Topological invariance of the Collet-Eckmann property for S-unimodal maps

by
Tomasz Nowicki and Feliks Przytycki (Warszawa)

Abstract

We prove that if f, g are smooth unimodal maps of the interval with negative Schwarzian derivative, conjugated by a homeomorphism of the interval, and f is Collet-Eckmann, then so is g.

Introduction

Definitions. We say that c is a nonflat critical point of f, a map of the interval, if $f^{\prime}(c)=0$ but for some $l_{c}>1$ the limit $\lim _{x \rightarrow c}\left|f^{\prime}(x)\right| /|x-c|^{l_{c}-1}$ exists and is nonzero.

A C^{2} map f of the interval is called S-multimodal if:
(i) f has a finite number of nonflat critical points,
(ii) $\left|f^{\prime}\right|^{-1 / 2}$ is convex between the critical points.

If f has precisely one critical point c and $f^{\prime \prime}(c) \neq 0$ we call the map S-unimodal.

If f is C^{3} then condition (ii) is equivalent to f having nonpositive Schwarzian derivative, namely $f^{\prime \prime \prime}(x) / f^{\prime}(x)-3\left(f^{\prime \prime} / f^{\prime}\right)^{2} / 2 \leq 0$ outside the critical points or that f expands the cross-ratio between the critical points. These properties are invariant under composition, hence hereditary for iterations (see [MS, IV.1]). In particular, they give some bounds for distortion.

Write Crit or $\operatorname{Crit}(f)$ for the set of all f-critical points, i.e. Crit $=$ $\left\{x \in I: f^{\prime}(x)=0\right\}$. Write Crit' for the set of those f-critical points whose forward trajectories do not hit critical points. We call an S-multimodal map f Collet-Eckmann if there exist $\lambda>1$ and $C>0$ such that for every

[^0]$c \in$ Crit' and every positive integer n,
\[

$$
\begin{equation*}
\left|\left(f^{n}\right)^{\prime}(f(c))\right| \geq C \lambda^{n} . \tag{CE1}
\end{equation*}
$$

\]

The aim of this paper is to prove
Theorem A. If f and g are S-unimodal maps of the interval conjugated by a homeomorphism h of the interval, i.e. $h \circ f=g \circ h$, and f is ColletEckmann, then so is g.

In fact, this paper provides only a concluding part of the proof. Important parts have been proved earlier in [NS] and [PR1].

Notice that we do not assume that f and g have the same order l at the critical point.

We assume that no map of the interval considered in this paper has a basin of attraction to an attracting or a parabolic periodic orbit. This property is obviously preserved under homeomorphic conjugacies.

The Collet-Eckmann condition (CE1) was introduced in [CE] in the context of the existence of an absolutely continuous invariant measure; for a general reference see [MS, V.4]. In [NP] we considered the problem of the regularity of a conjugacy between two Collet-Eckmann maps and a question arised whether (CE1) is a topological condition. According to [JS] the question was also raised by J. Guckenheimer and M. Misiurewicz. Here we give an affirmative answer.

A topological condition for S-unimodal maps which, in conjunction with (CE1), is also topological and which for a quadratic family holds for a positive measure set of parameters was given by Jakobson and Świątek in [JS, Sec. 5.3]. Later Duncan Sands in his Ph.D. thesis [S] gave a topological condition for S-unimodal maps which implies (CE1) and another one which excludes (CE1), but some cases were still left undecided. A result weaker than Theorem A, saying that quasi-symmetric conjugacy leaves (CE1) invariant, was proved in $[\mathrm{SN}]$.

Let us introduce the following conditions on an S-multimodal mapping $f: I \rightarrow I$:
(1) The Collet-Eckmann condition (CE1);
(2) (exponential shrinking of components) There exist $0<\xi<1$ and $\delta_{2}>0$ such that for every interval $J \subset I$ with length $|J| \leq \delta_{2}$, every positive integer n and every component K of $f^{-n}(J)$ one has $|K| \leq \xi^{n}$;
(3) (exponential shrinking of components at critical points) There exist $0<\xi<1$ and $\delta_{3}>0$ such that for every $c \in$ Crit and for every positive integer n, for

$$
B=B\left(f^{n}(c), \delta_{3}\right):=\left\{x \in I:\left|x-f^{n}(c)\right| \leq \delta_{3}\right\}
$$

and the component K of $f^{-n}(B)$ which contains c one has $|K| \leq \xi^{n}$;
(4) (finite criticality) There exist $M>0, P_{4}>0$ and $\delta_{4}>0$ such that for every $x \in I$ there exists an increasing sequence of positive integers n_{j}, $j=1,2, \ldots$, such that $n_{j} \leq P_{4} j$ and for each j,

$$
\sharp\left\{i: 0 \leq i<n_{j}, \operatorname{Comp}_{f^{i}(x)} f^{-\left(n_{j}-i\right)}\left(B\left(f^{n_{j}}(x), \delta_{4}\right)\right) \cap \text { Crit } \neq \emptyset\right\} \leq M
$$

