Topological invariance of the Collet–Eckmann property for S-unimodal maps

by

Tomasz Nowicki and Feliks Przytycki (Warszawa)

Abstract. We prove that if f, g are smooth unimodal maps of the interval with negative Schwarzian derivative, conjugated by a homeomorphism of the interval, and f is Collet–Eckmann, then so is g.

Introduction

DEFINITIONS. We say that c is a nonflat critical point of f, a map of the interval, if f'(c) = 0 but for some $l_c > 1$ the limit $\lim_{x\to c} |f'(x)|/|x-c|^{l_c-1}$ exists and is nonzero.

A C^2 map f of the interval is called S-multimodal if:

(i) f has a finite number of nonflat critical points,

(ii) $|f'|^{-1/2}$ is convex between the critical points.

If f has precisely one critical point c and $f''(c) \neq 0$ we call the map S-unimodal.

If f is C^3 then condition (ii) is equivalent to f having nonpositive Schwarzian derivative, namely $f'''(x)/f'(x) - 3(f''/f')^2/2 \le 0$ outside the critical points or that f expands the cross-ratio between the critical points. These properties are invariant under composition, hence hereditary for iterations (see [MS, IV.1]). In particular, they give some bounds for distortion.

Write Crit or $\operatorname{Crit}(f)$ for the set of all *f*-critical points, i.e. $\operatorname{Crit} = \{x \in I : f'(x) = 0\}$. Write Crit' for the set of those *f*-critical points whose forward trajectories do not hit critical points. We call an *S*-multimodal map *f* Collet-Eckmann if there exist $\lambda > 1$ and C > 0 such that for every

Research of the first author supported by Polish KBN Grant 2 P03A 02208.

Research of the second author supported by Polish KBN Grant 2 P301 01307.

¹⁹⁹¹ Mathematics Subject Classification: Primary 58F03; Secondary 58F15, 58F08, 26A18.

^[33]

 $c \in \operatorname{Crit}'$ and every positive integer n,

(CE1)
$$|(f^n)'(f(c))| \ge C\lambda^n.$$

The aim of this paper is to prove

THEOREM A. If f and g are S-unimodal maps of the interval conjugated by a homeomorphism h of the interval, i.e. $h \circ f = g \circ h$, and f is Collet-Eckmann, then so is g.

In fact, this paper provides only a concluding part of the proof. Important parts have been proved earlier in [NS] and [PR1].

Notice that we do not assume that f and g have the same order l at the critical point.

We assume that no map of the interval considered in this paper has a basin of attraction to an attracting or a parabolic periodic orbit. This property is obviously preserved under homeomorphic conjugacies.

The Collet–Eckmann condition (CE1) was introduced in [CE] in the context of the existence of an absolutely continuous invariant measure; for a general reference see [MS, V.4]. In [NP] we considered the problem of the regularity of a conjugacy between two Collet–Eckmann maps and a question arised whether (CE1) is a topological condition. According to [JS] the question was also raised by J. Guckenheimer and M. Misiurewicz. Here we give an affirmative answer.

A topological condition for S-unimodal maps which, in conjunction with (CE1), is also topological and which for a quadratic family holds for a positive measure set of parameters was given by Jakobson and Świątek in [JS, Sec. 5.3]. Later Duncan Sands in his Ph.D. thesis [S] gave a topological condition for S-unimodal maps which implies (CE1) and another one which excludes (CE1), but some cases were still left undecided. A result weaker than Theorem A, saying that quasi-symmetric conjugacy leaves (CE1) invariant, was proved in [SN].

