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Introduction

This book is an introduction to the theory of iteration of expanding and non-
uniformly expanding holomorphic maps and topics in geometric measure theory
of the underlying invariant fractal sets. Probability measures on these sets yield
information on Hausdorff and other fractal dimensions and properties. The
book starts with a comprehensive chapter on abstract ergodic theory followed by
chapters on uniform distance expanding maps and thermodynamical formalism.
This material is applicable in many branches of dynamical systems and related
fields, far beyond the applications in this book.

Popular examples of the fractal sets to be investigated are Julia sets for
rational functions on the Riemann sphere. The theory which was initiated by
Gaston Julia [Julia 1918] and Pierre Fatou [Fatou 1919–1920] has become very
popular since appearence of Benoit Mandelbrot’s book [Mandelbrot 1982] with
beautiful computer made pictures. Then it has become a field of spectacular
achievements by top mathematicians during the last 30 years.

Consider for example the map f(z) = z2 for complex numbers z. Then
the unit circle S1 = {|z| = 1} is f -invariant, f(S1) = S1 = f−1(S1). For
c ≈ 0, c 6= 0 and fc(z) = z2 + c, there still exists an fc-invariant set J(fc) called
the Julia set of fc, close to S1, homeomorphic to S1 via a homeomorphism h
satisfying equality f ◦ h = h ◦ fc. However J(fc) has a fractal shape. For large
c the curve J(fc) pinches at infinitely many points; it may pinch everywhere to
become a dendrite, or even crumble to become a Cantor set.

These sets satisfy two main properties, standard attributes of “conformal
fractal sets”:

1. Their fractal dimensions are strictly larger than the topological dimension.
2. They are conformally “self-similar”, namely arbitrarily small pieces have

shapes similar to large pieces via conformal mappings, here via iteration of f .
To measure fractal sets invariant under holomorphic mappings one applies

probability measures corresponding to equilibria in the thermodynamical for-
malism. This is a beautiful example of interlacing of ideas from mathematics
and physics.

The following prototype lemma [Bowen 1975, Lemma 1.1], resulting from
Jensen’s inequality applied to the function logarithm, stands at the roots of the
thermodynamical formalism

Lemma 0.0.1. (Finite Variational Principle) For given real numbers φ1, . . . , φn

7



8 Introduction

the quantity

F (p1, . . . pn) =

n
∑

i=1

−pi log pi +

n
∑

i=1

piφi

has maximum value P (φ1, ...φn) = log
∑n
i=1 e

φi as (p1, . . . , pn) ranges over the
simplex {(p1, . . . , pn) : pi ≥ 0,

∑n
i=1 pi = 1} and the maximum is attained only

at

p̂j = eφj
(

n
∑

i=1

eφi
)−1

We can read φi, pi, i = 1, . . . , n as a function (potential), resp. probability
distribution, on the finite space {1, . . . , n}. The proof follows from the strict
concavity of the logarithm function.

Let us further follow Bowen [Bowen 1975]: The quantity

S =

n
∑

i=1

−pi log pi

is called entropy of the distribution (p1, . . . , pn). The maximizing distribution
(p̂1, .., p̂n) is called Gibbs or equilibrium state. In statistical mechanics φi =
−βEi, where β = 1/kT , T is a temperature of an external “heat source” and k
a physical (Boltzmann) constant. The quantity E =

∑n
i=1 piEi is the average

energy. The Gibbs distribution maximizes thus the expression

S − βE = S − 1

kT
E

or equivalently minimizes the so-called free energy E−kTS. The nature prefers
states with low energy and high entropy. It minimizes free energy.

The idea of Gibbs distribution as limit of distributions on finite spaces of con-
figurations of states (spins for example) of interacting particles over increasing
to infinite, bounded parts of the lattice Zd, introduced in statistical mechan-
ics first by Bogolubov and Hacet [Bogolyubov & Hacet 1949] and playing there
a fundamental role was applied in dynamical systems to study Anosov flows
and hyperbolic diffeomorphisms at the end of sixties by Ja. Sinai, D. Ruelle
and R. Bowen. For more historical remarks see [Ruelle 1978] or [Sinai 1982].
This theory met the notion of entropy S borrowed from information theory and
introduced by Kolmogorov as an invariant of a measure-theoretic dynamical
system.

Later the usefulness of these notions to the geometric dimensions has become
apparent. It was present already in [Billingsley 1965] but crucial were papers by
Bowen [Bowen 1979] and McCluskey & Manning [McCluskey & Manning 1983].

In order to illustrate the idea consider the following example: Let Ti : I → I,
i = 1, . . . , n > 1, where I = [0, 1] is the unit interval, Ti(x) = λix + ai, where
λi, ai are real numbers chosen in such a way that all the sets Ti(I) are pairwise
disjoint and contained in I. Define the limit set Λ as follows

Λ =

∞
⋂

k=0

⋃

(i0,...,ik)

Ti0 ◦ · · · ◦ Tik(I) =
⋃

(i0,i1... )

lim
k→∞

Ti0 ◦ · · · ◦ Tik(x),
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the latter union taken over all infinite sequences (i0, i1, . . . ), the previous over
sequences of length k + 1. By our assumptions |λj | < 1 hence the limit exists
and does not depend on x.

It occurs that its Hausdorff dimension is equal to the only number α for
which

|λ1|α + · · · + |λn|α = 1.

Λ is a Cantor set. It is self-similar with small pieces similar to large pieces with
the use of linear (more precisely, affine) maps (Ti0 ◦ · · · ◦ Tik)−1. We call such a
Cantor set linear. We can distribute measure µ by setting µ(Ti0 ◦ · · · ◦Tik(I)) =
(

λi0 . . . λik
)α

. Then for each interval J ⊂ I centered at a point of Λ its diameter
raised to the power α is comparable to its measure µ (this is immediate for the
intervals Ti0 ◦ · · · ◦ Tik(I)). (A measure with this property for all small balls
centered at a compact set, in a Euclidean space of any dimension, is called a
geometric measure.) Hence

∑

(diamJ)α is bounded away from 0 and ∞ for all
economical (of multiplicity not exceeding 2) covers of Λ by intervals J .

Note that for each k the measure µ restricted to the space of unions of
Ti0 ◦· · ·◦Tik(I), each such interval viewed as one point, is the Gibbs distribution,
where we set φ((i0, . . . , ik)) = φα((i0, . . . , ik)) =

∑

l=0,...,k α logλil . The number

α is the unique 0 of the pressure function P(α) = 1
k+1 log

∑

(i0,...,ik) e
φa((i0,...,ik)).

In this special affine example this is independent of k. In general non-linear case
to define pressure one passes with k to ∞.

The family Ti and compositions is an example of very popular in recent years
Iterated Function Systems [Barnsley 1988]. Note that on a neighbourhood of
each Ti(I) we can consider T̂ := T−1

i . Then Λ is an invariant repeller for the

distance expanding map T̂ .
The relations between dynamics, dimension and geometric measure theory

start in our book with the theorem that the Hausdorff dimension of an expanding
repeller is the unique 0 of the adequate pressure function for sets built with the
help of C1+ε usually non-linear maps in R or conformal maps in the complex
plane C (or in Rd, d > 2; in this case conformal maps must be Möbius, i.e.
composition of inversions and symmetries, by Liouville theorem).

This theory was developed for non-uniformly hyperbolic maps or flows in
the setting of smooth ergodic theory, see [Katok & Hasselblatt 1995], Mañé
[Mañé 1987]. Let us mention also [Ledrappier & Young 1985]. See [Pesin 1997]
for recent developments. The advanced chapters of our book are devoted to
this theory, but we restrict ourselves to complex dimension 1. So the maps are
non-uniformly expanding and the main technical difficulties are caused by crit-
ical points, where we have strong contraction since the derivative by definition
is equal to 0 at critical points.

A direction not developed in this book are Conformal Iterated Function
Systems with infinitely many generators Ti. They occur naturally as return
maps in many important constructions, for example for rational maps with
parabolic periodic points or in the Induced Expansion construction for polynomi-
als [Graczyk & Świa̧tek 1998]. See also the recent [Przytycki & Rivera–Letelier 2007].
Beautiful examples are provided by infinitely generated Kleinian groups. For a
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measure theoretic background see [Young 1999].
The systematic treatment of Iterated Function Systems with infinitely many

generators can be found in [Mauldin & Urbanski 1996] and [Mauldin & Urbanski 2003],
for example. Recently this has been intensively explored in the iteration of entire
and meromorphic functions.

Below is a short description of the content of the book.

Chapter 0 contains some introductory definitions and basic examples. It is
a continuation of Introduction.

Chapter 1 is an introduction to abstract ergodic theory, here T is a probabil-
ity measure preserving transformation. The reader will find proofs of the funda-
mental theorems: Birkhoff Ergodic Theorem and Shannon–McMillan–Breiman
Theorem. We introduce entropy, measurable partitions and discuss canonical
systems of conditional measures in Lebesgue spaces, the notion of natural exten-
sion (inverse limit in the appropriate category). We follow here Rohlin’s Theory
[Rohlin 1949], [Rohlin 1967], see also [Kornfeld , Fomin & Sinai 1982]. Next to
prepare to applications for finite-to-one rational maps we sketch Rohlin’s theory
on countable-to-one endomorphisms and introduce the notion of Jacobian, see
also [Parry 1969]. Finally we discuss mixing properties (K-propery, exactness,
Bernoulli) and probability laws: Central Limit Theorem (abbr. CLT), Law of
Iterated Logarithm (LIL), Almost Sure Invariance Principle (ASIP) for the se-
quence of functions (random variables on our probability space) φ ◦ T n, n =
0, 1, . . . .

Chapter 2 is devoted to ergodic theory and termodynamical formalism for
general continuous maps on compact metric spaces. The main point here is the
so called Variational Principle for pressure, compare the Finite Variational Prin-
ciple lemma, above. We apply also functional analysis in order to explain Legen-
dre transform duality between entropy and pressure. We follow here [Israel 1979]
and [Ruelle 1978]. This material is applicable in large deviations and multifrac-
tal analysis, and is directly related to the uniqueness of Gibbs states question.

In Chapters 1, 2 we often follow the beautiful book by Peter Walters [Walters 1982].
In Chapter 3 distance expanding maps are introduced. Analogously to Ax-

iom A diffeomorphisms [Smale 1967], [Bowen 1975] or endomorphisms, [Przytycki 1976]
and [Przytycki 1977], we outline a topological theory: spectral decomposition,
specification, Markov partition, and start a “bounded distortion” play with
Hölder continuous functions.

In Chapter 4 termodynamical formalism and mixing properties of Gibbs
measures for open distance expanding maps T and Hölder continuous poten-
tials φ are studied. To large extent we follow [Bowen 1975] and [Ruelle 1978].
We prove the existence of Gibbs probability measures (states): m with Jacobian
being exp−φ up to a constant factor, and T -invariant µ = µφ equivalent to m.
The idea is to use the transfer operator Lφ(u)(x) =

∑

y∈T−1(x) u(y) expφ(y)
on the Banach space of Hölder continuous functions u. We prove the expo-
nential convergence ξ−nLnφ(u) → (

∫

u dm)uφ, where ξ is the eigenvalue of the
largest absolute value and uφ the corresponding eigenfunction. One obtains
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uφ = dm/dµ. We deduce CLT, LIL and ASIP, and the Bernoulli property for
the natural extension.

We provide three different proofs of the uniqueness of the invariant Gibbs
measure. The first, simplest, follows [Keller 1998], the second relies on the
Finite Variational Principle, the third one on the differentiability of the pressure
function in adequate function directions.

Finally we prove Ruelle’s formula

d2P (φ+ tu+ sv)/dt ds|t=s=0 =

lim
n→∞

1

n

∫

(

n−1
∑

i=0

(u ◦ T i −
∫

u dµφ)

)

·
(

n−1
∑

i=0

(v ◦ T i −
∫

v dµφ)

)

dµφ.

This expression for u = v is equal to σ2 in CLT for the sequence u ◦ T n and
measure µφ.

(In the book we use the letter T to denote a measure preserving trans-
formation. Maps preserving an additional structure, continuous, smooth or
holomorphic for example, are usually denoted by f or g.)

In Chapter 5 (Section 5.1) the metric space with the action of a distance
expanding map f is embedded in a smooth manifold and it is assumed that the
map extends smoothly (or only continuously) to a neighbourhood. Similarly
to hyperbolic sets [Katok & Hasselblatt 1995] we discuss basic properties. The
intrinsic property of f being an open map on X occurs equivalent to X being
repeller for the extension.

We call the repeller X with the smoothly extended dynamics: Smooth Ex-
panding Repeller, abbr. SER.

If an extension is conformal we say (X, f) is a Conformal Expanding Repeller,
abbr. CER. In Section 5.2 we discuss some distortion theorems and holomor-
phic motion to be used later in Section 5.4 and in Chapter 8 to prove analytic
dependence of “pressure” and Hausdorff dimension of CER on parameter.

In Section 5.3 we prove that for CER the density uφ = dm/dµ for measures
of harmonic potential is real-analytic (extends so on neighbourhood of X). This
will be used in 9 for the potential being − log |f ′|, in which case µ is equivalent
to Hausdorff measure in maximal dimension (geometric measure).

In Chapter 6 we provide in detail D. Sullivan’s theory classifying Cr+ε line
Cantor sets via scaling function, sketched in [Sullivan 1988] and discuss the real-
ization problem [Przytycki & Tangerman 1996]. We also discuss applications for
Cantor-like closures of postcritical sets for infinitely renormalizable Feigenbaum
quadratic-like maps of interval. The infinitesimal geometry of these sets occurs
independent of the map, which is one of famous Coullet–Tresser–Feigenbaum
universalities.

In Chapter 7 we provide definitions of various ”fractal dimensions”: Haus-
dorff, box and packing. We consider also Hausdorff measures with gauge func-
tions different from tα. We prove “Volume Lemma” linking, roughly speaking,
(global) dimension with local dimensions.
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In Chapter 8 we develop the theory of Conformal Expanding Repellers and
relate pressure with Hausdorff dimension.

Section 8.2 provides a brief exposition of multifractal analysis of Gibbs mea-
sure µ of a Hölder potential on CER X . We rely mainly on [Pesin 1997]. In
particular we discuss the function Fµ(α) := HD(Xµ(α)), where Xµ(α) := {x ∈
X : d(x) = α} and d(x) := limr→0 logµ(B(x, r))/ log r. The decomposition
X =

⋃

α(Xµ(α)) ∪ X̂, where the limit d(x), called local dimension, does not

exist for x ∈ X̂ , is called local dimension spectrum decomposition.

Next we follow the easy (uniform) part of [Przytycki, Urbański & Zdunik 1989]
and [Przytycki, Urbański & Zdunik 1991]. We prove that for CER (X, f) and
Hölder continuous φ : X → R, for κ = HD(µφ), Hausdorff dimension of the
Gibbs measure µφ (infimum of Hausdorff dimensions of sets of full measure),
either HD(X) = κ the measure µφ is equivalent to Λκ, the Hausdorff measure
in dimension κ, and is a geometric measure, or µφ is singular with respect to
Λκ and the right gauge function for the Hausdorff measure to be compared to
µφ is Φ(κ) = tκ exp(c

√

log 1/t log log log 1/t). In the proof we use LIL. This
theorem is used to prove a dichotomy for the harmonic measure on a Jordan
curve ∂, bounding a domain Ω, which is a repeller for a conformal expanding
map. Either ∂ is real analytic or harmonic measure is comparable to the Haus-
dorff measure with gauge function Φ(1). This yields an information about the
lower and upper growth rates of |R′(rζ)|, for r ր 1, for almost every ζ with
|ζ| = 1 and univalent function R from the unit disc |z| < 1 to Ω. This is a
dynamical counterpart of Makarov’s theory of boundary behaviour for general
simply connected domains, [Makarov 1985].

