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CONICAL LIMIT SET AND POINCARÉ EXPONENT
FOR ITERATIONS OF RATIONAL FUNCTIONS

FELIKS PRZYTYCKI

Abstract. We contribute to the dictionary between action of Kleinian groups
and iteration of rational functions on the Riemann sphere. We define the
Poincaré exponent δ(f, z) = inf{α ≥ 0 : P(z, α) ≤ 0}, where

P(z, α) := lim sup
n→∞

1

n
log

∑
fn(x)=z

|(fn)′(x)|−α.

We prove that δ(f, z) and P(z, α) do not depend on z, provided z is non-
exceptional. P plays the role of pressure; we prove that it coincides with the
Denker-Urbański pressure if α ≤ δ(f). Various notions of “conical limit set”
are considered. They all have Hausdorff dimension equal to δ(f) which is equal
to the hyperbolic dimension of the Julia set and also equal to the exponent of
some conformal Patterson-Sullivan measures. In an Appendix we also discuss
notions of “conical limit set” introduced recently by Urbański and by Lyubich
and Minsky.

Introduction

For every Kleinian group G with Λc(G) the conical limit set, δ(G) the Poincaré
exponent, α(G) the infimum of exponents of conformal measures and HD standing
for Hausdorff dimension, the following inequality holds:

HD(Λc(G)) = δ(G) = α(G),(0.1)

and Patterson’s construction gives conformal measures of exponent precisely equal
to δ(G). This is a part of a beautiful theory linking these notions; see [Pa], [S1],
[BJ] (and also [N]).

In iterations of rational functions conformal measures were introduced by D.
Sullivan [S2], and a general theory of conformal measures was developed by M.
Denker and M. Urbański in [DU1] and [DU2]. In [DU2] the dynamical dimension
of the Julia set J = J(f) for a rational function f was introduced and defined as
follows

HDmhyp(J) = sup{HD(µ) : µ is an ergodic probability f -invariant measure

of positive Lyapunov exponent},

(0.2)

where HD(µ) is the infimum of Hausdorff dimensions of sets of full measure µ (mhyp
abbreviates, measure hyperbolic). It happens (see Appendix 2 or [PUbook, Ch.8]
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that HDmhyp(J) = HDhyp(J), the hyperbolic dimension, which is the supremum
of the Hausdorff dimensions of f -invariant isolated hyperbolic subsets of J , a no-
tion introduced by M. Shishikura [Shi]. (X is called isolated if every trajectory
f j(x), j = 0, 1, ..., contained in a sufficiently small neighbourhood of X must be
contained in X . A compact f -invariant set X ⊂ J is called hyperbolic if there
exists n > 0 such that |(fn)′| > 1 on X .)

The main theorem of [DU2], [P2] (see also Appendix 2) asserts that

HDmhyp(J) = α(f),(0.3)

where α(f) is the infimum of exponents of conformal measures for f . Moreover
a conformal measure for which this infimum is attained is constructed in [DU2],
but not by the Patterson procedure. Recall that µ is called α-conformal for f (or
conformal with exponent α) if for every Borel set E ∈ J on which f is injective we
have µ(f(E)) =

∫
E
|f ′|αdµ.

However, a definition of a “conical Julia set” whose Hausdorff dimension would
be equal to HDmhyp(J), and also a definition, analogous to δ(G), of the Poincaré
exponent and an equality similar to (0.1) were missing. In this paper we try to fill
this gap.

1. Basic concepts

Definition 1.1. For each rational function f of degree ≥ 2, for every z ∈ C̄ and
every α ≥ 0 consider the following Poincaré sequence:

P (z, α, n) :=
∑

fn(x)=z

|(fn)′(x)|−α

We call α = δ(f, z) the Poincaré exponent with respect to z if α is the smallest
number such that

lim sup
n→∞

1
n

log P (z, α, n) ≤ 0.

If this limsup is positive for every α we set δ(f, z) = ∞.
Notice that δ(f, z) > 0. Indeed,

P (z, α, n) ≥ deg(f)n(sup |f ′|)−nα.

Hence
1
n

log P (z, α, n) ≥ log deg(f)− α log(sup |f ′|)

and so

δ(f, z) ≥ log deg(f)/ log(sup |f ′|).
Notice also that the smallest α in Definition 1.1 exists. This is an easy exercise

(see Prop. A2.2).

The main theorem of the paper (Section 3) says that δ(f, z) as a function of
z is constant and attains its minimum everywhere except on a “thin” set E (of
Hausdorff dimension 0). We call this constant the Poincaré exponent and denote it
by δ(f). Before we prove this main theorem we just write

δ(f) = inf
z

δ(f, z).(1.1)
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One can define the pressure P(z, α) = P(f,−α log |f ′|, z) as

lim sup
n→∞

1
n

log P (z, α, n).

So δ(f, z) is the first zero of P(z, α) as a function of α. P(z, α), like δ(f, z), is
a constant independent of z except when z ∈ E, where it is not smaller. Denote
this constant by P(α). Clearly P(z, α) and P(α) are continuous (Appendix 2,
Prop.A2.1).

In fact for 0 ≤ α ≤ δ(f), P(α) coincides with the pressure defined in [DU2]
and also with sup hµ(f) − α

∫
log |f ′|dµ, where the supremum is taken over all

ergodic f -invariant probability measures (or only measures with positive Lyapunov
exponent), hµ(f) being the entropy. So on the domain 0 ≤ α ≤ δ, P(α) is strictly
decreasing. On 0 ≤ α < ∞ P(α) is monotone decreasing and convex. We explain
these facts concerning pressure in Appendix 2. They are not needed in the main
course of the paper, but they are interesting because, for example, they generalize
the variational principle [W] to the case when − log |f ′| has singularities of value
∞.

Definition 1.2. For each rational function f and every non-exceptional z (this
means that “z is not a superattracting periodic point for f”), for every K > 0
write

Λc(f, z, K) := {x ∈ C̄ :∃xi ∈ f−ni(z), ni →∞, i = 1, 2, ...,

(∀i) the properties (i) and (ii) hold},
where

|(fni)′(xi)| ≥ (1 + K−1)ni ,(i)

dist(x, xi) ≤ K|(fni)′(xi)|−1(ii)

(dist is the Riemann distance). Write

Λc(f, z) :=
⋃

K>0

Λc(f, z, K).

Finally, define the conical limit set

Λc(f) :=
⋂
z

Λc(f, z).

We do not know how Λc(f, z) depends on z. We conclude only a posteriori that
except for z ∈ E its dimension is constant, equal to δ(f). Therefore we think that
the following concept is of interest:

Definition 1.3.