Let us introduce the following conditions on an S-multimodal mapping $f: I \to I$:

(1) The Collet–Eckmann condition (CE1);

(2) (exponential shrinking of components) There exist $0 < \xi < 1$ and $\delta_2 > 0$ such that for every interval $J \subset I$ with length $|J| \leq \delta_2$, every positive integer n and every component K of $f^{-n}(J)$ one has $|K| \leq \xi^n$;

(3) (exponential shrinking of components at critical points) There exist $0 < \xi < 1$ and $\delta_3 > 0$ such that for every $c \in$ Crit and for every positive integer n, for

$$B = B(f^{n}(c), \delta_{3}) := \{x \in I : |x - f^{n}(c)| \le \delta_{3}\}$$

and the component K of $f^{-n}(B)$ which contains c one has $|K| \leq \xi^n$;

(4) (finite criticality) There exist M > 0, $P_4 > 0$ and $\delta_4 > 0$ such that for every $x \in I$ there exists an increasing sequence of positive integers n_j , $j = 1, 2, \ldots$, such that $n_j \leq P_4 j$ and for each j,

$$\sharp\{i: 0 \le i < n_j, \operatorname{Comp}_{f^i(x)} f^{-(n_j-i)}(B(f^{n_j}(x), \delta_4)) \cap \operatorname{Crit} \neq \emptyset\} \le M$$

(the subscript y at Comp, here $y = f^i(x)$, means that the component Comp_y contains y; later on, y can also be a set contained in the component);

(5) (mean exponential shrinking of components) There exist $P_5 > 0$, $0 < \xi < 1$ and $\delta_5 > 0$ such that for every $x \in I$ there exists an increasing sequence of positive integers n_j , $j = 1, 2, \ldots$, such that $n_j \leq P_5 j$ and $|\text{Comp}_x f^{-n_j}(B(f^{n_j}(x), \delta_5))| \leq \xi^{n_j};$

(6) (uniform hyperbolicity on periodic trajectories) There exists $\lambda > 1$ such that for every integer n and $x \in I$ of period n one has $|(f^n)'(x)| \ge \lambda^n$.

We shall prove that for every k = 1, ..., 5 the property (k) implies (k+1). The implication $(6) \Rightarrow (1)$ is a recent theorem by the first author and Duncan Sands [NS], in the unimodal case.

Notice that (4) is a topological property. We thus get Theorem A.

We do not know whether $(6) \Rightarrow (1)$ holds in the multimodal case $(^1)$; this is the reason why we restricted Theorem A to the unimodal case. Negative Schwarzian is used only in $(1) \Rightarrow (2)$, $(4) \Rightarrow (5)$ and $(6) \Rightarrow (1)$.

One can rewrite all the above properties for f a rational mapping on the Riemann sphere without parabolic periodic orbits. One then only considers critical points in the Julia set. One considers conjugacies on neighbourhoods of Julia sets; in this sense (4) is a topological invariant. We call this setting the *holomorphic case*.

The implication $(1) \Rightarrow (2)$ has been proved in [PR1, Proposition 3.1] in the holomorphic case. In the interval case the proof is similar. In the unimodal case, order 2 at the critical point, this implication has been proved earlier in [NP, Main Lemma].

 $(2) \Rightarrow (3)$ is trivial.

The proof of $(3) \Rightarrow (4)$ goes similarly to the proof of $(1) \Rightarrow (4)$ in [PR1]; it is even simpler, one does not need to consider pre-images according to the "shrinking neighbourhoods" procedure (see [P1], [GS]), because one need not control any distortion. We shall give this proof in Section 1.

 $(4) \Rightarrow (5)$ goes by the "telescope" construction; it has been done in the rational case in [PR1, Proof of Proposition 3.1]. We adapt the proof to the interval case in Section 2.

 $(5) \Rightarrow (6)$ will also be done in Section 2. This is very easy.

^{(&}lt;sup>1</sup>) Added in revision: It does not hold (for an idea how to construct a counterexample see [CJY, Remark 1, p. 9], [P4, Introduction] and [PR2]).

Added in revision: 1. A theorem similar to Theorem A holds in the holomorphic case provided there is at most one critical point in the Julia set (see the forthcoming paper by the second author and S. Rohde [PR2] and [P4]).

2. $(5) \Rightarrow (2)$ is straightforward, see [P4].

