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Introduction.

It is well-known that if f : IC → IC a rational map of the Riemann sphere is hyperbolic,

i.e. expanding on its Julia set J = J(f) namely |(fn)′| > 1 for an integer n > 0,

then its Hausdorff dimension HD(J) < 2.

The same holds for a more general class of ”subexpanding” maps, namely those

maps, whose all critical points in J(f) are non-reccurrent, supposed J(f) ̸= IC, see

[U] (periodic parabolic points are allowed).

On the other hand there is an abundance of rational maps with J ̸= IC and

HD(J) = 2, [Shi].

Recently Chris Bishop and Peter Jones proved that for every finitely generated

not geometrically finite Kleinian groups for the Poincaré limit set Λ one has HD(Λ) =

2. As geometrically finite exhibits some analogy to subexpanding in the ”Kleinian

Groups – Rational Maps” dictionary, the question arised, expressed by Ch. Bishop

and M. Lyubich at the MSRI Berkeley conference in January 1995, isn’t it true for

every non-subexpanding rational map with connected Julia set, that HD(J) = 2 ?

Here we give a negative answer. For a large class of ”non-uniformly” hyper-

bolic so called Collet-Eckmann maps, studied in [P1], satisfying an additional Tsujii

condition, HD(J) < 2.

* The author acknowledges support by Polish KBN Grant 2 P301 01307 ”Iteracje

i Fraktale, II”. He expresses also his gratitude to the MSRI at Berkeley (partial

support by NSF grant DMS-9022140) and ICTP at Trieste, where parts of this

paper were written.



Notation. For a rational map f : IC → IC denote by Crit(f) the set of all critical

points of f , i.e.points where f ′ = 0. Let ν := sup{ multiplicity of fn at c : c ∈
Crit(f) ∩ J}. Finally denote by Crit′(f) the set of all critical points of f in J(f)

whose forward trajectories do not contain other critical points.

We prove in this paper the following:

Theorem A. Let f be a rational map on the Riemann sphere f : IC → IC, and

suppose there exist λ > 1, C > 0 such that for every f -critical point c ∈ Crit′(f)

|(fn)′(f(c))| ≥ Cλn, (0.1)

there are no parabolic periodic points, and J(f) ̸= IC.

Then Vol(J(f) = 0, where Vol denotes Riemann measure on IC.

Theorem B. Under the conditions of Theorem A, assume additionally that

lim
t→∞

lim sup
n→∞

1

n

n∑
j=1

max(0,− log
(
dist(f j(c),Crit(f))

)
− t) = 0. (0.2)

Then HD(J(f)) < 2.

For f(z) = z2 + c, c ∈ [−2, 0] real, it is proved in [T] that (0.1) and (0.2) are

satisfied for a positive measure set of parameters c for which there is no sink in

the interval [c, c2 + c]. Tsujii’s condition in [T], called there weak regularity, is in

fact apparently stronger than (0.2). The set of subexpanding maps satisfying (0.1)

and weak regularity has measure 0, [T]. Thus Theorem B answers Bishop-Lyubich’s

question.

Remark. In [DPU] it is proved that for every rational map f : IC → IC, c ∈ Crit′

lim sup
n→∞

1

n

n∑
j=1

− log dist(f j(c),Crit(f)) ≤ Cf

where Cf depends only on f . Here in the condition (0.2) it is sufficient, for The-

orem B to hold, to have a positive constant instead of 0 on the right hand side,

unfortunately apparently much smaller than Cf .



Crucial in proving Theorems A and B is the following

Theorem 0.1 (on the existence of pacim), see [P1]. Let f : IC → IC satisfy

the assumptions of Theorem A. Let µ be an α-conformal measure on the Julia set

J = J(f) for an arbitrary α > 0. Assume1

µ has no atoms at critical points of f (0.3)

Assume also that there exists 1 < λ′ < λ such that for every n ≥ 1 and every

c ∈ Crit′(f) ∫
dµ

dist(x, fn(c))(1−1/ν)α
< C−1(λ′)αn/ν . (0.4)

Then there exists an f -invariant probability measure m on J absolutely contin-

uous with respect to µ (pacim).

