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Topological invariance of the Collet–Eckmann property
for S-unimodal maps

by

Tomasz N o w i c k i and Feliks P r z y t y c k i (Warszawa)

Abstract. We prove that if f , g are smooth unimodal maps of the interval with
negative Schwarzian derivative, conjugated by a homeomorphism of the interval, and f is
Collet–Eckmann, then so is g.

Introduction

Definitions. We say that c is a nonflat critical point of f , a map of the
interval, if f ′(c) = 0 but for some lc > 1 the limit limx→c |f ′(x)|/|x− c|lc−1

exists and is nonzero.
A C2 map f of the interval is called S-multimodal if:

(i) f has a finite number of nonflat critical points,
(ii) |f ′|−1/2 is convex between the critical points.

If f has precisely one critical point c and f ′′(c) 6= 0 we call the map
S-unimodal .

If f is C3 then condition (ii) is equivalent to f having nonpositive
Schwarzian derivative, namely f ′′′(x)/f ′(x) − 3(f ′′/f ′)2/2 ≤ 0 outside the
critical points or that f expands the cross-ratio between the critical points.
These properties are invariant under composition, hence hereditary for iter-
ations (see [MS, IV.1]). In particular, they give some bounds for distortion.

Write Crit or Crit(f) for the set of all f -critical points, i.e. Crit =
{x ∈ I : f ′(x) = 0}. Write Crit′ for the set of those f -critical points whose
forward trajectories do not hit critical points. We call an S-multimodal map
f Collet–Eckmann if there exist λ > 1 and C > 0 such that for every
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c ∈ Crit′ and every positive integer n,

(CE1) |(fn)′(f(c))| ≥ Cλn.
The aim of this paper is to prove

Theorem A. If f and g are S-unimodal maps of the interval conjugated
by a homeomorphism h of the interval , i.e. h ◦ f = g ◦ h, and f is Collet–
Eckmann, then so is g.

In fact, this paper provides only a concluding part of the proof. Important
parts have been proved earlier in [NS] and [PR1].

Notice that we do not assume that f and g have the same order l at the
critical point.

We assume that no map of the interval considered in this paper has
a basin of attraction to an attracting or a parabolic periodic orbit. This
property is obviously preserved under homeomorphic conjugacies.

The Collet–Eckmann condition (CE1) was introduced in [CE] in the
context of the existence of an absolutely continuous invariant measure; for
a general reference see [MS, V.4]. In [NP] we considered the problem of
the regularity of a conjugacy between two Collet–Eckmann maps and a
question arised whether (CE1) is a topological condition. According to [JS]
the question was also raised by J. Guckenheimer and M. Misiurewicz. Here
we give an affirmative answer.

A topological condition for S-unimodal maps which, in conjunction with
(CE1), is also topological and which for a quadratic family holds for a pos-
itive measure set of parameters was given by Jakobson and Świątek in [JS,
Sec. 5.3]. Later Duncan Sands in his Ph.D. thesis [S] gave a topological con-
dition for S-unimodal maps which implies (CE1) and another one which
excludes (CE1), but some cases were still left undecided. A result weaker
than Theorem A, saying that quasi-symmetric conjugacy leaves (CE1) in-
variant, was proved in [SN].

Let us introduce the following conditions on an S-multimodal mapping
f : I → I:

(1) The Collet–Eckmann condition (CE1);
(2) (exponential shrinking of components) There exist 0 < ξ < 1 and

δ2 > 0 such that for every interval J ⊂ I with length |J | ≤ δ2, every positive
integer n and every component K of f−n(J) one has |K| ≤ ξn;

(3) (exponential shrinking of components at critical points) There exist
0 < ξ < 1 and δ3 > 0 such that for every c ∈ Crit and for every positive
integer n, for

B = B(fn(c), δ3) := {x ∈ I : |x− fn(c)| ≤ δ3}
and the component K of f−n(B) which contains c one has |K| ≤ ξn;
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(4) (finite criticality) There exist M > 0, P4 > 0 and δ4 > 0 such that
for every x ∈ I there exists an increasing sequence of positive integers nj ,
j = 1, 2, . . . , such that nj ≤ P4j and for each j,