1. Proof of (3)
$$\Rightarrow$$
(4). For every $x \in I$ and positive integer n write

$$\phi(x,n) = -\log \operatorname{dist}(f^n(x),\operatorname{Crit}(f))$$

As |I| = 1, $\phi(x, n) \ge 0$. We write $\phi(n)$ if x is fixed.

The main ingredient of the proof of $(3) \Rightarrow (4)$ is the following:

LEMMA 1.1. Let f be a differentiable mapping of the interval with a finite number of critical points and derivative Hölder continuous at these points. Then there exists a constant C_f such that for each $n \ge 1$ and $x \in I$,

(1.1)
$$\sum_{j=0}^{n} \phi(x,j) \le nC_f,$$

where \sum' denotes summation over all but at most # Crit indices.

This lemma was proved in [DPU, (3.3)] in the holomorphic case. In the interval case the proof is almost the same:

The point in [DPU] is that if the sum in (1.1) is larger than Cn for C large enough, then one arrives at a disc B = B(c, r) with $c \in \operatorname{Crit}(f)$ such that $f^n(B) \subset B$, which contradicts the fact that c is in the Julia set.

In the interval case $f^n(B) \subset B$ can happen for arbitrarily small r for an infinitely renormalizable S-unimodal map.

Recall, however, that in [DPU] one concludes that if (1.1) is not fulfilled then $f^n(B) \subset B$ and $|(f^n)'|$ is small (< 1/2) on B. By the inclusion there is an f^n -fixed point $p \in B$. As $|(f^n)'(p)|$ is small, p is attracting, which contradicts the assumptions $(^2)$.

In the S-unimodal interval case Lemma 1.1 follows also immediately from the following

LEMMA 1.2 [NS]. For every $0 < \eta < 1$ there exists C such that for every $x \in I$ and every positive integer n there exists $0 \leq \hat{n} < n$ such that $|(f^n)'(x)|/|f'(f^{\hat{n}}(x))| \geq C\eta^n$.

[Notice that though η can be arbitrarily close to 1, this does not imply automatically that C_f in (1.1) can be arbitrarily close to 0, even if in (1.1) we replace ϕ by max(0, ϕ – Const) for an arbitrary Const. If C_f in (1.1) is sufficiently small then (4) holds with criticality 0, see [P2].]

 $^(^2)$ An appendix containing a complete proof has been added on the request of the Editorial Board of Fund. Math.

Let us continue the proof of (3) \Rightarrow (4). Fix an arbitrary $x \in I$ and write $\phi(i) := \phi(x, i)$.

Write $S_i = (i, i + \phi(i)K_f] \subset \mathbb{R}$, where we set $K_f = 1/\log(1/\xi)$.

(One could view the "graph" of $i \mapsto \phi(i)$ as the union of all vertical line segments $\{i\} \times (0, \phi(i)]$ in \mathbb{R}^2 . Then each segment throws a *shadow* S_i on the real axis.)

The shadows of the exceptional indices in (1.1) could be infinitely long, but nevertheless (1.1) implies that many of the times n belong to boundedly many shadows: Indeed, set $N_f = 2(\# \operatorname{Crit} + C_f K_f)$ and

 $A = \{ n \in \mathbb{N} : n \text{ belongs to at most } N_f \text{ shadows} \}.$

For each $0 \leq i \leq m$ denote by χ_i the indicator function of $S_i \cap [0, m]$. By (1.1),

$$mC_f K_f \ge K_f \sum_{i=0}^{m-1} \phi(x,i) = \sum_{i=0}^{m-1} |S_i| \ge \sum_{i=0}^{m-1} \int \chi_i = \int \sum_{i=0}^{m-1} \chi_i.$$

Together with the exceptional indices we obtain

$$m(\#\operatorname{Crit} + C_f K_f) \ge \int_{i=0}^{m-1} \chi_i \ge \#([1,m] \setminus A) \cdot N_f$$

by the definition of A. We conclude from the definition of N_f that

(1.2)
$$\frac{\#(A \cap [1,m])}{m} \ge \frac{1}{2}.$$

So if we order all the integers in A according to their growth we obtain $n_j \leq n_j$. We set $P_4 = 2$ in (4).