Recall that a probability measure µ on J is called α-conformal if for every Borel

B ⊂ J on which f is injective µ(f(B)) =
∫
B
|f ′|αdµ. In particular |f ′|α is Jacobian

for f and µ. (A function φ such that µ(f(B)) =
∫
B
φdµ for every B as above is

called Jacobian.) The number α is called the exponent of the conformal measure.

If Vol(J) > 0 then the restriction of Vol to J , normalized, is 2-conformal and

obviously satisfies (0.3) and (0.4). If HD(J) = 2 then by [P1] we know there exists

a 2-conformal measure µ on J but we do not know whether it is not too singular,

namely whether it satisfies (0.3) and (0.4). Fortunately for every f satisfying the

assumptions of Theorem A and additionally the assumption (0.2) we can prove that

(0.4) holds indeed for every α-conformal measure and we can construct a HD(J)-

conformal measure satisfying (0.3) repeating the construction from [DU].

Gathering together the results which we prove along the paper and refering to

[P1] we obtain the following extension of Theorem B:

1 In the Dijon preprint version of [P1] this assumption is missing. I thank J.

Graczyk for pointing me out this error.



Theorem C. For every rational map f : IC → IC satisfying Collet-Eckmann

condition (0.1), Tsujii condition (0.2), having no parabolic periodic points and with

Julia set J not the whole sphere the following holds: HD(J) = Cap(J) < 2, there

exists a HD(J)-conformal probability measure on J not having atoms at critical

points and there exists a probability f -invariant measure m absolutely continuous

with respect to µ and such that dm/dµ > Const > 0. The measure m is ergodic, of

positive entropy, and has positive Lyapunov exponent.

(We write Cap(J) for Minkowski dimension. Other names: box dimension, limit

capacity.)

Notation. Const will denote various positive constants which may change from

one formula to another, even in one string of estimates.

Section 1. More on pacim. Proof of Theorem A.

Proposition 1.1. In the situation of Theorem 0.1 there exists K > 0 such that

µ-a.e. dm
dµ ≥ K.

Proof. In Proof of Theorem 0.1 [P1] one obtains m as a weak* limit of a subse-

quence of the sequence of measures 1
n

∑n−1
j=0 f j

∗ (µ).

It is sufficient to prove that there exists K > 0 and n0 > 0 such that for µ-a.e.

y ∈ J(f)
dfn

∗ (µ)

dµ
(y) = Ln(11) ≥ K. (1.1)

Here L denotes the transfer operator, which can be defined for example by L(φ)(y) =∑
f(z)=y |f ′(z)|−αφ(z). 11 is the constant function of value 1. We can assume y /∈∪
n>0 f

n(Crit(f)) because

µ(
∪
n>0

fn(Crit(f))) = 0 (1.2)

If a critical value for fn were an atom then a critical point would have µ measure

equal to ∞.



(The equality in (1.1) follows from the definition of L. However pay attention

that it makes use of the assumption (0.4) if one considers L11 as a classical function.)

It is sufficient to prove the inequality (1.1) for y ∈ B(x, δ) ∩ J(f) for an a priori

chosen x and an arbitrarily small δ and next to use the fact that there exists m ≥ 0

such that fm(B(x, δ)) ⊃ J(f) (called topological exactness). Indeed

Ln(11)(w) =
∑

fm(y)=w

Ln−m(11)(y)|(fm)′|−α ≥ (sup |(fm)′|)−αLn−m(y0)

where y0 ∈ f−m({w}) ∩B(x, δ).

Recall the estimate from [P1]. For an arbitrary γ > 1 there exists C > 0 such

that for every x ∈ J(f)

Ln(11)(x) ≤ C + C
∑

c∈Crit(f)∩J

∞∑
j=0

γjλ−jα/ν

dist(x, f j(f(c)))(1−1/ν)α
. (1.3)

By the assumptions (0.1) and (0.3) the above function is µ-integrable if γ is small

enough.

Pay attention to the assumption (0.3). It concerns only c ∈ Crit′. Fortunately

there is only a finite number of summands in (1.3) for which f j0(c) ∈ Crit, j0 ≥ j .

