in V k(s) \V k(s)+2 \
fn(P ) enclosing fn(P ). Hence by iterating the right branches of f−qs k(s + 1)−
k(s)− 2 times we arrive at

mod(V k(s+1)−2 \ V k(s+1) \ fn−(k(s+1)−k(s)−2)qs (P )

≥ Constmin(modk(s),modk(s)+2).

Iterating twice more and taking into account that modk(s)+2 is bounded away from
0 we arrive at (App.3).

In the sequel we shall refer to a deep theorem proved by J. Graczyk and
G. Świa̧tek [GS1, Theorem C] (for real parameters c) [GS2] and M. Lyubich [L,
Theorem I].

Theorem GSL. The moduli modk(s)+1 grow at least linearly as s→∞.

We shall need in fact only the growth of modk(s)+1 to ∞. Until now we used
only the easy part, that the moduli are bounded away from 0.

Proof of Theorem D. We construct a sequence of critical puzzle pieces Pn by P 0 :=
V k(1)+1, P 1 := Comp0f

−1G2(P
0) etc. by induction using each Gj once or twice.

Here is the precise description:
Let s = s(n) be such that V k(s+1) ⊂ Pn ⊂ V k(s).
1. If V k(s)+1 ⊂ Pn ⊂ V k(s) and k(s + 1) − k(s) > 1 then define Pn+1 :=

Comp0f
−1Gs(P

n).
2. Otherwise define Pn+1 := Comp0f

−1Gs+1(P
n).

We prove that each Pn sits well inside V k(s(n)):
1o If k(s+1)−k(s) > 1 and Pn ⊂ V k(s)+1, then mod(V k(s)\Pn) ≥ modk(s)+1 ≥

Const > 0.
2o If Pn ⊃ V k(s)+1 and k(s)−k(s−1) > 1, then by the construction V k(s−1)+2 ⊂

Pn−1 ⊂ V k(s−1)+1. Hence

mod(V k(s) \ Pn) ≥ 1

2
mod(V k(s−1) \ Pn−1) ≥ modk(s−1)+1 ≥ Const > 0.

3o If Pn ⊃ V k(s)+1, k(s)− k(s− 1) = 1 and k(s− 1)− k(s− 2) > 1, then

mod(V k(s) \ Pn) ≥ 1

2
mod(V k(s−1) \ Pn−1) ≥ 1

4
mod(V k(s−2) \ Pn−2)

≥ modk(s−2)+1 ≥ Const > 0.
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4o If Pn ⊃ V k(s)+1 and k(s) − k(s − 1) = k(s − 1) − k(s − 2) = 1 then by
Proposition App.3 :

mod(V k(s) \ Pn) ≥ mod(V k(s) \ Comp0f
−1Gs(V

k(s−1))

≥ Const modk(s−1) ≥ Const > 0.

In the above cases, in order that they make sense, we assume n, hence s, are
sufficiently large. For small n we have mod(V k(s) \ Pn) > 0 by definition and by
the first assertion of Proposition App.3.

We conclude that for each Pn the respective gn = Gs or Gs+1 extends to an
annulus, so that all these annuli have moduli bounded away from 0. Hence each gn
has distortion on Pn bounded by a constant independent of n.

As in Section 2 (cf. (2.2), in fact much easier) one estimates the α-conformal
measure versus the diameter:

µ(Pn)

(diamPn)α
≥ ξ−n for a constant ξ > 1.

One proves this by induction on n loosing at each step a factor bounded by a
uniform constant due to the uniformly bounded distortions of gn’s and bounded
losses for the f−1’s which follow gn’s ((1.2) in Lemma 1.3).

Consider an arbitrary x ∈ J(f) \ ⋃∞j=0 f
−j({0}) containing 0 in its ω-limit

set. Let tn be the smallest non-negative integer such that f tn(x) ∈ Pn, for
each n = 0, 1, .... Then by Lemma App.1 f tn has no critical points in Pn(x) :=
Compxf

−tn(Pn) and even in Compxf
−tn(V k(s(n))). Hence f tn is univalent and has

bounded distortion on Pn(x). So

µ(Pn(x))

(diamPn(x))α
≥ Const ξ−n.

We shall estimate now the diameters of Pn(x). Let τj be the times of consecutive

closest approaches of f τ (x) to 0 with respect to the sequence V k(s), s = 1, 2, ... .
Namely let τ1 be the first time f τ1(x) ∈ V k(1). Let s1 be the largest integer such
that f τ1(x) ∈ V k(s1). By induction, given τj such that f τj(x) ∈ V k(sj) \ V k(sj+1)

we let τj+1 be the first time f τj+1(x) ∈ V k(sj+1) and sj+1 be the largest integer

such that f τj+1(x) ∈ V k(sj+1).
Denote f τj (x) by yj. As in Proof of Lemma App.1 we obtain for each j > 1 that

Compyjf
−(τj−τj−1)(V k(sj−1)) ⊂ V k(sj−1).

Denote Aj := Compf−τj(V k(sj−1) \V k(sj)), the component enclosing x. We obtain
a sequence of disjoint annuli Aj nested consecutively around x (in fact with a lot
of room between them). By Lemma App.1 f τj has no critical point in Aj ; hence

modAj = mod(V k(sj−1) \ V k(sj)).
Given Pn and j = j(n) such that sj ≤ s(n) < sj+1 we consider also the annulus

A(n) := Compf−τj(V k(sj) \ Pn).
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We conclude that

mod(Compxf
−τ1(V k(s1)) \ Compxf

−τj(n)(Pn)) > modA(n) +

j(n)∑
i=2

modAi

≥
k(s(n))∑

r=k(s(1))+1

modr ≥ Const (s(n))2

where the latter inequality follows from Theorem GSL.
So for each n

diam(Pn(x)) ≤ Const exp(−Consts(n)2) ≤ Const exp(−Const(n/2)2).

The latter follows from the construction of Pn where each s = s(n) repeats at most
twice.

If 0 is not in the ω-limit set of x one can pull-back by backward iterations of f

large puzzle pieces to x with bounded distortion which gives µ(B)
(diamB)α ≥ Const > 0

for arbitrarily small balls B centered at x. The diameters of the puzzle pieces
go to 0 with the number of generation going to ∞ because the branches of the
compositions of f−1 under consideration form normal families with constant limits.

Finally the set
⋃∞
j=0 f

−j({0}) is countable so of Hausdorff dimension 0. (In fact

one can consider the puzzle pieces Compxf
−m(Pn), n = 1, 2, ..., where fm(x) = 0.

This pulling back does not destroy the estimates for the measure versus diameter
and for the diameters of Pn’s.)

These ingredients are sufficient to deduce HD(J) ≤ α, cf. Section 2. Theorem
D is proved.
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(1986), 383–407. MR 88g:58100
[S] D. Sullivan, Conformal dynamical systems, In ”Geometric Dynamics”, Lec. Notes in Math.,

vol. 1007, Springer, New York (1983), 725–752. MR 85m:58112
[Shi] M. Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia

set, Preprint SUNY at Stony Brook, IMS 1991/7.
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