We prove in particular that for fc(z) = z2 + c, c 6= 0, c ≈ 0 it holds
1 < HD(J(fc)) < 2.

We show how to express in the language of pressure another interesting
function:

∫

|ζ|=1 |R′(rζ)|t |dζ| for r ր 1.

Finally we apply our theory to the boundary of von Koch “snowflake” and
more general Carleson fractals.

Chapter 9 is devoted to Sullivan’s rigidity theorem, saying that two non-
linear expanding repellers (X, f), (Y, g) that are Lipschitz conjugate (or more
generally there exists a measurable conjugacy that transforms a geometric mea-
sure on X to a geometric measure on Y , then the conjugacy extends to a con-
formal one. This means that measures classify non-linear conformal repellers.
This fact, announced in [Sullivan 1986] only with a sketch of the proof, is proved
here rigorously for the first time.

(This chapter was one of the eldest chapters in this book; we made it available
already in 1991. Many papers have been following it later on.)

In Chapter 10 we start to deal with non-uniform expanding phenomena. A
heart of this chapter is the proof of the formula HD(µ) = hµ(f)/χµ(f) for an
arbitrary f -invariant ergodic measure µ of positive Laypunov exponent χµ :=
∫

log |f ′| dµ.

(The phrase “non-uniform expanding” is used just to say that we consider
(typical points of) an ergodic measure with positive Lyapunov exponent. In
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higher dimension one uses the name non-uniform hyperbolic for measures with
all Lyapunov exponents non-zero.)

It is so roughly because a small disc around z, whose n-th image is large, has
diameter of order |(fn)′(z)|−1 ≈ exp−nχµ and measure exp−n hµ(f) (Shannon–
McMillan–Breiman theorem is involved here)

Chapter 11 is devoted to conformal measures, namely probability measures
with Jacobian Const exp−φ or more specifically |f ′|α in a non-uniformly ex-
panding situation, in particular for any rational mapping f on its Julia set J .
It is proved that there exists a minimal exponent δ(f) for which such a measure
exists and that δ(f) is equal to each of the following quantities:

Dynamical Dimension DD(J) := sup{HD(µ)}, where µ ranges over all
ergodic f -invariant measures on J of positive Lyapunov exponent.

Hyperbolic Dimension HyD(J) := sup{HD(Y )}, where Y ranges over all
Conformal Expanding Repellers in J , or CER’s that are Cantor sets.

It is an open problem whether for every rational mapping HyD(J) = HD(J) =
box dimension of J , but for many nonuniformly expandig mappings these equal-
ities hold. It is often easier to study the continuity of δ(f) with respect to a
parameter, than directly Hausdorff dimension. So one obtains an information
about the continuity of dimensions due to the above equalities.

The last Section 11.5 presents a recent approach via pressure for the potential
function −t log |f ′|, yielding a simple proof of the above equalities of dimensions,
see [Przytycki, Rivera–Letelier & Smirnov 2004].

A large part of this book was written in the years 1990–1992 and was lec-
tured to graduate students by each of us in Warsaw, Yale and Denton. We
neglected finishing writing, but recently unexpectedly to us the methods in
Chapter 11, relating hyperbolic dimension to minimal exponent of conformal
measure, were used to study the dependence on ε of the dimension of Julia set
for z2 + 1/4 + ε, for ε → 0 and other parabolic bifurcations, by A. Douady, P.
Sentenac and M. Zinsmeister in [Douady, Sentenac Zinsmeister 1997] and by C.
McMullen in [McMullen 1996]. So we decided to make final efforts. Meanwhile
nice books appeared on some topics of our book, let us mention [Falconer 1997],
[Zinsmeister 1996], [Boyarsky & Góra 1997], [Pesin 1997], [Keller 1998], [Baladi 2000]
but a lot of important material in our book is new or was hardly accessible, or
is written in an unconventional way.

Acknowledgements. We are indebted to Krzysztof Baranski for a help with
figures and Pawel Góra for the Figure 1.1. The first author acknowledges
a support of consecutive Polish KBN and MNiSW grants; the recent one is
N201022233.
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Chapter 0

Basic examples and

definitions

Let us start with definitions of dimensions. We shall come back to them in a
more systematic way in Chapter 7.

Definition 0.2. Let (X, ρ) be a metric space. We call by upper (lower) box
dimension of X the quantity

BD(X) (or BD(X)) := lim sup(lim inf)r→0
logN(r)

− log r

where N(r) is the minimal number of balls of radius r which cover X .

Sometimes the names capacity or Minkowski dimension or box-counting di-
mension are used. The name box dimension comes from the situation where
X is a subset of a euclidean space R

d. Then one can consider only r = 2−n

and N(2−n) can be replaced by the number of dyadic boxes [ k12−n ,
k1+1
2−n ]× · · · ×

[ kd

2−n ,
kd+1
2−n ], kj ∈ Z intersecting X .

If BD(X) = BD(X) we call the quantity box dimension and denote it by
BD(X).

Definition 0.3. Let (X, ρ) be a metric space. For every κ > 0 we define
Λκ(X) = limδ→0 inf{∑∞

i=1(diamUi)
κ}, where the infimum is taken over all

countable covers (Ui, i = 1, 2, . . . ) of X by sets of diameter not exceeding δ.
Λκ(Y ) defined as above on all subsets Y ⊂ X is called κ-th outer Hausdorff
measure.

It is easy to see that there exists κ0 : 0 ≤ κ0 ≤ ∞ such that for all κ : 0 ≤
κ < κ0 Λκ(X) = ∞ and for all κ : κ0 < κ Λκ(X) = 0. The number κ0 is called
the Hausdorff dimension of X .

Note that if in this definition we replace the assumption: sets of diameter
not exceeding δ by equal δ, and limδ→0 by lim inf or lim sup, we obtain box
dimension.

15
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A standard example to compare both notions is the set {1/n, n = 1, 2, . . . }
in R. Its box dimension is equal to 1/2 and Hausdorff dimension is 0. If one
considers {2−n} instead one obtains both dimensions 0. Also linear Cantor sets
in Introduction have Hausdorff and box dimensions equal. The reason for this
is self-similarity.

Example 0.4. Shifts spaces. For every natural number d consider the space
Σd of all infinite sequences (i0, i1, . . . ) with in ∈ {1, 2, . . . , d}. Consider the
metric

ρ((i0, i1, . . . ), (i
′
0, i

′
1, . . . )) =

∞
∑

n=0

λn|in − i′n|

for an arbitrary 0 < λ < 1. Sometimes it is more comfortable to use the metric

ρ((i0, i1, . . . ), (i
′
0, i

′
1, . . . )) = λ−min{n:in 6=i′n},

equivalent to the previous one. Consider σ : Σd → Σd defined by σ((i0, i1, . . . ) =
(i1, . . . ). The metric space (Σd, ρ) is called one-sided shift space and the map σ
the left shift. Often, if we do not specify metric but are interested only in the
cartesian product topology in Σd = {1, . . . , d}Z

+

, we use the name topological
shift space.

One can consider the space Σ̃d of all two sides infinite sequences
(. . . , i−1, i0, i1, . . . ). This is called two-sided shift space.

Each point (i0, i1, . . . ) ∈ Σd determines its forward trajectory under σ, but is
equipped with a Cantor set of backward trajectories. Together with the topology
determined by the metric

∑∞
n=−∞ λ|n||in− i′n| the set Σ̃d can be identified with

the inverse limit (in the topological category) of the system · · · → Σd → Σd

where all the maps → are σ.
Note that the limit Cantor set Λ in Introduction, with all λi = λ is Lip-

schitz homeomorphic to Σd, with the homeomorphism h mapping (i0, i1, . . . )
to
⋂

k Ti0 ◦ · · · ◦ Tik(I). Note that for each x ∈ Λ, h−1(x) is the sequence of

integers (i0, i1, . . . ) such that for each k, T̂ k(x) ∈ Tik(I). It is called a coding
sequence. If we allow the end points of Ti(I) to overlap, in particular λ = 1/d
and ai = (i− 1)/d, then Λ = I and h−1(x) =

∑∞
k=0(ik − 1)d−k−1.

One generalizes the one (or two) -sided shift space, called sometimes full
shift space by considering the set ΣA for an arbitrary d × d - matrix A = (aij
with aij = 0 or 1 defined by

ΣA = {(i0, i1, . . . ) ∈ Σd : aitit+1 = 1 for every t = 0, 1, . . .}.

By the definition σ(ΣA) ⊂ ΣA. ΣA with the mapping σ is called a topological
Markov chain. Here the word topological is substantial, otherwise it is customary
to think of a finite number of states stochastic process, see Example 0.10.

Example 0.5. adding machine A complementary dynamics on Σd above, is
given by the map T ((i0, i1, . . . )) = (1, 1, . . . , 1, ik+1, ik + 1, . . . ), where k is the
least integer for which ik < d. Finally (d, d, d, . . . ) + 1 = (1, 1, 1, . . . ). (This
is of course compatible with the standard adding, except here the sequences
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are infinite to the right and the digits run from 1 to d, rather than from 0 to
d− 1.) Notice that unlike in the previous example with abundance of periodic
trajectories, here each T -trajectory is dense in Σd (such dynamical system is
called minimal).

Example 0.6. Iteration of rational maps. Let f : C → C be a holomorphic
mapping of the Riemann sphere C. Then it must be rational, i.e. ratio of two
polynomials. We assume that the topological degree of f is at least 2. The Julia
set J(f) is defined as follows:

J(f) = {z ∈ C : ∀U ∋ z , U open, the family of iterates fn = f ◦ · · · ◦ f |U , n
times, for n = 1, 2, . . . is not normal in the sense of Montel }.

A family of holomorphic functions ft : U → C is called normal (in the
sense of Montel) if it is pre-compact, namely from every sequence of functions
belonging to the family one can choose a subsequence uniformly convergent (in
the spherical metric on the Riemann sphere C) on all compact subsets of U .

z ∈ J(f) implies for example, that for every U ∋ z the family fn(U) covers
all C but at most 2 points. Otherwise by Montel’s theorem {fn} would be
normal on U .

Another characterization of J(f) is that J(f) is the closure of repelling
periodic points, namely those points z ∈ C for which there exists an integer n
such that fn(z) = z and |(fn)′(z)| > 1.

There is only a finite number of attracting periodic points, |(fn)′(z)| < 1;
they lie outside J(f), which is an uncountable “chaotic, expansive (repelling)”
Julia set. The lack of symmetry between attracting and repelling phenomena is
caused by the non-invertibility of f .

It is easy to prove that J(f) is compact, completely invariant: f(J(f)) =
J(f) = f−1(J(f)), either nowhere dense or equal to the whole sphere (to prove
this use Montel’s theorem).

For polynomials, the set of points whose images under iterates fn, n =
1, 2, . . . , tend to ∞, basin of attraction to ∞, is connected and completely in-
variant. Its boundary is the Julia set.

Check that all these general definitions and statements are compatible with
the discussion of f(z) = fc(z) = z2 + c in Introduction. As an introduction to
this theory we recommend for example the books [Beardon 1991], [Carleson & Gamelin 1993],
[Milnor 1999] and [Steinmetz 1993].

Below are computer pictures exhibiting some Julia sets: rabbit, basilica1

and Sierpiński’s carpet of their mating, see [Bielefeld ed. 1990].

A Julia set can have Hausdorff dimension arbitrarily close to 0 (but not 0)
and arbitrarily close to 2 and even being exactly 2 (but not the whole sphere).
More precisely: Julia set is always closed and either the whole sphere or nowhere
dense. Recently examples have been found of quadratic polynomials fc with
Julia set of positive Lebesgue measure (with c in the cardioid, Example 5.1.10),
see [Buff & Cheritat 2008]. See also

1The name was proposed by Benoit Mandelbrot [Mandelbrot 1982] impressed by the Basil-
ica San Marco in Venice plus its reflection in a flooded Piazza.
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.

.
.

0

Figure 1: Douady’s rabbit. Here f(z) = z2 + c, where c ≈ −0.123 + 0.749i,
is a root of c3 + 2c2 + c + 1 = 0, see [Carleson & Gamelin 1993]. The three
distinguished points constitute a period 3 orbit. The arrows hint the action of
f .

. .

Figure 2: Basilica. For decreasing c this shape appears at c = −3/4 with thicker
components. f(z) = z2 − 1. The critical point 0 is attracting of period 2

Figure 3: The (outer) basilica mated with the rabbit. Here f(z) = z2+c
z2−1 where

c = 1+
√
−3

2 . Black is attracted to a period 3 orbit, white to period 2. Julia set
is the boundary between black and white.
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http://picard.ups-tlse.fr/adrien2008/Slides/Cheritat.pdf

Example 0.7. Complex linear fractals. The linear Cantor set construction
in R described in Introduction can be generalized to conformal linear Cantor
and other fractal sets in C:

Let U ⊂ C be a bounded connected domain and Ti(z) = λiz + ai, where
λi, ai are complex numbers, i = 1, . . . , n > 1. Assume that closures clTi(U) are
pairwise disjoint and contained in U . The limit Cantor set Λ is defined in the
same way as in Introduction.

In Chapter 9, Example 9.2.8 we shall note that it cannot be the Julia set for
a holomorphic extension of T̂ = T−1

i on Ti(U) for each i, to the whole sphere
C.

If we allow that the boundaries of Ti(U) intersect or intersect ∂U we obtain
other interesting examples

Figure 4: Sierpinski gasket, Sierpinski carpet & the boundary of von Koch
snowflake

Example 0.8. Action of Kleinian groups. Beautiful examples of fractal
sets arise as limit sets of the action of Kleinian groups on C.

Let Ho be the group of all homographies, namely the rational mappings of
the Riemann sphere of degree 1, i.e. of the form z 7→ az+b

cz+d where ad − bc 6= 0.
Every discrete subgroup of Ho is called Kleinian group. If all the elements of
a Kleinian group preserve the unit disc D = {|z| < 1}, the group is called
Fuchsian.

Consider for example a regular hyperbolic 4n-gon in D (equipped with the
hyperbolic metric) centered at 0. Denote the consecutive sides by aji , i =
1, . . . , n, j = 1, . . . , 4 in the lexicographical order: a1

1, . . . a
4
1, a

1
2, . . . . Each side

is contained in the corresponding circle Cji intersecting ∂D at the right angles.

Denote the disc bounded by Cji by Dj
i .

It is not hard to see that the closures of Dj
i and Dj+2

i are disjoint for each
i and j = 1, 2.
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a4
1

a3
2

a4
2

a2
1

a2
2

a1
1

a3
1

a1
2

Figure 5: Regular hyperbolic octagon

Let gji , j = 1, 2 be the unique homography preserving D mapping aji to aj+2
i

and Dj
i to the complement of clDj+2

i . It is easy to see that the family {gji }
generates a Fuchsian group G. For an arbitrary Kleinian group G, the Poincaré
limit set Λ(G) =

⋃

limk→∞ gk(z), the union taken over all sequences of pairwise
different gk ∈ G such that gk(z) converges, where z is an arbitrary point in C.
It is not hard to prove that Λ(G) does not depend on z.

For the above example Λ(G) = ∂D. If we change slightly gji (the circles Cji
change slightly), then either Λ(G) is a circle S (all new Cji intersect S at the
right angle), or it is a fractal Jordan curve. The phenomenon is similar to the
case of the maps z 7→ z2 +c described in Introduction and in more detail in Sec-
tion 8.5. For details see [Bowen 1979], [Bowen & Series 1979], [Sullivan 1982].
We provide a sketch of the proof in Chapter 8.

If all the closures of the discs Dj
i , i = 1, . . . , n, j = 1, . . . , 4 become pairwise

disjoint, Λ(G) becomes a Cantor set (the group is called then a Schottky group
or a Kleinian group of Schottky type).