(Notice that if in the definition of N_f the factor 2 is replaced by an arbitrary Q then 1 - 1/Q stands on the right hand side of (1.2), which can therefore be arbitrarily close to 1. We can then set $P_4 = 1/(1 - 1/Q)$.)

Finally, we claim that for every $n = n_j \in A$ and $0 \le i < n$, if the set

$$B_{n,i} := \operatorname{Comp}_{f^i(x)} f^{-n+i}(B(f^n(x), \delta_3))$$

contains an f-critical point then n is in the shadow S_i .

Indeed, suppose that $B_{n,i}$ contains $c \in \operatorname{Crit}(f)$. Then by (3) used for n-i,

(1.3)
$$|c - f^i(x)| \le \xi^{n-i}.$$

This shows that $\phi(i) \ge -(n-i)\log \xi$ hence $n-i \le \phi(i)/\log(1/\xi)$. Hence n is in the shadow S_i .

(Inequality (1.3) also shows that each $B_{n,i}$ contains at most one *f*-critical point provided $\delta_4 \leq \delta_3$ is small enough.)

This proves (4) with $M = N_f$.

2. The implications $(4) \Rightarrow (5) \Rightarrow (6)$. We start with the easier:

Proof of $(5) \Rightarrow (6)$. Fix m > 0 and $x \in I$ so that $f^m(x) = x$. As x is a source (i.e. $|(f^m)'(x)| > 1$) there exists a > 0 such that $f^m(B(x,a)) \supset$ cl B(x,a) and f^m has no critical points in B(x,a).

Denote the periodic orbit of x by O(x). For every n > 0 denote by g_n the branch of f^{-n} which maps x into O(x). These branches are well defined on B(x, a) by the definition of a.

By the finiteness of O(x) and (5) there exist $y \in O(X)$ and an increasing sequence of positive integers n_j , $j = 0, 1, \ldots$, such that

$$\operatorname{Comp}_x f^{-n_j}(B(y,\delta_5))| \le \xi^{n_j}$$

and for $K := \operatorname{Comp}_x f^{-n_0}(B(x, \delta_5))$ one has |K| < a.

Then $|g_{n_j-n_0}(K)|/|K| \leq \xi^{n_j}/|K|$. As we are in a neighbourhood of a periodic source and the derivative of f is Hölder, all g_n 's have uniformly bounded distortion on K. We conclude that $|(g_{n_j-n_0})'(x)| \leq \text{Const}\,\xi^{n_j-n_0}$. Letting j grow to ∞ and noticing that each $n_j - n_0$ is a multiple of m we obtain $|(f^m)'(x)| \geq \xi^{-m}$, which proves (6) with $\lambda = \xi^{-1}$.

To prove $(4) \Rightarrow (5)$ we need the following

LEMMA 2.1. For every $N, \varepsilon > 0$ there exists k such that for every $n \ge k$ and for every interval $K \subset I$ if $f^n|_K$ has at most N critical points, then $|K| < \varepsilon$.

R e m a r k. In the holomorphic case this is a variant of the Mañé Lemma [M], [P1, Lemma 1.1], where one asserts diam $\operatorname{Comp}_x f^{-n}(B(f^n(x), \lambda r)) < \varepsilon$, $\lambda < 1$ provided f^n has at most N critical points in $\operatorname{Comp}_x f^{-n}(B(f^n(x), r))$. In the interval case one does not need λ . (An adaptation to the interval case, silmilar to that in Lemmas 2.1 and 2.2, appeared in [P3, Sec. 3].)