Λcw(f, z, K) := {x ∈ C̄ :∃xi ∈ f−ni(z), ni →∞, i = 1, 2, ...,

(∀i) the properties (i) and (iii) hold},
where

lim sup
i→∞

1
ni

log
(
dist(x, xi) · |(fni)′(xi)|

)
≤ 0.(iii)

As before, we write

Λcw(f, z) :=
⋃

K>0

Λcw(f, z, K).
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Of course Λcw(f, z) ⊃ Λc(f, z). In Section 3. we prove that Λcw(f, z) does not
depend on z except when z ∈ E. We then write Λcw(f) and call this the weak
conical limit set. We show in Section 3 that for every z which has a backward
trajectory omitting Crit, the set of points where f ′ is zero, Λcw(f) ⊂ Λcw(f, z).

Notice that (i), together with xi → x, implies that, for every z, Λcw(f, z) ⊂ J(f).
We remark finally that if two points z1, z2 belong to a connected open set U

which is disjoint from O(Crit) :=
⋃∞

n=1 fn((f)), then by bounded distortion for all
branches of f−n on a connected open set with closure in U containing z1 and z2

we have Λc(f, z1) = Λc(f, z2), and the Poincaré exponents also coincide. This is
the case for z1, z2 belonging to the same Fatou component, in particular for the
basin A∞ of ∞ for f a polynomial. So for polynomials one can define Λc(f) :=
Λc(f, z), z ∈ A∞.

It is easy to see that (iii) is equivalent to x being non-deep for the filled-in Julia
set, the notion introduced by C. McMullen [McM].

In the next section two more concepts of the limit set will appear in a natural
way in relation to an application of the Pesin theory. We call them regular and
tree conical, and denote them by Λreg(f) and Λtc(f) respectively. In the case of
polynomials we also define radial conical, which is equivalent to tree conical (in the
case when the basin of ∞ is simply-connected). We will have

Λreg(f) ⊂ Λtc(f) ⊂ Λc(f) ⊂ Λcw(f),

and all these sets have the same Hausdorff dimension. In Appendix 3 we discuss
concepts of conical limit set by Urbański [U2], [DMNU] and by Lyubich and Minsky
[LM].

2. Equalities of dimensions and exponents

Theorem 2.1. For every z

HD(Λc(f, z)) ≤ HD(Λcw(f, z)) ≤ δ(f, z).

So HD(Λc(f)) ≤ δ(f).

Proof. By the conditions (iii) and (i)

Λcw(f, z, K) ⊂
⋂
ε>0

⋂
N≥0

⋃
fn(y)=z,n>N

B(y, r(n, y)1−ε),

where r(n, y) := |(fn)′(y)|−1 and the union consists only of terms satisfying r(n, y)
≤ (1 + K−1)−n. By the definition of δ(f, z) and condition (i), for every α >
δ(f, z) the series

∑
n,y r(n, y)α is convergent, even exponentially fast with n. Indeed,

for η > 0 arbitrarily small and all n large enough we have∑
y

r(n, y)α =
∑

y

|(fn)′(y)|−δ(f,z)|(fn)′(y)|δ(f,z)−α

≤ (exp ηn)(1 + K−1)−n(α−δ(f,z)).

Hence
∑

n,y r(n, y)α(1−ε) < ∞ for ε > 0 small enough. So for the Hausdorff measure
we have Hα(Λcw(f, z, K)) = 0.

(This is similar to the Kleinian groups case. The discs B(y, Kr(n, y)) or
B(y, r(n, y)1−ε) correspond to “shadows”.)

Theorem 2.2. HDmhyp(J) ≤ HD(Λc(f)).
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Proof. This theorem follows from the following property, true for every f -invariant
ergodic probability measure µ on J with characteristic Lyapunov exponent χµ(f) =∫

log |f ′|dµ > 0 and µ-a.e. x (see [PUbook]):
There exists η > 0 and a sequence of integers nj →∞ such that

lim sup
j→∞

nj/j ≤ 2,

each fnj is injective on the component B′j of f−nj (B(fnj (x), η)) which contains x,
has distortion bounded by 2 (i.e. (∀y1, y2 ∈ B′j)|(fnj )′(y1)|/|(fnj )′(y2)| ≤ 2) and

|(fnj )′(x)| ≥ exp(njχµ(f)/2).(2.1)

For every (except at most two) z there exists t > 0 depending only on η and
z such that for every w ∈ J we have f t(B(w, η)) 3 z. So for every x as above
we find xj ∈ B′j such that fnj+t(xj) = z and |(fnj )′(xj)|−1 ≥ dist(x, xj)/2η. So
|(fnj+t)′(xj)|−1 ≥ dist(x, xj)/(2η sup |(f t)′|), i.e. condition (ii) holds. Condition
(i) also holds, with, say, 1 + K−1 = exp(χ/2). We conclude that µ-a.e. x belongs
to Λc(f), which by the definition of HDmhyp proves the theorem.

(We have not made use here the property lim supj→∞ nj/j ≤ 2. Taking this into
account would suggest another definition of Λc and Λcw.)

The proof above and the definition (0.2) justify the following definition.

Definition 2.3. x ∈ C̄ is called regular if it satisfies the property (2.1) with a
number χ > 0 (we need not link χ to any measure). We denote the set of regular
points by Λreg(f).

We immediately obtain Λreg(f) ⊂ Λc(f) and HDhyp(J) ≤ HD(Λreg(f)).
(Observe that if the property lim supnj/j ≤ 2 is omitted in (2.1), the above

inclusion still holds. We need this property later, to obtain Λreg(f) ⊂ Λtc(f).)
Recall that our aim is to prove

α(f) = HDmhyp(J) = HDhyp(J) = HD(Λc(f)) = δ(f).(2.2)

To this end in view of Theorems 2.1, 2.2 and (0.3) it only remains to prove
δ(f) ≤ α(f), namely

Theorem 2.4. For every α-conformal measure µ there exists z such that δ(f, z) ≤
α.

Proof. Write On(Crit) :=
⋃n

j=1(Crit). We have µ(On(Crit)) = 0 (otherwise µ(Crit)
= ∞). Notice that for every n ≥ 0∫

J\On(Crit)

P (z, α, n)dµ(z) ≤ 1.(2.3)

We obtain this by cutting a neighbourhood of J into a finite number of topological
discs of boundaries of measure µ equal to 0 containing On(Crit). We consider all
the branches of f−n on each such disc U . For each such branch g we have, by
the definition of conformal measure, µ(g(U)) =

∫
U |g′|αdµ. Finally we sum these

equalities over all the branches and U ’s. (Notice that we cannot assert the equality
in (2.3) because of possible atoms of µ at critical points.)