Example 0.9. Higher dimensions. Though the book is devoted to 1-dimensional
real and complex iteration and arising fractals, Chapters 1–3 apply to general
situations. A basic example is Smale’s horseshoe. Take a squareK = [0, 1]×[0, 1]
in the plane R

2 and map it affinely to a strip by squeezing in the horizontal di-
rection and stretching in the vertical, for example f(x, y) = (1

5x+ 1
4 , 3y− 1

8 ) and
bend the strip by a new affine map g which maps the rectangle [15 ,

2
5 ]× [74 ,

23
8 ] to

[35 ,
4
5 ]× [− 1

8 , 1]. The resulting composition T = g ◦ f maps K to a “horseshoe”,
see [Smale 1967, p.773]

The map can be easily extended to a C∞-diffeomorphism of C by mapping
a “stadium” extending K, to a bent “stadium”, and its complement to the
respective complement. The set ΛK of points not leaving K under action of
T n, n = . . . ,−1, 0, 1, . . . is the cartesian product of two Cantor sets. This set is
T -invariant, “uniformly hyperbolic”. In the horizontal direction we have con-
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.

Figure 6: Horseshoe, stadium extension

traction, in the vertical direction uniform expansion. The situation is different
from the previous examples of Σd or linear Cantor sets, where we had uniform
expansion in all directions.

Smale’s horseshoe is a universal phenomenon. It is always present for an
iterate of a diffeomorphism f having a transversal homoclinic point q for a
saddle p. The latter says that the stable and unstable manifolds W s(p) := {y :
fn(y) → p},Wu(p) := {y : f−n(y) → p} as n→ ∞, intersect transversally at q.
For more details on hyperbolic sets see [Katok & Hasselblatt 1995]. Compare
heteroclinic intersections in Chapter 3, Exercise 3.8.

.

.

.

W s(p)

q

p

Wu(p)

Figure 7: Homoclinic point

Note that T |ΛK is topologically conjugate to the left shift σ on the two-sided
shift space Σ̃2, namely there exists a homeomorphism h : ΛK → Σ̃2 such that
h ◦ T = σ ◦ h. Compare h in Example 0.4. T on ΛK is the inverse limit of
the mapping T̂ on the Cantor set described in Introduction, similarly to the
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inverse limit Σ̃2 of σ on Σ2. The philosophy is that hyperbolic systems appear
as inverse limits of expanding systems.

A partition of a hyperbolic set Λ into local stable (unstable) manifolds:
W s(x) = {y ∈ Λ : (∀n ≥ 0)ρ(fn(x), fn(y)) ≤ ε(x)} for a small positive mea-
surable function ε, is an illustration of an abstract ergodic theory measurable
partition ξ such that f(ξ) is finer than ξ, fn(ξ), n → ∞ converges to the par-
tition into points and the conditional entropy Hµ(f(ξ)|ξ) is maximal possible,
equal to the entropy hµ(f); all this holds for an ergodic invariant measure µ.

The inverse limit of the system · · · → S1 → S1 where all the maps are z 7→
z2, is called a solenoid. It has a group structure: (. . . , z−1, z0) · (. . . , z′−1, z

′
0) =

(. . . , z−1 · z′−1, z0 · z′0), which is a trajectory if both factors are, since the map
z 7→ z2 is a homomorphism of the group S1. Topologically the solenoid can be
represented as the attractor A of the mapping of the solid torus D × S1 into
itself f(z, w) = (1

3z + 1
2w,w

2). Its Hausdorff dimension is equal in this special

example to 1 + HD(A ∩ {w = w0}) = 1 + log 2
log 3 for an arbitrary w0, as Cantor

sets A ∩ {w = w0} have Hausdorff dimensions log 2
log 3 . These are linear Cantor

sets discussed in Introduction.

Especially interesting is the question of Hausdorff dimension of A if z 7→ 1
3z

is replaced by z 7→ φ(z) not conformal. But this higher dimensional problem
goes beyond the scope of our book.

If the map z 7→ z2 in the definition of solenoid is replaced by an arbitrary
rational mapping then if f is expanding on the Julia set, the solenoid is locally
the cartesian product of an open set in J(f) and the Cantor set of all possible
choises of backward trajectories. If however there are critical points in J(f) (or
converging under the action of fn to parabolic points in J(f)) the solenoid (in-
verse limit) is more complicated, see [Lyubich & Minsky 1997] and more recent
papers for an attempt to describe it, together with a neighbourhood composed
of trajectories outside J(f). We shall not discuss this in our book.

Example 0.10. Bernoulli shifts and Markov chains. For every positive
numbers p1, . . . , pd such that

∑d
i=1 pi = 1, one introduces on the Borel subsets

of Σd (or Σ̃d) a probability measure µ by extending to the σ-algebra of all Borel
sets the function µ(Ci0,i1,...,it) = p0p1 . . . pt, where Ci0,i1,...,it = {(i′0, i′1, . . . ) :
i′s = is for every s = 0, 1, . . . , t}. Each such C is called a finite cylinder.

The space Σd with the left shift σ and the measure µ is called one-sided
Bernoulli shift.

On a topological Markov chain ΣA ⊂ Σd with A = (aij) and an arbitrary

d × d matrix M = pij such that
∑d

j=1 pij = 1 for every i = 1, . . . , d, pij ≥ 0
and pij = 0 if aij = 0, one can introduce a probability measure µ on all Borel
subsets of ΣA by extending µ(Ci0,i1,...,it) = pi0pi0i1 . . . pit−1it . Here (p1, . . . , pd)
is an eigenvector of M∗, namely

∑

i pipij = pj , such that pi ≥ 0 for every

i = 1, . . . , d and
∑d
i=1 = 1.

The space ΣA with the left shift σ and the measure µ is called one-sided
Markov chain.
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Note that µ is σ-invariant. Indeed,

µ
(

⋃

i

(Ci,i0,...,it)
)

=
∑

i

pipii0pi0i1 . . . pit−1it = pi0pi0i1 . . . pit−1it = µ(Ci0,...,it).

As in the topological case if we consider Σ̃d rather than Σd, we obtain two-
sided Bernoulli shifts and two-sided Markov chains.

Example 0.11. Tchebyshev polynomial. Let us consider the mapping T :
[−1, 1] → [−1, 1] of the real interval [−1, 1] defined by T (x) = 2x2 − 1. In
the co-ordinates z 7→ 2z it is just a restriction to an invariant interval of the
mapping z 7→ z2 − 2 discussed already in Introduction. The interval [−1, 1] is
Julia set of T .

Notice that this map is the factor of the mapping z 7→ z2 on the unit circle
{|z| = 1} in C by the orthogonal projection P to the real axis. Since the length
measure l is preserved by z 7→ z2 its projection is preserved by T . Its density
with respect to the Lebesgue measure on [−1, 1] is proportional to (dP/dl)−1,
after normalization is equal to 1

π
1√

1−x2 . This measure satisfies many properties

of Gibbs invariant measures discussed in Chapter 4, though T is not expanding;
it has a critical point at 0. This T is the simplest example of a non-uniformly
expanding map to which the advanced parts of the book are devoted. See also
Figures 1.1 and 1.2 in Section 1.2.
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Chapter 1

Measure preserving

endomorphisms

1.1 Measure spaces and martingale theorem

We assume that the reader is familiar with the basics elements of measure and
integration theory. For a complete treatment see for example [Halmos 1950] or
[Billingsley 1979]. We start with some basics to introduce notation and termi-
nology.

A family F of subsets of a set X is said to be a σ-algebra if the following
conditions are satisfied:

X ∈ F , (1.1.1)

A ∈ F ⇒ Ac ∈ F (1.1.2)

and

{Ai}∞i=1 ⊂ F ⇒
∞
⋃

i=1

Ai ∈ F . (1.1.3)

It follows from this definition that ∅ ∈ F , that the σ-algebra F is closed under
countable intersections and under subtractions of sets. If (1.1.3) is assumed
only for finite subfamilies of F then F is called an algebra. The elements of the
σ-algebra F will be frequently called measurable sets.

Notation 1.1.1. For any family F0 of subsets of X, we denote by σ(F0) the
least σ-algebra that contains F0 and we call it the σ-algebra generated by F0.

A function on a σ-algebra F , µ : F → [0,∞], is said to be σ-additive if for
any countable subfamily {Ai}∞i=1 of F consisting of mutually disjoint sets, we
have

µ
(

∞
⋃

i=1

Ai

)

=

∞
∑

i=1

µ(Ai) (1.1.4)

25
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We say then that µ is a measure. If we consider in (1.1.4) only finite families of
sets, we say µ is additive. The two notions: of additive and of σ-additive, make
sense for a σ-algebra as well as for an algebra, provided that in the case of an
algebra one considers only families {Ai} ⊂ F such that

⋃

Ai ∈ F . The simplest
consequences of the definition of measure are the following:

µ(∅) = 0; (1.1.5)

if A,B ∈ F and A ⊂ B then µ(A) ≤ µ(B); (1.1.6)

if A1 ⊂ A2 ⊂ . . . and {Ai}∞i=1 ⊂ F then

µ
(

∞
⋃

i=1

Ai

)

= sup
i
µ(Ai) = lim

i→∞
µ(Ai). (1.1.7)

We say that the triple (X,F , µ) with a σ-algebra F and µ a measure on F is
a measure space. In this book we will always assume, unless otherwise stated,
that µ is a finite measure that is µ : F → [0,∞). By (1.1.6) this equivalently
means that µ(X) < ∞. If µ(X) = 1, the triple (X,F , µ) is called a probability
space and µ a probability measure.

We say that φ : X → R is a measurable function, if φ−1(J) ∈ F for every
interval J ⊂ R, equivalently for every Borel set J ⊂ R, (compare Section 1.2).
We say that φ is µ-integrable if

∫

|φ| dµ < ∞. We write φ ∈ L1(µ). More
generally, for every 1 ≤ p < ∞ we write (

∫

|φ|p dµ)1/p = ‖φ‖p and we say that
φ belongs to Lp(µ) = Lp(X,F , µ). If infµ(E)=0 supX\E |φ| <∞, we say φ ∈ L∞

and denote the latter expression by ‖φ‖∞. The numbers ‖φ‖p, 1 ≤ p ≤ ∞ are
called Lp-norms of φ. We usually identify in this chapter functions which differ
only on a set of µ-measure 0. After these identifications the linmear spaces
Lp(X,F , µ) become Banach spaces with the norms ‖φ‖∞.

We say that a property q(x), x ∈ X , is satisfied for µ almost every x ∈ X
(abbr: a.e.), or µ-a.e., if µ({x : q(x) is not satisfied}) = 0. We can consider q as
a subset of X with µ(X \ q) = 0.

We shall often use in the book the following two facts.

Theorem 1.1.2 (Monotone Convergence Theorem). Suppose φ1 ≤ φ2 ≤ . . . is
an increasing sequence of integrable, real-valued functions on a probability space
(X,F , µ). Then φ = limn→∞ φn exists a.e. and limn→∞

∫

φn dµ =
∫

φdµ. (We
allow +∞’s here.)

and

Theorem 1.1.3 (Dominated Convergence Theorem). If (φn)∞n=1 is a sequence
of measurable real-valued functions on a probability space (X,F , µ) and |φn| ≤
g for an integrable function g, and φn → φ a.e., then φ is integrable and
limn→∞

∫

φn dµ =
∫

φdµ.

Recall now that if F ′ is a sub-σ-algebra of F and φ : X → R is a µ-
integrable function, then there exists a unique (mod 0) function, usually denoted
by E(φ|F ′), such that E(φ|F ′) is F ′-measurable and

∫

A

E(φ|F ′) dµ =

∫

A

φdµ (1.1.8)
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for all A ∈ F ′. E(φ|F ′) is called conditional expectation value of the function
φ with respect to the σ-algebra F ′. Sometimes we shall use for E(φ|F ′) the
simplified notation φF ′ .

For F , generated by a finite partition A (cf. Section 1.3), one can think of
E(φ|σ(A)) as constant on each A ∈ A equal to the average

∫

A φdµ/µ(A).
The existence of E(φ|F ′) follows from the famous Radon-Nikodym theorem,

saying that if ν ≪ µ, both measures defined on the same σ-algebra F ′ (where
ν ≪ µ means that ν is absolutely continuous with respect to µ, i.e. µ(A) = 0 ⇒
ν(A) = 0 for all A ∈ F ′), then there exists a unique (mod 0) F ′-measurable,
µ-integrable function Φ = dν/dµ : X → R+ such that for every A ∈ F ′

∫

A

Φ dµ = ν(A).

To deduce (1.1.8) we set ν(A) =
∫

A
φdµ for A ∈ F ′. The trick is that we restrict

µ from F to F ′. namely we apply Radon-Nikodym theorem for ν ≪ µ|F ′ .
If φ ∈ Lp(X,F , µ) then E(φ|F ′) ∈ Lp(X,F ′, µ) for all σ-algebras F ′ with

Lp norms uniformly bounded. More precisely the operators φ 7→ E(φ|F ′) are
linear projections from Lp(X,F , µ) to Lp(X,F ′, µ), with Lp-norms equal to 1
(see Exercise 1.7).

For a sequence (Fn))∞n=1 of σ-algebras contained in F denote by
∨∞
n=1 Fn

the smallest σ-algebra containing
⋃∞
n=1 Fn The latter union is usually not

a σ-algebra, but only an algebra. According to Notation 1.1.1,
∨∞
n=1 Fn =

σ(
⋃∞
n=1 Fn). Compare Section 1.6 where complete σ-algebras of this form are

considered in Lebesgue spaces.
We end this section with the following version of the Martingale Conver-

gence Theorem.

Theorem 1.1.4. If (Fn : n ≥ 1) is either an ascending or descending sequence
of σ-algebras contained in F , then for every φ ∈ Lp(µ), 1 ≤ p <∞, we have

lim
n→∞

E(φ|Fn) = E(φ|F ′), a.e. and in Lp,

where F ′ is either equal to
∨∞
n=1 Fn or to

⋂∞
n=1 Fn respectively.

Recall that a sequence of µ-measurable functions ψn : X → R, n = 1, 2, . . .
is said to converge in measure µ to ψ if for every ε > 0, limn→∞ µ({x ∈ X :
|ψn(x) − ψ(x)| ≥ ε}) = 0.

In this book we denote by 11A the indicator function of A, namely the func-
tion equal to 1 on A and to 0 outside of A.

Remark 1.1.5. For the existence of F ′ and the convergence in Lp in Theo-
rem 1.1.4, no monotonicity is needed. It is sufficient to assume that for every
A ∈ F the limit limE(11A|Fn) in measure µ exists.

We shall not provide here any proof of Theorem 1.1.4 in the full generality,
(see though Exercise 1.5). Let us provide however at least a proof Theorem 1.1.4
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(and Remark 1.1.5 in the case limE(11A|Fn) = 11A) for the L2-convergence for
functions φ ∈ L2(µ). This is sufficient for example to prove the important
Theorem 1.8.6 (proof 2) later on in this chapter.

For any ascending sequence (Fn) we have the equality

L2(X,F ′, µ) =
⋃

n

L2(X,Fn, µ) (1.1.9)

Indeed, for every B,C ∈ F write B÷C = (B \C)∪(C \B), so-called symmetric
difference of sets B and C. Notice that for every B ∈ F ′ there exists a sequence
Bn ∈ Fn, n ≥ 1, such that µ(B ÷Bn) → 0.

This follows for example from Carathéodory’s argument, see the comments
after the statement of Theorem 1.7.2. We have µ(B) equal to the outer measure
of B constructed from µ restricted to the algebra

⋃∞
n=1 Fn. In the Remark 1.1.5

case where we assumed limE(11A|Fn) = 11A, this is immediate.
Hence L2(X,Fn, µ) ∋ 11Bn

→ 11B in L2(X,F , µ). Finally, to get (1.7.2), use
the fact that every function f ∈ L2(X,F ′, µ) can be approximated in the space
L2(X,F ′, µ) by the step functions, i.e. finite linear combinations of indicator
functions.

