Dear Alex,

It seems to me I can prove that the upper exponent can be approximated on periodic orbits.

Theorem. Let f be a rational map of the Riemann sphere. Let

$$\chi =: \limsup_{n \to \infty} \sup_{x \in J(f)} \frac{1}{n} \log |(f^n)'(x)| > 0.$$

Then for every $\chi' < \chi$ there exist x, n such that $f^n(x) = x$ and $\frac{1}{n} \log |(f^n)'(x)| \ge \chi'$.

Proof. Let n_1 be an integer such that for every $n > n_1$ and every $x \in J(f)$

$$\frac{1}{n}\log|(f^n)'(x)| < \chi^+ \tag{0}$$

for an arbitrary fixed $\chi^+ > \chi, \chi^+ \approx \chi$.

Fix also an arbitrary $\chi^- < \chi, \chi^- \approx \chi$.

For $\log |(f^n)'(x)| \ge n(\frac{\chi+\chi^-}{2})$ we find $0 < n' \le n$ such that $m\chi^- - \log |(f^m)'(x)|$ attains at n' its minimum.

Observe that $n' \to \infty$ as $n \to \infty$. In particular for n large we have

$$n' > n_1. \tag{1}$$

Denote by g_m the branch of f^{-m} from a neighbourhood of $y = f^{n'}(x) = y$ such that $g_m(y) = f^{n'-m}(x)$. We obtain

$$\log |g'_m(y)| \le -m\chi^- \text{ for every } 0 < m < n'.$$
(2)

We have

$$|f'(g_{m+1}(y))(f^m)'(g_m(y))| \ge \exp(m+1)\chi^-.$$
(3)

So for $m > n_1$

$$|f'(g_{m+1}(y))| \ge \exp(m+1)\chi^{-}\exp-m\chi^{+},$$

from (0) applied to $x = g_m(y)$ and n = m.

In particular

dist
$$(g_{m+1}(y), \operatorname{Crit}(f)) \ge \frac{1}{2} \exp(m+1)(\chi^+ - \chi^-)$$
 (4)

For $m < n_1$ using $\chi^- > 0$ we obtain from (3)

$$\operatorname{dist}(g_{m+1}(y),\operatorname{Crit}(f)) \ge (\sup |f'|)^{-n_1}$$
(5)

Due to (5) there exists $\varepsilon_0 > 0$ such that if y, n' satisfy (1),(2) then g_m exists on $B(y, \varepsilon_0)$ for every $m = 0, 1, ..., n_1$.

Now our aim is to find a constant ε_1 such that g_m exists on $B(y, \varepsilon_1)$ for every m = 0, 1, ..., n'.

We use induction. Suppose g_m is defined on $B(y, r_m)$ and distortion is bounded by

$$C\exp 4m(\chi^+ - \chi^-) \tag{6}$$

Then

$$\operatorname{diam} g_m(B(y, r_m)) < \operatorname{Const}(\exp 4m(\chi^+ - \chi^-))|g'_m(y)|,$$

diamComp
$$f^{-1}g_m(B(y, r_m))$$
 < Const $\nu \exp 4m(\chi^+ - \chi^-)|g'_{m+1}(y)$
 $\leq \operatorname{Const}\nu \exp(4m(\chi^+ - \chi^-))\exp(-(m+1)\chi^-)$

where Comp is the component containing $g_{m+1}(y)$ and ν is maximal multiplicity of f at critical points.

So Comp $f^{-1}g_m(B(y, r_m)) \cap Crit(f) = \emptyset$ by (4), (if $5(\chi^+ - \chi^-) < \chi^-)$

So the branch g_{m+1} on $B(y, r_m)$ exists (i.e. instead of $\text{Comp}f^{-1}g_m...$ we can write g_{m+1}). By Koebe distortion th. for $r_{m+1} = r_m(1 - \exp(-m(\chi^+ - \chi^-)))$ the property (6) is satisfied for m+1.

We summarize: the branches $g_m, m = 0, 1, ..., n'$ are well defined on $B(y, \varepsilon_1)$ where

$$\varepsilon_1 = \varepsilon_0 \prod_m (1 - \exp(-m(\chi^+ - \chi^-))).$$

Thus we proved the following:

For every $0 < \chi^- < \chi$ there exists a constant $\varepsilon_1 > 0$ and pairs $x \in J, n > 0$ with n arbitrarily large such that there exist univalent branches g_m of f^{-m} on $B(y, \varepsilon_1)$, where $y = f^n(x)$, such that $g_m(y) = f^{n-m}(x)$ and $|g'_m(y)| \le \exp(-m\chi)$, for every m = 0, 1, ...n.

Now let n_0 be an integer such that for every $y \in J(f)$

$$f^{n_0}(B(y, \frac{1}{2}\varepsilon_1)) \supset (J(f))$$

Let $A =: \bigcup_{0 < l \le n_0} f^l(\operatorname{Crit}(f)).$

Suppose first that there are no eventually periodic critical points in J(f).

Then there exists $\delta_0 > 0$ such that for every $x \in J(f)$ there exists $0 \le k \le \sharp(A) + 1$ such that $\operatorname{dist}(f^k(x), A) > \delta_0$.

For *n* large enough n-k is large hence diam $g_{n-k}(B(y, \frac{2}{3}\varepsilon_1)) < \delta_0$. So we can make n_0 steps backward without meeting critical values of *f* so that the f^{-n_0} preimage of $g_{n-k}(y)$ lands in $B(y, \frac{1}{2}\varepsilon_1)$. Denote the appropriate branch by $f_{\nu}^{-n_0}$.

For n large enough $|g'_{n-k}(y)|$ is so small that this implies

$$f_{\nu}^{-n_0}(g_{n-k}(B(y,\frac{2}{3}\varepsilon_1))) \subset B(y,\frac{2}{3}\varepsilon_1).$$

So there is an $n - k + n_0$ - periodic point in $clB(y, \frac{2}{3}\varepsilon_1)$ with exponent at least $(n - k + n_0)\chi^-$ (up to a constant). We used here the fact that $f_{\nu}^{-n_0}g_{n-k}$ is defined and univalent on $B(y,\varepsilon_1)$, Koebe distortion th. and an upper bound for $|f_{\nu}^{-n_0}\rangle'|$ on $g_{n-k}B(y, \frac{2}{3}\varepsilon_1)$ by Const/ δ_0 . (Recall that $f_{\nu}^{-n_0}$ is defined and univalent on $B(g_{n-k}(y), \delta_0)$.)

We used here only the fact that n - k is arbitrarily large. So in the case A contains periodic orbits, most of $x, f(x), ..., f^n(x)$ is close to a periodic orbit. So this periodic orbit is a priori that periodic orbit we look for.

Remark From the beginning one can find $B(y,\varepsilon)$ such that

$$B_1 =: \operatorname{cl} \operatorname{Comp} f^{-(n+n_0)}(B(y,\varepsilon)) \subset B(y,\varepsilon).$$

and

$$\frac{\operatorname{diam}B_1}{\operatorname{diam}B(y,\varepsilon)} \le \exp -n\chi^-.$$

Then $F =: f^{n+n_0}$ is polynomial-like on B_1 and has an F-fixed point z in the "local Julia set" J(F). However there is no reason to expect that |F'(z)| is large (of order at least $\exp n\chi^{-}$).

This approximation by periodic orbits is a "specification" in Bowen's terminology, but our Theorem proves *specification property which respects exponent*.