For every ε > 0 and n, by (2.3)

µ{z : P (z, α, n) ≥ expnε} ≤ exp(−nε).
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So for µ-a.e. z we have lim supn→∞
1
n log P (z, α, n) ≤ ε. Hence there exists z (even

µ-a.e.) such that lim supn→∞
1
n log P (z, α, n) ≤ 0. Hence δ(f) ≤ α by (1.1), the

definition of δ(f).

Remark 2.5. The proof of (2.2) is over in the general case. However in the case
where f is a polynomial for example (or more generally if there exists a completely
invariant basin of attraction to a sink) (for very non-polynomial examples see [P4]),
one wants to consider δ(f, z) for z in the basin, whereas the z produced in the above
proof belongs to J . We succeeded due to our ad hoc definition (1.1), but if we want
to consider only z in the basin, the main theorem in the next section becomes
crucial.

Remark 2.6. The results of this section rely on the equality (0.3), namely on the
quite sophisticated Denker-Urbański construction of a conformal measure with the
exponent α = HDmhyp(J). Now, a posteriori, because δ(f, z) = HDmhyp(J), we
obtain such a measure below, just by modifying slightly the Patterson-Sullivan
construction (see also [DU1]). Unfortunately, without any additional assumptions
on f we do not know where this measure is supported. (We cannot, for example,
exclude the possibility that it is supported by a circle in a Siegel disc S and its
pre-images for iterates of f if z ∈ S.)

Fix z and write δ = δ(f, z). Assume δ < ∞. For all 0 < t ≤ 1 construct a
sequence of positive numbers ϕt(n), n = 0, 1, 2, ..., such that limt↗1 ϕt(n) = ϕ1(n)
and

lim
t↗1

lim sup
n→∞

sup
t≤τ≤1

max{ϕτ (n)/ϕτ (n + 1), ϕτ (n + 1)/ϕτ (n)} = 1;

moreover

P (t) :=
∑

n

ϕt(n)P (z, δ, n) < ∞ for t < 1 and
∑

n

ϕ1(n)P (z, δ, n) = ∞.

To find such sequences, proceed for example as follows. Write an = P (z, δ, n). Note
that lim supn→∞

1
n log an = 0 (see Appendix 2, Prop. A2.2). It is not difficult to

find bn such that bn ≥ an, lim supn→∞
1
n log bn = 0, bn/bn+1 → 1 and there exists

a sequence of integers ni →∞ such that bni = ani for every i. Next define

ϕt(n) = b−1
n P (z, δ, n) · tn.

For t < 1 set

µt =
∑

n

∑
fn(y)=z

Dy · ϕt(n)|(fn)′(y)|−δ/P (t),

where Dy is the Dirac delta measure at y. Finally define µ as a weak* limit of µt

as t ↗ 1. As P (1) = ∞, the measure µ is δ-conformal.
We end this section with the promised definition of Λtc, the set of tree conical

limit points. Recall first, [P3] or [PUZ], that all points of
⋃

n≥0 f−n(z) can be
organized in a geometric coding tree. Briefly: we define a graph T by joining z to
its f -preimages by curves γ1, ..., γd, and next consider all the curves f−n(γj). These
curves are the edges of T , whereas the points of

⋃
n≥0 f−n(z) are the vertices. Each

sequence of symbols β = (β0, β1, ...) for 1 ≤ βn ≤ d = deg f corresponds to a line
of an infinite sequence of edges and vertices in T ; we call this an infinite branch
and denote it by b(β). Now we are in the position to write
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Definition 2.7. x is a tree conical limit point, i.e. x ∈ Λtc(f, z), iff there exist a
branch b(β) converging to x and a sequence of vertices xi ∈ b(β) such that xi and
integers ni satisfy (i), (ii) (from the definition of Λc).

Now recall that the main theorem of [P3], Theorem B, implies that if

lim
n→∞

sup
γ∈Tn

diamγ → 0,

where Tn is the set of all the edges of the n-th generation (i.e. in f−n(
⋃d

j=1 γj)),
then for every µ an f -invariant measure of positive Lyapunov exponent, µ-a.e. x, is
tree conical. (Formally [P3, Th.B] gives only the accessibility along b(β); verifying
(i), (ii) in the proof requires making use of the positive Lyapunov exponent.) This
concerns in fact all the points satisfying (2.1). Thus for Λtc(f) =

⋂
z Λtc(f, z) we

have

Λreg(f) ⊂ Λtc(f).

In the case when f is a polynomial and z ∈ A∞ we can replace b(α) by an
external ray r and write xi ∈ r in Definition 2.7. This concerns simply connected
A∞ as well as non-simply-connected; see [P3, Section 3].

3. On the independence of δ and Λ from z

We rely on the following combinatorial lemma.

Lemma 3.1. There exists C > 0 such that for every set W of n ≥ 0 points in
C̄ and 0 < r < 1/2, for every z1, z2 ∈ C̄ \ B(W, r) there exists a sequence of
discs B1 = B(q1, ρ1), ..., Bk = B(qk, ρk) such that for every j = 1, ..., k each
2Bj := B(qj , 2ρj) is disjoint from W , z1 ∈ B1, z2 ∈ Bk,

⋃k
j=1 Bj is connected and

k ≤ C
√

n
√

log 1/r if n ≥ log 1/r,

k ≤ C log 1/r if n < log 1/r.

Remark 3.2. Another formulation is to replace the number k of discs by the number
of squares in the Whitney covering [Stein] (our proof is in this spirit).

Notice that k is often much larger than the distance dh(z1, z2) in the hyperbolic
metric dh on C̄ \W (suppose #W ≥ 3). If z2 is fixed and the Euclidean distance
z1 to W is r very close to 0, then k is of order log 1/r whereas dh(z1, z2) is of
order log log 1/r. One can replace k by a comparable quantity: the quasi-hyperbolic
distance between z1 and z2 in C̄ \W . See [Po]. k is comparable also to infimum
of hyperbolic distances in simply-connected domains in C \W , see [H, Lemma 3];
however estimates in [H] without square roots are not sufficient for us.

Proof of Lemma 3.1. See Appendix 1.

Theorem 3.3 (Main Theorem). There exists E ⊂ C̄ of Hausdorff dimension 0
such that for every z1, z2 ∈ C̄ \ E and every α ≥ 0 we have P(α) := P(z1, α) =
P(z2, α) and δ := δ(f, z1) = δ(f, z2). Moreover for every z ∈ C̄ we have P(α) ≤
P(z, α) and δ ≤ δ(f, z).