Each summand is integrable because up to a constant it is bounded by Lj(11).

So ∑
c∈Crit(f)∩J

∞∑
j=s

γjλ−jα/ν

dist(x, f j(f(c)))(1−1/ν)α
→ 0 µ− a.e. as s → ∞. (1.4)

Fix from now on an arbitrary x ∈ J(f) for which (1.4) holds, (dm/dµ)(x) ≥ 1

and x /∈
∪

n>0 φ
n(Crit(f)) (possible by (1.2) and by

∫
(dm/dµ)dµ = 1).

We need now to repeat from [P1] a part of the Proof of Theorem 0.1:

For every y ∈ B(x, δ) and n > 0

Ln(11)(y) =
∑

y′∈f−n(y),regular

|(fn)′(y′)|−α +
∑

(y′,s)singular

Ln−s(11)(y′)|(fs)′(y′)|−α

=
∑
reg,y

+
∑
sing,y

. (1.5)



We shall recall the definitions of regular and singular: Take an arbitrary subex-

ponentially decreasing sequence of positive numbers bj , j = 1, ... with
∑

bj = 1/100.

Denote by B[k the disc B(x, (
∏k

j=1(1−bj))2δ). We call s the essentially critical time

for a sequence of compatible components Wj = Compf−j(B[j), where compatible

means f(Wj) ⊂ Wj−1, if there exists a critical point c ∈ Ws such that fs(c) ∈ B[s.

We call y′ regular in (1.5) if for the sequence of compatible components Ws, s =

0, 1, ..., n,Wn ∋ y′ no s < n is essentially critical.

We call a pair (y′, s) singular if fs(y′) = y and for the sequence of compatible

components Wj , j = 0, 1, ..., s,Ws ∋ y′ the integer s is the first (i.e. the only)

essentially critical time.

If δ is small enough then all s in
∑

sing,x are sufficiently large that
∑

sing,x ≤
1/2. This follows from the estimates in [P1, Sec.4]; here is the idea of the proof:

Transforming
∑

sing,x in (1.5) using the induction hypothesis (1.3) we obtain the

summands

C
γjλ−jα/ν

dist(x, fs+j−1(f(c)))(1−1/ν)α
, j = 0, ..., n− s

multiplied by

Const|(fs−1)′(x′)|−α/νas < γs−1λ−(s−1)α/ν .

The numbers as are constants arising from distortion estimates, related to bs. The

numbers γs swallow them and other constants.

(There is a minor inaccuracy here: (s, x′) is a singular pair where the summand

appears, provided the captured critical point c is not in the forward trajectory of

another critical point, otherwise one moves back to it, see [P1] for details.)

Now
∑

sing,x ≤ 1/2 follows from (1.4).

The result is that
∑

reg,x ≥ 1/2. So by the uniformly bounded distortion along

regular branches of f−n on B(x, δ) we obtain

Ln(11)(y) ≥
∑
reg,y

≥ Const
∑
reg,x

≥ Const > 0

The name regular concerned formally y′ ∈ f−n(y) but in fact it concerns the branch

of f−n mapping y to y′ not depending on y ∈ B(x, δ).



By distortion of any branch g of f−n on a set U we mean

supz∈B |g′(z)|/ infz∈B |g′(z)|.
Proposition 1.1 has been proved. ♣

There exists a decomposition of J in a finite number of ergodic components

E1, ..., Ek, see [P1, Theorem B]. Denote the measure m restricted to Ei and normal-

ized, by mi. Taking this into account we obtain

Corollary 1.2 In the situation of Theorem 0.1 for measure-theoretic entropy

hmi(f) > 0, for every i = 1, ..., k.

Proof. Denote dm/dµ by u.

Consider an open set U ⊂ IC intersecting J(f) such that there exist two branches

g1 and g2 of f
−1 on it. Then by the f -invariance of m we have Jacm(g1)+Jacm(g2) ≤

1 (= 1 if we considered all branches of f−1). Jacm(gi) means Jacobian with respect

to m for gi.

