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Topological invariance of the Collet—Eckmann property
for S-unimodal maps

by

Tomasz Nowicki and Feliks Przytycki (Warszawa)

Abstract. We prove that if f, g are smooth unimodal maps of the interval with
negative Schwarzian derivative, conjugated by a homeomorphism of the interval, and f is
Collet—Eckmann, then so is g.

Introduction

DEFINITIONS. We say that c is a nonflat critical point of f, a map of the
interval, if f/(c) = 0 but for some I, > 1 the limit lim,_.|f'(z)|/|x — c|ls71
exists and is nonzero.

A C? map f of the interval is called S-multimodal if:

(i) f has a finite number of nonflat critical points,
(ii) |f’]~1/? is convex between the critical points.

If f has precisely one critical point ¢ and f”(c) # 0 we call the map
S-unimodal.

If f is C3 then condition (ii) is equivalent to f having nonpositive
Schwarzian derivative, namely f"(z)/f (x) — 3(f"/f")?/2 < 0 outside the
critical points or that f expands the cross-ratio between the critical points.
These properties are invariant under composition, hence hereditary for iter-
ations (see [MS, IV.1]). In particular, they give some bounds for distortion.

Write Crit or Crit(f) for the set of all f-critical points, i.e. Crit =
{z € I: f'(x) = 0}. Write Crit’ for the set of those f-critical points whose
forward trajectories do not hit critical points. We call an S-multimodal map
f Collet-Eckmann if there exist A > 1 and C' > 0 such that for every
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c € Crit’ and every positive integer n,
(CE1) [(f™) (f(e)] = CA™.
The aim of this paper is to prove

THEOREM A. If f and g are S-unimodal maps of the interval conjugated
by a homeomorphism h of the interval, i.e. ho f = go h, and f is Collet-
Eckmann, then so is g.

In fact, this paper provides only a concluding part of the proof. Important
parts have been proved earlier in [NS] and [PR1].

Notice that we do not assume that f and g have the same order [ at the
critical point.

We assume that no map of the interval considered in this paper has
a basin of attraction to an attracting or a parabolic periodic orbit. This
property is obviously preserved under homeomorphic conjugacies.

The Collet-Eckmann condition (CE1l) was introduced in [CE] in the
context of the existence of an absolutely continuous invariant measure; for
a general reference see [MS, V.4]. In [NP] we considered the problem of
the regularity of a conjugacy between two Collet—-Eckmann maps and a
question arised whether (CE1) is a topological condition. According to [JS]
the question was also raised by J. Guckenheimer and M. Misiurewicz. Here
we give an affirmative answer.

A topological condition for S-unimodal maps which, in conjunction with
(CE1), is also topological and which for a quadratic family holds for a pos-
itive measure set of parameters was given by Jakobson and Swiatek in [JS,
Sec. 5.3]. Later Duncan Sands in his Ph.D. thesis [S] gave a topological con-
dition for S-unimodal maps which implies (CE1) and another one which
excludes (CE1), but some cases were still left undecided. A result weaker
than Theorem A, saying that quasi-symmetric conjugacy leaves (CE1) in-
variant, was proved in [SN].

Let us introduce the following conditions on an S-multimodal mapping
f:1—1:

(1) The Collet-Eckmann condition (CE1);

(2) (exponential shrinking of components) There exist 0 < & < 1 and
d2 > 0 such that for every interval J C I with length |J| < d2, every positive
integer n and every component K of f~"(J) one has |K| < £™;

(3) (exponential shrinking of components at critical points) There exist
0 < & <1 and d3 > 0 such that for every ¢ € Crit and for every positive
integer n, for

B = B(f"(c),d5) i= {w € s |z — f(c)| < 6}
and the component K of f~"(B) which contains ¢ one has |K| < £";
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(4) (finite criticality) There exist M > 0, P, > 0 and 4 > 0 such that
for every x € I there exists an increasing sequence of positive integers n;,
j=1,2,..., such that n; < P,j and for each j,

#{i 10 < i <mny, Compyiy " (B(f" (x),04)) N Crit # 0} < M

(the subscript y at Comp, here y = f(z), means that the component Comp,,
contains y; later on, y can also be a set contained in the component);

(5) (mean exponential shrinking of components) There exist P5 > 0,
0 <& < 1and 65 > 0 such that for every z € I there exists an increasing
sequence of positive integers n;, 7 = 1,2,..., such that n; < P5j and
|Comp,, [~ (B(f" (x),05))| < €3

(6) (uniform hyperbolicity on periodic trajectories) There exists A > 1
such that for every integer n and x € I of period n one has |(f™) (z)| > \™.