Proof. For every n ≥ 1 set rn = exp(−
√

n). Set bn = B(fn(Crit), rn), E′ =⋂
N

⋃
n>N bn and finally E = E′ ∪ O(Crit), where O(Crit) =

⋃∞
j=1 f j(Crit). We

have HD(E) = 0, because
∑∞

n=1 rε
n < ∞ for every ε > 0 and Crit is finite. Consider

now arbitrary z1, z2 ∈ C̄\E. Then there exists N such that for every n > N , zν /∈ bn
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for ν = 1, 2. Let a = minν=1,2,j=1,...,N dist(f j(Crit), zν). Fix an arbitrary n > N
large enough that r = rn < a. Set W =

⋃n
j=1 f j(Crit). We apply now Lemma 3.1

and consider the discs B1, ..., Bk.
We can assume that the diameters of the Bj are smaller than a constant κ,

depending only on f , so that for all the components of f−n(2Bj) the diameters of
the complements in C̄ are larger than a constant (for this it is sufficient to have κ
smaller than the minimal distance between two distinct points of a periodic orbit
of period at least 3). This influences the constant C in Lemma 3.1. We conclude
that there exists a constant ∆ > 0 (not depending on n) such that the distortion
(see the definition in (2.1)) of all the branches of f−n on each Bj is bounded by ∆.
(This is a variant of Koebe’s distortion theorem; see for example [P5].)

Thus, for every α > 0, using Lemma 3.1 in the case n ≥ log 1/r, and the
inequality

√
n ≥ log 1/r, for n large enough

P (z1, α, n)/P (z2, α, n) ≤ ∆αk ≤ ∆αCn3/4
.

Hence

lim sup
n→∞

1
n

log P (z1, α, n) = lim sup
n→∞

1
n

log P (z2, α, n),

and so P(z1, α) = P(z2, α) and δ(z1) = δ(z2). The first part of the proof is over.
Consider now an arbitrary z ∈ C̄\O(Crit). The following holds, see [P1, Lemma

3]: ∀(0 < ε1 < 1) ∃(C > 0, ε2 > 0) ∀(0 < ε ≤ ε2) ∀(m > 0) the set f−m(z)
contains at least the number C(deg f)ε1m of (m, ε)-separated points. (Recall that
x, y are called (m, ε)-separated if maxj=0,...,m dist(f j(x), f j(y)) ≥ ε.) Now fix ε1 =
3/4 and suppose that m is small enough that 2Lmrn ≤ ε2, where L = sup |f ′|. To
be concrete we set

m = log(ε2/2rn)/ logL = log(ε2/2)/ logL + n1/2/ logL.(3.1)

We calculate how large m need be in order that f−m({z}) 6⊂
⋃n

j=1 B(f j(Crit), rn).
It is sufficient to have

C(deg f)3m/4 > n#(Crit).(3.2)

Indeed, if two distinct points x, y ∈ f−m(z) are in the same disc B(f i(c), rn) for
c ∈ Crit, then their f j, j ≤ m, images are not more than Lm2rn apart, so x and y
are not (m, ε2)-separated.

Observe finally that m defined in (3.1) satisfies (3.2) if n is large enough.
So we have found y ∈ f−m(z) \

⋃n
j=1 B(f j(Crit), rn). Fix z2 ∈ C̄ \ E. For an

arbitrary ε > 0, if n is large enough, P (y, α, n) ≥ (exp−nε)P (z2, α, n) by the first
part of the proof. So

P (z, α, n + m) ≥ L−m(exp(−nε))P (z2, α, n) ≥ (exp(−2nε))P (z2, α, n).

Again using (3.1) namely the fact that m grows much slower than n, we obtain
P(z2, α) ≤ P(z, α) and δ(z) ≥ δ(z2). The theorem is proved.

Theorem 3.4. There exists E ⊂ C̄ of Hausdorff dimension 0 such that for every
z1, z2 ∈ C̄ \ E

Λcw(f) := Λcw(f, z1) = Λcw(f, z2)

and for every z ∈ C̄ which has a backward trajectory omitting Crit, Λcw(f, z) ⊃
Λcw(f).
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Proof. We set E the same as in the proof of Theorem 3.3. Let x ∈ Λcw(f, z1, K),
and let xi be a sequence of fni-preimages of z1 converging to x satisfying (i) and (iii)
in the definition of Λcw. For each n large enough there is a 1-to-1 correspondence
between f−n(z1) and f−n(z2). Namely, each branch of f−n in a neighbourhood of
z1 extends along the chain B1, ..., Bk (see the proof of Theorem 3.1) to z2. So let
xi correspond to x′i ∈ f−ni(z2). We obtain, for ni large enough,

|(fni)′(x′i)|
|(fni)′(xi)|

≥ (1− (2K)−1)ni ;

hence

|(fni)′(x′i)| ≥ (1 + (3K)−1)ni

if K is large enough. We also find that the growth of dist(xi, x
′
i)|(fni)′(x′i)| is slower

than every exponential as ni →∞. So

lim sup
i→∞

log
(
dist(x, x′i) · |(fni)′(x′i)|

)
≤ lim sup

i→∞
log

(
dist(x, xi) · |(fni)′(x′i)|

)
≤ 0.

So x ∈ Λcw(f, z2, 3K).
For an arbitrary z which has a backward trajectory τ omitting Crit we find z1 ∈ τ

such that z1 /∈ O(Crit), and next for every n we find y ∈ f−m(z1) as in the proof
of Theorem 3.3 (i.e. not too close to

⋃n
j=1 f j(Crit)). We can have additionally

|(fm)′(y)| ≥ 1, because most of the points in f−m(z1) satisfy this—see for example
[FLM]. So we can repeat the above estimates, using m/n → 0.

Appendix 1. Proof of Lemma 3.1.

We can assume z1 = −1, z2 = 1 in C. Next we change the coordinates on
the union of the triangles ∆1 with the vertices −1, i,−i and ∆2 with the vertices
1, i,−i by a map Φ to the strip T := {0 ≤ =(z) ≤ 1} as follows: First deform ∆1

to ∆′
1 the domain between the straight rays from −1 through i and −i, and the

arc (containing 0) of the circle with origin at −1 and radius 1. Next map ∆′
1 to

T ∩ {<z ≤ 0} by z 7→ i
2 + 2

π log(z + 1). On ∆2 write Φ = S ◦ Φ ◦ S−1, where S is
the symmetry with respect to the imaginary axis.

The proof of the lemma now reduces to a construction of a “chain of squares”
in T , i.e. a family of squares with a smallest possible number of elements, not
intersecting Φ(W ), whose union joins the interval <z = −m to <z = m for m =
2 log 1/r, with every two adjacent squares in the chain of a comparable size. We
shall use certain triadic squares; see below.

We can assume 2m = 3l, n = 3t for certain non-negative even integers l, t. Write
W ′ = Φ(W ). We can adjust our construction by changing Φ slightly so that no
<z,=z for z ∈ W ′ is rational triadic.