(the subscript y at Comp, here $y=f^{i}(x)$, means that the component Comp $_{y}$ contains y; later on, y can also be a set contained in the component);
(5) (mean exponential shrinking of components) There exist $P_{5}>0$, $0<\xi<1$ and $\delta_{5}>0$ such that for every $x \in I$ there exists an increasing sequence of positive integers $n_{j}, j=1,2, \ldots$, such that $n_{j} \leq P_{5} j$ and $\left|\operatorname{Comp}_{x} f^{-n_{j}}\left(B\left(f^{n_{j}}(x), \delta_{5}\right)\right)\right| \leq \xi^{n_{j}} ;$
(6) (uniform hyperbolicity on periodic trajectories) There exists $\lambda>1$ such that for every integer n and $x \in I$ of period n one has $\left|\left(f^{n}\right)^{\prime}(x)\right| \geq \lambda^{n}$.

We shall prove that for every $k=1, \ldots, 5$ the property (k) implies $(k+1)$. The implication $(6) \Rightarrow(1)$ is a recent theorem by the first author and Duncan Sands [NS], in the unimodal case.

Notice that (4) is a topological property. We thus get Theorem A.
We do not know whether $(6) \Rightarrow(1)$ holds in the multimodal case $\left(^{1}\right)$; this is the reason why we restricted Theorem A to the unimodal case. Negative Schwarzian is used only in $(1) \Rightarrow(2),(4) \Rightarrow(5)$ and $(6) \Rightarrow(1)$.

One can rewrite all the above properties for f a rational mapping on the Riemann sphere without parabolic periodic orbits. One then only considers critical points in the Julia set. One considers conjugacies on neighbourhoods of Julia sets; in this sense (4) is a topological invariant. We call this setting the holomorphic case.

The implication $(1) \Rightarrow(2)$ has been proved in [PR1, Proposition 3.1] in the holomorphic case. In the interval case the proof is similar. In the unimodal case, order 2 at the critical point, this implication has been proved earlier in [NP, Main Lemma].
$(2) \Rightarrow(3)$ is trivial.
The proof of $(3) \Rightarrow(4)$ goes similarly to the proof of $(1) \Rightarrow(4)$ in [PR1]; it is even simpler, one does not need to consider pre-images according to the "shrinking neighbourhoods" procedure (see [P1], [GS]), because one need not control any distortion. We shall give this proof in Section 1.
$(4) \Rightarrow(5)$ goes by the "telescope" construction; it has been done in the rational case in [PR1, Proof of Proposition 3.1]. We adapt the proof to the interval case in Section 2.
$(5) \Rightarrow(6)$ will also be done in Section 2 . This is very easy.

[^1]Added in revision: 1. A theorem similar to Theorem A holds in the holomorphic case provided there is at most one critical point in the Julia set (see the forthcoming paper by the second author and S. Rohde [PR2] and [P4]).
2. $(5) \Rightarrow(2)$ is straightforward, see $[P 4]$.

1. Proof of (3) $\Rightarrow \mathbf{(4)}$. For every $x \in I$ and positive integer n write

$$
\phi(x, n)=-\log \operatorname{dist}\left(f^{n}(x), \operatorname{Crit}(f)\right) .
$$

As $|I|=1, \phi(x, n) \geq 0$. We write $\phi(n)$ if x is fixed.
The main ingredient of the proof of $(3) \Rightarrow(4)$ is the following:
Lemma 1.1. Let f be a differentiable mapping of the interval with a finite number of critical points and derivative Hölder continuous at these points. Then there exists a constant C_{f} such that for each $n \geq 1$ and $x \in I$,

$$
\begin{equation*}
\sum_{j=0}^{n} \phi(x, j) \leq n C_{f}, \tag{1.1}
\end{equation*}
$$

where \sum^{\prime} denotes summation over all but at most \# Crit indices.
This lemma was proved in [DPU, (3.3)] in the holomorphic case. In the interval case the proof is almost the same:

The point in [DPU] is that if the sum in (1.1) is larger than $C n$ for C large enough, then one arrives at a disc $B=B(c, r)$ with $c \in \operatorname{Crit}(f)$ such that $f^{n}(B) \subset B$, which contradicts the fact that c is in the Julia set.