We shall prove that for every k = 1,...,5 the property (k) implies (k+1).
The implication (6)=-(1) is a recent theorem by the first author and Duncan
Sands [NS], in the unimodal case.

Notice that (4) is a topological property. We thus get Theorem A.

We do not know whether (6)=-(1) holds in the multimodal case (!); this
is the reason why we restricted Theorem A to the unimodal case. Negative
Schwarzian is used only in (1)=-(2), (4)=(5) and (6)=-(1).

One can rewrite all the above properties for f a rational mapping on the
Riemann sphere without parabolic periodic orbits. One then only considers
critical points in the Julia set. One considers conjugacies on neighbourhoods
of Julia sets; in this sense (4) is a topological invariant. We call this setting
the holomorphic case.

The implication (1)=(2) has been proved in [PR1, Proposition 3.1] in the
holomorphic case. In the interval case the proof is similar. In the unimodal
case, order 2 at the critical point, this implication has been proved earlier
in [NP, Main Lemmal.

(2)=(3) is trivial.

The proof of (3)=(4) goes similarly to the proof of (1)=-(4) in [PR1]; it
is even simpler, one does not need to consider pre-images according to the
“shrinking neighbourhoods” procedure (see [P1], [GS]), because one need
not control any distortion. We shall give this proof in Section 1.

(4)=(5) goes by the “telescope” construction; it has been done in the
rational case in [PR1, Proof of Proposition 3.1]. We adapt the proof to the
interval case in Section 2.

(5)=-(6) will also be done in Section 2. This is very easy.

(1) Added in revision: It does not hold (for an idea how to construct a counterexample
see [CJY, Remark 1, p. 9], [P4, Introduction] and [PR2]).
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Added in revision: 1. A theorem similar to Theorem A holds in the
holomorphic case provided there is at most one critical point in the Julia set
(see the forthcoming paper by the second author and S. Rohde [PR2] and
[P4]).

2. (5)=(2) is straightforward, see [P4].

1. Proof of (3)=-(4). For every x € I and positive integer n write

b(z,m) = —log dist(f" (), Crit()).
As |I| =1, ¢(z,n) > 0. We write ¢(n) if x is fixed.
The main ingredient of the proof of (3)=-(4) is the following:

LEMMA 1.1. Let f be a differentiable mapping of the interval with a finite
number of critical points and derivative Hélder continuous at these points.
Then there exists a constant Cy such that for each n > 1 and x € I,

(1.1) S é(x, j) < nCy,

j=0
where 3" denotes summation over all but at most # Crit indices.

This lemma was proved in [DPU, (3.3)] in the holomorphic case. In the
interval case the proof is almost the same:

The point in [DPU] is that if the sum in (1.1) is larger than Cn for C
large enough, then one arrives at a disc B = B(c,r) with ¢ € Crit(f) such
that f"(B) C B, which contradicts the fact that ¢ is in the Julia set.

In the interval case f(B) C B can happen for arbitrarily small r for an
infinitely renormalizable S-unimodal map.

Recall, however, that in [DPU] one concludes that if (1.1) is not fulfilled
then f*(B) C B and |(f™)'| is small (< 1/2) on B. By the inclusion there
is an f"-fixed point p € B. As [(f")(p)| is small, p is attracting, which
contradicts the assumptions ().

In the S-unimodal interval case Lemma 1.1 follows also immediately from
the following

LEMMA 1.2 [NS]. For every 0 < n < 1 there exists C' such that for
every x € I and every positive integer n there exists 0 < n < n such that
(™) @)/ f(f ()] = O™

[Notice that though 1 can be arbitrarily close to 1, this does not imply
automatically that C; in (1.1) can be arbitrarily close to 0, even if in (1.1)
we replace ¢ by max(0, ¢ — Const) for an arbitrary Const. If C in (1.1) is
sufficiently small then (4) holds with criticality 0, see [P2].]

(2) An appendix containing a complete proof has been added on the request of the
Editorial Board of Fund. Math.
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Let us continue the proof of (3)=-(4). Fix an arbitrary x € I and write
8(i) := H(,1).