]{i : 0 ≤ i < nj , Compfi(x) f
−(nj−i)(B(fnj (x), δ4)) ∩ Crit 6= ∅} ≤M

(the subscript y at Comp, here y = f i(x), means that the component Compy
contains y; later on, y can also be a set contained in the component);

(5) (mean exponential shrinking of components) There exist P5 > 0,
0 < ξ < 1 and δ5 > 0 such that for every x ∈ I there exists an increasing
sequence of positive integers nj , j = 1, 2, . . . , such that nj ≤ P5j and
|Compx f

−nj (B(fnj (x), δ5))| ≤ ξnj ;
(6) (uniform hyperbolicity on periodic trajectories) There exists λ > 1

such that for every integer n and x ∈ I of period n one has |(fn)′(x)| ≥ λn.

We shall prove that for every k = 1, . . . , 5 the property (k) implies (k+1).
The implication (6)⇒(1) is a recent theorem by the first author and Duncan
Sands [NS], in the unimodal case.

Notice that (4) is a topological property. We thus get Theorem A.
We do not know whether (6)⇒(1) holds in the multimodal case (1); this

is the reason why we restricted Theorem A to the unimodal case. Negative
Schwarzian is used only in (1)⇒(2), (4)⇒(5) and (6)⇒(1).

One can rewrite all the above properties for f a rational mapping on the
Riemann sphere without parabolic periodic orbits. One then only considers
critical points in the Julia set. One considers conjugacies on neighbourhoods
of Julia sets; in this sense (4) is a topological invariant. We call this setting
the holomorphic case.

The implication (1)⇒(2) has been proved in [PR1, Proposition 3.1] in the
holomorphic case. In the interval case the proof is similar. In the unimodal
case, order 2 at the critical point, this implication has been proved earlier
in [NP, Main Lemma].

(2)⇒(3) is trivial.
The proof of (3)⇒(4) goes similarly to the proof of (1)⇒(4) in [PR1]; it

is even simpler, one does not need to consider pre-images according to the
“shrinking neighbourhoods” procedure (see [P1], [GS]), because one need
not control any distortion. We shall give this proof in Section 1.

(4)⇒(5) goes by the “telescope” construction; it has been done in the
rational case in [PR1, Proof of Proposition 3.1]. We adapt the proof to the
interval case in Section 2.

(5)⇒(6) will also be done in Section 2. This is very easy.

(1) Added in revision: It does not hold (for an idea how to construct a counterexample
see [CJY, Remark 1, p. 9], [P4, Introduction] and [PR2]).
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Added in revision: 1. A theorem similar to Theorem A holds in the
holomorphic case provided there is at most one critical point in the Julia set
(see the forthcoming paper by the second author and S. Rohde [PR2] and
[P4]).

2. (5)⇒(2) is straightforward, see [P4].

1. Proof of (3)⇒(4). For every x ∈ I and positive integer n write

φ(x, n) = − log dist(fn(x),Crit(f)).

As |I| = 1, φ(x, n) ≥ 0. We write φ(n) if x is fixed.
The main ingredient of the proof of (3)⇒(4) is the following:

Lemma 1.1. Let f be a differentiable mapping of the interval with a finite
number of critical points and derivative Hölder continuous at these points.
Then there exists a constant Cf such that for each n ≥ 1 and x ∈ I,

(1.1)
n∑′

j=0

φ(x, j) ≤ nCf ,

where
∑′ denotes summation over all but at most # Crit indices.

This lemma was proved in [DPU, (3.3)] in the holomorphic case. In the
interval case the proof is almost the same:

The point in [DPU] is that if the sum in (1.1) is larger than Cn for C
large enough, then one arrives at a disc B = B(c, r) with c ∈ Crit(f) such
that fn(B) ⊂ B, which contradicts the fact that c is in the Julia set.

In the interval case fn(B) ⊂ B can happen for arbitrarily small r for an
infinitely renormalizable S-unimodal map.