Define inductively a sequence of horizontal strips

Tj = {z : aj · 3−j ≤ =z ≤ (aj + 1) · 3−j},

where T0 = T , such that Tj+1 ⊂ Tj and #(W ′ ∩ Tj) ≤ 3t−j for every j. In
particular, W ′ ∩ Tt+1 = ∅.

Call every interval in [−m, m] of the form [b · 3−v, (b + 1) · 3−v], for an integer b
and a non-negative integer v, triadic or v-triadic. For every v-triadic I denote by
K(I) the square I × Tv. These are the squares we shall use to construct our chain.
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For every v-triadic I we define

ϕ(I) := inf{j ≥ 0 : W ′ ∩ Tj ∩ {<z ∈ I} = ∅}.

We now define by induction certain families of triadic intervals. Let I0 consists
of three (t + 1)-triadic intervals with maximal possible ϕ.

Suppose that a family Ij is already defined and it consists of (t + 1− j)-triadic
intervals. Suppose #Ij = 3j+1. Suppose also that j < t + 1 and 2j − t < l. The
first inequality means that the K(I)’s for I ∈ Ij are not yet of side 1 (the maximal
possible size). The latter means that 3−(t+1−j)3j+1 < 3l, i.e. Ij does not yet cover
the whole segment [−m, m].

We construct Ij+1.
Every I ∈ Ij is contained in a (t − j)-triadic Î. We denote the set of such

intervals Î by I1
j+1 and include it in Ij+1. If I is not adjacent to −m or m and

is not a middle interval of Î, we also include in Ij+1 the (t − j)-triadic interval
adjacent to I. We have up to now in Ij+1 a family I2

j+1 of at most 2 · 3j+1

elements. Complete it to Ij+1 so that #Ij+1 = 3j+2 by (t − j)-triadic intervals
with maximal possible values of ϕ.

For every j write Iad
j for the family of all the (t + 1 − j)-triadic intervals in⋃

{Î : I ∈ Ij} \
⋃
{I ∈ Ij}

We include in our chain of squares joining <z = −m to <z = m all the squares
K(I) for

I ∈ I := I0 ∪
⋃
j

Iad
j−1 ∪

⋃
j

(Ij \ I1
j ).

The unions are over j = 1, ..., (l+ t)/2 if (l+ t)/2 ≤ t+1, i.e. l ≤ t+2, in particular
log 1/r < n. In this case I covers [−m, m]. The number of squares in the chain is
bounded by

∑(l+t)/2
j=0 3j+2 ≤ Const

√
m
√

n, as asserted in the lemma.
In the case l > t + 2 the union is over j = 1, ..., t + 1, and [−m, m] is not yet

covered by the intervals in I. Fortunately all the points of W ′ lie over I ∈ I, so we
just add to the chain an appropriate family of unit squares (0-triadic). The total
number of squares in the chain does not exceed 2m + Const n ≥ Const log 1/r, as
asserted in the lemma.

We end the proof by checking that all our squares are indeed disjoint from
W ′. By induction we prove that for every j and every interval I with interior not
intersecting

⋃
Ij we have ϕ(I) ≤ t− j. In particular, for I ∈ Ij+1 \ I1

j+1 we have
K(I) ∩W ′ = ∅. This will end the proof, by the definition of I.

For j = 0, outside
⋃
{I ∈ I0} we have ϕ ≤ t − 1, which is even better than

demanded. So the same estimate is sufficient outside
⋃
{I ∈ I1}. To build I2 we

added to I2
2 at least nine (t−1)-triadic intervals, so we have exhausted all for which

ϕ > t− 2.
In general, to build Ij we added to I2

j at least 3j (t + 1− j)-triadic intervals, so
among them all for which ϕ > t− j.

Appendix 2. Pressure.

Proposition A2.1. For all α ≥ 0,

P(α) ≥ log deg f − α log sup |f ′|.
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Proposition A2.2. P(z, α) and P(α) are Lipschitz continuous functions of
α ≥ 0.

Proof. If there exists β > 0 such that P(z, β) < ∞, then for every ε1 > 0 one has
P (z, β, n) ≤ expn(P(z, β)+ε1) for n large enough. Hence for every y ∈ f−n(z) one
has |(fn)′(y)|−β ≤ expn(P(z, α)+ ε1), and so |(fn)′(y)| ≥ exp−n(P(z, β)+ ε1)/β.
One has also |(fn)′(y)| ≤ sup |f ′|n. So for every α ≥ 0, ε such that α + ε ≥ 0 and
n large and |ε| ≤ ε0 we have

P (z, α, n) exp
(
−|ε|nD(ε1, z, β)

)
≤ P (z, α + ε, n)

≤ P (z, α, n)
(
exp(|ε|nD(ε1, z, β))

)
,

where D(ε1, z, β) := max{(P(z, β) + ε1)/β, log sup |f ′|}. We conclude that

|P(z, α + ε)− P(z, α)| ≤ |ε|D(z)

where D(z) := inf{D(0, z, β) : P(z, β) < ∞}, and

|P(α + ε)− P(α)| ≤ D|ε0|D(β),

where D = infz D(z). Thus we have proved Lipschitz continuity ∀α ≥ 0.
We have proved also that either (∀α > 0)P(z, α) = ∞ or (∀α > 0)P(z, α)

< ∞.

Proposition A2.3. P(α) is monotone decreasing.

Proof. For z /∈ E (see the proof of Th.3.3), for every n large enough, all the branches
of f−n exist on B(z, rn). Hence, by rn = exp(−

√
n) and by Koebe’s distortion

theorem, there exists C > 0 such that for every y ∈ f−n(z) one has

|(fn)′(y)|−1 ≤ CdiamCompyf−n(B(z, rn/2)/rn ≤ C exp
√

n.

Therefore for all α ≥ 0 and ε ≥ 0 one has

P (z, α + ε, n) ≤ P (z, α, n) sup
fn(y)=z

|(fn)′(y)|−ε ≤ P (z, α, n)Cα exp ε
√

n

and applying lim supn→∞
1
n log to these expressions one gets

P(z, α + ε) ≤ P(z, α).

Recall now the definition of pressure by Denker and Urbański [DU2]:

Definition A2.4. Let V be an open set in J such that V ⊃ Crit ∩ J . Define
K(V ) := J \

⋃
n≥0 f−n(V ). As K(V ) ∩ Crit = ∅, we can consider the standard

topological pressure P(f |K(V ),−α log |f ′|) for the map f |K(V ) and the real contin-
uous function −α log |f ′| on the compact set K(V ) (see [W]). Define

PDU(α) = sup
V
P(f |K(V ),−α log |f ′|),

where the supremum is taken over all V considered above.