We havem(U) > 0 because µ does not vanish on open sets in J (by the topological

exactness of f on J) and by Proposition 1.2. At m-a.e. x ∈ U

Jacm(gi)(x) = u(gi(x))|g′i(x)|u(x)−1 > 0,

(here we also used (1.4)).

Hence Jacm(gi) < 1, so Jacm(f) > 1 on the set gi(U), i = 1, 2. Now we use

Rochlin’s formula and obtain

hmi(f) =

∫
Ei

log Jacm(f)dmi > 0

♣

Let χmi =
∫
log |f ′|dmi denote the Lyapunov characteristic exponent on Ei.

Corollary 1.3 In the situation of Theorem 0.1, χmi > 0 for every i = 1, ..., k.

Proof. This Corollary follows from Ruelle’s inequality hmi(f) < 2χmi , see [R].



Proof of Theorem A. Suppose Vol(J(f)) > 0. After normalization we obtain

a 2-conformal measure µ on J(f) and by Theorem 0.1 and Corollary 1.3 a pacim m

with χm > 0. By Pesin’s Theory [Pesin] in the iteration in the dimension 1 case [Le]

([Le] is on the real case, but the complex one is similar), for m-a.e. x, there exists a

sequence of integers nj → ∞ and r > 0 such that for every j there exists a univalent

branch gj of f−nj on Bj := B(fnj (x), r) mapping fnj (x) to x and gj has distortion

bounded by a uniform constant. By χm > 0 diamgj(B(fnj (x), r) → 0. (This follows

also automatically from the previous assertions by the definition of Julia set [GPS].)

Now we can forget about the invariant measure m and go back to Vol. Because J(f)

is nowhere dense in IC, there exists ε > 0 such that for every z ∈ J(f)

Vol(B(z, r) \ J(f))
Vol(B(z, r))

> ε.

Bounded distortion for gj on B(z, r), z = fnj (x) allows to deduce that the same

part of each small disc≈ gj(Bj) around x is outside J(f) , up to multiplication by a

constant. This is so because we can write for every X ⊂ B(z, r), y ∈ B(z, r)

Vol(gj(X)) ≈ |g′j(y)|2Vol(X) (1.6)

where ≈ means up to the multiplication by a uniformly bounded factor. So x is

not a density point of J(f). On the other hand a.e. point is a density point. So

VolJ(f) = 0 and we arrived at a contradiction. ♣

Section 2. Proof of Theorem B.

Definition. We call a probability measure µ on J α-subconformal if the equality in

the definition of α-conformal measure (see Introduction) is replaced by the inequality:

µ(f(B)) ≥
∫
B
|f ′|αdµ.

Lemma 2.1. Suppose f satisfies the assumptions of Theorem B. Then for every

β, σ > 0 there exists C1 > 0 such that for every c ∈ Crit′ and n0 > 0 there exists a

sequence rj , j = 1, 2, ... satisfying

r1 > C1 exp−βn0 (2.1)



rj+1 > r1+σ
j (2.2)

rj+1 < rj/2. (2.3)

and

µ(B(fn0(c), rj)) ≤ C1r
α
j (2.4)

for every α ≤ 2 and every α-subconformal measure µ.

Proof. Step 1. Denote the expression from (0.2)

max
(
0,− log inf

c∈Crit′(f)
dist(fn(c),Crit(f))− t

)
by φt(n). Consider the following union of open-closed intervals

A′
t :=

∪
n

(n, n+ φt(n) ·Kf ] and write At := ZZ+ \A′
t ,

for an arbitrary constant Kf > ν/ log λ ( in the convention that if φt(n) = 0, then

the interval in the union is empty).

By (0.2) for every a > 0 there exist t > 0 and n(a, t) such that for every n ≥ n(a, t)

At ∩ [n, n(1 + a)] ̸= ∅ (2.5)

Moreover, fixing an arbitrary integer M > 0, we can guarantee for every n′ ≥
n(1 + a), n ≥ n(a, t)

♯(At ∩ {j ∈ [n, n′] : j divisible by M}) ≥ 1

2M
(n′ − n). (2.6)

Observe that for every a, n0, n

[n0 + n, n0 + n+ a(n0 + n)] = [n0 + n, n0 + n+ a(
n0

n
+ 1)n].