Proof (of Lemma 2.1). If Lemma 2.1 were not true there would exist a sequence of intervals $J_j \subset I$ such that $|J_j| \geq \varepsilon/N$ and integers n_j , $j = 1, 2, \ldots$, such that $n_j \to \infty$ as $j \to \infty$ and f_{n_j} is monotone on J_j for each j. This leads to the existence of a *homterval*. Namely there exists an interval $J \subset I$ of length $\varepsilon/(2N)$ such that $J \subset J_{j_k}$ for a sequence $j_k \to \infty$, $k = 1, 2, \ldots$, and each $f^{n_{j_k}}$ is monotone on J, hence f^n is monotone on J for each positive integer n. However, homtervals do not exist [MS, Thm. II.6.2], so we arrived at a contradiction.

LEMMA 2.2. For every M > 0 and 0 there exists <math>0 < q = q(M,p) < 1 such that for every pair of intervals $J \subset K \subset I$, every positive integer n, every pair of components J', K' of $f^{-n}(J)$ and $f^{-n}(K)$ respectively such that $J' \subset K'$, for L, R the left and right components of $K \setminus J$ and L', R' the left and right components of $K' \setminus J'$ respectively, if

$$\sharp\{i: 0 \le i < n, \operatorname{Comp}_{f^i(K')} f^{-(n-i)}(K) \cap \operatorname{Crit} \neq \emptyset\} \le M$$

and if

$$|L|/|K| > p \quad and \quad |R|/|K| > p$$

then

$$|L'|/|K'| > q$$
 and $|R'|/|K'| > q$

Remarks. This lemma also has its holomorphic analogue (see [P1, Lemma 1.4] and [PR1, Lemma 2.1]). In the interval case its proof is implicitly contained in [P3, Sec. 3] and [MS, Ch. IV, Th. 3.1, "Macroscopic Koebe Principle"] for f a smooth homeomorphism. We provide a proof below for completeness.

Proof (of Lemma 2.2). In the case M = 0 this lemma is called the "Koebe Principle" for distortion [MS, Chapter IV]. We shall refer to this in the proof. Denote q(0, p) by a(p).

Consider compatible components K_j of $f^{-j}(K)$ and J_j of $f^{-j}(J)$, i.e. such that $f(K_j) \subset K_{j-1}$ and $f(J_j) \subset J_{j-1}$ for $j = 1, \ldots, n$ and such that $K_n = K', J_n = J'.$

Denote the left and right components of $K_j \setminus J_j$ by L_j and R_j respectively. If $j = n_1$ is the first j for which K_j contains a critical point, say c, then $|L_{j-1}|/|K_{j-1}| > a(p)$ and $|R_{j-1}|/|K_{j-1}| > a(p)$.

Next, $|L_j|/|K_j| > \kappa a(p)$ and $|R_j|/|K_j| > \kappa a(p)$, where κ is a constant number (of order $1/l_c$ for short K_j).

If $j = n_2$ is the next (after n_1) integer such that K_j contains a critical point we obtain $|L_{j-1}|/|K_{j-1}| > a(\kappa a(p))$ and $|R_{j-1}|/|K_{j-1}| > a(\kappa a(p))$, and so on. We end up at j = n, with q depending only on p and M.

Proof of $(4) \Rightarrow (5)$. Fix $\varepsilon = \delta_4/4$ and k according to Lemma 2.1 (for N easily computable from M in (4)). Fix an arbitrary $x \in I$. Denote $f^{n_{jk}}(x)$ by x(j) for every $j = 0, 1, \ldots$ By Lemma 2.1,

(2.1) $W(j) = \operatorname{Comp}_{x(j)} f^{-(n_{(j+1)k} - n_{jk})}(B(x(j+1), \delta_4)) \subset B(x(j), \delta_4/2).$

Denote $\operatorname{Comp}_x f^{-n_{kj}}(B(x(j), \delta_4))$ by V_j . By Lemma 2.2 for $f^{-n_{kj}}$ and the intervals $W(j) \subset B(x(j), \delta_4) \subset I$ and by (2.1),

$$V_{j+1}|/|V_j| \le 1 - 2q(M, 1/4) =: \xi.$$

Combining this for j = 0, 1, ..., m - 1 for an arbitrary positive integer m one obtains $|V_m| = |\text{Comp}_x f^{-n_{km}}(B(f^{n_{km}}(x), \delta_4))| \leq \xi^m$. Notice that $n_{km} \leq P_4 km$. Thus we obtained (4) with the sequence $n_{kj}, j = 1, 2, ...,$ and $P_5 = kP_4$.