Therefore, since E(φ|Fn) and E(φ|F ′) are orthogonal projections of φ to
L2(X,Fn, µ) and L2(X,F ′, µ) respectively (exercise) we obtain E(φ|Fn) →
E(φ|F ′) in L2.

For a decreasing sequence Fn use the equality L2(X,F ′, µ) =
⋂

n L
2(X,Fn, µ).

1.2 Measure preserving endomorphisms, ergod-

icity

Let (X,F , µ) and (X ′,F ′, µ′) be measure spaces. A transformation T : X →
X ′ is said to be measurable if T−1(A) ∈ F for every A ∈ F ′. If moreover
µ(T−1(A)) = µ′(A) for every A ∈ F ′, then T is called measure preserving. We
write µ′ = µ ◦ T−1 or µ′ = T∗(µ).

We call (X ′,F ′, µ′) a factor (or quotient) of (X,F , µ), and (X,F , µ) an
extension of (X,F , µ).

If a measure preserving map T : X → X ′ is invertible and the inverse T−1

is measurable, then clearly T−1 is also measure preserving. Therefore T is an
isomorphism in the category of measure spaces.

If (X,F , µ) = (X ′,F ′, µ′) we call T a measure preserving endomorphism; we
will say also that the measure µ is T –invariant, or that T preserves µ. In the
case of (X,F , µ) = (X ′,F ′, µ′) an isomorphism T is called automorphism.

If T and T ′ are endomorphisms of (X,F , µ) and (X ′,F ′, µ′) respectively
and S : X → X ′ is a measure preserving transformation from (X,F , µ) to
(X ′,F ′, µ′) such that F ′ ◦ S = S ◦ F , then we call T ′ : X → X ′ a factor of
T : X → X and T : X → X an extension of T : X ′ → X ′.

For every µ-measurable φ we define UT (φ) = φ ◦ T .



1.2. MEASURE PRESERVING ENDOMORPHISMS, ERGODICITY 29

UT is sometimes called the Koopman operator. We have following easy

Proposition 1.2.1. For φ ∈ L1(X ′,F ′, µ′) we have
∫

φ ◦ T dµ =
∫

φdµ ◦ T−1.
Moreover for each p the adequate restriction of the Koopman operator UT :
Lp(X ′,F ′, µ′) → Lp(X,F , µ) is an isometry to the image, surjective iff T is an
isomorphism.

The isometry operator UT has been widely explored to understand measure
preserving endomorphisms T . Especially convenient has been UT : L2(µ) →
L2(µ), the isometry of the Hilbert space L2(µ). Notice that it is an isomorphism
(that is unitary) if and only if T is an automorphism. For more properties see
Exercise 1.23.

We shall prove now the following very useful fact in which the finitness of
measure is a crucial assumption.

Theorem 1.2.2 (Poincaré Recurrence Theorem). If T : X → X is a (finite !)
measure preserving endomorphism, then for every mesurable set A

µ
(

{x ∈ A : T n(x) ∈ A for infinitely many n’s}
)

= µ(A).

Proof. Let
N = N(T,A) = {x ∈ A : T n(x) /∈ A ∀n ≥ 1}.

We shall first show that µ(N) = 0. Indeed, N is measurable since N = A ∩
⋂

n≥1 T
−n(X \ A). If x ∈ N , then T n(x) /∈ A for all n ≥ 1 and, in particular,

T n(x) /∈ N which implies that x /∈ T−n(N), and consequently N ∩T−n(N) = ∅
for all n ≥ 1. Thus, all the sets N , T−1(N), T−2(N), . . . are mutually disjoint
since if n1 ≤ n2, then

T−n1(N) ∩ T−n2(N) = T−n1(N ∩ T−(n2−n1)(N)) = ∅.
Hence

∞ > µ

( ∞
⋃

n=0

T−n(N)

)

=

∞
∑

n=0

µ(T−n(N)) =

∞
∑

n=0

µ(N).

Therefore µ(N) = 0. Fix now k ≥ 1 and put

Nk = {x ∈ A : T n(x) /∈ A ∀n ≥ k}.
Then Nk ⊂ N(T k, A) and therefore from what have been proved above it follows
that µ(Nk) ≤ µ(N(T k, A)) = 0. Thus

µ
(

{x ∈ A : T n(x) ∈ A for only finitely many n’s}
)

= 0.

The proof is finished. ♣

Definition 1.2.3. A measurable transformation T : X → X of a measure space
(X,F , µ) is said to be ergodic if for any measurable set A

µ(T−1(A) ÷A) = 0 ⇒ µ(A) = 0 or µ(X \A) = 0.

Recall the notation B ÷ C = (B \ C) ∪ (C \B).
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Note that we did not assume in the definition of ergodicity that µ is T -
invariant (neither that µ is finite). Suppose that for every E of measure 0
the set T−1(E) is also of measure 0. (In Chapter 4 we call this property of µ
with respect to T , backward quasi-invariance. In the literature the name non-
singular is also being used). Then in the definition of ergodicity one can replace
µ(T−1(A) ÷ A) = 0 by T−1(A) = A. Indeed having A as in the definition, one
can define A′ =

⋂∞
n=0

⋃∞
m=n T

−m(A). Then µ(A′) = µ(A) and T−1(A′) = A′.
If we assumed that the latter implies µ(A′) = 0 or µ(X \A′) = 0, then µ(A) = 0
or µ(X \A) = 0.

Remark 1.2.4. If T is an isomorphism then T is ergodic if and only if T−1 is
ergodic.

Let φ : X → R be a measurable function. For any n ≥ 1 we define

Snφ = φ+ φ ◦ T + . . .+ φ ◦ T n−1 (1.2.1)

Let I = {A ∈ F : µ(T−1(A) ÷ A) = 0}. We call I the σ-algebra of T -
invariant (mod 0) sets. Note that every ψ : X → R, measurable with respect
to I, is T -invariant (mod 0), namely ψ ◦ T = ψ on the complement of a set of
measure µ equal to 0.

Indeed let A = {x ∈ X : ψ(x) 6= ψ ◦ T (x)}, and suppose µ(A) > 0. Then
there exists a ∈ R such that either A+

a = {x ∈ A : ψ(x) < a, ψ ◦ T (x) > a} or
A−
a = {x ∈ A : ψ(x) > a, ψ ◦ T (x) < a} has positive µ-measure. In the case of

A+ we have ψ ◦ T > a on T−1(A+
a ). We conclude that ψ > a and ψ < a on

A+
a ∩ T−1(A+

a ) simultaneously, which contradicts A+
a ∩ T−1(A+

a ) = µ(A+
a ) > 0.

The case of A− can be dealt with similarly.

Theorem 1.2.5 (Birkhoff’s Ergodic Theorem). If T : X → X is a measure
preserving endomorphism of a probability space (X,F , µ) and φ : X → R is an
integrable function, then

lim
n→∞

1

n
Snφ(x) = E(φ|I) for µ-a.e. x ∈ X .

If, in addition, T is ergodic, then

lim
n→∞

1

n
Snφ(x) =

∫

φdµ, for µ-a.e. x (1.2.2)

We say that the time average exists for µ-almost every x ∈ X . If T is ergodic,
we say that the time average equals the space average.

If φ = 11A, the indicator function of a measurable set A, then we deduce
that for µ-a.e. x ∈ X the frequency of hitting A by the forward trajectory of x
equals to the measure (probability) of A, namely

lim
n→∞

#{0 ≤ j < n : T j(x) ∈ A}/n = µ(A). (1.2.3)
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This means for example that if we choose a point in X being a bounded
invariant part of Euclidean space at random its sufficiently long forward trajec-
tory fills X with the density being approximately the density of µ with respect
to the Lebesgue measure, provided µ is equivalent to the Lebesgue measure.

On the figure below, Figure 1.1, for a randomly chosen x ∈ [−1, 1] the
trajectory T j(x), j = 0, 1, . . . , n, for T (x) = 2x2 − 1 is plotted. See Example
0.9. The interval [−1, 1] is divided into k = 100 equal pieces. The computer
calculated the number of hits of each piece for n = 500000. The resulting graph
indeed resembles the graph of 1

π

√
1 − x2, Figure 1.2, which is the density of the

invariant probability measure equivalent to the length measure. Twice bigger
vertical extension of Figure 1.1 than 1.2 results from the vertical scaling giving
integral equal to 2.

Figure 1.1: The plotted density of an invariant measure for T (x) = 2x2 − 1.
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Figure 1.2: The density of an invariant measure for T (x) = 2x2 − 1.

As a corollary of Birkhoff’s Ergodic Theorem one can obtain von Neumann’s
Ergodic Theorem. It says that if φ ∈ Lp(µ) for 1 ≤ p <∞, then the convergence
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to E(φ|I) holds in Lp. It is not difficult, see for example [Walters 1982].

Proof of Birkhoff’s Ergodic Theorem. Let f ∈ L1(µ) and Fn = max{∑k−1
i=0 f ◦

T i : 1 ≤ k ≤ n}, for n = 1, 2, . . . . Then for every x ∈ X , Fn+1(x)−Fn(T (x)) =
f(x) − min(0, Fn(T (x))) ≥ f(x) and is monotone decreasing, since Fn is mono-
tone increasing. The two cases under min are illustrated at Figure 1.3

1 2 k 1 2 k

Case 1 Case 2

Figure 1.3: Graph of k 7→∑k−1
i=0 f ◦T i(x), k = 1, 2, . . . . Case 1. Fn+1(x) = f(x)

(i.e. Fn(T (x)) ≤ 0). Case 2. Fn+1(x) = f(x)+Fn(T (x)). (i.e. Fn(T (x)) ≥ 0).

Define

A =
{

x : sup
n

n
∑

i=0

f(T i(x)) = ∞
}

.

Note that A ∈ I. If x ∈ A, then Fn+1(x) − Fn(T (x)) monotonously decreases
to f(x) as n→ ∞. The Dominated Convergence Theorem implies then, that

0 ≤
∫

A

(Fn+1 − Fn) dµ =

∫

A

(Fn+1 − Fn ◦ T ) dµ→
∫

A

fdµ. (1.2.4)

(We thus get that
∫

A
f dµ ≥ 0, which is a variant of the so-called Maximal

Ergodic Theorem, see Exercise 1.3. )

Notice that 1
n

∑n−1
k=0 f ◦ T k ≤ Fn/n; so outside A, we have

lim sup
n→∞

1

n

n−1
∑

k=0

f ◦ T k ≤ 0. (1.2.5)

Therefore, if the conditional expectation value fI of f is negative a.e., that is
if
∫

C fdµ =
∫

C fIdµ < 0 for all C ∈ I with µ(C) > 0, then, as A ∈ I, (1.2.4)
implies that µ(A) = 0. Hence (1.2.5) holds a.e. Now if we let f = φ − φI − ε,
then fI = −ε < 0. Note that φI ◦ T = φI implies that

1

n

n−1
∑

k=0

f ◦ T k =
( 1

n

n−1
∑

k=0

φ ◦ T k
)

− φI − ε.
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So (1.2.5) yields

lim sup
n→∞

1

n

n−1
∑

k=0

φ ◦ T k ≤ φI + ε a.e.

Replacing φ by −φ gives

lim inf
n→∞

1

n

n−1
∑

k=0

φ ◦ T k ≥ φI − ε a.e.

Thus limn→∞
1
n

∑n−1
k=0 φ ◦ T k = φI a.e. ♣

Recall that at the end opposite to the absolute continuity (see Section 1.1)
there is the notion of singularity. Two probability measures µ1 and µ2 on a
σ-algebra F are called mutually singular, µ1 ⊥ µ2 if there exist disjoint sets
X1, X2 ∈ F with µi(Xi) = 1 for i = 1, 2.

Theorem 1.2.6. If T : X → X is a map measurable with respect to a σ-algebra
F and if µ1 and µ2 are two different T -invariant probability ergodic measures
on F , then µ1 and µ2 are mutually singular.

Proof. Since µ1 and µ2 are different, there exists a measurable set A such that

µ1(A) 6= µ2(A) (1.2.6)

By Theorem 1.2.5 (Birkhoff’s Ergodic Theorem) applied to µ1 and µ2 there
exist sets X1, X2 ∈ F satisfying µi(Xi) = 1 for i = 1, 2 such that for every
x ∈ Xi

lim
n→∞

1

n
Sn11A(x) = µi(A).

Thus in view of (1.2.6) the setsX1 andX2 are disjoint. The proof is finished. ♣

Proposition 1.2.7. If T : X → X is a measure preserving endomorphism of a
probability space (X,F , ν), then ν is ergodic if and only if there is no T -invariant
probability measure on F absolutely continuous with respect to ν and different
from ν.

Proof. Suppose that ν is ergodic and µ is a T -invariant probability measure on
F with µ ≪ ν. Then µ is also ergodic. Otherwise there would exist A ∈ F such
that T−1(A) = A and µ(A), µ(X \ A) > 0 so ν(A), ν(X \A) > 0; thus ν would
not be ergodic. Hence, by Theorem 1.2.6, µ = ν.

Suppose in turn that ν is not ergodic and let A ∈ F be a T -invariant set
such that 0 < ν(A) < 1. Then the conditional measure on A is also T -invariant
but simultaneously it is distinct from ν and absolutely continuous with respect
to ν. The proof is finished. ♣

Observe now that the space M(F) of probability measures on F is a convex
set i.e. the convex combination αµ+ (1−α)ν, 0 ≤ α ≤ 1, of two such measures
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is again in M(F). The subspace M(F , T ) of M(F) consisting of T -invariant
measures is also convex.

Recall that a point in a convex set is said to be extreme if and only if
it cannot be represented as a convex combination of two distinct points with
corresponding coefficient 0 < α < 1. We shall prove the following.

Theorem 1.2.8. The ergodic measures in M(F , T ) are exactly the extreme
points of M(F , T ).

Proof. Suppose that µ, µ1, µ2 ∈ M(F , T ), µ1 6= µ2 and µ = αµ1 + (1 − α)µ2

with 0 < α < 1. Then µ1 6= µ and µ1 ≪ µ. Thus, in view of Proposition 1.2.7,
the mesure µ is not ergodic.

Suppose in turn that µ is not ergodic and let A ∈ F be a T -invariant set such
that 0 < µ(A) < 1. Recall that given B ∈ F with µ(B) > 0, the conditional
measure A 7→ µ(A|B) is defined by µ(A ∩ B)/µ(B). Thus the conditional
measures µ(·|A) and µ(·|Ac) are distinct, T -invariant and µ = µ(A)µ(·|A) +
(1 − µ(A)µ(·|Ac). Consequently µ is not an extreme point in M(F , T ). The
proof is finished. ♣

In Section 1.8 we shall formulate a theorem on decomposition into ergodic
components, that will better clarify the situation. This will correspond to the
Choquet Theorem in functional analysis, see Section 2.1.

1.3 Entropy of partition

Let (X,F , µ) be a probability space. A partition of (X,F , µ) is a subfamily (a
priori may be uncountable) of F consisting of mutually disjoint elements whose
union is X .

If A is a partition and x ∈ X then the only element of A containing x is
denoted by A(x) or, if x ∈ A ∈ A, by A(x).

If A and B are two partitions of X we define their join or joining

A∨ B = {A ∩B : A ∈ A, B ∈ B}
We write A ≤ B if and only if B(x) ⊂ A(x) for every x ∈ X , which in other
words means that each element of the partition B is contained in an element of
the partition A or equivalently A∨B = B. We sometimes say in this case, that
B is finer than A or that B is a refinement of A.