So if n ≥ bn0 for an arbitrary b > 0 and n0 ≥ n(a, t), then (2.5) yields

At ∩ [n0 + n, n0 + n+ a(b−1 + 1)n] ̸= ∅. (2.7)

Denote in the sequel a(b−1 + 1) by a′.



Step 2. Observe now that if n ∈ At then for every c ∈ Crit′(f) there exist

branches gs, s = 1, 2, ...n − 1 of f−s on Bn := B(fn(c), δ) such that gs(f
n(c)) =

fn−s(c), distortions bounded by a uniform constant C2 (i.e. sup |g′s|/ inf |g′s| ≤ C2),

where δ = ε exp−tν, for a constant ε small enough. Sometimes to exhibit the

dependence on n we shall write gs,n.

Indeed, define gs on B[s = B(fn(c),
∏s

j=1(1−bj)2δ) for s = 1, 2, ...n−1 according

to the procedure described in the Proof of Proposition 1.1. If there is an obstruction,

namely s an essential critical time, then for every z ∈ B[s

|g′s−1(z)| ≤ λ−sϑs ≤ exp(−sν/Kf ) (2.8)

for ϑ > 1 arbitrarily close to 1 (in particular such that Kf > ν
log λ−log ϑ ) and for s

large enough. The constant ϑ takes care of distortion. (2.8) holds for z = fs(q),

where q is the critical point making s a critical time, without ϑ by (0.1) (with the

constant C instead). The small number ε takes care of s small, which cannot then

be essential critical.

The inequality (2.4) and rooting (1/ν to pass from s− 1 to s) imply

φt(f
n−s(c)) ≥ s/Kf , so n /∈ At, a contradiction.

Step 3. We find rj satisfying the assertions of the Lemma by taking

rj :=
1

2C2
diam gnj ,n0+nj (B(fn0+nj (c), δ))

where nj are taken consecutively so that n0 + nj ∈ At and

nj+1 ∈ [(1 + ϑ)nj , (1 + ϑ)nj(1 + a′)] for j ≥ 2 and

n1 ∈ [bn0, bn0 + a′bn0],

where ϑ > 0 is an arbitrary constant close to 0. This is possible by (2.7).

This gives for say ϑ < a′ < 1

rj+1/rj ≥ C−1
2 exp(−3(logL)a′nj), (2.9)

where L := sup |f ′|. One obtains this in 2 steps: first by the branch gnj+1−nj ,n0+nj+1 ,

next by gnj ,n0+nj which shrinks the ratio by at most C−1
2 . In the same way by acting

only by gn1,n0+n1 one obtains (2.1).



To conclude we need to know that rj shrink exponentially fast with nj → ∞,

uniformly on n0. For that we need the following fact (see for example [GPS], find

the analogous fact in the Proof of Theorem A):

(*) For every r > 0 small enough and ξ, C > 0 there exists m0 such that for

every m ≥ m0, x ∈ J(f) and a branch g of f−m on B(x, r) having distortion less

than C, we have diam g(B(x, r)) < ξr.

Apply now (2.6) to n = n0, n
′ = nj + n0. We obtain a ”telescope”: For all

consecutive τ1, τ2, ...τk(j) ∈ At ∩ [n0, nj + n0] divisible by M

gτi+1−τi,τi+1(B(fτi+1(c), δ)) ⊂ B(fτi(c), δ/2C2)

for M ≥ m0 from (*).

Hence using (2.6)

rj ≤ 2−nj/2M . (2.10)

The property (2.3) follows from the fact that for n0 large enough, for every j > 0,

nj+1 − nj ≥ M and the argument the same as for τi+1 − τi above is valid.

Denote 2a′ logL by γ and (log 2)/2M by γ′. (2.9) and (2.10) give

rj+1 ≥ C−1
2 rj exp−γnj ≥ C−1

2 rj(exp−γ′nj)
γ/γ′

≥ C−1
2 r

1+γ/γ′

j .

As γ′ is a constant and γ can be made arbitrarily small if a is small enough, we

obtain (2.2). C−1
2 disappears when we double γ/γ′ for δ small enough.