Recall, however, that in [DPU] one concludes that if (1.1) is not fulfilled
then fn(B) ⊂ B and |(fn)′| is small (< 1/2) on B. By the inclusion there
is an fn-fixed point p ∈ B. As |(fn)′(p)| is small, p is attracting, which
contradicts the assumptions (2).

In the S-unimodal interval case Lemma 1.1 follows also immediately from
the following

Lemma 1.2 [NS]. For every 0 < η < 1 there exists C such that for
every x ∈ I and every positive integer n there exists 0 ≤ n̂ < n such that
|(fn)′(x)|/|f ′(f n̂(x))| ≥ Cηn.

[Notice that though η can be arbitrarily close to 1, this does not imply
automatically that Cf in (1.1) can be arbitrarily close to 0, even if in (1.1)
we replace φ by max(0, φ− Const) for an arbitrary Const. If Cf in (1.1) is
sufficiently small then (4) holds with criticality 0, see [P2].]

(2) An appendix containing a complete proof has been added on the request of the
Editorial Board of Fund. Math.
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Let us continue the proof of (3)⇒(4). Fix an arbitrary x ∈ I and write
φ(i) := φ(x, i).

Write Si = (i, i+ φ(i)Kf ] ⊂ R, where we set Kf = 1/ log(1/ξ).
(One could view the “graph” of i 7→ φ(i) as the union of all vertical line

segments {i} × (0, φ(i)] in R2. Then each segment throws a shadow Si on
the real axis.)

The shadows of the exceptional indices in (1.1) could be infinitely long,
but nevertheless (1.1) implies that many of the times n belong to boundedly
many shadows: Indeed, set Nf = 2(# Crit +CfKf ) and

A = {n ∈ N : n belongs to at most Nf shadows}.
For each 0 ≤ i ≤ m denote by χi the indicator function of Si ∩ [0,m]. By
(1.1),

mCfKf ≥ Kf

m−1∑′

i=0

φ(x, i) =
m−1∑′

i=0

|Si| ≥
m−1∑′

i=0

\
χi =

\m−1∑′

i=0

χi.

Together with the exceptional indices we obtain

m(# Crit +CfKf ) ≥
\m−1∑

i=0

χi ≥ #([1,m] \A) ·Nf

by the definition of A. We conclude from the definition of Nf that

(1.2)
#(A ∩ [1,m])

m
≥ 1

2
.

So if we order all the integers in A according to their growth we obtain
nj ≤ nj. We set P4 = 2 in (4).

(Notice that if in the definition of Nf the factor 2 is replaced by an
arbitrary Q then 1− 1/Q stands on the right hand side of (1.2), which can
therefore be arbitrarily close to 1. We can then set P4 = 1/(1− 1/Q).)

Finally, we claim that for every n = nj ∈ A and 0 ≤ i < n, if the set

Bn,i := Compfi(x) f
−n+i(B(fn(x), δ3))

contains an f -critical point then n is in the shadow Si.
Indeed, suppose that Bn,i contains c ∈ Crit(f). Then by (3) used for

n− i,
(1.3) |c− f i(x)| ≤ ξn−i.
This shows that φ(i) ≥ −(n− i) log ξ hence n− i ≤ φ(i)/ log(1/ξ). Hence n
is in the shadow Si.

(Inequality (1.3) also shows that each Bn,i contains at most one f -critical
point provided δ4 ≤ δ3 is small enough.)

This proves (4) with M = Nf .
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2. The implications (4)⇒(5)⇒(6). We start with the easier:

P r o o f o f (5)⇒(6). Fix m > 0 and x ∈ I so that fm(x) = x. As x is
a source (i.e. |(fm)′(x)| > 1) there exists a > 0 such that fm(B(x, a)) ⊃
clB(x, a) and fm has no critical points in B(x, a).

Denote the periodic orbit of x by O(x). For every n > 0 denote by gn
the branch of f−n which maps x into O(x). These branches are well defined
on B(x, a) by the definition of a.

By the finiteness of O(x) and (5) there exist y ∈ O(X) and an increasing
sequence of positive integers nj , j = 0, 1, . . . , such that

|Compx f
−nj (B(y, δ5))| ≤ ξnj

and for K := Compx f
−n0(B(x, δ5)) one has |K| < a.