Now we introduce the notion of entropy of a countable (finite or infinite)
partition and we collect its basic elementary properties. Define the function
k : [0, 1] → [0,∞] putting

k(t) =

{

−t log t for t ∈ (0, 1]

0 for t = 0
(1.3.1)

Check that the function k is continuous. Let A = {Ai : 1 ≤ i ≤ n} be a
countable partition of X , where n ≥ 1 is a finite integer or ∞. In the sequel we
shall usually write ∞.
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The entropy of A is the number

H(A) =

∞
∑

i=1

−µ(Ai) log µ(Ai) =

∞
∑

i=1

k(µ(Ai)) (1.3.2)

If A is infinite, H(A) may happen to be infinite as well as finite.
Define

I(x) = I(A)(x) := − logµ(A(x)). (1.3.3)

This is called an information function. Intuitively I(x) is an information on
an object x given by the experiment A in the logarithmic scale. Therefore the
entropy in (1.3.2) is the integral (the average) of the information function.

Note that H(A) = 0 for A = {X} and that if A is finite, say consists of
n elements, then 0 ≤ H(A) ≤ logn and H(A) = log n if and only if µ(A1) =
µ(A2) = . . . = µ(An) = 1/n. This follows from the fact that the logarithmic
function is strictly concave.

In this Section we deal only with one fixed measure µ. If however we need
to consider more measures simultaneously (see for example Chapter 2) we will
rather use the notation Hµ(A) for H(A). We will use also the notation Iµ(x) for
I(x).

Let A = {Ai : i ≥ 1} and B = {Bj : j ≥ 1} be two countable partitions of
X . The conditional entropy H(A|B) of A given B is defined as

H(A|B) =

∞
∑

j=1

µ(Bj)

∞
∑

i=1

−µ(Ai ∩Bj)
µ(Bj)

log
µ(Ai ∩Bj)
µ(Bj)

=
∑

i,j

−µ(Ai ∩Bj) log
µ(Ai ∩Bj)
µ(Bj)

(1.3.4)

The first equality, defining H(A|B), can be viewed as follows: one considers
each element Bj as a probability space with conditional measure µ(A|Bj) =
µ(A)/µ(Bj) for A ⊂ Bj and calculates the entropy of the partition of the set
Bj into Ai ∩Bj . Then one averages the result over the space of Bj ’s. (This will
be generalized in Definition 1.8.3)

For each x denote − logµ(A(x)|B(x)) = − log µ(A(x)∩B(x)
µ(B(x)) ) by I(x) or I(A|B)(x).

The second equality in (1.3.4) can be rewritten as

H(A|B) =

∫

X

I(A|B) dµ. (1.3.5)

Note by the way that if B̃ is the σ-algebra consisting of all unions of ele-
ments of B (i.e. generated by B, then I(x) = − logµ((A(x) ∩ B(x))|B(x)) =
− logE(11A(x)|B̃)(x), cf. (1.1.8).

Note finally that for any countable partition A we have

H(A|{X}) = H(A). (1.3.6)

Some further basic properties of entropy of partitions are collected in the
following.
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Theorem 1.3.1. Let (X,F , µ) be a probability space. If A, B and C are count-
able partitions of X then:

H(A ∨ B|C) = H(A|C) + H(B|A ∨ C) (a)

H(A ∨ B) = H(A) + H(B|A) (b)

A ≤ B ⇒ H(A|C) ≤ H(B|C) (c)

B ≤ C ⇒ H(A|B) ≥ H(A|C) (d)

H(A ∨ B|C) ≤ H(A|C) + H(B|C) (e)

H(A|C) ≤ H(A|B) + H(B|C) (f)

Proof. Let A = {An : n ≥ 1}, B = {Bm : m ≥ 1}, and C = {Cl : l ≥ 1}.
Without loss of generality we can assume that all these sets are of positive
measure.

(a) By (1.3.4) we have

H(A ∨ B|C) = −
∑

i,j,k

µ(Ai ∩Bj ∩ Ck) log
µ(Ai ∩Bj ∩ Ck)

µ(Ck)

But
µ(Ai ∩Bj ∩ Ck)

µ(Ck)
=
µ(Ai ∩Bj ∩ Ck)
µ(Ai ∩Ck)

µ(Ai ∩Ck)
µ(Ck)

unless µ(Ai ∩ Ck) = 0. But then the left hand side vanishes and we need not
consider it. Therefore

H(A ∨ B|C) = −
∑

i,j,k

µ(Ai ∩Bj ∩ Ck) log
µ(Ai ∩ Ck)
µ(Ck)

−
∑

i,j,k

µ(Ai ∩Bj ∩ Ck) log
µ(Ai ∩Bj ∩ Ck)
µ(Ai ∩ Ck)

= −
∑

i,k

µ(Ai ∩ Ck) log
µ(Ai ∩Ck)
µ(Ck)

+ H(B|A ∨ C)

= H(A|C) + H(B|A ∨ C)

(b) Put C = {X} and apply (1.3.6) in (a).
(c) By (a)

H(B|C) = H(A ∨ B|C) = H(A|C) + H(B|A ∨ C) ≥ H(A|C)

(d) Since the function k defined by (1.3.1) is strictly concave, we have for every
pair i, j that

k
(

∑

l

µ(Cl ∩Bj)
µ(Bj)

µ(Ai ∩ Cl)
µ(Cl)

)

≥
∑

l

µ(Cl ∩Bj)
µ(Bj)

k

(

µ(Ai ∩ Cl)
µ(Cl)

)

(1.3.7)
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But since B ≤ C, we can write above Cl ∩Bj = Cl, hence the left hand side

equals to k
(

µ(Ai∩Bj)
µ(Bj)

)

and we conclude with

k

(

µ(Ai ∩Bj)
µ(Bj)

)

≥
∑

l

µ(Cl ∩Bj)
µ(Bj)

k

(

µ(Ai ∩ Cl)
µ(Cl)

)

.

(Note that till now we have not used the specific form of the function k).
Finally, multiplying both sides of (1.3.7) by µ(Bj) using the definition of k

and summing over i and j we get

−
∑

i,j

µ(Ai ∩Bj) log
µ(Ai ∩Bj)
µ(Bj)

≥ −
∑

i,j,l

µ(Cl ∩Bj)
µ(Ai ∩Cl)
µ(Cl)

log
µ(Ai ∩ Cl)
µ(Cl)

= −
∑

i,l

µ(Cl)
µ(Ai ∩ Cl)
µ(Cl)

log
µ(Ai ∩ Cl)
µ(Cl)

or equivalently H(A|B) ≥ H(A|C).
Formula (e) follows immediately from (a) and (d) and formula (f) can proved

by a straightforward calculation (its consequences are discussed in Exercise 1.17).
♣

1.4 Entropy of an endomorphism

Let (X,F , µ) be a probability space and let T : X → X be a measure preserving
endomorphism ofX . If A = {Ai}i∈I is a partition of X then by T−1A we denote
the partition {T−1(Ai)}i∈I . Note that for any countable A

H(T−1A) = H(A) (1.4.1)

For all n ≥ m ≥ 0 denote the partition
∨n
i=0 T

−iA = A ∨ T−1(A) ∨ · · · ∨
T−n(A) =

∨n
i=m T

−i(A) by Anm. Form = 0 we shall sometimes use the notation
An.

Lemma 1.4.1. For any countable partition A,

H(An) = H(A) +

n
∑

j=1

H(A|Aj
1) (1.4.2)

Proof. We prove this formula by induction. If n = 0, it is a tautology. Suppose
it is true for n − 1 ≥ 0. Then with the use of Theorem 1.3.1(b) and (1.4.1) we
obtain

H(An) = H(An
1 ∨ A) = H(An

1 ) + H(A|An
1 )

= H(An−1) + H(A|An
1 ) = H(A) +

n
∑

j=1

H(A|Aj
1)

Hence (1.4.2) holds for all n. ♣
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Lemma 1.4.2. The sequences 1
n+1 H(An) and H

(

A|An
1 ) are monotone decreas-

ing to a limit h(T,A).

Proof. The sequence H
(

A|An
1 ), n = 0, 1, . . . is monotone decreasing, by The-

orem 1.3.1 (d). Therefore the sequence of averages is also monotone decreas-
ing to the same limit, furthermore it coincides with the limit of the sequence

1
n+1 H(An) by (1.4.2). ♣

The limit 1
n+1 H(An) whose existence has been shown in Lemma 1.4.2. is

known as the (measure–theoretic) entropy of T with respect to the partition A
and is denoted by h(T,A) or by hµ(T,A) if one wants to indicate the measure
under consideration. Intuitively this means the limit rate of the growth of aver-
age (integral) information (in logarithmic scale), under consecutive experiments,
for the number of those experiments tending to infinity.

Remark. Write ak := H(Ak−1). In order to prove the existence of the limit
1

n+1 H(An), instead of relying on (1.4.2) and the monotonicity, we could use the
estmate

an+m = H(An+m−1) ≤ H(An−1) + H(An+m−1
n ) = an + H(Am−1) = an + am.

following from Theorem 1.3.1 (e) and from (1.4.1), and apply the following

Lemma 1.4.3. If {an}∞n=1 is a sequence of real numbers such that an+m ≤ an+
am for all n,m ≥ 1 (any such a sequence is called subadditive) then limn→∞ an
exists and equals infn an/n. The limit could be −∞, but if the an’s are bounded
below, then the limit will be nonnegative.

Proof. Fix m ≥ 1. Each n ≥ 1 can be expressed as n = km+ i with 0 ≤ i < m.
Then

an
n

=
ai+km
i+ km

≤ ai
km

+
akm
km

≤ ai
km

+
kam
km

=
ai
km

+
am
m

If n → ∞ then also k → ∞ and therefore lim supn→∞
an

n ≤ am

m . Thus
lim supn→∞

an

n ≤ inf am

m . Now the inequality inf am

m ≤ lim infn→∞
an

n finishes
the proof. ♣

Notice that there exists a subadditive sequence (an)
∞
n=1 such that the cor-

responding sequence an/n is not eventually decreasing. Indeed, it suffices to
observe that each sequence consisting of 1’s and 2’s is subadditive and to con-
sider such a sequence having infinitely many 1’s and 2’s. If for an n > 1 we have
an = 1 and an+1 = 2 we have an

n < an+1

n+1 .
One can consider an + Cn for any constant C > 1 making the example

strictly increasing.
Exercise. Prove that Lemma 1.4.3 remains true under the weaker assump-

tions that there exists c ∈ R such that an+m ≤ an + am + c for all n and
m.

The basic elementary properties of the entropy h(T,A) are collected in the
next theorem below.
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Theorem 1.4.4. If A and B are countable partitions of finite entropy then

h(T,A) ≤ H(A) (a)

h(T,A∨ B) ≤ h(T,A) + h(T,B) (b)

A ≤ B ⇒ h(T,A) ≤ h(T,B) (c)

h(T,A) ≤ h(T,B) + H(A|B) (d)

h(T, T−1(A)) = h(T,A) (e)

If k ≥ 1 then h(T,A) = h
(

T,Ak) (f)

If T is invertible and k ≥ 1, then h(T,A) = h
(

T,

k
∨

i=−k
T i(A)

)

(g)

The standard proof (see for example [Walters 1982]) based on Theorem 1.3.1
and formula (1.3.2) is left for the reader as an exercise. Let us prove only item
(d).

h(T,A) = lim
n→∞

1

n
H(An−1) = lim

n→∞
1

n

(

H(An−1|Bn−1) + H(Bn−1)
)

≤ lim
n→∞

1

n

n−1
∑

j=0

H(T−j(A)|Bn−1) + lim
n→∞

1

n
H(Bn−1)

≤ lim
n→∞

1

n

n−1
∑

j=0

H(T−j(A)|T−j(B)) + h(T,B) ≤ H(A|B) + h(T,B).

Here is one more useful fact, stronger than Theorem 1.4.4(c):

Theorem 1.4.5. If T : X → X is a measure preserving endomorphism of a
probability space (X,F , µ), A and Bm,m = 1, 2, . . . are countable partitions with
finite entropy, and H(A|Bm) → 0 as m→ ∞, then

h(T,A) ≤ lim inf
m→∞

h(T,Bm).

In particular, for Bm := Bm =
∨m
j=0 T

−j(B), one obtains h(T,A) ≤ h(T,B).

Proof. By Theorem 1.4.4(d), we get for every positive integer m, that

h(T,A) ≤ H(A|Bm) + h(T,Bm).

Letting m → ∞ this yields the first part of the assertion. If Bm = Bm, then
h(T,Bm) = h(T,B), by Theorem 1.4.4(f), and the second part of the theorem
follows as well. ♣

The (measure-theoretic) entropy of an endomorphism T : X → X is defined
as

hµ(T ) = h(T ) = sup
A

{h(T,A)} (1.4.8)
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where the supremum is taken over all finite (or countable of finite entropy)
partitions of X . See Exercise 1.21.

It is clear from the definition that the entropy of T is an isomorphism in-
variant.

Later on (see Th. 1.8.7, Remark 1.8.9, Corollary 1.8.10 and Exercise 1.18)
we shall discuss the cases where H(A|Bn) → 0 for every A (finite or of finite
entropy). This will allow us to write hµ(T ) = limm→∞ h(T,Bm) or h(T ) =
h(T,B).

The following theorem is very useful.

Theorem 1.4.6. If T : X → X is a measure preserving endomorphism of a
probability space (X,F , µ) then

h(T k) = k h(T ) for all k ≥ 1, (a)

If T is invertible then h(T−1) = h(T ). (b)

Proof. (a) Fix k ≥ 1. Since

lim
n→∞

1

n
H
(

n−1
∨

j=0

T−kj(
k−1
∨

i=0

T−iA
))

= lim
n→∞

k

nk
H
(

nk−1
∨

i=0

T−iA
)

= k h(T,A)

we have h
(

T k,
∨k−1
i=0 T

−iA
)

= k h(T,A). Therefore

k h(T ) = k sup
A finite

h(T,A) = sup
A

h
(

T k,

k−1
∨

i=0

T−iA
)

≤ sup
B

h(T k,B) = h(T k)

(1.4.3)

On the other hand, by Theorem 1.4.4(c), we get h(T k,A) ≤ h
(

T k,
∨k−1
i=0 T

−iA
)

=
k h(T,A), and therefore, h(T k) ≤ k h(T ). The result follows from this and
(1.4.3).

(b) In view of (1.4.1) for all finite partitions A we have

H
(

n−1
∨

i=0

T iA
)

= H
(

T−(n−1)
n−1
∨

i=0

T iA
)

= H
(

n−1
∨

i=0

T−iA
)

This finishes the proof. ♣

Let us end this Section with the following theorem to be used for example
in Section 2.6.

Theorem 1.4.7. If µ and ν are two probability measures on (X,F) both pre-
served by an endomorphism T : X → X. Then for every a : 0 < a < 1 and the
measure ρ = aµ+ (1 − a)ν we have

hρ(T ) = a hµ(T ) + (1 − a)ν(T ).

In other words the mapping µ 7→ hµ is affine.
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The proof can be found in [Denker, Grillenberger & Sigmund 1976, Prop.10.13]
or [Walters 1982, Th.8.1]. We leave it to the reader as an exercise.

Hint: Prove first that for every A ∈ F we have

0 ≤ k(ρ(A))−ak(µ(A))−(1−a)k(ν(A)) ≤ −(a log a)µ(A)−((1−a) log(1−a))ν(A),

using the concavity of the function k(t) = −t log t, see (1.3.1). Summing it up
over A ∈ A for a finite partition A, obtain

0 ≤ Hρ(A) − aHµ(A) − (1 − a)Hν(A) ≤ log 2.

Apply this to partitions An and use Theorem 1.4.6(a).

Remark. This theorem can be easily deduced from the ergodic decomposition
theorem (Theorem 1.8.11) for Lebesgue spaces, see Exercise1.16. In the setting
of Chapter 2, for Borel measures on a compact metric space X , one can refer
also to Choquet’s Theorem 2.1.11.

1.5 Shannon–Mcmillan–Breiman theorem

Let (X,F , µ) be a probability space, let T : X → X be a measure preserving
endomorphism of X and let A be a countable finite entropy partition of X .