Write S; = (i,i 4+ ¢(i)K¢] C R, where we set Ky = 1/log(1/€).

(One could view the “graph” of i — ¢(i) as the union of all vertical line
segments {i} x (0,¢(i)] in R%. Then each segment throws a shadow S; on
the real axis.)

The shadows of the exceptional indices in (1.1) could be infinitely long,
but nevertheless (1.1) implies that many of the times n belong to boundedly
many shadows: Indeed, set Ny = 2(# Crit +C;Ky) and

A = {n € N : n belongs to at most Ny shadows}.

For each 0 < i < m denote by x; the indicator function of S; N [0, m]. By
(1.1),

m—1 m—1 m—1 m—1
meKfZKf Z/gb(:c,i): Z/|51’2 /SXi:SZ/Xi~
i=0 i=0 i=0 i=0

Together with the exceptional indices we obtain

i Crit -0 Kp) 2 § Y i 2 #([Lm]\ 4) Ny

by the definition of A. We conclude from the definition of Ny that
" #ANLm) 1

m 2
So if we order all the integers in A according to their growth we obtain
n; <nj. We set Py =2 in (4).

(Notice that if in the definition of Ny the factor 2 is replaced by an
arbitrary @ then 1 — 1/@Q stands on the right hand side of (1.2), which can
therefore be arbitrarily close to 1. We can then set P, =1/(1 —1/Q).)

Finally, we claim that for every n =n; € A and 0 <7 < n, if the set

Bnﬂ' = Compfz(x) f_n+i(B(fn(l‘), (53))

contains an f-critical point then n is in the shadow 5.

Indeed, suppose that B, ; contains ¢ € Crit(f). Then by (3) used for
n—1,
(1.3) e = i) <€
This shows that ¢(i) > —(n — i) log & hence n —i < ¢(i)/log(1/€). Hence n
is in the shadow S;.

(Inequality (1.3) also shows that each B,, ; contains at most one f-critical

point provided d4 < d3 is small enough.)
This proves (4) with M = Ny. =
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2. The implications (4)=-(5)=-(6). We start with the easier:

Proof of (5)=(6). Fix m > 0 and = € I so that f™(x) = z. As x is
a source (i.e. [(f™)(x)| > 1) there exists a > 0 such that f™(B(z,a)) D
cl B(xz,a) and f™ has no critical points in B(z,a).

Denote the periodic orbit of by O(x). For every n > 0 denote by g,
the branch of f~™ which maps z into O(z). These branches are well defined
on B(x,a) by the definition of a.

By the finiteness of O(x) and (5) there exist y € O(X) and an increasing
sequence of positive integers n;, j = 0,1,..., such that

|Comp,, [~ (B(y, 5))| < £™
and for K := Comp,, f~"°(B(z,J5)) one has |K| < a.
Then [gn; —no(K)|/|K| < £ /|K|. As we are in a neighbourhood of a
periodic source and the derivative of f is Holder, all g,’s have uniformly
bounded distortion on K. We conclude that |(gn,—n,) (z)| < Const ™70,

Letting j grow to oo and noticing that each n; — ng is a multiple of m we
obtain |(f™)(x)| > £~™, which proves (6) with A = ¢7!. =

To prove (4)=-(5) we need the following

LEMMA 2.1. For every N,e > 0 there exists k such that for everyn >k

and for every interval K C I if ™|k has at most N critical points, then
K| <e.

Remark. In the holomorphic case this is a variant of the Mafié Lemma
[M], [P1, Lemma 1.1], where one asserts diam Comp,, f~"(B(f"(z), A\r)) <e,
A < 1 provided f™ has at most N critical points in Comp,, f~"(B(f"(x),r)).
In the interval case one does not need A. (An adaptation to the interval case,
silmilar to that in Lemmas 2.1 and 2.2, appeared in [P3, Sec. 3].)