Two other definitions are of interest:

Definition A2.5. Hyperbolic pressure:

Phyp(α) := sup
X
P(f |X ,−α log |f ′|),

where the supremum is taken over all f -invariant isolated hyperbolic subsets of J .
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Definition A2.6. Hyperbolic variational pressure

Phypvar(α) := sup
µ
{hµ(f)− α

∫
log |f ′|dµ},

where the supremum is taken over all ergodic f -invariant measures of positive Lya-
punov exponent, i.e. χµ(f) =

∫
log |f ′|dµ > 0.

Definition A2.7. Variational pressure:

Pvar(α) := sup
µ
{hµ(f)− α

∫
log |f ′|dµ},

where the supremum is taken over all ergodic f -invariant measures on J .

Definition A2.8. Minimal conformal eigenvalue:

λ(α) = inf{λ > 0 : ∃µ a probability measure on J with Jacobian λ|f ′|α}.

Here we say ϕ : J → R, ϕ ≥ 0, is Jacobian for µ and f |J if ϕ is µ-integrable
and for every Borel set E ∈ J on which f is injective µ(f(E)) =

∫
E ϕdµ. We

write ϕ = Jacµ(f |J ). (Compare the definition of α-conformal at the end of the
Introduction; there the Jacobian was equal to |f ′|α.)

Theorem A2.9. For every 0 ≤ α ≤ δ(f)

log λ(α) = P(α) = Pvar(α) = Phypvar(α) = Phyp(α) = PDU(α).(A2.1)

All these functions are Lipschitz continuous and monotone decreasing on α ≥ 0.

Sketch of Proof. (It virtually repeats [DU2] and Section 2.)
1. We prove (∀α ≥ 0) P(α) ≥ Phypvar(α). For every µ as in the definition of

Phypvar, for every ε > 0 arbitrarily small and n large enough, one constructs an
(n, ε)-separated set Sn such that∑

y∈Sn

|(fn)′(y)|−α ≥ expn
(
hµ(f)− α

∫
log |f ′|dµ− ε

)
.

(This is Katok’s construction; see for example [PUbook].) One can assume also
that 2.1 holds (for a sequence of n’s) and replace y ∈ Sn by y ∈ f−n−t(z) as in
proof of Theorem 2.2.

2. ∀α ≥ 0 Phypvar(α) = Phyp(α). The ≥ inequality follows from the variational
principle, see [W], and the obvious fact that every f -invariant probability measure
on a hyperbolic set X has positive Lyapunov exponent. The opposite inequality
results from Katok’s construction (the sets Sn above are in fact constructed in
hyperbolic sets).

3. If PDU(α) > 0 then Phypvar(α) ≥ PDU(α). For every ε > 0 one can find,
by the variational principle, an ergodic f -invariant µ on K(V ) such that hµ(f) −
α

∫
log |f ′|dµ > P (f |K(V ),−α log |f ′|)− ε. For ε small enough the latter expression

is positive, and
∫

log |f ′|dµ ≥ 0 by [P2] or [DU2, Cor. 4.2]. Hence hµ(f) and
therefore

∫
log |f ′|dµ are strictly positive; see [R] or [PUbook, Ch.8.1].

4. If Pvar(α) > 0, then Pvar(α) = Phypvar(α): Indeed, as in 3, if hµ(f) −
α

∫
log |f ′|dµ > Pvar(α)−ε then for ε small enough this is positive. As

∫
log |f ′|dµ ≥

0, by [P2], we obtain hµ(f) and therefore
∫

log |f ′|dµ strictly positive. Hence
Phypvar(α) ≥ Pvar(α) − ε for every ε > 0.
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5. We prove that for every 0 ≤ α < δ(f) there exists a sequence of decreasing
Vn’s such that P(f |K(Vn),−α log |f ′|) > 0 and limn→∞ P(f |K(Vn),−α log |f ′|) ≥
log λ(α). In particular, PDU(α) > 0 and PDU(α) ≥ log λ(α).

Take Vn of the form
⋃

j≥0 f−j(V̂n), where V̂n is a union of small discs B(xc, rn)
for a distinguished point xc in the ω-limit set for each c ∈ Crit ∩ J . One can
choose xc so that there exists C > 0 such that for a sequence jk → ∞ we have
|(f jk)′(xc)| ≥ C, [P2]. Hence [DU2, Lemma 5.4] for rn ↘ 0 there exists a sequence
of measures µn on K(Vn) with Jacobians

Jacµn(f |K(Vn)) = λn|f ′|α

for 1 ≤ λn ≤ expP(f |K(Vn),−α log |f ′|) on K(Vn) \ ∂V̂n Here we mean that |f ′|α

is µn-integrable on K(V ) such that for every Borel E ⊂ K(Vn)\∂V̂n on which f

is injective, µ(f(E)) =
∫

E λn|f ′|αdµ. Moreover for every E ∈ ∂V̂n on which f is
injective we have

µn(f(E)) ≥ λn

∫
E

|f ′|αdµn.(A2.2)

A weak* limit µ = limnk→∞ µnk
has Jacobian in the sense of Definition A2.8

satisfying

Jacµ(f |J ) = λ|f ′|α

for λ = lim λnk
. We have made use here of the fact that µ has no atoms at f(xc),

because lim inf λn ≥ 1 and
∑

j |(f j)′(xc)|α = ∞. Such atoms would cause troubles
with an estimate of the Jacobian (see [DU2]) because the ∂V̂n accumulate at xc and
we have only an inequality in (A2.2), and so only an inequality for µ for E = {xc}.

We have applied here P(f |K(Vn),−α log |f ′|) > 0. If this were not true, we would
find αn ≤ α such that 1/n > P(f |K(Vn),−αn log |f ′|) > 0, and the above construc-
tion would give a β-conformal measure with exponent β ≤ α. Then, however, by
(2.2) (Th. 2.4), δ(f) ≤ β ≤ α < δ(f), contradiction.

We have also made use here of the inequality λ < ∞, true because the
P(f |K(Vn),−α log |f ′|) were upper bounded by P(α) due to the already proved
1–3.

6. ∀α ≥ 0 log λ(α) = P(α). Indeed, if Jacµ(f |J ) = λ|f ′|α then we find z for
which P(z, α) ≤ log λ as in the proof of Theorem 2.4. Hence P(α) ≤ log λ(α). The
opposite inequality follows already from 1–5 for α < δ(f). For an arbitrary α ≥ 0
one can construct µ with Jacobian expP(z, α) by the Patterson-Sullivan method
as in Remark 2.6.

7. The Lipschitz continuity and monotone decrease of Pvar(α), Phypvar(α),
Phyp(α) and PDU(α) follow from the definitions (variational principle) and from
the fact that 0 ≤

∫
log |f ′| dµ ≤ sup |f ′| for every invariant probability measure µ

on J [P2]. Therefore (A2.1) extends from α < δ to α = δ.