Lemma 1.5.1 (Maximal inequality). For each n = 1, 2, . . . let fn = I(A|An
1 )

and f∗ = supn≥1 fn. Then for each λ ∈ R and each A ∈ A

µ({x ∈ A : f∗(x) > λ}) ≤ e−λ. (1.5.1)

Proof. For each A ∈ A and n = 1, 2, . . . let fAn = − logE(11A|An
1 ). Of course

fn =
∑

A∈A 11Af
A
n . Denote

BAn = {x ∈ X : fA1 (x), . . . , fAn−1(x) ≤ λ, fAn (x) > λ}.

Since BAn ∈ F(An
1 ), the σ-algebra generated by An

1 ,

µ(BAn ∩A) =

∫

BA
n

11A dµ =

∫

BA
n

E(11A|An
1 ) dµ =

∫

BA
n

e−f
A
n dµ ≤ e−λµ(BAn ).

Therefore

µ({x ∈ A : f∗(x) > λ}) =

∞
∑

n=1

µ(BAn ∩A) ≤ e−λ
∞
∑

n=1

µ(BAn ) ≤ e−λ.

♣

Corollary 1.5.2. The function f∗ is integrable and
∫

f∗ dµ ≤ H(A) + 1.
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Proof. Of course µ({x ∈ A : f∗ > λ}) ≤ µ(A), so µ({x ∈ A : f∗(x) > λ}) ≤
min{µ(A), e−λ}. So, by Lemma 1.5.1,

∫

X

f∗ dµ =
∑

A∈A

∫

A

f∗ dµ =
∑

A∈A

∫ ∞

0

µ{x ∈ A : f∗(x) > λ} dλ

≤
∑

A∈A

∫ ∞

0

min{µ(A), e−λ} dλ

=
∑

A∈A

(

∫ − logµ(A)

0

µ(A) dλ +

∫ ∞

− log µ(A)

e−λ dλ
)

=
∑

A∈A

(

−µ(A)(logµ(A)) + µ(A)
)

= H(A) + 1.

♣

Note that if A is finite, then the integrability of f∗ follows from the inte-
grability of f∗|A for each A, following immediately from Lemma 1.5.1. The
difficulty with infinite A is that there is no µ(A) factor on the right hand side
of (1.5.1).

Corollary 1.5.3. The sequence (fn)
∞
n=1 converges a.e. and in L1.

Proof. E(11A|An
1 ) is a martingale to which we can apply Theorem 1.1.4. This

gives convergence a.e., hence convergence a.e. of each fAn , hence of fn. Now
convergence in L1 follows from Corollary 1.5.2 and Dominated Convergence
Theorem. ♣

Theorem 1.5.4 (Shannon–McMillan–Breiman). Suppose that A is a countable
partition of finite entropy. Then there exist limits

f = lim
n→∞

I(A|An
1 ) and fI(x) = lim

n→∞
1

n

n−1
∑

i=0

f(T i(x)) for a.e. x

and

lim
n→∞

1

n+ 1
I(An) = fI a.e. and in L1. (1.5.2)

Furthermore

h(T,A) = lim
n→∞

1

n+ 1
H(An) =

∫

fI dµ =

∫

f dµ. (1.5.3)

The limit f will gain a new interpretation in (1.8.6), in the context of
Lebesgue spaces, where the notion of information function I will be general-
ized.
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Proof. First note that the sequence fn = I(A|An
1 ), n = 1, 2, . . . converges to an

integrable function f by Corollary 1.5.3. (Caution: though the integrals of fn
decrease to the entropy, Lemma 1.4.2, it is usually not true that fn decrease.)
Hence the a.e. convergence of time averages to fI holds by Birkhoff’s Ergodic
Theorem. It will suffice to prove (1.5.2) since then (1.5.3), the second equality,
holds by integration and the last equality by Birkhoff’s Ergodic Theorem, the
convergence in L1.

(In fact (1.5.3) follows already from Corollary 1.5.3. Indeed limn→∞
1

n+1 H(An) =

limn→∞ H(A|An
1 ) = limn→∞

∫

I(A|An
1 ) dµ =

∫

limn→∞ I(A|An
1 ) dµ =

∫

f dµ. )
Let us establish now some identities (compare Lemma 1.4.1). Let {An : n ≥

0} be a sequence of countable partitions. Then we have

I
(

n
∨

i=0

Ai

)

= I
(

A0|
n
∨

i=1

Ai

)

+ I
(

n
∨

i=1

Ai

)

= I
(

A0|
n
∨

i=1

Ai

)

+ I
(

A1|
n
∨

i=2

Ai

)

+ · · · + I(An).

In particular, it follows from the above formula that for Ai = T−iA, we have

I(An) = I(A|An
1 ) + I(T−1A|An

2 ) + . . .+ I(T−nA)

= I(A|An
1 ) + I(A|An−1

1 ) ◦ T + . . . I(A) ◦ T n
= fn + fn−1 ◦ T + fn−2 ◦ T 2 + . . .+ f0 ◦ T n,

where fk = I(A|Ak
1), f0 = I(A). Now

∣

∣

∣

∣

1

n+ 1
I(An) − fI

∣

∣

∣

∣

≤
∣

∣

∣

∣

1

n+ 1

n
∑

j=0

(fn−i ◦ T i − f ◦ T i)
∣

∣

∣

∣

+

∣

∣

∣

∣

1

n+ 1

n
∑

j=0

f ◦ T i − fI

∣

∣

∣

∣

.

Since by Birkhoff’s Ergodic Theorem the latter term converges to zero both
almost everywhere and in L1, it suffices to prove that for n→ ∞

1

n+ 1

n
∑

i=0

gn−i ◦ T i → 0 a.e. and in L1. (1.5.4)

where gk = |f − fk|.
Now, since T is measure preserving, for every i ≥ 0

∫

gn−i ◦ T idµ =

∫

gn−idµ.

Thus 1
n

∑n
i=0

∫

gn−i ◦ T i dµ = 1
n

∑n
i=0

∫

gn−i dµ → 0, since fk → f in L1 by
Corollary 1.5.3. Thus we established the L1 convergence in (1.5.4).

Now, let GN = supn>N gn. Of course GN is monotone decreasing and since
gn → 0 a.e. (Corollary 1.5.3) we get GN ց 0 a.e.. Moreover, by Corollary 1.5.2,
G0 ≤ supn fn + f ∈ L1.
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For arbitrary N < n we have

1

n+ 1

n
∑

i=0

gn−i ◦ T i =
1

n+ 1

n−N−1
∑

i=0

gn−i ◦ T i +
1

n+ 1

n
∑

i=n−N
gn−i ◦ T i

≤ 1

n+ 1

n−N−1
∑

i=0

GN ◦ T i +
1

n+ 1

n
∑

i=n−N
G0 ◦ T i.

Hence, for KN = G0 +G0 ◦ T + . . .+G0 ◦ TN

lim sup
n→∞

1

n+ 1

n
∑

i=0

gn−i ◦ T i ≤ (GN )I + lim sup
n→∞

1

n+ 1
KN ◦ T n−N = (GN )I a.e.,

where (GN )I = limn→∞
1

n+1

∑n
i=0GN ◦ T i by Birkhoff’s Ergodic Theorem.

Now (GN )I decreases with N because GN decreases, and
∫

(GN )I dµ =

∫

GNdµ→ 0

because GN are non-negative uniformly bounded by G0 ∈ L1 and tend to 0 a.e.
Hence (GN )I → 0 a.e. Therefore

lim sup
n→∞

1

n+ 1

n
∑

i=0

gn−i ◦ T i → 0 a.e.

establishing the missing a.e. convergence in (1.5.4). ♣

As an immediate consequence of (1.5.2) and (1.5.3) for T ergodic, along with
fI =

∫

fI dµ, we get the following:

Theorem 1.5.5 (Shannon–McMillan–Breiman, ergodic case). If T : X → X
is ergodic and A is a countable partition of finite entropy, then

lim
n→∞

1

n
I(An−1)(x) = hµ(T,A). for a.e. x ∈ X

The left hand side expression in the above equality can be viewed as a local
entropy at x. The Theorem says that at a.e. x the local entropy exists and is
equal to the entropy (compare comments after (1.3.2) and Lemma 1.4.2).

1.6 Lebesgue spaces, measurable partitions and

canonical systems of conditional measures

Let (X,F , µ) be a probability space. We consider only complete measures (prob-
abilities), namely such that every subset of a measurable set of measure 0 is
measurable. If a measure is not complete we can always consider its comple-
tion, namely to add to F all sets A for which there exists B ∈ F with A ÷ B
contained in a set in F of measure 0.
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Notation 1.6.1. Consider A, an arbitrary partition of X, not necessarily
countable nor consisting of measurable sets. We denote by Ã the sub σ-algebra
of F consisting of those sets in F that are unions of whole elements (fibres)
of A.

Note that in the case where A ⊂ F , we have Ã ⊃ σ(A), the latter defined
in Notation 1.1.1, but the inclusion can be strict. For example, if A ⊂ F is the
partition of X into points, then σ(A) consists of all countable sets and their
complements in X , and Ã = F . Obviously Ã ⊃ {∅, X}.

Definition 1.6.2. The partition A is called measurable if it satisfies the follow-
ing separation property.

There exists a sequence B = (Bn)
∞
n=1 of subsets of Ã such that for any

two distinct A1, A2 ∈ A there is an integer n ≥ 1 such that either

A1 ⊂ Bn and A2 ⊂ X \Bn

or
A2 ⊂ Bn and A1 ⊂ X \Bn.

Since each element of the measurable partition A can be represented as an
intersection of countably many elements Bn or their complements, each element
of A is measurable. Let us stress however that the measurability of all elements
of A is not sufficient for A to be a measurable partition (see Exercise 1.7). The
sequence B is called a basis for A.

Remark 1.6.3. A popular definition of an uncountable measurable partition A
is that there exists a sequence of finite partitions (recall that this means: finite
partitions into measurable sets) An, n = 0, 1, . . . , such that A =

∨∞
n=0 An. Here

(unlike later on) the join
∨

is in the set-theoretic sense, i.e. as {An1 ∩An2 ∩· · · :
Ani

∈ Ani
, i = 1, . . . }. Clearly it is equivalent to the separation property in

Definition 1.6.2.

Notice that for any measurable map T : X → X ′ between probability mea-
sure spaces, if A is a measurable partition of X ′, then T−1(A) is a measurable
partition of X .

Now we pass to the very useful class of probability spaces: Lebesgue spaces.

Definition 1.6.4. We call a sequence B = (Bn)∞n=1 of subsets of F , basis of
(X,F , µ) if the two following conditions are satisfied:

(i) B assures the separation property in Definition 1.6.2 for A = ε, the
partition into points, (i.e. B is a basis for ε);

(ii) for any A ∈ F there exists a set C ∈ σ(B) such that C ⊃ A and
µ(C \A) = 0.

(Recall again, Notation 1.1.1, that σ(B) denotes the smallest σ-algebra con-
taining all the sets Bn ∈ B. Rohlin used the name Borel σ-algebra.)

A probability space (X,F , µ) having a basis is called separable.
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Now let ε = ±1 and B
(ε)
n = Bn if ε = 1 and B

(ε)
n = X \ Bn if ε = −1.

To any sequence of numbers εn, n = 1, 2, . . . there corresponds the intersection
⋂∞
n=1B

(εn)
n . By (i) every such intersection contains no more than one point.

A probability space (X,F , µ) is said to be complete with respect to a basis

B if all the intersections
⋂∞
n=1B

(εn)
n are non-empty. The space (X,F , µ) is said

to be complete (mod 0) with respect to a basis B if X can be included as a
subset of full measure into a certain measure space (X,F , µ) which is complete
with respect to its own basis B = (Bn) satisfying Bn ∩X = Bn for all n.

It turns out that a space which is complete (mod 0) with respect to one basis
is also complete (mod 0) with respect to its every other basis.

Definition 1.6.5. A probability space (X,F , µ) complete (mod 0) with respect
to one of its bases is called a Lebesgue space.

Exercise. If (X1,F1, µ1) and (X2,F2, µ2) are two probability spaces with com-
plete measures, such that X1 ⊂ X2, µ2(X2 \ X1) = 0 and F1 = F2|X1 , µ1 =
µ2|F1 (where F2|X1 := {A ∩X1 : A ∈ F2}), then the first space is Lebesgue if
and only if the second is.

It is not difficult to check that (see Exercise 1.9) (X,F , µ) is a Lebesgue
space if and only if (X,F , µ) is isomorphic to the unit interval (equipped with
classical Lebesgue measure) together with countably many atoms.

Theorem 1.6.6. Assume that T : X → X ′ is a measurable injective map from
a Lebesgue space (X,F , µ) onto a separable space (X ′,F ′, µ′) and pre-images of
the sets of mesure 0 (or positive) are of measure 0 (resp. positive). Then the
space (X ′,F ′, µ′) is Lebesgue and T−1 is a measurable map.

Remark that in particular a measurable, measure preserving, injective map
between Lebesgue spaces is an isomorphism. If X = X ′,F ⊃ F ′,F 6= F ′ and
X ′,F ′, µ′ is separable, then the above implies that (X,F , µ) is not Lebesgue.

Let now (X,F , µ) be a Lebesgue space and A be a measurable partition of
X . We say that a property holds for almost all atoms of A if and only if the
union of atoms for which it is satisfied is measurable, and of full measure. The
following fundamental theorem holds:

Theorem 1.6.7. For almost all A ∈ A there exists a Lebesgue space (A,FA, µA)
such that the following conditions are satisfied:

(1) If B ∈ F , then B ∩A ∈ FA for almost all A ∈ A.

(2) F-measurable for all B ∈ F , where A(x) is the element of A containing
x.

(3)

µ(B) =

∫

X

µA(x)(B ∩A(x)) dµ(x) (1.6.1)
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Remark 1.6.8. One can consider the quotient (factor) space (X/A,FA, µA)
with X/A being defined just as A and with FA = p(Ã), see Notation 1.6.1
for tilde, and µA(B) = µ(p−1(B)), for the projection map p(x) = A(x). It
can be proved that the factor space is again a Lebesgue space. Then x 7→
µA(x)(B ∩A(x)) is FA-measurable and the property (1.6.1) can be rewritten in
the form

µ(B) =

∫

X/A
µA(B ∩A) dµA(A). (1.6.2)

Remark 1.6.9. If a partition A is finite or countable, then the measures µA are
just the conditional measures given by the formulas µA(B) = µ(A ∩B)/µ(A).

Remark 1.6.10. (1.6.1) can be rewritten for every µ-integrable function φ, or
non-negative µ-measurable φ if we allow +∞-ies, as

∫

φdµ =

∫

X

(
∫

A(x)

φ|A(x) dµA(x)

)

dµ(x). (1.6.3)

This is a version of Fubini’s Theorem.

The family of measures {µA : A ∈ A} is called the canonical system of
conditional measures with respect to the partition A. It is unique (mod 0) in
the sense that any other system µ′

A coincides with it for almost all atoms of A.
The method of construction of the system µA is via conditional expectations

values with respect to the σ-algebra Ã. Having chosen a basis (Bn) of the
Lebesgue space (X,F , µ), for every finite intersection

B =
⋂

i

B
(εni

)
ni (1.6.4)

one considers φB := E(11B|Ã), that can be treated as a function on the factor
space X/A, unique on a.e. A ∈ A, and such that for all Z ∈ Ã

µ(B ∩ Z) =

∫

p(Z)

φB(A) dµA(A).

Clearly (Bn ∩A)∞n=1 is a basis for all A. It is not hard to prove that for a.e. A,
for each B from our countable family (1.6.4), φB(A) as a function of B generates
Lebesgue space on A, with µA(B) := φB(A). Uniqueness of φB yields additivity.

Theorem 1.6.11. If T : X → X ′ is a measurable map of a Lebesgue space
(X,F , µ) onto a Lebesgue space (X ′,F ′, µ′), then the induced map from (X/ζ,Fζ, µζ)
for ζ = T−1(ε), to (X ′,F ′, µ′) is an isomorphism.