Proof (of Lemma 2.1). If Lemma 2.1 were not true there would exist
a sequence of intervals J; C I such that |J;| > ¢/N and integers n;, j =
1,2,..., such that n; — oo as j — oo and f,; is monotone on J; for
each j. This leads to the existence of a homterval. Namely there exists an
interval J C I of length €/(2N) such that J C Jj;, for a sequence j; — oo,
k=1,2,...,and each f™* is monotone on J, hence f" is monotone on J for
each positive integer n. However, homtervals do not exist [MS, Thm. I1.6.2],
so we arrived at a contradiction. m

LEMMA 2.2. For every M > 0 and 0 < p < 1 there exists 0 < q¢ =
q(M,p) < 1 such that for every pair of intervals J C K C I, every positive
integer n, every pair of components J',K' of f~™(J) and f~"(K) respec-
tively such that J' C K', for L, R the left and right components of K \ J
and L', R’ the left and right components of K’ \ J' respectively, if

#{i: 0 <i<n, Compyig Fm(K) N Crit # 0} < M
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and if
IL|/|K|>p and |R|/|K|>p
then
\IL'|/|K'| >q and |R'|/|K'| >q.

Remarks. This lemma also has its holomorphic analogue (see [P1,
Lemma 1.4] and [PR1, Lemma 2.1}). In the interval case its proof is implicitly
contained in [P3, Sec. 3] and [MS, Ch. IV, Th. 3.1, “Macroscopic Koebe
Principle”] for f a smooth homeomorphism. We provide a proof below for
completeness.

Proof (of Lemma 2.2). In the case M = 0 this lemma is called the
“Koebe Principle” for distortion [MS, Chapter IV]. We shall refer to this in
the proof. Denote ¢(0,p) by a(p).

Consider compatible components K; of f=/(K) and J; of f~7(J), i.e.
such that f(K;) C K;_; and f(J;) C Jj—1 for j = 1,...,n and such that
K,=K'J,=J.

Denote the left and right components of K;\J; by L; and R; respectively.
If j = ny is the first j for which K contains a critical point, say ¢, then
|Lj—1l/|Kj-1| > a(p) and [R;_1[/|K;—1| > a(p).

Next, |L;|/|K;| > ra(p) and |R;|/|K;| > ka(p), where & is a constant
number (of order 1/1, for short K;).

If j = ng is the next (after n,) integer such that K contains a critical
point we obtain |L;_1|/|K;_1| > a(ka(p)) and |R;_1|/|K;—1| > a(ka(p)),
and so on. We end up at 7 = n, with ¢ depending only on p and M. =

Proof of (4)=(5). Fix € = 64/4 and k according to Lemma 2.1 (for N
easily computable from M in (4)). Fix an arbitrary « € I. Denote f"i*(x)
by x(j) for every 7 =0,1,... By Lemma 2.1,

(21) W(j) = Comp, ;) f~"o+0x =" (B(a(j +1),61)) € B(x(j), 64/2).

Denote Comp,, f~"* (B(z(j),d4)) by V;. By Lemma 2.2 for f~™ and the
intervals W(j) C B(z(j),d4) C I and by (2.1),

Vil /IV3] < 1= 2q(M, 1/4) = €.

Combining this for j = 0,1,...,m — 1 for an arbitrary positive integer
m one obtains |V,,| = |Comp, f~"™m (B(f"m(x),04))] < £™. Notice that
Ngm < Pykm. Thus we obtained (4) with the sequence nyj;,j =1,2,..., and
P5 = k‘P4 |

Remark. Condition (4) is strictly stronger than the following condition:

(4") There exist M > 0, P > 0 and 6 > 0 such that for every z € I
there exists an increasing sequence of positive integers n;, j = 1,2,...,
such that n; < Pj and the map f™ has at most M critical points in

Comp, £~ B(f" (x), ).
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For example, every “long branched” S-unimodal map, i.e. such that
(Fy > 0)(Vn)(VK maximal such that f"|x is monotone) |f™(K)| > 7,

satisfies (4'), with M = P = 1, but need not be Collet-Eckmann [B1, B2].
Of course, in the holomorphic case, (4) is equivalent to (4') since f maps
Comp i (5 f==DB(f"(z),d) onto Comp fit1(y) fm= =D B(f(2),6).
We thank Henk Bruin and Gerhard Keller for calling our attention to
this.

Appendix: On the distance of a trajectory from the critical
set for differentiable maps of the interval. This is an adaptation to
the interval case, without significant changes, of a part of the analogous
theory for holomorphic maps by M. Denker, F. Przytycki and M. Urbanski
in [DPU]. The appendix has been added on the request of the Editorial
Board, advised by the referee.