Corollary A2.10. P(α) is a strictly decreasing, convex function on 0 ≤ α ≤ δ(f).

Proof. This is so for the affine function hµ(f)−α
∫

log |f ′|dµ for each µ of positive
Lyapunov exponent, so the supremum over the µ’s, namely Phypvar(α), is monotone
decreasing and convex. As this attains 0 at δ(f), the convexity implies it is strictly
decreasing. One can proceed also directly. Proposition A2.3 gives monotonicity
and Schwarz inequality gives convexity just from the definition of P(α).
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Remark A2.11. The equalities (A2.1) immediately yield the equalities (2.2). Name-
ly, the least zeros of log λ(α),P(α),Phypvar(α),Phyp(α) are equal to α(f), δ(f),
HDmhyp(J), HDhyp(J), respectively.

Appendix 3. Some properties of Λc, Λcw

and other definitions of “conical”.

After distributing the first version of this paper I was asked about a relation
between the definitions of “conical limit set” in the recent preprints [LM], [U2],
[DMNU] and my definitions. In [U2] and [DMNU] x is called conical if there
exists η > 0 and a sequence of integers nj → ∞ such that each fnj is injective
on Compxf−nj (B(fnj (x), η)) (Compx means the component containing x). We
denote the set of points “conical” in this sense by ΛU(f).

Of course ΛU(f) ⊃ Λreg(f).
Suppose that f has no critical points in J but the set P of periodic parabolic

points (fk(p) = p, (fk)′(p) is a root of unity) is non-empty. Then J = ΛU(f) ∪⋃
n≥0 f−n(P ) and ΛU(f) ∩

⋃
n≥0 f−n(P ) = ∅. This is similar to the geometrically

finite Kleinian groups case; see [Maskit, VI.C.3]. This was in fact a motivation for
the definition of ΛU(f) in [U2]. Unfortunately this is not so for Λcw.

Proposition A3.1. For each f with no critical points in J , when P 6= ∅ there
exist points which are neither in

⋃
n≥0 f−n(P ) nor in Λcw(f).

Proof. Consider a finite Markov partition of J , attribute the symbol 0 to all its cells
whose closures contain a periodic parabolic point p, and attribute other symbols
to other cells. For each x ∈ J choose a sequence aj(x) of symbols so that each is
attributed to a cell whose closure contains f j(x). We prove that if

lim
n→∞

#{0 ≤ j < n : aj(x) = 0}/n = 1,(a)

then x /∈ Λcw(f, z).
Indeed, suppose y = xi satisfy (i), (iii) for n = ni. Hence for a constant 0 < A <

1, for n large enough, dist(x, y) ≤ An. We shall prove that in consequence

dist(fn(x), fn(y)) ≤ Bndist(x, y),(b)

where B ↘ 1 as n → ∞. Indeed, join x to y by an interval I. Fix an arbitrary
B with A−1 > B > 1. By (a), since |f ′| ≈ 1 near P , there exists n(B) such that
for every t ≥ n(B) we have |(f t)′(x)| ≤ (

√
B)t and for every w ∈ J, v ∈ C with

dist(w, v) ≤ (AB)n(B) we have |f ′(v)|/|f ′(w)| <
√

B. Suppose that (b) fails and
j (with n(B) ≤ j ≤ n) is the first integer such that there exists z ∈ I satisfying
dist(f j(x), f j(z)) > Bjdist(x, z). In particular, for every n(B) ≤ j′ < j and
v ∈ [x, z] we have dist(f j′

(x), f j′
(v)] ≤ Bj′

An ≤ (AB)n ≤ (AB)n(B). We also have
dist(f j′

(x), f j′
(v)] ≤ (AB)n(B) for 0 ≤ j′ < n(B) provided An is small, i.e. n is

large enough. Hence

dist(f j(x), f j(z)) ≤
∫

[x,z]

|(f j)′(v)|dv ≤ (
√

B)j(
√

B)jdist(x, z) = Bjdist(x, z),

a contradiction. So (b) has been proved.
We conclude from (a) and (b) that |(fn)′(y)| ≤ ConstBn with B ↘ 1, which

contradicts (i).
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(I thank M. Urbański for a simplification.)
We conclude that ΛU(f) 6⊂ Λcw(f).
Clearly the sets ΛU(f), Λc(f, z) and Λcw(f, z) are forward invariant.
For our Λ’s also the backward invariance holds (unlike for ΛU—see for example

the paragraph preceding Definition A3.5).

Proposition A3.2. For every rational f and every non-exceptional z (in the sense
of Theorem 3.1), f−1(Λc) = Λc and f−1(Λcw) = Λcw.

Proof. Suppose x = f(x′) ∈ Λc(f, z). Assume x′ ∈ Crit(f), as for x′ non-critical
x′ ∈ Λc(f, z) follows immediately. Let xi be points approximating x according to
Definition 1.2. Then, as z /∈ E, there exists a branch of f−ni on B(z, exp(−√ni))
mapping z to xi, for ni large enough. So by bounded distortion dist(x, xi) ≥
Const|(fni)′(xi)|−1 exp(−√ni). Hence, for x′i the f -preimage of xi, near x′, we
obtain

|(fni+1)′(x′i)|−1 ≤ Const(1 + K−1)−(1/ν)ni exp((1− 1/ν)
√

ni),

so (i) holds for x′ with x′i, ni + 1 for i large enough (and new K). Here ν is the
multiplicity of f at x′.

The property (ii) for x′ follows immediately from

|f ′(x′i)|−1 ≥ dist(x′, x′i)
2νdist(x, xi)

.

The proof for Λcw is similar.

The following rational maps are of interest (see [PR]).

Definition A3.3. f is called topological Collet-Eckmann if there exist M, N, η > 0
such that for every x ∈ J

∃nj →∞, nj ≤ Nj, such that each fnj has degree

at most M on Compxf−nj B(fnj (x), η).
(A3.1)

(Recall that Compx means the component containing x.)

Proposition A3.4. For every rational f , every x ∈ J(f), for which there exist
M, N, η > 0 such that (A3.1) is satisfied, is conical. More precisely, x ∈ Λc(f, z)
for every z /∈ O(Crit). In particular, if f is topological Collet-Eckmann, then
J(f) = Λc(f).

Proof. It follows from the proof of [PR, Prop.3.1] that there exist 0 < ξ < 1, η > 0
and a sequence of integers nj →∞ such that for each

Wj :=Compxf−nj(B(fnj (x), η))

we have together with (A3.1) also

diamWj ≤ ξnj .(A3.2)

Due to (A3.1) we can also assume, taking η small enough, that all fk(Wj), k =
0, 1, ..., nj, have small diameters. See [M].