In the interval case $f^{n}(B) \subset B$ can happen for arbitrarily small r for an infinitely renormalizable S-unimodal map.

Recall, however, that in [DPU] one concludes that if (1.1) is not fulfilled then $f^{n}(B) \subset B$ and $\left|\left(f^{n}\right)^{\prime}\right|$ is small $(<1 / 2)$ on B. By the inclusion there is an f^{n}-fixed point $p \in B$. As $\left|\left(f^{n}\right)^{\prime}(p)\right|$ is small, p is attracting, which contradicts the assumptions (${ }^{2}$).

In the S-unimodal interval case Lemma 1.1 follows also immediately from the following

Lemma 1.2 [NS]. For every $0<\eta<1$ there exists C such that for every $x \in I$ and every positive integer n there exists $0 \leq \widehat{n}<n$ such that $\left|\left(f^{n}\right)^{\prime}(x)\right| /\left|f^{\prime}\left(f^{\hat{n}}(x)\right)\right| \geq C \eta^{n}$.
[Notice that though η can be arbitrarily close to 1 , this does not imply automatically that C_{f} in (1.1) can be arbitrarily close to 0 , even if in (1.1) we replace ϕ by $\max \left(0, \phi\right.$ - Const) for an arbitrary Const. If C_{f} in (1.1) is sufficiently small then (4) holds with criticality 0 , see [P2].]

[^2]Let us continue the proof of $(3) \Rightarrow(4)$. Fix an arbitrary $x \in I$ and write $\phi(i):=\phi(x, i)$.

Write $S_{i}=\left(i, i+\phi(i) K_{f}\right] \subset \mathbb{R}$, where we set $K_{f}=1 / \log (1 / \xi)$.
(One could view the "graph" of $i \mapsto \phi(i)$ as the union of all vertical line segments $\{i\} \times(0, \phi(i)]$ in \mathbb{R}^{2}. Then each segment throws a shadow S_{i} on the real axis.)

The shadows of the exceptional indices in (1.1) could be infinitely long, but nevertheless (1.1) implies that many of the times n belong to boundedly many shadows: Indeed, set $N_{f}=2\left(\#\right.$ Crit $\left.+C_{f} K_{f}\right)$ and

$$
A=\left\{n \in \mathbb{N}: n \text { belongs to at most } N_{f} \text { shadows }\right\} .
$$

For each $0 \leq i \leq m$ denote by χ_{i} the indicator function of $S_{i} \cap[0, m]$. By (1.1),

$$
m C_{f} K_{f} \geq K_{f} \sum_{i=0}^{m-1} \phi(x, i)=\sum_{i=0}^{m-1}\left|S_{i}\right| \geq \sum_{i=0}^{m-1} \int \chi_{i}=\int \sum_{i=0}^{m-1} \chi_{i}
$$

Together with the exceptional indices we obtain

$$
m\left(\# \text { Crit }+C_{f} K_{f}\right) \geq \int \sum_{i=0}^{m-1} \chi_{i} \geq \#([1, m] \backslash A) \cdot N_{f}
$$

by the definition of A. We conclude from the definition of N_{f} that

$$
\begin{equation*}
\frac{\#(A \cap[1, m])}{m} \geq \frac{1}{2} . \tag{1.2}
\end{equation*}
$$

So if we order all the integers in A according to their growth we obtain $n_{j} \leq n j$. We set $P_{4}=2$ in (4).
(Notice that if in the definition of N_{f} the factor 2 is replaced by an arbitrary Q then $1-1 / Q$ stands on the right hand side of (1.2), which can therefore be arbitrarily close to 1 . We can then set $P_{4}=1 /(1-1 / Q)$.)

Finally, we claim that for every $n=n_{j} \in A$ and $0 \leq i<n$, if the set

$$
B_{n, i}:=\operatorname{Comp}_{f^{i}(x)} f^{-n+i}\left(B\left(f^{n}(x), \delta_{3}\right)\right)
$$

contains an f-critical point then n is in the shadow S_{i}.
Indeed, suppose that $B_{n, i}$ contains $c \in \operatorname{Crit}(f)$. Then by (3) used for $n-i$,

$$
\begin{equation*}
\left|c-f^{i}(x)\right| \leq \xi^{n-i} . \tag{1.3}
\end{equation*}
$$

This shows that $\phi(i) \geq-(n-i) \log \xi$ hence $n-i \leq \phi(i) / \log (1 / \xi)$. Hence n is in the shadow S_{i}.
(Inequality (1.3) also shows that each $B_{n, i}$ contains at most one f-critical point provided $\delta_{4} \leq \delta_{3}$ is small enough.)