Let T : I — I be a differentiable map of the unit interval I. Let ¢ € I be
a critical point, i.e. T7"(c) = 0.

For every z € I and r > 0 set B(z,r):={z¢€[:|x —z| <r}.

Define a function k. : I — {0,1,2,...} U {oo} by setting

ko(z) =min{n > 0:z & B(c, e~ "t}
and k.(z) =00 if x = c.

Write k(x) = sup.ccyit ke().

We call a real function ¢ on I Holder continuous at a point c if there
exist ¥, > 0 such that for every x, |o(z) — p(c)| < €|z — ¢|*.

THEOREM. Let T : I — I be a differentiable map of the unit interval I.
Suppose it has N < oo critical points and at each of them the derivative T’
is Hélder continuous. Suppose also that T has no attracting periodic orbit.
Then there exists a constant @ > 0 not depending on N such that for every
rel,

S k(T (2)) < NQn

where the sum is taken over all integers j between 0 and n (0 and n included)
except at most N of them.

LEMMA. Let a differentiable T : I — I have derivative Hélder continuous
at a critical point c. Suppose also that T has no attracting periodic orbit.
Then there exists a constant @ > 0 such that if x € I satisfies

(A1) ke(T?(2)) < keo(T™(x))  for every j=1,....,n—1,

for an integer n > 1, then

(42) min{ke(2), k. (" (2))} + 3 Ko(T9(a)) < Q.
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Proof. The proof is by induction on n. The procedure will be as follows:
Given z,T(z), ..., T"™(z) satisfying (A1) we shall decompose this string into
two blocks: (a) z,T(z),...,T™(z),0 < m < n, for which we shall prove
(A2); (b) T™(x),...,T™(x) for which we can apply the induction hypothesis.
Summing these two estimates we prove (A2) for z,T(z),...,T"(z).

Let k' = min{k.(x), k.(T™(z))} and B = B(c,e~*~1).

Let 1 < m < n be the first positive integer such that either

(i) ko(T™ (2)) — inf{ko(T™(2)) : 2 € B} > 1
(i) k(T (2)) > .

In both cases, if m < n, the sequence y = T™(x),T(y), ..., T" ™ (y) sat-
isfies the assumption (A1) automatically and, moreover, k.(y) = min{k.(y),
k.(T™™(y)}. Hence by the induction hypothesis

n—1

(A3) 3" k(TP (2)) < Qn — m).

j=m
By the definition of m, for every 0 < j < m, and for every z € B, we
have k.(T7(z)) < k.(T7(z)) + 1. Hence

(T 1Y (T(2))] < =17 o S35 the(T/ @)1

Using also |T"(2)] < e”e=**'~1) we obtain, for every z € B,

(Ad) (T™Y (2)] < em?Fme—alk'+E75" ke(T7(2))
Hence
diam T™ (B) et g (g
(A5) T ¢ gmdtmaalk T k(T (@)
diam B

In case (i) but not (ii) we have by definition
diam T (B) > ¢~ (ke(T™ (@) -1) _ ~ke(T™ (@)
>eF(e—1)= (e ¥ D — ),
This together with (A5) gives

e—1 < emWta)—alk + LT ke(TV (2)))

2e
hence
m—1
(A6) K+ ke(T7(x)) < a7 H(m(9 + a) +log 2 — log(1 — 1/e)).

In case (ii) we also obtain (A6). Otherwise using the opposite inequality
and (A4) we obtain [(T™)'| < (e —1)/(2¢) < 1 on B and T™(B) C B. By
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the latter there is a T"™-fixed point in I, by the former it attracts, which
contradicts the assumptions.

Thus, defining @ = o *(log2 + 9 + « — log(1 — 1/e)), (A.6) and (A.3)
imply

n—1
K+ k(T (2)) < Qn.
j=1

This finishes the proof. m

Proof of the Theorem. Denote the set of critical points for T' by
Crit. Fix € I and fix ¢ € Crit for the moment.

Let g(c) = t; denote the index t € {0,1,...,n} for which k.(T*(x))
attains its maximum (recall that even k.(T*(x)) = oo is possible, if ¢ =
T'(z), but there exists at most one such ¢, otherwise ¢ would be a (su-
per)attracting periodic point). Recursively, define #; to be that index in
{ti_1+1,...,n} where k.(T*(x)) attains its maximum. This procedure ter-
minates after finitely many steps, say u steps, with ¢, = n.