R e m a r k. Condition (4) is strictly stronger than the following condition:

(4') There exist M > 0, P > 0 and $\delta > 0$ such that for every $x \in I$ there exists an increasing sequence of positive integers n_j , j = 1, 2, ..., such that $n_j \leq P_j$ and the map f^{n_j} has at most M critical points in $\operatorname{Comp}_x f^{-n_j} B(f^{n_j}(x), \delta)$.

For example, every "long branched" S-unimodal map, i.e. such that $(\exists \gamma > 0)(\forall n)(\forall K \text{ maximal such that } f^n|_K \text{ is monotone}) |f^n(K)| \geq \gamma$, satisfies (4'), with M = P = 1, but need not be Collet–Eckmann [B1, B2].

Of course, in the holomorphic case, (4) is equivalent to (4') since f maps $\operatorname{Comp}_{f^i(x)} f^{-(n-i)}B(f^n(x),\delta)$ onto $\operatorname{Comp}_{f^{i+1}(x)} f^{-(n-i-1)}B(f^n(x),\delta)$.

We thank Henk Bruin and Gerhard Keller for calling our attention to this.

Appendix: On the distance of a trajectory from the critical set for differentiable maps of the interval. This is an adaptation to the interval case, without significant changes, of a part of the analogous theory for holomorphic maps by M. Denker, F. Przytycki and M. Urbański in [DPU]. The appendix has been added on the request of the Editorial Board, advised by the referee.

Let $T: I \to I$ be a differentiable map of the unit interval I. Let $c \in I$ be a critical point, i.e. T'(c) = 0.

For every $x \in I$ and r > 0 set $B(x, r) := \{z \in I : |x - z| < r\}$. Define a function $k_c : I \to \{0, 1, 2, \ldots\} \cup \{\infty\}$ by setting

$$k_c(x) = \min\{n \ge 0 : x \notin B(c, e^{-(n+1)})\},\$$

and $k_c(x) = \infty$ if x = c.

Write $k(x) = \sup_{c \in \operatorname{Crit}} k_c(x)$.

We call a real function φ on *I* Hölder continuous at a point *c* if there exist $\vartheta, \alpha > 0$ such that for every $x, |\varphi(x) - \varphi(c)| \leq e^{\vartheta} |x - c|^{\alpha}$.

THEOREM. Let $T: I \to I$ be a differentiable map of the unit interval I. Suppose it has $N < \infty$ critical points and at each of them the derivative T' is Hölder continuous. Suppose also that T has no attracting periodic orbit. Then there exists a constant Q > 0 not depending on N such that for every $x \in I$,

$$\sum k(T^j(x)) \le NQn$$

where the sum is taken over all integers j between 0 and n (0 and n included) except at most N of them.

LEMMA. Let a differentiable $T: I \to I$ have derivative Hölder continuous at a critical point c. Suppose also that T has no attracting periodic orbit. Then there exists a constant Q > 0 such that if $x \in I$ satisfies

(A1)
$$k_c(T^j(x)) \le k_c(T^n(x)) \quad \text{for every } j = 1, \dots, n-1,$$

for an integer $n \ge 1$, then

(A2)
$$\min\{k_c(x), k_c(T^n(x))\} + \sum_{j=1}^{n-1} k_c(T^j(x)) \le Qn$$

Proof. The proof is by induction on n. The procedure will be as follows: Given $x, T(x), \ldots, T^n(x)$ satisfying (A1) we shall decompose this string into two blocks: (a) $x, T(x), \ldots, T^m(x), 0 < m \leq n$, for which we shall prove (A2); (b) $T^m(x), \ldots, T^n(x)$ for which we can apply the induction hypothesis. Summing these two estimates we prove (A2) for $x, T(x), \ldots, T^n(x)$.

