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Density of periodic sources in the boundary of a basin of
attraction for iteration of holomorphic maps:

geometric coding trees technique

by

F. P r z y t y c k i and A. Z d u n i k (Warszawa)

Abstract. We prove that if A is a basin of immediate attraction to a periodic at-
tracting or parabolic point for a rational map f on the Riemann sphere, then the periodic
points in the boundary of A are dense in this boundary. To prove this in the non-simply
connected or parabolic situations we prove a more abstract, geometric coding trees version.

Introduction. Let f : C→ C be a rational map of the Riemann sphere
C. Let J(f) denote its Julia set. We say a periodic point p of period m is
attracting (a sink) if |(fm)′(p)| < 1, repelling (a source) if |(fm)′(p)| > 1 and
parabolic if (fm)′(p) is a root of unity. We say that A = Ap is an immediate
basin of attraction to a sink or a parabolic point p if A is a component of
C \ J(f) such that fnm|A → p as n → ∞ and p ∈ Ap for p attracting, and
p ∈ ∂A for p parabolic.

We shall prove the following fact, which answers a question posed by
G. Levin:

Theorem A. If A is a basin of immediate attraction for a periodic at-
tracting or parabolic point for a rational map f : C → C then the periodic
points contained in ∂A are dense in ∂A.

The classical Fatou–Julia theorem says that the periodic sources are
dense in J(f). However, these periodic sources could only converge to ∂A,
without being in ∂A.
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The density of periodic points in Theorem A immediately implies the
density of periodic sources because for every rational map there are only
finitely many periodic points which are not sources and the Julia set has no
isolated points.

We remark that just the existence of some periodic points in ∂A was
proved by Fatou [F, p. 81] and Pommerenke [Po]. In fact, every periodic
branch of a geometric coding tree in A (see Section 2 for the definition)
converges to a periodic point.

The idea of proving Theorem A using Pesin’s theory and Katok’s proof of
the density of periodic points [K], showing that f−n(B(x, ε)) ⊂ B(x, ε) for
some branches of f−n, is also too crude. The problem is that the resulting
fixed point for fn in B(x, ε) could be outside ∂A. However, this gives a hint
for a correct proof. We shall consider points in ∂A together with “tails”,
some curves in A along which these points are accessible. (We say x ∈ ∂A is
accessible from A if there exists a continuous curve γ : [0, 1]→ C such that
γ([0, 1)) ⊂ A and γ(1) = x. We then also say that x is accessible along γ.)

Thus we shall in fact prove something stronger than Theorem A:

Complement to Theorem A. The periodic points in ∂A accessible
from A along f -invariant finite length curves are dense in ∂A.

If f is a polynomial (or a polynomial-like map) then it follows automat-
ically that these periodic points are accessible along external rays. See [LP]
for the proof and for the definition of external rays in the case where A is
not simply connected.

It is an open problem whether all periodic sources in ∂A are accessible
from A (see [P3] for a discussion of this and related problems). It was proved
that this is so in case f is a polynomial and A is the basin of attraction to
∞ in [EL], [D], and later in [Pe], [P4] in more general situations: for f any
rational function and A a completely invariant (i.e. f−1(A) = A) basin of
attraction to a sink or a parabolic point.

The paper is organized as follows: In Section 1 we shall prove Theorem A
directly for A simply connected and p attracting. In Section 2 we shall
introduce a more general point of view: geometric coding trees, studied and
exploited already in [P1], [P2], [PUZ] and [PS], and formulate and prove
Theorems B and C in the trees setting, which easily yields Theorem A.

1. Theorem A for A simply connected and p attracting. First let
us state a lemma which belongs to Pesin’s theory.

Lemma 1. Let (X,F , ν) be a measure space with a measurable automor-
phism T : X → X. Let µ be a probability ergodic f-invariant measure on a
compact set Y in the Riemann sphere, for f a holomorphic mapping from
a neighbourhood of Y to C keeping Y invariant , with positive Lyapunov
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exponent , i.e. χµ(f) :=
∫

log |f ′| dµ > 0. Let h : X → Y be a measurable
mapping such that h∗(ν) = µ and h ◦ T = f ◦ h a.e. Then for ν-almost
every x ∈ X there exists r = r(x) > 0 and univalent branches Fn of f−n

on B(h(x), r) for n = 1, 2, . . . for which Fn(h(x)) = h(T−n(x)). Moreover ,
for every λ with exp(−χµ(f)) < λ < 1 (not depending on x) and a constant
C = C(x) > 0,

|F ′n(h(x))| < Cλn and
|F ′n(h(x))|
|F ′n(z)| < C

for every z ∈ B(h(x), r), n > 0 (distances and derivatives in the Riemann
spherical metric on C).