Finally we obtain µ(B(fn0(c), rj)) ≤ µgnj ,n0+nj (B(fn0+nj (c), δ)) ≤ Cα
2 δ

−αrαj
what proves (2.4).

We have proved the Lemma for every n0 large enough. Now by pulling back one

easily provees it for every n0 > 0. ♣

Remark 2.2. The only result at our disposal on the abundance of non-subex-

panding maps satisfying (0.1) and (0.2) is Tsujii’s one concerning z2 + c, c real (see

the Introduction). For this class however the exponential convergence of

diamCompf−nj (B(fnj+n0(0), δ) to 0 follows from [N] (the component containing

fn0(c)). So restricting our interests to this class we could skip (2.6) and the consid-

erations leading to (2.10) above.



By [N] diam
(
Comp(f−n(B(x, δ))) ∩ IR

)
< Cλ̃−n for some constants C > 0, λ̃ >

1, δ small enough and every component Comp. Just the uniform convergence of the

diameters to 0 as n → ∞ follows from [P1], but I do not know how fast it is.

Lemma 2.3 Under the assumptions of Theorem B, for every λ′ > 1 there exists

C > 0 such that for every α ≤ 2 and α-conformal measure µ the estimate (0.4) holds.

Proof. By Lemma 2.1 we obtain∫
dµ

dist(x, fn0(c))(1−1/ν)α

≤ µ(IC \B(fn0(c), r1))
1

r
(1−1/ν)α
1

+
∑
j≥2

µ(B(fn0(c), rj−1) \B(fn0(c), rj))
1

r
(1−1/ν)α
j

≤ Const exp(βn0(1− 1/ν)α) + Const
∑
j≥2

rαj−1

r
(1−1/ν)α
j

≤ (exp(β(1− 1/ν)α))n0 +Const
∑
j≥2

rαj−1r
−(1−1/ν)α(1+σ)
j−1 .

The latter series has summands decreasing exponentially fast for σ small enough

so it sums up to a constant, hence the first summand dominates. We obtain the

bound by (λ′)n0 with λ′ > 1 arbitrarily close to 1. Thus (0.4) has been proved. ♣

For an arbitrary rational map f restricted to a forward invariant set K ⊂ J we

write HDess(K) for the essential Hausdorff dimension, which can be defined for ex-

ample as the supremum of the Hausdorff dimension of all expanding isolated Cantor

sets in K. (We say that an f -invariant set X is isolated if every forward f -trajectory

which starts in a sufficiently small neighbourhood U of X either is contained in X

or escapes from U .) There always exists an α-conformal measure with the exponent

α = HDess(J), this is the minimal possible exponent for conformal measures, see

[DU] [P2] and [PUbook]. If f satisfies (0.1) then HDess(J) = HD(J), see [P1].

In our situation we can say more:

Lemma 2.4. If f satisfies the assumptions of Theorem B, then there exists an

α-conformal measure with α = HDess(J) = HD(J) which does not have atoms at

f -critical points.



Proof. We repeat the construction from [DU]. Consider for every n = 1, 2, ...

the set Vn = B(Crit′, 1
n ) and construct µn a subconformal measure on K(Vn) =

J \
∪

k≥0 f
−k(Vn) as in [DU, Lemma 5.1].

Here the situation is easier than in [DU] because f on K(Vn) is expanding, [P1,

Sec.3]. So each µn is αn-subconformal (αn-conformal on sets disjoint with clVn),

with αn = HDess(K(Vn)), αn ↗ α and µn → µ which is an α-conformal measure.

(In [DU] one obtains each µn with df∗µn

dµn
≥ ecn |f ′|αn with cn ↘ 0. Here cn = 0.

Also µ in [DU] can have an atom at a critical value. Here, due to (0.1) and the

subconformality, this is automatically excluded, otherwise the measure of the forward

trajectory of the critical value would be infinite.)