This proves (4) with $M=N_{f}$.
2. The implications $(4) \Rightarrow(5) \Rightarrow(6)$. We start with the easier:

Proof of $(5) \Rightarrow(6)$. Fix $m>0$ and $x \in I$ so that $f^{m}(x)=x$. As x is a source (i.e. $\left.\left|\left(f^{m}\right)^{\prime}(x)\right|>1\right)$ there exists $a>0$ such that $f^{m}(B(x, a)) \supset$ $\operatorname{cl} B(x, a)$ and f^{m} has no critical points in $B(x, a)$.

Denote the periodic orbit of x by $O(x)$. For every $n>0$ denote by g_{n} the branch of f^{-n} which maps x into $O(x)$. These branches are well defined on $B(x, a)$ by the definition of a.

By the finiteness of $O(x)$ and (5) there exist $y \in O(X)$ and an increasing sequence of positive integers $n_{j}, j=0,1, \ldots$, such that

$$
\left|\operatorname{Comp}_{x} f^{-n_{j}}\left(B\left(y, \delta_{5}\right)\right)\right| \leq \xi^{n_{j}}
$$

and for $K:=\operatorname{Comp}_{x} f^{-n_{0}}\left(B\left(x, \delta_{5}\right)\right)$ one has $|K|<a$.
Then $\left|g_{n_{j}-n_{0}}(K)\right| /|K| \leq \xi^{n_{j}} /|K|$. As we are in a neighbourhood of a periodic source and the derivative of f is Hölder, all g_{n} 's have uniformly bounded distortion on K. We conclude that $\left|\left(g_{n_{j}-n_{0}}\right)^{\prime}(x)\right| \leq$ Const $\xi^{n_{j}-n_{0}}$. Letting j grow to ∞ and noticing that each $n_{j}-n_{0}$ is a multiple of m we obtain $\left|\left(f^{m}\right)^{\prime}(x)\right| \geq \xi^{-m}$, which proves (6) with $\lambda=\xi^{-1}$.

To prove $(4) \Rightarrow(5)$ we need the following
Lemma 2.1. For every $N, \varepsilon>0$ there exists k such that for every $n \geq k$ and for every interval $K \subset I$ if $\left.f^{n}\right|_{K}$ has at most N critical points, then $|K|<\varepsilon$.

Remark. In the holomorphic case this is a variant of the Mañé Lemma $[\mathrm{M}],\left[\mathrm{P} 1\right.$, Lemma 1.1], where one asserts diam $\operatorname{Comp}_{x} f^{-n}\left(B\left(f^{n}(x), \lambda r\right)\right)<\varepsilon$, $\lambda<1$ provided f^{n} has at most N critical points in $\operatorname{Comp}_{x} f^{-n}\left(B\left(f^{n}(x), r\right)\right)$. In the interval case one does not need λ. (An adaptation to the interval case, silmilar to that in Lemmas 2.1 and 2.2, appeared in [P3, Sec. 3].)

Proof (of Lemma 2.1). If Lemma 2.1 were not true there would exist a sequence of intervals $J_{j} \subset I$ such that $\left|J_{j}\right| \geq \varepsilon / N$ and integers $n_{j}, j=$ $1,2, \ldots$, such that $n_{j} \rightarrow \infty$ as $j \rightarrow \infty$ and $f_{n_{j}}$ is monotone on J_{j} for each j. This leads to the existence of a homterval. Namely there exists an interval $J \subset I$ of length $\varepsilon /(2 N)$ such that $J \subset J_{j_{k}}$ for a sequence $j_{k} \rightarrow \infty$, $k=1,2, \ldots$, and each $f^{n_{j_{k}}}$ is monotone on J, hence f^{n} is monotone on J for each positive integer n. However, homtervals do not exist [MS, Thm. II.6.2], so we arrived at a contradiction.