Moreover , r and C are measurable functions of x.

Let R : D → Ap be a Riemann mapping such that R(0) = p. Define
g := R−1 ◦ f ◦ R on D. We know that g extends holomorphically to a
neighbourhood of clA and is expanding on ∂A (see [P2]). (In fact, g is a
finite Blaschke product, because we assume in this section that f is defined
on the whole A; see [P1]. However, we only need the assumption that f is
defined on a neighbourhood of ∂A as in [P2].)

For every ζ ∈ ∂D, every 0 < α < π/2 and every % > 0 consider the cone

Cα,%(ζ) := {z ∈ D : |Arg ζ −Arg(ζ − z)| < α, |ζ − z| < %} .
In the sequel we shall need the following simple

Lemma 2. There exist %0 > 0, C > 0 and 0 < α0 < π/2 such that
for every % ≤ %0, n ≥ 0, ζ ∈ ∂D and every branch Gn of g−n on the disc
B(ζ, %0) the following inclusion holds:

Gn({z ∈ D : z = tζ, 1− t < %}) ⊂ Cα0,C%(Gn(ζ)) .

R e m a r k. Considering an iterate of f and g we can assume that C = 1,
because above we can write in fact Cα0,Cξn% for some 0 < ξ < 1.

P r o o f o f T h e o r e m A f o r a s i m p l y c o n n e c t e d b a s i n o f
a s i n k. Keep the notation of this section: A the basin of attraction to a
fixed point, a sink p, R : D→ A a Riemann mapping and g the pull-back of
f extended beyond ∂D, just a finite Blaschke product.

Consider µ := R∗(l), where R denotes the radial limit of R and l is the
normalized length measure on ∂D. In fact, µ is the harmonic measure on ∂A
viewed from p. This measure is ergodic f -invariant and χµ(f) = χl(g) > 0
(see [P1, P2]). Also supp µ = ∂A.

Indeed, for every ε > 0, x ∈ ∂A and xn ∈ A such that xn → x we have
for harmonic measures: ω(xn, B(x, ε)) → 1 6= 0. But the measures ω(p, ·)
and ω(xn, ·) are equivalent, hence ω(p,B(x, ε)) > 0.

We shall not use the assumption that µ is a harmonic measure any more;
we only use the above-mentioned properties.
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From the existence of the nontangential limit R of R a.e. [Du] it follows
easily that for all ε > 0, 0 < α < π/2 and % > 0 there exists Kε ⊂ ∂D such
that l(Kε) ≥ 1− ε and for all ζ ∈ Kε,

R(z)→ R(ζ) uniformly as z → ζ, z ∈ Cα,%(ζ) .

Namely, for every δ1 > 0 there exists δ2 > 0 such that for every ζ ∈ Kε if
z ∈ Cα,δ2(ζ) then dist(R(z), R(ζ)) < δ1, distance in the Riemann spherical
metric on C.

Consider the inverse limit (the natural extension in Rokhlin’s terminol-
ogy [Ro]) (∂̃D, B̃, l̃, g̃) of (∂D,B, l, g). Here B stands for the Borel σ-algebra.
Recall [Ro] that the natural extension can be defined as the space of all g-
trajectories (ζn), n = . . . ,−1, 0, 1, . . . (or equivalently backward trajectories:
n = . . . ,−1, 0) with the shift map g̃((ζn)) = (ζn+1). Define πj((ζn)) = ζj .
Then the σ-algebra B̃ is defined to be generated by all sets π−1

j (A) for A ∈ B.