By Lemma 2.1 for every c ∈ Crit′ we have µn(B(f(c), rj) ≤ C1r
αn
j )). So

µn(Compf−1(B(f(c), rj) \B(f(c), rj+3)

≤ Const r
(1/ν(c)−1)αn

j+3 µn(B(f(c), rj) \B(f(c), rj+3))

≤ ConstC1r
(1/ν(c)−1)αn

j+3 rαn
j = ConstC1r

(1/ν(c)−3σ)αn

j+3 .

again using Lemma 2.1. ν(c) is the multiplicity of f at the critical point c. Comp

means the component close to c. σ ≈ 0. It is crucial that the estimate is uniform on

n.

Thus one obtains

µ(Compf−1(B(f(c), rj+1) \B(f(c), rj+2))) ≤ Const r
(1/ν(c)−3σ)α
j+3 → 0 (2.11)

as j → ∞. (We passed from j, j + 3 to j + 1, j + 2 to cope with the case

µ∂(Compf−1(B(f(c), rj+1) \B(f(c), rj+2))) > 0. Remember that to conclude

limµnB = µB one assumes µ(∂B) = 0.)

Similarly by further pulling back one obtains (2.11) around critical points in

J \ Crit′. Finally by the construction µn have no atoms at critical points, because

the topological supports of µn’s do not contain critical points. The Lemma has been

proved. ♣

Proof of Theorems B and C. By Lemma 2.4 there exist a HD(J)-conformal

measure µ on J satisfying (0.3). By Lemma 2.3 µ satisfies also (0.4). Hence by

Theorem 0.1 there exists a pacim m ≪ µ. Moreover χm > 0 by Corollary 1.3. As

in the Proof of Theorem A, by Pesin Theory there exists X ⊂ J , m(X) = µ(X) = 1,



such that for every x ∈ X there exists a sequence of integers nj(x) → ∞, r > 0

and univalent branches gj of f−nj on B(fnj (x), r) mapping fnj to x with uniformly

bounded distortion. Write Bx,j := gj(B(fnj (x), r)).

Suppose now that HD(J) = 2. We obtain for every x ∈ X by applying (1.6) to

Vol and µ (similarly as in the Proof of Theorem A)

µ(Bx,j) ≤ ConstVol(Bx,j) ≤ Const Vol(B(x,diamBx,j)).

If VolX = 0 then there exists a covering of X by discs B(xt, diamBxt,jt), t = 1, 2, ...

whose union has Vol < ε for ε arbitrarily close to 0, of multiplicity less than a

universal constant (Besicovitch’s theorem). Hence

ε ≥ Const
∑
t

VolB(xt, diamBxt,jt) ≥ Constµ(
∑
t

Bxt,jt) ≥ 1,

a contradiction. Hence VolJ ≥ VolX > 0.

This contradicts Theorem A that VolJ = 0 and the proof of Theorem B is over.

Remark that we could end the proof directly: As in the Proof of Theorem A we

show that no point of X is a point of density of the Vol measure. Hence VolX = 0.

(I owe this remark to M. Urbański.)

To finish the proof of Theorem C it remains only to check the ergodicity. However

the ergodicity follows easily from [P1, Sec.3], passing (acting by iterates of f) from

a neighbourhood of a.e. point x to a neighbourhood of a critical point, and from

the Proof of Lemma 2.1. Briefly: the existence of the branches gn−1,n for a growing

sequence of n’s yields for every invariant set A with m(A) > 0 and every c ∈ Crit ,

the existence of rn → 0 such that m(B(c,rn)∩A)
m(B(c,rn))

≥ Const > 0. So x cannot be a point

of density of J \A. If m(J \A) > 0 then similarly x cannot be a point of density of

A. This can happen only for a set of x’s of measure 0. A contradiction. Theorem C

is has been proved. ♣
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[R] D. Ruelle: An inequality for the entropy of differentiable maps. Bol. Soc.

Bras. Mat. 9 (1978), 83-87.
[Shi] M. Shishikura: The Hausdorff dimension of the boundary of the Mandelbrot

set and Julia set. Preprint SUNY at Stony Brook, IMS 1991/7.
[T] M. Tsujii: Positive Lyapunov exponents in families of one dimensional dy-

namical systems. Invent. Math. 111 (1993), 113-137.
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