Then |gnj−n0(K)|/|K| ≤ ξnj/|K|. As we are in a neighbourhood of a
periodic source and the derivative of f is Hölder, all gn’s have uniformly
bounded distortion on K. We conclude that |(gnj−n0)′(x)| ≤ Const ξnj−n0 .
Letting j grow to ∞ and noticing that each nj − n0 is a multiple of m we
obtain |(fm)′(x)| ≥ ξ−m, which proves (6) with λ = ξ−1.

To prove (4)⇒(5) we need the following

Lemma 2.1. For every N, ε > 0 there exists k such that for every n ≥ k
and for every interval K ⊂ I if fn|K has at most N critical points, then
|K| < ε.

R e m a r k. In the holomorphic case this is a variant of the Mañé Lemma
[M], [P1, Lemma 1.1], where one asserts diam Compx f

−n(B(fn(x), λr))<ε,
λ < 1 provided fn has at most N critical points in Compx f

−n(B(fn(x), r)).
In the interval case one does not need λ. (An adaptation to the interval case,
silmilar to that in Lemmas 2.1 and 2.2, appeared in [P3, Sec. 3].)

P r o o f (of Lemma 2.1). If Lemma 2.1 were not true there would exist
a sequence of intervals Jj ⊂ I such that |Jj | ≥ ε/N and integers nj , j =
1, 2, . . . , such that nj → ∞ as j → ∞ and fnj is monotone on Jj for
each j. This leads to the existence of a homterval . Namely there exists an
interval J ⊂ I of length ε/(2N) such that J ⊂ Jjk for a sequence jk → ∞,
k = 1, 2, . . . , and each fnjk is monotone on J , hence fn is monotone on J for
each positive integer n. However, homtervals do not exist [MS, Thm. II.6.2],
so we arrived at a contradiction.

Lemma 2.2. For every M > 0 and 0 < p < 1 there exists 0 < q =
q(M,p) < 1 such that for every pair of intervals J ⊂ K ⊂ I, every positive
integer n, every pair of components J ′,K ′ of f−n(J) and f−n(K) respec-
tively such that J ′ ⊂ K ′, for L, R the left and right components of K \ J
and L′, R′ the left and right components of K ′ \ J ′ respectively , if

]{i : 0 ≤ i < n, Compfi(K′) f
−(n−i)(K) ∩ Crit 6= ∅} ≤M
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and if
|L|/|K| > p and |R|/|K| > p

then
|L′|/|K ′| > q and |R′|/|K ′| > q.

R e m a r k s. This lemma also has its holomorphic analogue (see [P1,
Lemma 1.4] and [PR1, Lemma 2.1]). In the interval case its proof is implicitly
contained in [P3, Sec. 3] and [MS, Ch. IV, Th. 3.1, “Macroscopic Koebe
Principle”] for f a smooth homeomorphism. We provide a proof below for
completeness.

P r o o f (of Lemma 2.2). In the case M = 0 this lemma is called the
“Koebe Principle” for distortion [MS, Chapter IV]. We shall refer to this in
the proof. Denote q(0, p) by a(p).

Consider compatible components Kj of f−j(K) and Jj of f−j(J), i.e.
such that f(Kj) ⊂ Kj−1 and f(Jj) ⊂ Jj−1 for j = 1, . . . , n and such that
Kn = K ′, Jn = J ′.

Denote the left and right components ofKj\Jj by Lj andRj respectively.
If j = n1 is the first j for which Kj contains a critical point, say c, then
|Lj−1|/|Kj−1| > a(p) and |Rj−1|/|Kj−1| > a(p).

Next, |Lj |/|Kj | > κa(p) and |Rj |/|Kj | > κa(p), where κ is a constant
number (of order 1/lc for short Kj).

If j = n2 is the next (after n1) integer such that Kj contains a critical
point we obtain |Lj−1|/|Kj−1| > a(κa(p)) and |Rj−1|/|Kj−1| > a(κa(p)),
and so on. We end up at j = n, with q depending only on p and M .