The measure l̃ satisfies l̃(π−1
j (A)) = l(A). (In our case B̃ is just the Borel

σ-algebra in the topological inverse limit ∂̃D.)
By Lemma 1 applied to (∂̃D, B̃, l̃), to the automorphism g̃, the map

h = R ◦ π0, Y = ∂A and f our rational map, there exist constants C, r > 0,
this time not depending on x, and a measurable set K̃ ⊂ ∂̃D such that
l̃(K̃) ≥ 1 − 2ε, K̃ ⊂ π−1

0 (Kε) and for every g-trajectory (ζn) ∈ K̃ the
assertion of Lemma 1 holds with the constants C and r.

Let t = t(r) > 0 be such that for every ζ ∈ Kε and z ∈ Cα,t(ζ) we have

(1) dist(R(z), R(ζ)) < r/3 .

We additionally assume that t < %0 from Lemma 2. Also the α is α0

from Lemma 2.
By the Poincaré Recurrence Theorem for g̃, for a.e. trajectory (ζn) ∈ K̃

there exists a sequence nj →∞ as j →∞ such that

(2) ζ−nj = π0g̃
−nj ((ζn))→ ζ0

and g̃−nj ((ζn)) ∈ K̃, hence

(3) ζ−nj ∈ Kε .

Indeed, we can take a sequence of finite partitions Aj of π0(K̃) such that
the maximal diameters of sets of Aj converge to 0 as j →∞. Almost every
(ζn) ∈ K̃ is in

⋂
j π
−1
0 (Aj) where Aj ∈ Aj and there exists nj such that

g̃−nj ((ζn)) ∈ π−1
0 (Aj).

For a.e. (ζn) ∈ K̃ fix N = N((ζn)) such that

(4) ζ−N ∈ B(ζ0 , t(r) sinα) ,

N arbitrarily large.
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Denote by GN the branch of g−N such that GN (ζ0) = ζ−N . By Lemma 2,
GN (τζ0) ∈ Cα,t(ζN ) for every 1− t < τ < 1.

By (4) there exists 1−t < τ0 < 1 such that τ0ζ0 ∈ Cα,t(ζ−N ) (see Fig. 1).

Fig. 1

By (3) we can apply (1) to ζ = ζ−N . Thus by (1) applied to z = τ0ζ0,
ζ = ζ0 and ζ = ζ−N we obtain

dist(R(ζ−N ) , R(ζ0)) < 2
3r .

So, if N has been taken large enough, we obtain by Lemma 1 for the
branch FN of f−N appearing in the statement of Lemma 1,

(5) FN (B(R(ζ0) , r)) ⊂ B(R(ζ−N ), r/3) ⊂ B(R(ζ0) , r)

(see Fig. 2).

Fig. 2
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Moreover, FN is a contraction, i.e. |(FN |B(R̄(ζ0),r))
′| < CλN < 1.

The interval I joining τ0ζ0 and GN ((1− t)ζ0) is in Cα,t(ζ−N ), hence

R(I) ⊂ B(R(ζ−N ) , r/3) ⊂ B(R(ζ0) , r) .

By the definitions of FN , GN we have R ◦GN = FN ◦R at ζ0. To prove this
equality on [(1 − t)ζ0, ζ0] we must know that for f−N we really have the
branch FN . But this is indeed the case because the maps involved are con-
tinuous on the domains under consideration and [(1− t)ζ0, ζ0] is connected.
So

(6) FN (R(1− t)ζ0) = RGN ((1− t)ζ0) .

Let γ be the concatenation of the curves R([(1 − t)ζ0, τζ0]) and R(I).
By (6) it joinsR((1−t)ζ0) to FN (R((1−t)ζ0)) and lies entirely inB(R(ζ0), r).
Let Γ be the concatenation of the curves γ, FN (γ), F 2

N (γ), . . . Then one end,
say a, of Γ is in ∂A and Γ is periodic of period N (Γ makes sense by (5)).
Moreover,

lengthΓ ≤
∑

n≥0

Cλn length γ <∞ .

We have dist(a,R(ζ0)) < r. Because suppµ = ∂A and ε and r can be
taken arbitrarily close to 0, this proves the density of the periodic points
in ∂A.

2. Geometric coding trees: completion of the proof of Theo-
rem A. We shall prove a more abstract and general version of Theorem A
here. This will allow us to deduce Theorem A immediately in the parabolic
and non-simply connected cases.