Proof. This immediately follows from the fact that the factor space is a Lebesgue
space and from Theorem 1.6.6. ♣

In what follows we consider partitions (mod 0), i.e. we identify two partitions
if they coincide, restricted to a measurable subset of full measure. For these
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classes of equivalence we use the same notation ≤,≥ as in Section 1.3. They
define a partial order. If Aτ is a family of measurable partitions of a measure
space (unlike in previous Sections the family may be uncountable), then by its
product A =

∨

τ Aτ we mean the measurable partition A determined by the
following two conditions.

(i) A ≥ Aτ for every τ ;
(ii) if A′ ≥ Aτ for every τ and A′ is measurable, then A′ ≥ A.
Similarly, replacing ≥ by ≤, we define the intersection

∧

τ Aτ .
The product and intersection exist in a Lebesgue space (i.e. the partially

ordered structure is complete). They of course generalize the notions dealt with
in Section 1.4. Clearly for a countable family of measurable partitions Aτ the
above

∨

and the set-theoretic one coincide (the assumption that the space is
Lebesgue and the reasoning (mod 0) is not needed). In Exercise 1.13 we give
some examples.

There is a natural one-to-one correspondence between the measurable parti-
tions (mod 0) of a Lebesgue space (X,F , µ) and the complete σ-subalgebras of
F , i.e. such σ-algebras F ′ ⊂ F that the measure µ restricted to F ′ is complete.
This correspondence is defined by assigning to each A the σ-algebra F(A) of
all sets which coincide (mod 0) with the sets of Ã (defined at the beginning of
this Section). To operations on the measurable partitions (mod 0) there corre-
spond operations on the corresponding σ-algebras. Namely, if Aτ is a family of
measurable partitions (mod 0), then

F(
∨

τ

Aτ ) =
∨

τ

F(Aτ ), F(
∧

τ

Aτ ) =
∧

τ

F(Aτ ).

Here
∧

τ F(Aτ ) =
⋂

τ F(Aτ ) is the set-theoretic intersection of the σ-algebras,
while

∨

τ F(Aτ ) is the set-theoretic intersection of all the σ-algebras which con-
tain all F(Aτ ).

For any measurable partition A and any µ-integrable function φ : X → R

write

E(f |A)(x) :=

∫

f |A(x) dµA(x) a.e. (1.6.5)

Notice that by the definition of canonical system of conditional measures and
by the definition of conditional expectation value, for any measurable partition
A we get the identity

E(f |A) = E(f |F(A)). (1.6.6)

A sequence of measurable partitions An is called (monotone) increasing or
ascending if for all n1 ≤ n2 we have An1 ≤ An2 . It is called (monotone)
decreasing or descending if for all n1 ≤ n2 we have An1 ≥ An2 .

For a monotone increasing (decreasing) sequence of measurable partitions
An and A =

∨

nAn (A =
∧

nAn respect.) we write An ր A (or An ց A). In
the language of measurable partitions of a Lebesgue space, due to (1.6.6), the
Martingale Theorem 1.1.4 can be expressed as follows:
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Theorem 1.6.12. If An ր A or An ց A, then for every integrable function
f , E(f |An) → E(f |A) µ a.s.

1.7 Rohlin natural extension

We shall prove here the following very useful

Theorem 1.7.1. For every measure preserving endomorphism T of a Lebesgue
space (X,F , µ) there exists a Lebesgue space (X̃, F̃ , µ̃) with measure preserving
transformations πn : X̃ → X,n ≤ 0 satisfying T ◦ πn−1 = πn, which is an

inverse limit of the system · · · T→ X
T→ X.

Moreover there exists an automorphisms T̃ of (X̃, F̃ , µ̃) satisfying

πn ◦ T̃ = T ◦ πn (1.7.1)

for every n ≤ 0

Recall that in category theory [Lang 1970, Ch. I], for a sequence (system) of

objects and morphisms · · · Mn−1→ On−1
Mn→ · · · M0→ O0 an object O equipped with

morphisms πn : O → On is called an inverse limit ifMn◦πn−1 = πn and for every
other O′ equipped with morphisms π′

n : O′ → On satisfying Mn ◦ π′
n−1 = π′

n

there exists a unique morphism M : O′ → O such that πn ◦M = π′
n for every

n ≤ 0.
In particular, if all On are the same (= O0) and additionally M1 : O0 → O0

is chosen, then for π′
n := Mn+1 ◦ πn : O → O0, n ≤ 0 there exists M : O → O

such that πn ◦M = π′
n = Mn+1 ◦ πn for every n. It is easy to see that M is an

automorphism.
In Theorem 1.7.1, the objects are probability spaces or probability spaces

with complete probabilities, and morphisms are measure preserving transforma-
tions or measure preserving transformations up to sets of measure 0. (We have
thus multiple meaning of Theorem 1.7.1.)

Thus the first part of Theorem 1.7.1 produces T̃ satisfying (1.7.1) automati-
cally, via the category theory definition. The automorphism T̃ is called Rohlin’s
natural extension of T , compare the terminology at the beginning of Section 1.2.
This is a “minimal” extension of T to an automorphism.

One can consider · · · Tn−1→ Xn
Tn→ Xn

Tn+1→ . . . in place of · · · T→ X
T→ X

for all n ∈ Z in the statement of Theorem 1.7.1. We have chosen a simplified
version with all Tn equal to T to simplify notation and since only such a version
will be used in this book.

In the proof of Theorem 1.7.1 we shall use the following.

Theorem 1.7.2 (Extension of Measure). Every probability measure ν (σ-additive)
on an algebra G0 of subsets of a set X can be uniquely extended to a measure
on the σ-algebra G generated by G0
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This Theorem can be proved with the use of the famous Carathéodory’s,
[Carathéodory 1927, Ch. V] construction. We define the outer measure:

νe(A) = inf{ν(B) : B ∈ G0, A ⊂ B}

for every A ⊂ X .
We say that A is Carathéodory measurable if for every E ⊂ X the outer

measure νe satisfies

νe(E) = νe(E ∩A) + νe(E \A).

The family of these sets turns out to be a σ-algebra containing G0, hence con-
taining G.

For a general definition of outer measures and a sketch of the theory see
Chapter 7.

Proof of Theorem 1.7.1. Denote Π = XZ− , the set theory cartesian product of
a countable number of X ’s, more precisely the space of sequences (xn) of points
in X indexed by non-positive integers. For each i ≤ 0 denote by πi : Π → X
the projection to the i-th coordinate, πi((xn)n∈Z−

) = xi.
We start with producing the inverse limit in the set-theoretic category. Set

X̃ = {(xn)n∈Z−
: T (xn) = xn+1 ∀n < 0}. (1.7.2)

The mappings πn in the statement of Theorem 1.7.1 will be the restrictions of
the πn’s defined above, to X̃.

We shall endow Π with a σ-algebra FΠ and probability measure µΠ, whose
restrictions to X̃ will yield the inverse limit (X̃, F̃ , µ̃). The measure µΠ will
occur to be ”supported” on X̃.

For each n ≤ 0 consider the σ-algebra Gn = π−1
n (F). Let FΠ,0 be the smallest

algebra of subsets of Π containing all σ-algebras Gn. It is easy to see that FΠ,0

consists of finite unions of pairwise disjoint ”cylinders”
⋂0
i=n π

−1
i (Ci)), consid-

ered for arbitrary finite sequences of sets Ci ∈ F , i = n, ..., 0 for an arbitrary
n ∈ Z−. Define

µΠ

( 0
⋂

i=n

π−1
i (Ci)

)

:= µ

( 0
⋂

i=n

T−(i−n)(Ci)

)

. (1.7.3)

We extend the definition to finite unions of disjoint cylindersAk by µΠ(
⋃

k Ak) :=
∑

k µΠ(Ak).
To assure that µΠ is well defined it is sufficient to prove the compatibility

condition:

µΠ

( 0
⋂

i=n

π−1
i (Ci)

)

+ µΠ

((

⋂

i:n≤i≤0,i6=j
π−1
i (Ci)

)

∩ π−1
j (C′

j)

)

= µΠ

((

⋂

i:n≤i≤0,i6=j
π−1
i (Ci)

)

∩ π−1
j (Cj ∪C′

j)

)

, (1.7.4)
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for all sequences Ci ∈ F , i = n, ..., 0 and C′
j ∈ F disjoint from Cj . Fortunately

(1.7.4) follows immediately from (1.7.3) and from the additivity of the measure
µΠ.

The next step is to observe that µΠ is σ-additive on the algebra FΠ,0. For this
end we use the assumption that (X,F , µ) is a Lebesgue space1. We just assume
that X is a full Lebesgue measure subset of the unit interval [0, 1], with classical
Lebesgue measure and atoms, and the σ-algebra of Lebesgue measurable sets
F , see Exercise 1.9. Now it is sufficient to apply the textbook fact that for
every Lebesgue measurable set C ⊂ [0, 1] and ε > 0 there exists a compact set
P ⊂ C with µ(C \ P ) < ε. (This is also often being proved by the Lebesgue
measure construction via Carathéodory’s outer measure). Compare the notion
of regularity of measure in Section 2.1.

Consider Π endowed with the product topology, compact by Tichonov’s
Theorem. Then all πi are continuous and for every ε > 0 and for every cylinder
A =

⋂0
i=n π

−1
i (Ci)) we can find a compact cylinder K =

⋂0
i=n π

−1
i (Pi)), with

compact Pi ⊂ Ci, such that µΠ(A \ K) < ε. This follows from the definition
(1.7.3) and the T -invariance of µ. The same immediately follows for finite unions
of cylinders.

To prove the σ-additivity of µΠ on FΠ,0 it is sufficient to prove that for every
descending sequence of sets Ak ∈ FΠ,0, i = 1, 2, . . . if

⋂

k

Ak = ∅ then µΠ(Ak) → 0. (1.7.5)

Suppose to the contrary that there exists ε > 0 such that µΠ(Ak) ≥ ε for ev-
ery k. For each k, consider a compact set Kk ⊂ Ak such that µ(Ak \ Kk) ≤
ε2−k−1. Then all Lm :=

⋂m
k=1Kk are non-empty, since µΠ(Lm) ≥ ε/2. Hence,

⋂∞
k=1 Ak ⊃ ⋂∞

k=1 Lk 6= ∅ as (Lk)
∞
k=1 is a descending family of non-empty com-

pact sets. Thus, we have proved that µΠ is σ-additive on FΠ,0.
The measure µΠ extends to σ-additive measure on a σ-algebra generated by

FΠ,0 by Theorem 1.7.2. Set this extension to be our (Π,FΠ, µΠ).

Now we shall prove that the set Π\X̃ is µΠ-measurable and that µΠ(Π\X̃) =
0. To this end we will take care that the compact sets K = Kk lie in X̃. Denote

X̃n := {(xi)i∈Z−
: T (xi) = xi+1 ∀n ≤ i < 0}. (1.7.6)

Let us recall that A =
⋂0
i=n π

−1
i (Ci)). Notice that π−1

n (T−(i−n)(Ci)) ∩ X̃n ⊂
π−1(Ci) but they have the same measure µΠ, by the formula (1.7.3). Let Pn be

a compact subset of C′
n :=

⋂0
i=n T

−(i−n)(Ci) such that µΠ(C′
n \ Pn) < ε and

T j restricted to Pn is continuous for all j = 1, ..., n. This is possible by Luzin’s
Theorem.

Then all T j(Pn) are compact sets, in particular µ-measurable. Hence, each

Qn :=
⋂0
i=n π

−1
i (T i−n(Pn)) belongs to FΠ,0, in particular it is µΠ-measurable.

It is contained in X̃n but need not be contained in X̃. To cope with this trouble,

1This is a substantial assumption, being overlooked by some authors, see Notes at the end
of this chapter.
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express A as AN =
⋂0
i=N π

−1
i (Ci)) for N arbitrarily large, setting Ci = X for

i : N ≤ i < n. Then find QN for AN and εn = ε2−N−1 and finally set
Q =

⋂

QN . The set Q is µΠ-measurable (even compact), contained in X̃ and
µΠ(A \Q) ≤ ε.

For A = Π we conclude with µΠ-measurable Q ⊂ X̃ with µΠ(Π \Q) ≤ ε, for
an arbitrary ε > 0. Hence µΠ(Π \ X̃ = 0.

Notice that the measure µΠ is complete (i.e. all subsets of measurable sets
of measure 0 are measurable) by Carathéodory’s construction. Now we prove
that it is a Lebesgue space. Let B = (Bl)

∞
l=1 be a basis of (X,F , µ). Then

clearly the family BΠ := {π−1
n (Bl) : l ≥ 1, n ≤ 0} is a basis of the partition ε in

Π. The family BΠ generates the σ-algebra FΠ in the sense of Definition 1.6.4
(ii)), because B generates F in this sense, and by Carathéodory’s outer measure
construction. The probability space (Π,FΠ, µΠ) is complete with respect to BΠ

since (X,F , µ) is complete with respect to B and by the cartesian product
definition.

Finally, let us restrict all the objects to X̃. In particular F̃ := {A ∩ X̃ :
A ∈ FΠ}, µ̃ is the restriction of µΠ to F̃ , and B̃ := {B ∩ X̃ : B ∈ BΠ}. The
resulting probability space (X̃, F̃ , µ̃) is complete (mod 0) with respect to B̃.
Therefore it is a Lebesgue space, see Definition 1.6.5; the extension required by
the definition is just (Π,FΠ, µΠ) with the basis BΠ.

Suppose (X ′,F ′, µ′) is any Lebesgue measure space, with measure preserving
transformations π′

n : X ′ → X,n ≤ 0 satisfying T ◦ π′
n−1 = π′

n. Then define

M : X ′ → X̃ by

M(x′) = (. . . π′
n−1(x

′), π′
n(x′), ..., π′

0(x
′)). (1.7.7)

We get πn ◦M = π′
n by definition. We leave the proof of the measurability of

M to the reader.
Uniqueness of M follows from the fact that if M(x′) = (. . . yn, . . . , y0) for

yj ∈ X , then from πn ◦M = π′
n µ

′-a.e., we get yn = π′
n(x′) a.e. ♣

Remark 1.7.3. X̃ can be interpreted as the space of all backward trajectories
for T . The map T̃ : X̃ → X̃ can be defined by the formula

T̃ ((xn)n∈Z−
) = (. . . , x−2, x−1, x0, T (x0)). (1.7.8)

X̃ could be defined in (1.7.2) as the space of full trajectories {(xn)n∈Z;T (xn) =
xn+1}. Then (1.7.8) is the shift to the left.

The formula (1.7.8) holds because T̃ defined by it, satisfies (1.7.1), and
because of uniqueness of maps T̃ satisfying (1.7.1)

Remark 1.7.4. Alternatively to compact sets in X̃n, we could find for all
n ≤ 0, sets En,i ⊃ X̃n, with µ̃Π(En,i \ X̃n) → 0 as i → ∞, which are unions of

cylinders
⋂0
i=−n π

−1
i (Ci). This agrees with the following general fact:

If a sequence of sets Σ generates a σ-algebra G with a mesure ν on it (see
Definition 1.6.4 (ii)) then for every A ∈ G there exists C ⊃ A with ν(C \A) = 0
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such that C ∈ Σ′
dσδ, i.e. C is a countable intersection of countable unions of

finite intersections of sets belonging to Σ or their complements. Exercise: Prove
this general fact, using Carathéodory’s outer measure constructed on measurable
sets.

Remark 1.7.5. Another way to prove Theorem 1.7.1 is to construct F̃ and µ̃
on X̃ already at the beginning. One defines µ̃ also by the formula (1.7.3).

More specifically, for the maps πn restricted now to X̃, consider Gn =
π−1
n (F). Note that this is an ascending sequence of σ-algebras with growing

|n| because π−1
n (A) = π−1

n−1(T
−1(A)) for every A ∈ F . Write F̃0 =

⋃

n≤0 Gn.