Lemma 2.2. For every $M>0$ and $0<p<1$ there exists $0<q=$ $q(M, p)<1$ such that for every pair of intervals $J \subset K \subset I$, every positive integer n, every pair of components J^{\prime}, K^{\prime} of $f^{-n}(J)$ and $f^{-n}(K)$ respectively such that $J^{\prime} \subset K^{\prime}$, for L, R the left and right components of $K \backslash J$ and L^{\prime}, R^{\prime} the left and right components of $K^{\prime} \backslash J^{\prime}$ respectively, if

$$
\sharp\left\{i: 0 \leq i<n, \operatorname{Comp}_{f^{i}\left(K^{\prime}\right)} f^{-(n-i)}(K) \cap \text { Crit } \neq \emptyset\right\} \leq M
$$

and if

$$
|L| /|K|>p \quad \text { and } \quad|R| /|K|>p
$$

then

$$
\left|L^{\prime}\right| /\left|K^{\prime}\right|>q \quad \text { and } \quad\left|R^{\prime}\right| /\left|K^{\prime}\right|>q
$$

Remarks. This lemma also has its holomorphic analogue (see [P1, Lemma 1.4] and [PR1, Lemma 2.1]). In the interval case its proof is implicitly contained in [P3, Sec. 3] and [MS, Ch. IV, Th. 3.1, "Macroscopic Koebe Principle"] for f a smooth homeomorphism. We provide a proof below for completeness.

Proof (of Lemma 2.2). In the case $M=0$ this lemma is called the "Koebe Principle" for distortion [MS, Chapter IV]. We shall refer to this in the proof. Denote $q(0, p)$ by $a(p)$.

Consider compatible components K_{j} of $f^{-j}(K)$ and J_{j} of $f^{-j}(J)$, i.e. such that $f\left(K_{j}\right) \subset K_{j-1}$ and $f\left(J_{j}\right) \subset J_{j-1}$ for $j=1, \ldots, n$ and such that $K_{n}=K^{\prime}, J_{n}=J^{\prime}$.

Denote the left and right components of $K_{j} \backslash J_{j}$ by L_{j} and R_{j} respectively. If $j=n_{1}$ is the first j for which K_{j} contains a critical point, say c, then $\left|L_{j-1}\right| /\left|K_{j-1}\right|>a(p)$ and $\left|R_{j-1}\right| /\left|K_{j-1}\right|>a(p)$.

Next, $\left|L_{j}\right| /\left|K_{j}\right|>\kappa a(p)$ and $\left|R_{j}\right| /\left|K_{j}\right|>\kappa a(p)$, where κ is a constant number (of order $1 / l_{c}$ for short K_{j}).

If $j=n_{2}$ is the next (after n_{1}) integer such that K_{j} contains a critical point we obtain $\left|L_{j-1}\right| /\left|K_{j-1}\right|>a(\kappa a(p))$ and $\left|R_{j-1}\right| /\left|K_{j-1}\right|>a(\kappa a(p))$, and so on. We end up at $j=n$, with q depending only on p and M.

Proof of $(4) \Rightarrow(5)$. Fix $\varepsilon=\delta_{4} / 4$ and k according to Lemma 2.1 (for N easily computable from M in (4)). Fix an arbitrary $x \in I$. Denote $f^{n_{j k}}(x)$ by $x(j)$ for every $j=0,1, \ldots$ By Lemma 2.1,
(2.1) $W(j)=\operatorname{Comp}_{x(j)} f^{-\left(n_{(j+1) k}-n_{j k}\right)}\left(B\left(x(j+1), \delta_{4}\right)\right) \subset B\left(x(j), \delta_{4} / 2\right)$.

Denote $\operatorname{Comp}_{x} f^{-n_{k j}}\left(B\left(x(j), \delta_{4}\right)\right)$ by V_{j}. By Lemma 2.2 for $f^{-n_{k j}}$ and the intervals $W(j) \subset B\left(x(j), \delta_{4}\right) \subset I$ and by (2.1),

$$
\left|V_{j+1}\right| /\left|V_{j}\right| \leq 1-2 q(M, 1 / 4)=: \xi
$$

Combining this for $j=0,1, \ldots, m-1$ for an arbitrary positive integer m one obtains $\left|V_{m}\right|=\left|\operatorname{Comp}_{x} f^{-n_{k m}}\left(B\left(f^{n_{k m}}(x), \delta_{4}\right)\right)\right| \leq \xi^{m}$. Notice that $n_{k m} \leq P_{4} k m$. Thus we obtained (4) with the sequence $n_{k j}, j=1,2, \ldots$, and $P_{5}=k P_{4}$.

Remark. Condition (4) is strictly stronger than the following condition:
(4') There exist $M>0, P>0$ and $\delta>0$ such that for every $x \in I$ there exists an increasing sequence of positive integers $n_{j}, j=1,2, \ldots$, such that $n_{j} \leq P j$ and the map $f^{n_{j}}$ has at most M critical points in $\mathrm{Comp}_{x} f^{-n_{j}} B\left(f^{n_{j}}(x), \delta\right)$.