Let U be an open connected subset of the Riemann sphere C . Consider
any holomorphic mapping f : U → C such that f(U) ⊃ U and f : U → f(U)
is a proper map. Define Crit f = {z : f ′(z) = 0}, the set of critical points
for f . Suppose that Crit f is finite. Consider any z ∈ f(U). Let z1, . . . , zd

be some of the f -preimages of z in U where d ≥ 2. Consider smooth curves
γj : [0, 1] → f(U), j = 1, . . . , d, joining z to zj respectively (i.e. γj(0) = z,
γj(1) = zj), such that in

⋃d
j=1 γ

j there are no critical values for iterations
of f , i.e. γj ∩ fn(Crit f) = ∅ for every j and n > 0.

Let Σd := {1, . . . , d}Z+
denote the one-sided shift space and σ the shift

to the left, i.e. σ((αn)) = (αn+1). For every sequence α = (αn)∞n=0 ∈ Σd we
define γ0(α) := γα0 . Suppose that for some n ≥ 0, for every 0 ≤ m ≤ n,
and all α ∈ Σd, the curves γm(α) are already defined. Suppose that for
1 ≤ m ≤ n we have f ◦ γm(α) = γm−1(σ(α)), and γm(α)(0) = γm−1(α)(1).

Define the curves γn+1(α) so that the previous equalities hold by taking
suitable f -preimages of the curves γn. For every α ∈ Σd and n ≥ 0 set
zn(α) := γn(α)(1).
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For every n ≥ 0 denote by Σn = Σd
n the space of all sequences of

elements of {1, . . . , d} of length n + 1. Let πn denote the projection πn :
Σd → Σn defined by πn(α) = (α0, . . . , αn). As zn(α) and γn(α) only depend
on (α0, . . . , αn), we can consider zn and γn as functions on Σn.

The graph T (z, γ1, . . . , γd) with the vertices z and zn(α) and edges γn(α)
is called a geometric coding tree with root at z. For every α ∈ Σd the
subgraph composed of z, zn(α) and γn(α) for all n ≥ 0 is called a geometric
branch and denoted by b(α). The branch b(α) is called convergent if the
sequence γn(α) converges to a point in clU . We define the coding map z∞ :
D(z∞)→ clU by z∞(α) := limn→∞ zn(α) on the domain D = D(z∞) of all
α’s for which b(α) is convergent.

(This convergence is called in [PS] strong convergence. In the previous
papers [P1], [P2], [PUZ] we mainly considered convergence in the sense that
zn(α) converges to a point, but here we shall need the convergence of the
edges γn.)

In the sequel we also need the following notation: for each geometric
branch b(α) denote by bm(α) the part of b(α) starting from zm(α), i.e.
consisting of the vertices zk(α), k ≥ m, and of the edges γk(α), k > m.

The basic theorem concerning convergence of geometric coding trees is
the following

Convergence Theorem. 1. Every branch except branches in a set of
Hausdorff dimension 0 in the standard metric on Σd, is convergent (i.e.
HD(Σd \ D) = 0). In particular , for every Gibbs measure νϕ for a Hölder
continuous function ϕ : Σd → R, νϕ(Σd \D) = 0, so the measure (z∞)∗(νϕ)
makes sense.

2. For every z ∈ clU , HD(z−1
∞ ({z})) = 0. Hence for every νϕ the en-

tropies satisfy hνϕ(σ) = h(z∞)∗(νϕ)(f) > 0 (provided we assume that there
exists a continuous extension f of f to clU).

The proof of this theorem can be found in [P1] and [P2] under some
stronger assumptions (slow convergence of fn(Crit f) to γi as n → ∞). To
obtain the above version one should also rely on [PS] (where even fn(Crit f)
∩ γi 6= ∅ is allowed).

Recently (see [P4]), a complementary fact was proved. In case f is a
rational map on the Riemann sphere, U is a completely invariant basin of
attraction to a sink or a parabolic periodic point and the condition (i) (see
statement of Theorem C below) is satisfied, this fact can be formulated as
follows:

3. Every f -invariant probability ergodic measure µ, of positive Lyapunov
exponent , supported by ∂U is the (z∞)∗-image of a probability σ-invariant
measure on Σd.
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Suppose, in Theorems B, C which follow, that the map f extends holo-
morphically to a neighbourhood of the closure of the limit set Λ of a tree,
Λ = z∞(D(z∞)). Then Λ is called a quasi-repeller (see [PUZ]).