Let $k' = \min\{k_c(x), k_c(T^n(x))\}$ and $B = B(c, e^{-(k'-1)})$.

Let $1 \le m \le n$ be the first positive integer such that either

(i)
$$k_c(T^m(x)) - \inf\{k_c(T^m(z)) : z \in B\} > 1$$

or

(ii)
$$k_c(T^m(x)) \ge k'.$$

In both cases, if m < n, the sequence $y = T^m(x), T(y), \ldots, T^{n-m}(y)$ satisfies the assumption (A1) automatically and, moreover, $k_c(y) = \min\{k_c(y), k_c(T^{n-m}(y))\}$. Hence by the induction hypothesis

(A3)
$$\sum_{j=m}^{n-1} k_c(T^j(x)) \le Q(n-m).$$

By the definition of m, for every 0 < j < m, and for every $z \in B$, we have $k_c(T^j(x)) \leq k_c(T^j(z)) + 1$. Hence

$$|(T^{m-1})'(T(z))| \le e^{(m-1)\vartheta} e^{-\alpha \sum_{j=1}^{m-1} (k_c(T^j(x)) - 1)}.$$

Using also $|T'(z)| \le e^{\vartheta} e^{-\alpha(k'-1)}$ we obtain, for every $z \in B$,

(A4)
$$|(T^m)'(z)| \le e^{m\vartheta + m\alpha - \alpha(k' + \sum_{j=1}^{m-1} k_c(T^j(x)))}.$$

Hence

(A5)
$$\frac{\operatorname{diam} T^m(B)}{\operatorname{diam} B} \le e^{m\vartheta + m\alpha - \alpha(k' + \sum_{j=1}^{m-1} k_c(T^j(x)))}$$

In case (i) but not (ii) we have by definition

diam
$$T^m(B) \ge e^{-(k_c(T^m(x))-1)} - e^{-k_c(T^m(x))}$$

 $\ge e^{-k'}(e-1) = (e^{-(k'-1)} - e^{-k'})$

This together with (A5) gives

$$\frac{e-1}{2e} \le e^{m(\vartheta+\alpha)-\alpha(k'+\sum_{j=1}^{m-1}k_c(T^j(x)))},$$

hence

(A6)
$$k' + \sum_{j=1}^{m-1} k_c(T^j(x)) \le \alpha^{-1}(m(\vartheta + \alpha) + \log 2 - \log(1 - 1/e)).$$

In case (ii) we also obtain (A6). Otherwise using the opposite inequality and (A4) we obtain $|(T^m)'| \leq (e-1)/(2e) < 1$ on B and $T^m(B) \subset B$. By the latter there is a T^m -fixed point in I, by the former it attracts, which contradicts the assumptions.

Thus, defining $Q = \alpha^{-1}(\log 2 + \vartheta + \alpha - \log(1 - 1/e))$, (A.6) and (A.3) imply

$$k' + \sum_{j=1}^{n-1} k_c(T^j(x)) \le Qn.$$

This finishes the proof. \blacksquare

Proof of the Theorem. Denote the set of critical points for T by Crit. Fix $x \in I$ and fix $c \in$ Crit for the moment.

Let $q(c) = t_1$ denote the index $t \in \{0, 1, \ldots, n\}$ for which $k_c(T^t(x))$ attains its maximum (recall that even $k_c(T^t(x)) = \infty$ is possible, if $c = T^t(x)$, but there exists at most one such t, otherwise c would be a (super)attracting periodic point). Recursively, define t_l to be that index in $\{t_{l-1} + 1, \ldots, n\}$ where $k_c(T^t(x))$ attains its maximum. This procedure terminates after finitely many steps, say u steps, with $t_u = n$.