(In [P3, Lemma 3.6], it has been proved that (A3.2) holds for all n.)
Fix an arbitrary n = nj . We claim that there exists a disc D ⊂ B(fn(x), η) of

diameter at least Aη for a constant A depending only on M such that there exists
y ∈ W ∩ f−n(D) satisfying

|(fn)′(y)| ≥ Aξ−n(A3.3)
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and

dist(x, y) ≤ A−1|(fn)′(y)|−1.(A3.4)

Indeed, there exists an integer 0 ≤ k ≤ M such that the annulus

B(fn(x), η
k + 1
M + 1

) \B(fn(x), η
k

M + 1
)

does not contain any critical value for fn|W . We choose D an arbitrary disc in the
annulus

B(fn(x), η
3k + 2

3(M + 1)
) \B(fn(x), η

3k + 1
3(M + 1)

).

Denote W ′ = Compxf−n(B(fn(x), η(3k +2)/3(M +1))) and fix y ∈ W ′ ∩ f−n(D).
Let 0 = m0 < m1 < m2 < ... < mM ′ = n be all consecutive integers such that
fmt(W ′) contains an f -critical point, except maybe t = 0 and t = M ′. (Observe
that M ′ ≤ M(deg f) + 1.) Then for every mt, t < M ′, we have

diamfmt+1(W ′)
diamfmt+1(W ′)

≈ |fmt+1−mt−1)′(fmt+1(y))|−1(A3.5)

and
diamfmt(W ′)

diamfmt+1(W ′)
≈ |f ′(fmt(y))|−1.(A3.6)

Here ≈ means the ratios of the left and right sides, and vice versa, are bounded by
a constant depending only on M . The former ≈ follows from bounded distortion;
the latter holds because the distance of fmt+1(y) from f(Crit(f) ∩ fmt(W ′)) is at
least Ctdiamfmt+1(W ′) for a constant Ct > 0.

Combining (A3.5) and (A3.6) over all t, we obtain for a constant A > 0

A diamW ′ ≤ |(fn)′(y)|−1η ≤ A−1diamW ′.(A3.7)

The right inequality together with (A3.2) gives (A3.3). The left inequality in (A3.7)
immediately gives (A3.4).

(The above proof is only sketched. A precise proof needs induction over decreas-
ing t’s to control distortion, and constants Ct. For details see [P5, proof of L.1.4,
(1.4)]; though only the left inequality in (A3.7) is proved there, the technique is the
same.)

It is known that there exists k, depending only on z and on the diameter of D
(i.e. on η and M), such that fk(D) 3 z. So for every nj we could choose y with
fnj+k(y) = z. Moreover, |(fk)′(fnj (y))| > Const > 0 (because z /∈ O(Crit)). This
and (A3.3) give (i) for nj +k. The upper bound for |(fk)′| and (A3.4) give (ii).

Notice that this proposition, (2.2) and [PR, L.2.2] imply for f Collet-Eckmann
that HDhyp(J) = HD(J).

(Thus we have obtained a new proof of a part of [P5, Th.A]. Recall that f is
called Collet-Eckmann if for every c ∈ Crit ∩ J , whose forward trajectory does not
meet other critical points, |(fn)′(f(c))| grows exponentially fast as n → ∞. [PR,
L.2.2] says that Collet-Eckmann implies topological Collet-Eckmann.)

Notice that, by Proposition A3.4, if f is topological Collet-Eckmann with Crit∩
J 6= ∅, then Λc(f) 6⊂ ΛU(f).

This is so because, by the definition, c /∈ ΛU.
Recall [CJY] that f is called semi-hyperbolic if it has no recurrent critical points

and no parabolic periodic points. This class of maps is contained in the class of
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topological Collet-Eckmann maps. It follows from [U1] that if f is semi-hyperbolic,
then all points in J except

⋃
n≥0 f−n(Crit) belong to ΛU(f). So ΛU(f) is not

backward invariant.
M. Lyubich and M. Minsky’s conical limit set, defined in [LM], which we denote

by ΛLM, has a complicated definition and we shall not rewrite it here. Instead, let
us introduce the following notion:

Definition A3.5. We call x ∈ J strong LM-conical if there exist η, M > 0 and
sequences of integers nj → ∞, ki → ∞ and i(j) → ∞ such that for every nj and
i = 1, ..., i(j) the map fnj−ki has degree bounded by M on the set

Compxf−(nj−ki)(B(fnj−ki(x), η)).

Denote the set of all strong LM-conical points by ΛsLM(f)
One can show that ΛsLM(f) ⊂ ΛLM(f). In [LM], x together with a backward

trajectory x̂ with “parabolic global unstable leaf” is considered. Note that such a
x̂ always exists. Just take x̂ coverging to a repelling periodic orbit.

By [LM, Prop. 8.8 and L.8.4], if f is semi-hyperbolic, then ΛLM(f) = J . It is
easy to see that if x satisfies (A3.1) then x is strong LM-conical. Thus we obtain
ΛLM(f) = J for every topological Collet-Eckmann map f .

Along the way we obtain also ΛLM(f) ⊃ ΛsLM(f) ⊃ Λreg(f).
Notice finally that, similarly to Λcw(f), one has

HD(ΛU(f)) = HD(ΛLM(f)) = HDhyp(J)(A3.8)

HD(ΛU(f)) = HDhyp(J) follows from HD(ΛU(f)) ≤ α for every α-conformal
measure; see [U2] and [DMNU] (and from (2.2): α(f) ≤ HDhyp(J), ΛU(f) ⊃
Λreg(f) and HDhyp(J) ≥ HD(Λreg(f))).

This follows, however, as well as the second equality in (A3.8), from Proposition
A3.7 below.

Definition A3.6. We say that x ∈ ΛLM1(f) if there exist η, M > 0 and a se-
quence of integers nj → ∞ such that each fnj has degree bounded by M on
Compxf−nj (B(fnj (x), η)).

Of course ΛLM1(f) ⊃ ΛU(f), and by [LM, Prop.8.7] ΛLM1(f) ⊃ ΛLM(f).

Proposition A3.7. HD(ΛLM1(f)) ≤ α(f). Hence HD(ΛLM1(f)) = HDhyp(J).

Proof. The inequality follows as in [P5, Proof of Th. A] from µ(B(x, rj)) ≥ Constrα
j

for x ∈ ΛLM1(f) for µ any α-conformal measure and rj = rj(x) → 0 as j → ∞.
Const depends on M only. The latter inequality uses bounded distortion for finite
criticality as [P5, L.1.4].

Question. Is every conformal measure µ on Λc(f) ergodic? Is µ unique, provided
it has no atoms at critical points?

Added in proof

Recently the same estimate as in our Lemma 3.1 with an estimate for C was
proved by R. R. Hall and W. K. Hayman in the preprint “Successive ordinates of
the zeros of the Riemann zeta function”.
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