P r o o f o f (4)⇒(5). Fix ε = δ4/4 and k according to Lemma 2.1 (for N
easily computable from M in (4)). Fix an arbitrary x ∈ I. Denote fnjk(x)
by x(j) for every j = 0, 1, . . . By Lemma 2.1,

(2.1) W (j) = Compx(j) f
−(n(j+1)k−njk)(B(x(j + 1), δ4)) ⊂ B(x(j), δ4/2).

Denote Compx f
−nkj (B(x(j), δ4)) by Vj . By Lemma 2.2 for f−nkj and the

intervals W (j) ⊂ B(x(j), δ4) ⊂ I and by (2.1),

|Vj+1|/|Vj | ≤ 1− 2q(M, 1/4) =: ξ.

Combining this for j = 0, 1, . . . ,m − 1 for an arbitrary positive integer
m one obtains |Vm| = |Compx f

−nkm(B(fnkm(x), δ4))| ≤ ξm. Notice that
nkm ≤ P4km. Thus we obtained (4) with the sequence nkj , j = 1, 2, . . . , and
P5 = kP4.

R e m a r k. Condition (4) is strictly stronger than the following condition:

(4′) There exist M > 0, P > 0 and δ > 0 such that for every x ∈ I
there exists an increasing sequence of positive integers nj , j = 1, 2, . . . ,
such that nj ≤ Pj and the map fnj has at most M critical points in
Compx f

−njB(fnj (x), δ).
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For example, every “long branched” S-unimodal map, i.e. such that

(∃γ > 0)(∀n)(∀K maximal such that fn|K is monotone) |fn(K)| ≥ γ,
satisfies (4′), with M = P = 1, but need not be Collet–Eckmann [B1, B2].

Of course, in the holomorphic case, (4) is equivalent to (4′) since f maps
Compfi(x) f

−(n−i)B(fn(x), δ) onto Compfi+1(x) f
−(n−i−1)B(fn(x), δ).

We thank Henk Bruin and Gerhard Keller for calling our attention to
this.

Appendix: On the distance of a trajectory from the critical
set for differentiable maps of the interval. This is an adaptation to
the interval case, without significant changes, of a part of the analogous
theory for holomorphic maps by M. Denker, F. Przytycki and M. Urbański
in [DPU]. The appendix has been added on the request of the Editorial
Board, advised by the referee.

Let T : I → I be a differentiable map of the unit interval I. Let c ∈ I be
a critical point, i.e. T ′(c) = 0.

For every x ∈ I and r > 0 set B(x, r) := {z ∈ I : |x− z| < r}.
Define a function kc : I → {0, 1, 2, . . .} ∪ {∞} by setting

kc(x) = min{n ≥ 0 : x 6∈ B(c, e−(n+1))},
and kc(x) =∞ if x = c.

Write k(x) = supc∈Crit kc(x).
We call a real function ϕ on I Hölder continuous at a point c if there

exist ϑ, α > 0 such that for every x, |ϕ(x)− ϕ(c)| ≤ eϑ|x− c|α.

Theorem. Let T : I → I be a differentiable map of the unit interval I.
Suppose it has N <∞ critical points and at each of them the derivative T ′

is Hölder continuous. Suppose also that T has no attracting periodic orbit.
Then there exists a constant Q > 0 not depending on N such that for every
x ∈ I, ∑

k(T j(x)) ≤ NQn
where the sum is taken over all integers j between 0 and n (0 and n included)
except at most N of them.

Lemma. Let a differentiable T : I → I have derivative Hölder continuous
at a critical point c. Suppose also that T has no attracting periodic orbit.
Then there exists a constant Q > 0 such that if x ∈ I satisfies

(A1) kc(T j(x)) ≤ kc(Tn(x)) for every j = 1, . . . , n− 1,

for an integer n ≥ 1, then

(A2) min{kc(x), kc(Tn(x))}+
n−1∑

j=1

kc(T j(x)) ≤ Qn.
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P r o o f. The proof is by induction on n. The procedure will be as follows:
Given x, T (x), . . . , Tn(x) satisfying (A1) we shall decompose this string into
two blocks: (a) x, T (x), . . . , Tm(x), 0 < m ≤ n, for which we shall prove
(A2); (b) Tm(x), . . . , Tn(x) for which we can apply the induction hypothesis.
Summing these two estimates we prove (A2) for x, T (x), . . . , Tn(x).