Theorem B. Let Λ be a quasi-repeller for a geometric coding tree
T (z, γ1, . . . , γd) for a holomorphic map f : U → C. Then for every Gibbs
measure ν for a Hölder continuous function ϕ on Σd, the periodic points in
Λ for the extension of f to Λ are dense in supp(z∞)∗(ν).

This is all we can prove in the general case. In the next theorem we shall
introduce additional assumptions.

Define

Λ̂ := {all limit points of the sequences zn(αn), αn ∈ Σd, n→∞} .
Theorem C. Suppose we have a tree as in Theorem B which additionally

satisfies the following conditions for every j = 1, . . . , d:

(i) γj ∩ cl
⋃
n>0 f

n(Crit f) = ∅,
(ii) there exists a neighbourhood U j ⊂ f(U) of γj such that

Vol f−n(U j)→ 0

where Vol denotes the standard Riemann measure on C.

Then the periodic points in Λ for f are dense in Λ̂.

Theorem C immediately follows from Theorem B if we prove the follow-
ing:

Lemma 3. Under the assumptions of Theorem C (except that we need
not assume that f extends to f), for every Gibbs measure ν on Σd we have
supp(z∞)∗(ν) = Λ̂.

P r o o f. The proof is a minor modification of the proof of the Convergence
Theorem, part 1, but for completeness we give it here.

Let U j and U ′j be open connected simply connected neighbourhoods of
γj for j = 1, . . . , d respectively, such that clU ′j ⊂ U j , U j∩cl

⋃
n>0 f

n(Crit f)
= ∅ and (ii) holds.

By (ii), ε(n) := Vol f−n(
⋃d
j=1 U

j)→ 0 as n→∞.
Define ε′(n) = supk≥n ε(n). We have ε′(n)→ 0.
Denote the components of f−n(U j) and of f−n(U ′j) containing γn(α),

where αn = j, by Un(α), U ′n(α) respectively. Similarly to zn(α) and γn(α)
each such component only depends on the first n+ 1 numbers in α so in our
notation we can replace α by πn(α) = (α0, . . . , αn) ∈ Σn.

Fix arbitrary n ≥ 0, α ∈ Σn and δ > 0. For every m > n define

B(α,m) = {(j0, . . . , jm) ∈ Σm : jk = αk for k = 0, . . . , n}
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and

Bδ(α,m) = {(j0, . . . , jm) ∈ B(α,m) : VolUm(j0, . . . , jm)

≤ ε(m) exp(−(m− n)δ)} .
Set also B(α) = π−1

n ({α}) ⊂ Σd.
Since for every jm all Um(j0, . . . , jm) are pairwise disjoint,

(7) ]B(α)− ]Bδ(α,m) ≤ d exp((m− n)δ) .

By the Koebe distortion theorem for the branches f−m leading from U j

to Um(β) for β ∈ Σd, βm = j we have

diam γm(β) ≤ diamU ′m(β) ≤ Const(VolU ′m(β))1/2 ≤ Const(VolUm(β))1/2 .

Thus if β ∈ B(α) and πm(β) ∈ Bδ(α,m) for every m > m0 ≥ n then

length bm0(β) ≤ Const
∑
m>m0

ε(m)1/2 exp(−(m− n)δ/2) .

Now we shall rely on the following property of ν true for the Gibbs
measure for every Hölder continuous function ϕ on Σd:

There exists θ > 0 depending only on ϕ such that for every pair of
integers k < m and every β ∈ Σd,

ν(π−1
m (πm(β)))

ν(π−1
k (πk(β)))

< exp(−(m− k)θ) .

So with the use of (7) we obtain

ν(B(α) \⋂m>m0
π−1
m (Bδ(α,m)))

ν(B(α))
≤
∑
m>m0

d exp((m− n)δ) exp(−(m− n)θ) .