For example, every "long branched" S-unimodal map, i.e. such that
$(\exists \gamma>0)(\forall n)\left(\forall K\right.$ maximal such that $\left.f^{n}\right|_{K}$ is monotone) $\quad\left|f^{n}(K)\right| \geq \gamma$, satisfies (4^{\prime}), with $M=P=1$, but need not be Collet-Eckmann [B1, B2].

Of course, in the holomorphic case, (4) is equivalent to (4^{\prime}) since f maps $\mathrm{Comp}_{f^{i}(x)} f^{-(n-i)} B\left(f^{n}(x), \delta\right)$ onto $\operatorname{Comp}_{f^{i+1}(x)} f^{-(n-i-1)} B\left(f^{n}(x), \delta\right)$.

We thank Henk Bruin and Gerhard Keller for calling our attention to this.

Appendix: On the distance of a trajectory from the critical set for differentiable maps of the interval. This is an adaptation to the interval case, without significant changes, of a part of the analogous theory for holomorphic maps by M. Denker, F. Przytycki and M. Urbański in [DPU]. The appendix has been added on the request of the Editorial Board, advised by the referee.

Let $T: I \rightarrow I$ be a differentiable map of the unit interval I. Let $c \in I$ be a critical point, i.e. $T^{\prime}(c)=0$.

For every $x \in I$ and $r>0$ set $B(x, r):=\{z \in I:|x-z|<r\}$.
Define a function $k_{c}: I \rightarrow\{0,1,2, \ldots\} \cup\{\infty\}$ by setting

$$
k_{c}(x)=\min \left\{n \geq 0: x \notin B\left(c, e^{-(n+1)}\right)\right\},
$$

and $k_{c}(x)=\infty$ if $x=c$.
Write $k(x)=\sup _{c \in \text { Crit }} k_{c}(x)$.
We call a real function φ on I Hölder continuous at a point c if there exist $\vartheta, \alpha>0$ such that for every $x,|\varphi(x)-\varphi(c)| \leq e^{\vartheta}|x-c|^{\alpha}$.

Theorem. Let $T: I \rightarrow I$ be a differentiable map of the unit interval I. Suppose it has $N<\infty$ critical points and at each of them the derivative T^{\prime} is Hölder continuous. Suppose also that T has no attracting periodic orbit. Then there exists a constant $Q>0$ not depending on N such that for every $x \in I$,

$$
\sum k\left(T^{j}(x)\right) \leq N Q n
$$

where the sum is taken over all integers j between 0 and n (0 and n included) except at most N of them.

Lemma. Let a differentiable $T: I \rightarrow I$ have derivative Hölder continuous at a critical point c. Suppose also that T has no attracting periodic orbit. Then there exists a constant $Q>0$ such that if $x \in I$ satisfies

$$
\begin{equation*}
k_{c}\left(T^{j}(x)\right) \leq k_{c}\left(T^{n}(x)\right) \quad \text { for every } j=1, \ldots, n-1, \tag{A1}
\end{equation*}
$$

for an integer $n \geq 1$, then

$$
\begin{equation*}
\min \left\{k_{c}(x), k_{c}\left(T^{n}(x)\right)\right\}+\sum_{j=1}^{n-1} k_{c}\left(T^{j}(x)\right) \leq Q n . \tag{A2}
\end{equation*}
$$

Proof. The proof is by induction on n. The procedure will be as follows: Given $x, T(x), \ldots, T^{n}(x)$ satisfying (A1) we shall decompose this string into two blocks: (a) $x, T(x), \ldots, T^{m}(x), 0<m \leq n$, for which we shall prove (A2); (b) $T^{m}(x), \ldots, T^{n}(x)$ for which we can apply the induction hypothesis. Summing these two estimates we prove (A2) for $x, T(x), \ldots, T^{n}(x)$.