We decompose the trajectory x,T(z),...,T"™(z) into blocks (with over-
lapping ends)

(z,...,T" (), (T"(),...,T"(x)), ..., (T (x),...,T"(z)).
Observe that these pieces satisfy the assumptions of the Lemma and
BT (@) 2 ko(T% (@) = ... 2 ko (T' (@) 2 ko(T ().

Applying the Lemma to all the blocks we obtain
t1—1 n

(A7) o(TV () + Y ke(TV(2)) < Qn.
3=0 j=t1+1

Considering now all critical points we get, by (A7),
> _K(T(2)) < NQn,

where the sum is over all integers j € {0,1,...,n}\ {q(c) : ¢ € Crit}. m

References

[B1] H. Bruin, Invariant measures of interval maps, PhD thesis, Tech. Univ. Delft,
1994.

[B2] —, Topological conditions for the existence of invariant measures for unimodal
maps, Ergodic Theory Dynam. Systems 14 (1994), 433-452.

[CE] P. Collet and J.-P. Eckmann, Positive Lyapunov exponents and absolute con-
tinuity for maps of the interval, ibid. 3 (1983), 13-46.

[CJY] L. Carleson, P. Jones and J.-C. Yoccoz, Julia and John, Bol. Soc. Brasil.

Mat. 25 (1994), 1-30.



Topological invariance of the Collet—FEckmann property 43

[DPU] M. Denker, F. Przytycki and M. Urbanski, On the transfer operator for
rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16
(1996), 255-266.

[GS] J. Graczyk and S. Smirnov, Collet, Eckmann, & Holder, Invent. Math., to
appear.

[JS] M. Jakobson and G. Swiatek, Metric properties of non-renormalizable S-
unimodal maps, II. Quasisymmetric conjugacy classes, Ergodic Theory Dynam.
Systems 15 (1995), 871-938.

[M] R.Mané, On a theorem of Fatou, Bol. Soc. Brasil. Mat. 24 (1993), 1-12.

[MS] W.de Melo and S. van Strien, One-Dimensional Dynamics, Springer, 1993.

[NP] T. Nowicki and F. Przytycki, The conjugacy of Collet-Eckmann’s map of
the interval with the tent map is Holder continuous, Ergodic Theory Dynam.
Systems 9 (1989), 379-388.

[NS] T.Nowickiand D. Sands, Nonuniform hyperbolicity and universal bounds for
S-unimodal maps, Invent. Math., to appear.

[P1] F.Przytycki, Iterations of holomorphic Collet—-Eckmann maps, conformal and
invariant measures, Trans. Amer. Math. Soc., to appear.

[P2] —, On measure and Hausdorff dimension of Julia sets for holomorphic Collet—
Eckmann maps, in: International Conference on Dynamical Systems, Montevideo
1995—a Tribute to Ricardo Manié (F. Ledrappier, J. Lewowicz and S. Newhouse,
eds.), Pitman Res. Notes Math. Ser. 362, Longman, 1996, 167—181.

[P3] —, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc.
119 (1993), 309-317.
[P4] —, Holder implies CE, Astérisque, volume dedicated to A. Douady on his 60th

birthday, to appear.
[PR1] F. Przytycki and S. Rohde, Porosity of Collet—-Eckmann Julia sets, Fund.
Math., to appear.
[PR2] —, —, Rigidity of holomorphic Collet—Eckmann repellers, preprint, May 1997.
[S] D. Sands, Topological conditions for positive Lyapunov exponent in unimodal
case, Ph.D. thesis, St. John’s College, Cambridge, 1995.
[SN] D. Sands and T. Nowicki, Quasisymmetric conjugacies of Collet-Eckmann
maps, Ergodic Theory Dynam. Systems, to appear.

Tomasz Nowicki Feliks Przytycki
Institute of Mathematics Institute of Mathematics
Warsaw University Polish Academy of Sciences
Banacha 2 Sniadeckich 8
02-097 Warszawa, Poland 00-950 Warszawa, Poland
E-mail: tomnow@mimuw.edu.pl E-mail: feliksp@impan.gov.pl

Received 3 June 1996;
in revised form 8 September 1996, 18 March 1997 and 19 June 1997