We consider δ < θ.
As the conclusion we obtain the following

Claim. For every r > 0 and 0 < λ < 1, if n is large enough then for
every α ∈ Σd

n there is B′ ⊂ B(α) such that

ν(B′)
ν(B(α))

> λ

and for every β ∈ B′,
length bn(β) < r .

Indeed, it is sufficient to take B′ =
⋂
m>m0

π−1
m (Bδ(α,m)), where m0 is

the smallest integer ≥ n such that
∑
m>m0

d exp((m−n)(δ−θ)) ≤ 1−λ. (Of
course the constant m0−n does not depend on n, α.) Then for every β ∈ B′,
length bn(β) < (m0−n)ε′(n) + Const ε′(m0)1/2

∑
m>m0

exp(−(m−n)δ/2) < r

if n is large enough.
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The above claim immediately proves our Lemma 3.

R e m a r k 4. Lemma 3 proves in particular (under the assumptions (i)
and (ii) but without assuming that f extends to f) that clΛ = Λ̂.

R e m a r k 5. Observe that Lemma 3 without any additional assumptions
about the tree, like (i), (ii), is false. For example take z = p to be the sink,
z1 = p, zj 6= p for j = 2, . . . , d and γ1 ≡ p. Then p ∈ Λ but p 6∈ supp(z∞)∗(ν)
for every Gibbs ν.

Observe that if (i) and (ii) are skipped in the assumptions of Theorem C
then its assertion on the density of Λ or the density of periodic points in Λ̂ is
also false. We can take z in a Siegel disc S but z different from the periodic
point in S, z1 ∈ S, zj 6∈ S for j = 2, . . . , d.

Here Λ is not even dense in the set Λ′ intermediary between Λ and Λ̂,

Λ′ :=
⋃

α∈Σd
Λ(α)

where Λ(α) := {the set of limit points of zn(α), n→∞}
(because Λ′ contains a “circle” in the Siegel disc).

Λ̂ corresponds to the union of impressions of all prime ends and Λ′ corre-
sponds to the union of all sets of principal points. See [P3] for this analogy.

We do not know whether Lemma 3 or Theorem C are true without the
assumption (i), only with the assumption (ii).

Now we shall prove Theorem B:

P r o o f o f T h e o r e m B. We repeat the same scheme as in the proof
of Theorem A, the case discussed in Section 1. Now (∂D, g, l) is replaced
by (Σd, σ, ν). Its natural extension is denoted by (Σ̃d, σ̃, ν̃) (in fact Σ̃d =
{1, . . . , d}Z). As in Section 1 we find a set K̃ with ν̃(K̃) > 1− 2ε so that all
points of K̃ satisfy the assumptions of Lemma 1 with constants C, r. The
map R is replaced by z∞ and Y is clΛ now.

Condition (1) makes sense along branches (which play the role of cones),
i.e. it takes the form: there exists M = M(r) arbitrarily large such that for
every α ∈ K̃,

(8) bM (α) ⊂ B(z∞(α), r/3) .

The crucial property we need in order to refer to Lemma 1 is χ(z∞)∗(ν)(f)
> 0. It holds because by the Convergence Theorem, part 2, we know that
hν(σ) = h(z∞)∗(ν)(f) > 0 and by [R], χ(z∞)∗(ν)(f) ≥ 1

2h(z∞)∗(ν)(f) > 0.

As in Section 1, for every α = (. . . , α−1, α0, α1, . . .) ∈ K̃ there exists N
arbitrarily large such that β = π0σ̃

−N (α) ∈ K̃ is close to α. In particular,

β = (α0, α1, . . . , αM , w, α0, α1, . . .)
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where w stands for a sequence of N −M − 1 symbols from {1, . . . , d} and
N > M .

By (8) we have

bM (α) ⊂ B(z∞(α), r/3) and bM (β) ⊂ B(z∞(β), r/3) .

We also have

zM (α) = zM (β) .

So γ :=
⋃N+M
n=M+1 γn(β) ⊂ B(z∞(α), r). Since FN (z∞(α)) = z∞(β) we

have, as in Section 1, (6), FN (zM (α)) = zM+N (β), i.e. FN maps one end of γ
to the other. We also have, similarly to (5), FN (B(z∞(α), r)) ⊂ B(z∞(α), r)
and FN is a contraction.