Let $k^{\prime}=\min \left\{k_{c}(x), k_{c}\left(T^{n}(x)\right)\right\}$ and $B=B\left(c, e^{-\left(k^{\prime}-1\right)}\right)$.
Let $1 \leq m \leq n$ be the first positive integer such that either

$$
\begin{equation*}
k_{c}\left(T^{m}(x)\right)-\inf \left\{k_{c}\left(T^{m}(z)\right): z \in B\right\}>1 \tag{i}
\end{equation*}
$$

or
(ii)

$$
k_{c}\left(T^{m}(x)\right) \geq k^{\prime}
$$

In both cases, if $m<n$, the sequence $y=T^{m}(x), T(y), \ldots, T^{n-m}(y)$ satisfies the assumption (A1) automatically and, moreover, $k_{c}(y)=\min \left\{k_{c}(y)\right.$, $k_{c}\left(T^{n-m}(y)\right\}$. Hence by the induction hypothesis

$$
\begin{equation*}
\sum_{j=m}^{n-1} k_{c}\left(T^{j}(x)\right) \leq Q(n-m) \tag{A3}
\end{equation*}
$$

By the definition of m, for every $0<j<m$, and for every $z \in B$, we have $k_{c}\left(T^{j}(x)\right) \leq k_{c}\left(T^{j}(z)\right)+1$. Hence

$$
\left|\left(T^{m-1}\right)^{\prime}(T(z))\right| \leq e^{(m-1) \vartheta} e^{-\alpha \sum_{j=1}^{m-1}\left(k_{c}\left(T^{j}(x)\right)-1\right)}
$$

Using also $\left|T^{\prime}(z)\right| \leq e^{\vartheta} e^{-\alpha\left(k^{\prime}-1\right)}$ we obtain, for every $z \in B$,

$$
\begin{equation*}
\left|\left(T^{m}\right)^{\prime}(z)\right| \leq e^{m \vartheta+m \alpha-\alpha\left(k^{\prime}+\sum_{j=1}^{m-1} k_{c}\left(T^{j}(x)\right)\right)} \tag{A4}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{\operatorname{diam} T^{m}(B)}{\operatorname{diam} B} \leq e^{m \vartheta+m \alpha-\alpha\left(k^{\prime}+\sum_{j=1}^{m-1} k_{c}\left(T^{j}(x)\right)\right)} \tag{A5}
\end{equation*}
$$

In case (i) but not (ii) we have by definition

$$
\begin{aligned}
\operatorname{diam} T^{m}(B) & \geq e^{-\left(k_{c}\left(T^{m}(x)\right)-1\right)}-e^{-k_{c}\left(T^{m}(x)\right)} \\
& \geq e^{-k^{\prime}}(e-1)=\left(e^{-\left(k^{\prime}-1\right)}-e^{-k^{\prime}}\right)
\end{aligned}
$$

This together with (A5) gives

$$
\frac{e-1}{2 e} \leq e^{m(\vartheta+\alpha)-\alpha\left(k^{\prime}+\sum_{j=1}^{m-1} k_{c}\left(T^{j}(x)\right)\right)}
$$

hence

$$
\begin{equation*}
k^{\prime}+\sum_{j=1}^{m-1} k_{c}\left(T^{j}(x)\right) \leq \alpha^{-1}(m(\vartheta+\alpha)+\log 2-\log (1-1 / e)) \tag{A6}
\end{equation*}
$$

In case (ii) we also obtain (A6). Otherwise using the opposite inequality and (A4) we obtain $\left|\left(T^{m}\right)^{\prime}\right| \leq(e-1) /(2 e)<1$ on B and $T^{m}(B) \subset B$. By
the latter there is a T^{m}-fixed point in I, by the former it attracts, which contradicts the assumptions.

Thus, defining $Q=\alpha^{-1}(\log 2+\vartheta+\alpha-\log (1-1 / e))$, (A.6) and (A.3) imply

$$
k^{\prime}+\sum_{j=1}^{n-1} k_{c}\left(T^{j}(x)\right) \leq Q n .
$$

This finishes the proof.
Proof of the Theorem. Denote the set of critical points for T by Crit. Fix $x \in I$ and fix $c \in$ Crit for the moment.

Let $q(c)=t_{1}$ denote the index $t \in\{0,1, \ldots, n\}$ for which $k_{c}\left(T^{t}(x)\right)$ attains its maximum (recall that even $k_{c}\left(T^{t}(x)\right)=\infty$ is possible, if $c=$ $T^{t}(x)$, but there exists at most one such t, otherwise c would be a (super)attracting periodic point). Recursively, define t_{l} to be that index in $\left\{t_{l-1}+1, \ldots, n\right\}$ where $k_{c}\left(T^{t}(x)\right)$ attains its maximum. This procedure terminates after finitely many steps, say u steps, with $t_{u}=n$.