Let k′ = min{kc(x), kc(Tn(x))} and B = B(c, e−(k′−1)).
Let 1 ≤ m ≤ n be the first positive integer such that either

(i) kc(Tm(x))− inf{kc(Tm(z)) : z ∈ B} > 1

or

(ii) kc(Tm(x)) ≥ k′.
In both cases, if m < n, the sequence y = Tm(x), T (y), . . . , Tn−m(y) sat-

isfies the assumption (A1) automatically and, moreover, kc(y) = min{kc(y),
kc(Tn−m(y)}. Hence by the induction hypothesis

(A3)
n−1∑

j=m

kc(T j(x)) ≤ Q(n−m).

By the definition of m, for every 0 < j < m, and for every z ∈ B, we
have kc(T j(x)) ≤ kc(T j(z)) + 1. Hence

|(Tm−1)′(T (z))| ≤ e(m−1)ϑe−α
∑m−1
j=1 (kc(T j(x))−1).

Using also |T ′(z)| ≤ eϑe−α(k′−1) we obtain, for every z ∈ B,

(A4) |(Tm)′(z)| ≤ emϑ+mα−α(k′+
∑m−1
j=1 kc(T j(x))).

Hence

(A5)
diamTm(B)

diamB
≤ emϑ+mα−α(k′+

∑m−1
j=1 kc(T j(x))).

In case (i) but not (ii) we have by definition

diamTm(B) ≥ e−(kc(Tm(x))−1) − e−kc(Tm(x))

≥ e−k′(e− 1) = (e−(k′−1) − e−k′).
This together with (A5) gives

e− 1
2e
≤ em(ϑ+α)−α(k′+

∑m−1
j=1 kc(T j(x))),

hence

(A6) k′ +
m−1∑

j=1

kc(T j(x)) ≤ α−1(m(ϑ+ α) + log 2− log(1− 1/e)).

In case (ii) we also obtain (A6). Otherwise using the opposite inequality
and (A4) we obtain |(Tm)′| ≤ (e − 1)/(2e) < 1 on B and Tm(B) ⊂ B. By
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the latter there is a Tm-fixed point in I, by the former it attracts, which
contradicts the assumptions.

Thus, defining Q = α−1(log 2 + ϑ + α − log(1 − 1/e)), (A.6) and (A.3)
imply

k′ +
n−1∑

j=1

kc(T j(x)) ≤ Qn.

This finishes the proof.

P r o o f o f t h e T h e o r e m. Denote the set of critical points for T by
Crit. Fix x ∈ I and fix c ∈ Crit for the moment.

Let q(c) = t1 denote the index t ∈ {0, 1, . . . , n} for which kc(T t(x))
attains its maximum (recall that even kc(T t(x)) = ∞ is possible, if c =
T t(x), but there exists at most one such t, otherwise c would be a (su-
per)attracting periodic point). Recursively, define tl to be that index in
{tl−1 + 1, . . . , n} where kc(T t(x)) attains its maximum. This procedure ter-
minates after finitely many steps, say u steps, with tu = n.

We decompose the trajectory x, T (x), . . . , Tn(x) into blocks (with over-
lapping ends)

(x, . . . , T t1(x)), (T t1(x), . . . , T t2(x)), . . . , (T tu−1(x), . . . , T tu(x)).

Observe that these pieces satisfy the assumptions of the Lemma and

kc(T t1(x)) ≥ kc(T t2(x)) ≥ . . . ≥ kc(T tu−1(x)) ≥ kc(T tu(x)).

Applying the Lemma to all the blocks we obtain

(A7)
t1−1∑

j=0

kc(T j(x)) +
n∑

j=t1+1

kc(T j(x)) ≤ Qn.

Considering now all critical points we get, by (A7),
∑

k(T j(x)) ≤ NQn,
where the sum is over all integers j ∈ {0, 1, . . . , n} \ {q(c) : c ∈ Crit}.
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