One end of the curve Γ built from γ, FN (γ), F 2
N (γ), . . . is periodic of

period N , is in B(z∞(α), r) and is the limit of the branch of the periodic
point

(α0, . . . , αM , w, α0, . . . , αM , w, . . .) ∈ Σd .

Theorem B is proved.

P r o o f o f T h e o r e m A (conclusion). Write

Crit+ :=
⋃
n>0

fn(Crit f |A) .

Let p denote the sink in A or the parabolic point in ∂A attracting A.
Take an arbitrary point z ∈ A\Crit+, z 6= p. Take an arbitrary geometric

coding tree T (z, γ1, . . . , γd) in A \ (Crit+ ∪{p}), where d = deg f |A.
Observe that (i) is satisfied because cl Crit+ = {p} ∪ Crit+.
Condition (ii) also holds because taking U j ⊂ A we obtain f−n(U j) →

∂A, hence there exists N > 0 such that for every n ≥ N we have

f−n(U j) ∩ U j = ∅ .
Indeed, if we had Vol f−nt(U j) > ε > 0 for a sequence nt → ∞ we

could assume that nt+1−nt ≥ N . We would have f−nt(U j)∩f−ns(U j) = ∅
for every t 6= s, hence Vol

⋃
t f
−nt(U j) =

∑
t Vol f−nt(U j) ≥ ∑t ε = ∞, a

contradiction.
Thus we deduce from Theorem C that the periodic points in Λ are dense

in Λ̂. The only thing to be checked is

(9) Λ̂ = ∂A .

(If A is completely invariant then Z =
⋃
n≥0 f

−n(z) is a subset of A. It
is dense in the Julia set, in particular in ∂A. In general, however, Z 6⊂ A
so the existence of a sequence in Z converging to a point in ∂A does not
automatically imply the existence of such a sequence in Z ∩A.)
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It is not hard to find a compact set P ⊂ A such that P∩(Crit+ ∪{p}) = ∅
and such that for every ζ0 ∈ ∂A \ {p} and every ζ ∈ A close enough to ζ0,
there exists n > 0 such that fn(ζ) ∈ P . The closer ζ to ζ0, the larger n.

Cover P by a finite number of topological discs Dτ ⊂ A. There exist
topological discs D′τ whose union also covers P such that clD′τ ⊂ Dτ . Join
each disc Dτ to z by a curve δτ without selfintersections disjoint from Crit+

and p. Then for every τ there exists a topological disc Vτ ⊂ A which is a
neighbourhood of Dτ ∪ δτ also disjoint from Crit+ and p.

For every ε > 0 there exists n0 > 0 such that for every n > n0 and every
branch Fn of (f |A)−n on Vτ ,

diamFn(D′τ ∪ δτ ) < ε

by the same reason by which Vol f−n(U j) → 0 and next (by the Koebe
distortion theorem, see proof of Lemma 3), diam f−n(U ′j)→ 0.

So fix an arbitrary ζ0 ∈ ∂A \{p} and take ζ ∈ A close to ζ0. Find N and
τ such that fN (ζ) ∈ D′τ . We can assume N > n0. Let FN be the branch of
f−N on Vτ such that FN (fN (ζ)) = ζ. Then dist(ζ, FN (z)) < ε. But FN (z)
is a vertex of our tree. Letting ε→ 0 we obtain (9).

R e m a r k 6. One can apply Theorem C to f a rational mapping on the
Riemann sphere and d = deg f under the assumptions that for the Julia set
J(f) we have Vol J(f) = 0 and the set cl Crit+ does not dissect C. Indeed, in
this case we take z in an immediate basin of a sink or a parabolic point and
curves γj disjoint from cl Crit+. Then the assumptions (i), (ii) are satisfied,
so the periodic points in Λ are dense in Λ̂. A basic property of J(f) says
that

⋃
n>0 f

−n(z) is dense in J(f), i.e. Λ̂ = J(f), hence the periodic points
in Λ are dense in J(f).

In this case, however, we can immediately deduce the density of the
periodic sources belonging to Λ in J(f) from the fact that the periodic
sources are dense in J(f) and from the theorem saying that every periodic
source q is the limit of a branch b(α), α ∈ Σd, converging to it. So q belongs
to Λ automatically. For details see [P4].
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