We decompose the trajectory $x, T(x), \ldots, T^{n}(x)$ into blocks (with overlapping ends)

$$
\left(x, \ldots, T^{t_{1}}(x)\right),\left(T^{t_{1}}(x), \ldots, T^{t_{2}}(x)\right), \ldots,\left(T^{t_{u-1}}(x), \ldots, T^{t_{u}}(x)\right)
$$

Observe that these pieces satisfy the assumptions of the Lemma and

$$
k_{c}\left(T^{t_{1}}(x)\right) \geq k_{c}\left(T^{t_{2}}(x)\right) \geq \ldots \geq k_{c}\left(T^{t_{u-1}}(x)\right) \geq k_{c}\left(T^{t_{u}}(x)\right)
$$

Applying the Lemma to all the blocks we obtain

$$
\begin{equation*}
\sum_{j=0}^{t_{1}-1} k_{c}\left(T^{j}(x)\right)+\sum_{j=t_{1}+1}^{n} k_{c}\left(T^{j}(x)\right) \leq Q n \tag{A7}
\end{equation*}
$$

Considering now all critical points we get, by (A7),

$$
\sum k\left(T^{j}(x)\right) \leq N Q n
$$

where the sum is over all integers $j \in\{0,1, \ldots, n\} \backslash\{q(c): c \in$ Crit $\}$.

References

[B1] H. Bruin, Invariant measures of interval maps, PhD thesis, Tech. Univ. Delft, 1994.
[B2] -, Topological conditions for the existence of invariant measures for unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), 433-452.
[CE] P. Collet and J.-P. Eckmann, Positive Lyapunov exponents and absolute continuity for maps of the interval, ibid. 3 (1983), 13-46.
[CJY] L. Carleson, P. Jones and J.-C. Yoccoz, Julia and John, Bol. Soc. Brasil. Mat. 25 (1994), 1-30.
[DPU] M. Denker, F. Przytycki and M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), 255-266.
[GS] J. Graczyk and S. Smirnov, Collet, Eckmann, \& Hölder, Invent. Math., to appear.
[JS] M. Jakobson and G. Świątek, Metric properties of non-renormalizable Sunimodal maps, II. Quasisymmetric conjugacy classes, Ergodic Theory Dynam. Systems 15 (1995), 871-938.
[M] R. Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Mat. 24 (1993), 1-12.
[MS] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, 1993.
[NP] T. Nowicki and F. Przytycki, The conjugacy of Collet-Eckmann's map of the interval with the tent map is Hölder continuous, Ergodic Theory Dynam. Systems 9 (1989), 379-388.
[NS] T. Nowicki and D. Sands, Nonuniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math., to appear.
[P1] F. Przytycki, Iterations of holomorphic Collet-Eckmann maps, conformal and invariant measures, Trans. Amer. Math. Soc., to appear.
[P2] -, On measure and Hausdorff dimension of Julia sets for holomorphic ColletEckmann maps, in: International Conference on Dynamical Systems, Montevideo 1995-a Tribute to Ricardo Mañé (F. Ledrappier, J. Lewowicz and S. Newhouse, eds.), Pitman Res. Notes Math. Ser. 362, Longman, 1996, 167-181.
[P3] -, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), 309-317.
[P4] -, Hölder implies CE, Astérisque, volume dedicated to A. Douady on his 60th birthday, to appear.
[PR1] F. Przytycki and S. Rohde, Porosity of Collet-Eckmann Julia sets, Fund. Math., to appear.
[PR2] —, 一, Rigidity of holomorphic Collet-Eckmann repellers, preprint, May 1997.
[S] D. Sands, Topological conditions for positive Lyapunov exponent in unimodal case, Ph.D. thesis, St. John's College, Cambridge, 1995.
[SN] D. Sands and T. Nowicki, Quasisymmetric conjugacies of Collet-Eckmann maps, Ergodic Theory Dynam. Systems, to appear.

Tomasz Nowicki
Institute of Mathematics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
E-mail: tomnow@mimuw.edu.pl

Feliks Przytycki
Institute of Mathematics
Polish Academy of Sciences
Sniadeckich 8
00-950 Warszawa, Poland
E-mail: feliksp@impan.gov.pl

[^0]: 1991 Mathematics Subject Classification: Primary 58F03; Secondary 58F15, 58F08, 26A18.

 Research of the first author supported by Polish KBN Grant 2 P03A 02208.
 Research of the second author supported by Polish KBN Grant 2 P301 01307.

[^1]: $\left.{ }^{(}{ }^{1}\right)$ Added in revision: It does not hold (for an idea how to construct a counterexample see [CJY, Remark 1, p. 9], [P4, Introduction] and [PR2]).

[^2]: $\left(^{2}\right)$ An appendix containing a complete proof has been added on the request of the Editorial Board of Fund. Math.