We decompose the trajectory $x, T(x), \ldots, T^n(x)$ into blocks (with overlapping ends)

$$(x, \ldots, T^{t_1}(x)), \ (T^{t_1}(x), \ldots, T^{t_2}(x)), \ \ldots, \ (T^{t_{u-1}}(x), \ldots, T^{t_u}(x)).$$

Observe that these pieces satisfy the assumptions of the Lemma and

$$k_c(T^{t_1}(x)) \ge k_c(T^{t_2}(x)) \ge \ldots \ge k_c(T^{t_{u-1}}(x)) \ge k_c(T^{t_u}(x)).$$

Applying the Lemma to all the blocks we obtain

(A7)
$$\sum_{j=0}^{t_1-1} k_c(T^j(x)) + \sum_{j=t_1+1}^n k_c(T^j(x)) \le Qn$$

Considering now all critical points we get, by (A7),

$$\sum k(T^j(x)) \le NQn,$$

where the sum is over all integers $j \in \{0, 1, ..., n\} \setminus \{q(c) : c \in Crit\}$.

References

- [B1] H. Bruin, Invariant measures of interval maps, PhD thesis, Tech. Univ. Delft, 1994.
- [B2] —, Topological conditions for the existence of invariant measures for unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), 433–452.
- [CE] P. Collet and J.-P. Eckmann, Positive Lyapunov exponents and absolute continuity for maps of the interval, ibid. 3 (1983), 13–46.
- [CJY] L. Carleson, P. Jones and J.-C. Yoccoz, Julia and John, Bol. Soc. Brasil. Mat. 25 (1994), 1–30.

- [DPU] M. Denker, F. Przytycki and M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), 255–266.
 - [GS] J. Graczyk and S. Smirnov, *Collet, Eckmann, & Hölder*, Invent. Math., to appear.
 - [JS] M. Jakobson and G. Świątek, Metric properties of non-renormalizable Sunimodal maps, II. Quasisymmetric conjugacy classes, Ergodic Theory Dynam. Systems 15 (1995), 871–938.
 - [M] R. Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Mat. 24 (1993), 1–12.
 - [MS] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, 1993.
 - [NP] T. Nowicki and F. Przytycki, The conjugacy of Collet-Eckmann's map of the interval with the tent map is Hölder continuous, Ergodic Theory Dynam. Systems 9 (1989), 379–388.
 - [NS] T. Nowicki and D. Sands, Nonuniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math., to appear.
 - [P1] F. Przytycki, Iterations of holomorphic Collet-Eckmann maps, conformal and invariant measures, Trans. Amer. Math. Soc., to appear.
 - [P2] —, On measure and Hausdorff dimension of Julia sets for holomorphic Collet-Eckmann maps, in: International Conference on Dynamical Systems, Montevideo 1995—a Tribute to Ricardo Mañé (F. Ledrappier, J. Lewowicz and S. Newhouse, eds.), Pitman Res. Notes Math. Ser. 362, Longman, 1996, 167–181.
 - [P3] —, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), 309–317.
 - [P4] —, *Hölder implies CE*, Astérisque, volume dedicated to A. Douady on his 60th birthday, to appear.
- [PR1] F. Przytycki and S. Rohde, Porosity of Collet-Eckmann Julia sets, Fund. Math., to appear.
- [PR2] —, —, Rigidity of holomorphic Collet-Eckmann repellers, preprint, May 1997.
 - [S] D. Sands, Topological conditions for positive Lyapunov exponent in unimodal case, Ph.D. thesis, St. John's College, Cambridge, 1995.
- [SN] D. Sands and T. Nowicki, Quasisymmetric conjugacies of Collet-Eckmann maps, Ergodic Theory Dynam. Systems, to appear.

Tomasz Nowicki Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland E-mail: tomnow@mimuw.edu.pl Feliks Przytycki Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-950 Warszawa, Poland E-mail: feliksp@impan.gov.pl

Received 3 June 1996; in revised form 3 September 1996, 18 March 1997 and 19 June 1997