This is an algebra. For every A ∈ F and n ≤ 0 define µ̃(π−1
n (A)) := µ(A).

This is well-defined because if C = π−1
n (A1) = π−1

m (A2) for A1, A2 ∈ F and
n < m then A1 = T−(m−n)(A2). Since T preserves µ, we have µ(A1) = µ(A2).
This measure is σ-additive on the algebra F̃0 since we managed to approximate
”from below” each its element by a compact set, see the proof of Theorem 1.7.1.
Hence, we find F̃ and µ̃ on X̃ by Carathéodory’s theory.

Unfortunately the measure space (X̃, F̃ , µ̃) is usually not complete with re-
spect to the basis B̃, constructed in the proof of Theorem 1.7.1. To make it
complete (mod 0) we need to extend it, and the only way we know how to
acomplish this, is to construct the space (Π,FΠ, µΠ).

We end this section with another version of Theorem 1.7.1. First the follow-
ing definition:

Definition 1.7.6. Suppose that T is an automorphism of a Lebesgue space
(X,F , µ). Let ζ be a measurable partition. Assume it is forward invariant,
namely T (ζ) ≥ ζ, equivalently T−1(ζ) ≤ ζ. Then ζ is said to be exhausting if
∨

n≥0 T
n(ζ) = ε.

Theorem 1.7.7. For every measure preserving endomorphism T of a Lebesgue
space (X,F , µ) there exist a Lebesgue space (X̃, F̃ , µ̃), its automorphism T̃ ,
and a forward invariant for T̃ exhausting measurable partition ζ, such that
(X,F , µ) = (X̃/ζ, F̃ζ , µ̃/ζ) the factor space, cf. Remark 1.6.8, and T is factor

of T̃ , namely T ◦ p = p ◦ T̃ for the projection p : X̃ → X.

Proof. Take (X̃, F̃ , µ̃) and T̃ from Theorem 1.7.1. Set ζ := π−1
0 (ε). By (1.7.1)

and T−1(ε) ≤ ε we get T̃−1(ζ) ≤ ζ.
If ε′ =

∨

n≥0 T
n(ζ) is not the partition of X̃ into points, then T̃ /ε′ is an

automorphism of (X̃/ε′, F̃ε′ , µ̃ε′). Moreover if we denote by p′ the projection
from X̃ to X̃/ε′ then we can write πn = π′

n ◦ p′ for some maps π′
n for every

n ≤ 0. By the definition of inverse limit, p′ has an inverse which is impossible.
The last part, that

∨

n≥0 T
n(ζ) is the partition of X̃ into points, has also

an immediate proof following directly from the form of X̃ in (1.7.2). Indeed for
n ≥ 0 the element of T n(ζ) containing x̃ = (. . . , x−2, x−1, x0 is the n-th image
of the element of ζ containing T̃−n(x̃) i.e. containing (. . . , x−n−1, x−n). So it
is equal to {(. . . , x′−n−1, x

′
−n, . . . , x

′
0) ∈ X̃ : x′−n = x−n)}. Intersecting over

n→ ∞, we obtain {x̃}. ♣
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1.8 Generalized entropy, convergence theorems

This section contains generalizations of entropy notions, introduced in Sec-
tion 1.3, to the case of all measurable partitions. The triple (X,F , µ) is assumed
to be a Lebesgue space.

Definition 1.8.1. If A is a measurable partition of X then its (generalized)
entropy is defined as follows:

H(A) = ∞ if A is not a countable partition (mod 0);

H(A) =
∑

A∈A−µ(A) logµ(A) if A is a countable partition (mod 0).

Lemma 1.8.2. If An and A are measurable partitions of X and An ր A, then
H(An) ր H(A).

Proof. Write H(A) =
∫

I(A) dµ where I(A)(x) = − logµ(A(x)) is the informa-
tion function (compare Section 1.4). We set log 0 = −∞, hence I(A)(x) = ∞
if µ(A(x)) = 0. Write the same for An. As µ(An(x)) ց µ(A(x)) for a.e. x,
the convergence in our Lemma follows from the Monotone Convergence Theo-
rem. ♣

Definition 1.8.3. If A and B are two measurable partitions of X , then the
(generalized) conditional entropy H(A|B) = Hµ(A|B) of partition A subject to
B is defined by the following integral

Hµ(A|B) =

∫

X/B
HµB

(A|B) dµB(B) (1.8.1)

where A ∩ B is the partition {A ∩ B : A ∈ A} of B and {µB, B ∈ B} forms
a canonical system of conditional measures, see Section 1.7. For the inte-
gral in (1.8.1) to be well-defined, we have to know that the function B 7→
HµB

(A|B), B ∈ B is measurable. In order to see this choose a sequence of fi-
nite partitions An ր A (see Remark 1.6.3). Each conditional entropy function
HµB

(An|B) is measurable as a function of B in the factor space (X/B,FB, µB),
hence of course as a function on (X,F , µ), since it is a finite sum of measurable
functions

B 7→ −µB(A ∩B) log µB(A ∩B) for A ∈ A.
Since An|B ր A|B for a.e. B, we obtain, by using Lemma 1.8.2, that HµB

(An|B) →
HµB

(A|B). Hence HµB
(A|B) is measurable, so our definition of Hµ(A|B) makes

sense (we allow ∞’s here).

Of course (1.8.1) can be rewritten in the form
∫

X

HµB(x)
(A|B(x)) dµ(x), (1.8.2)

with HµB
(A|B) understood as constant function on eachB ∈ B (compare (1.6.1)

versus (1.6.2)). As in Section 1.3 we can write

Hµ(A|B) =

∫

X

I(A|B) dµ, (1.8.3)
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where I(A|B) is the conditional information function:

I(A|B)(x) := − logµB(x)(A(x) ∩ B(x)).

Indeed I(A|B) is non-negative and µ-measurable as being equal to limn→∞ I(An|B)
(a.e.), so (1.8.3) follows from (1.6.3).

Lemma 1.8.4. If {An : n ≥ 1} and A are measurable partitions, An ց A and
H(A1) <∞ then H(An) ց H(A).

Proof. The proof is similar to Proof of Lemma 1.8.2. ♣

Theorem 1.8.5. If A,B are measurable partitions and {An : n ≥ 1} is an
ascending (descending and H(A1|B) < ∞) sequence of measurable partitions
converging to A, then

lim
n→∞

H(An|B) = H(A|B) (1.8.4)

and the convergence is respectively monotone.

Proof. Applying Lemmas 1.8.2 and 1.8.4 we get the monotone convergence
HµB

(An|B) → HµB
(A|B) for almost all B ∈ X/B. Thus the integrals in the

Definition 1.8.3 converge by the Monotone Convergence Theorem. ♣

Theorem 1.8.6. If A,B are measurable partitions and {Bn : n ≥ 1} is a
descending (ascending and H(A|B1) < ∞) sequence of measurable partitions
converging to B, then

lim
n→∞

H(A|Bn) = H(A|B) (1.8.5)

and the convergence is respectively monotone.

Proof 1. Assume first that A is finite (or countable with finite entropy). Then
the a.e. convergence I(A|Bn) → I(A|B) follows from the Martingale Conver-
gence Theorem (more precisely from Theorem 1.6.12), applied to f = 11A, the
indicator functions of A ∈ A.

Now it is sufficient to prove that supn I(A|Bn) ∈ L1 in order to use the
Dominated Convergence Theorem (compare Corollary 1.5.3) and (1.8.3). One
can repeat the proofs of Lemma 1.5.1 (for ascending Bn) and Corollary 1.5.2.

The monotonicity of the sequence H(A|Bn) relies on Theorem 1.3.1(d). How-
ever for infinite Bn one needs to approximate Bn by finite (or finite entropy)
partitions. For details see [Rohlin 1967, Sec. 5.12].

For A measurable, represent A as limj→∞ Aj for an ascending sequence of
finite partitions Aj , j = 1, 2, . . . ; then refer to Theorem 1.8.5. In the case of
descending sequence Bn the proof is straightforward. In the case of ascending
Bn use

H(A|Bn)−H(Aj |Bn) = H(A|(Aj∨Bn)) ≤ H(A|(Aj∨B1)) = H(A|B1)−H(Aj |B1).

This implies that the convergence as j → ∞ is uniform with respect to n, hence
in the limit H(A|Bn) → H(A|B). ♣
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Proof 2. For A finite (or countable with finite entropy) there is a simpler way
to prove (1.8.5). By Theorem 1.1.4, for every A ∈ A, the sequence E(11A|F(Bn))
converges to E(11A|F(B)) in L2. Hence, for everyA ∈ A, the sequence µBn(x)(A∩
Bn(x)) converges to µB(x)(A∩B(x)) in measure µ. By continuity of the function
k(t) = −t log t, compare Section 1.3, this implies the convergence

k(µBn(x)(A ∩ Bn(x))) → k(µB(x)(A ∩ B(x)))

in measure µ (we do not assume x ∈ A here). Summing over all A ∈ A
we obtain the convergence HµBn(x)

(A|Bn(x)) → HµB(x)(A|B(x)) in measure µ.
These functions are uniformly bounded by log #A ( or by H(A) ) and non-
negative, hence we get the convergence in L1 and in consequence, due to (1.8.2),
we obtain (1.8.5). (Note that we have not used the a.e. convergence coming
from Theorem 1.1.4, but only the convergence in L2 which has been proved
there.) ♣

Observe that we can rewrite now the definition of the entropy hµ(T,A) from
Section 1.5 as follows

hµ(T,A) = H(A|A−), where A− :=

∞
∨

n=1

T−n(A). (1.8.6)

A countable partition B is called a countable (one-sided) generator for an
endomorphism of a Lebesgue space if Bm ր ε. Due to Theorem 1.8.6 we obtain
the following facts useful for computing the entropy for concrete examples.

Theorem 1.8.7. (a) If Bm is a sequence of finite partitions of a Lebesgue
space, such that Bm ր ε, then, for any endomorphism T : X → X, h(T ) =
limm→∞ h(T,Bm).

(b) If B is a countable one-sided generator with finite entropy for an endo-
morphism T of a Lebesgue space, then h(T ) = h(T,B).

Proof. By Theorem 1.8.6 for every finite partition A we have limm→∞ H(A|Bm) =
H(A|ε) = 0. Hence in view of Theorem 1.4.5, h(T ) = limm→∞ h(T,Bm). This
proves (a). Theorem 1.4.5 together with the definition of generator prove also
(b). ♣

Remark 1.8.8. For T being an automorphism, one considers two-sided count-
able (in particular finite) generators, i.e. partitions of B for which

∨∞
n=−∞ T n(B) =

ε. Then, as in the one-sided case, finitness of H(B) implies that h(T ) = h(T,B).

Remark 1.8.9. In both Theorem 1.8.6 and Theorem 1.8.7(a), the assumption
of monotonicity of Bm can be weakened. Assume for example that A is finite and
Bm → ε in the sense that for every measurable set Y , E(11Y |Bm) → 11Y in mea-
sure, as in Remark 1.1.5. Then H(A|Bm) → 0, hence h(T ) = limm→∞ H(T,Bm).

Indeed for H(A|Bm) → 0 just repeat Proof 2 of Theorem 1.8.6. The con-
vergence in measure µ of µBn(x)(A ∩ Bn(x))) to µε(x)(A ∩ ε(x))) means that
E(11A|Bn) → 11A, which has just been assumed.
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Corollary 1.8.10. Assume that X is a compact metric space and that F is the
σ-algebra of Borel sets (generated by open sets). Then if supB∈Bm

(

diam(B)
)

→
0 as m→ ∞, then h(T ) = limm→∞ H(T,Bm).

Proof. It is sufficient to check E(11A|Bm) → 11A in measure. First note that for
every δ > 0 there exist an open set U and closed set K such that K ⊂ A ⊂ U
and µ(U \ K) ≤ δ. This property is called regularity of our measure µ and is
true for every finite measure on the σ-algebra of Borel sets of a metric space
(compactness is not needed here). It can be proved by Carathéodory’s argument,
compare the proof of Theorem 1.1.4. Namely, we construct the outer measure
with the help of open sets, as in the sketch of the proof of theorem 1.7.2 (where
we used G0) and we notice that since each closed set is an intersection of a
descending sequence of open sets, we will have the same outer measure if in the
construction of outer measure we use the algebra generated by open sets. Now
we can refer to Theorem 1.7.2.

Now, due to compactness of X , hence K, for m large enough the set A′ :=
⋃{B ∈ Bm : B∩K 6= ∅} contains K and is contained in U , hence µ(A÷A′) ≤ δ.
This implies that

∫

X

|E(11A|Bm) − 11A| dµ =

∫

X\(A∪A′)

E(11A|Bm) dµ+

∫

A÷A′

|E(11A|Bm)−11A| dµ+

∫

A∩A′

11A−E(11A|Bm) dµ

≤ δ

µ(X \A′)
µ(X \ (A ∪A′)) + δ +

(

1 − µ(A ∩A′)

µ(A′)

)

µ(A ∩A′) ≤ 3δ.

Hence µ{x : |E(11A|Bm) − 11A| ≥
√

3δ} ≤
√

3δ. ♣

For a simpler proof, omitting Theorem 1.8.6, see Exercise 1.18.

We end this Section with the ergodic decomposition theorem and the ade-
quate entropy formula. Compare this with Choquet Representation Theorem:
Theorem 2.1.11 and Theorem 2.1.13.

Let T be a measure preserving endomorphism of a Lebesgue space. A mea-
surable partition A is said to be T -invariant if T (A) ⊂ A for almost every
A ∈ A. The induced map TA = T |A : A→ A is a measurable endomorphism of
the Lebesgue space (A,FA, µA). One calls TA a component of T .

Theorem 1.8.11. (a) There exists a finest measurable partition A (mod 0) into
T -invariant sets (called the ergodic decomposition). Almost all of its components
are ergodic.

(b) h(T ) =
∫

X/A h(TA) dµA(A).

Proof. The part (a) will not be proved. Let us mention only that the ergodic
decomposition partition corresponds (see Section 1.6) to the completion of I,
the σ-subalgebra of F consisting of T invariant sets in F (compare Theorem
1.2.5).
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To prove the part (b) notice that for every T -invariant measurable partition
A, for every finite partition ξ and almost every A ∈ A, writing ξA for the
partition {s ∩A : s ∈ ξ}, we obtain

h(TA, ξA) = H(ξA|ξ−A ) =

∫

A

IµA
(ξA|ξ−A ) dµA.

Notice next that the latter information function is equal a.e. to Iµ(ξ|ξ− ∨ A)
restricted to A. Hence

∫

X/A
h(TA) dµA(A) =

∫

X/A
dµA

∫

A

IµA
(ξA|ξ−A ) dµA =

∫

X

Iµ(ξ|ξ− ∨ A) dµ = H(ξ|ξ− ∨ A) = h(T, ξ)

The latter equality follows from an approximation of A by finite T -invariant
partitions η ր A and from

H(ξ|ξ− ∨ η) = H(ξ ∨ η|ξ− ∨ η−) = lim
n→∞

1

n
H((ξ ∨ η)n) =

lim
n→∞

1

n
H(ξn ∨ η) = lim

n→∞
1

n
H(ξn) = H(T, ξ).

Let now ξn be a sequence of finite partitions such that ξn ր ε. Then
h(T, ξn) ր h(T ) and h(TA, (ξn)A) ր h(TA). So h(T, ξn) =

∫

X/A h(TA, ξn) dµA(A)

and Lebesgue monotone convergence theorem prove (b) ♣

1.9 Countable to one maps, Jacobian and en-

tropy of endomorphisms

We start with a formulation of

Theorem 1.9.1 (Rohlin’s fundamental theorem of cross-sections). Suppose that
A and B are two measurable partitions of a Lebesgue space (X,F , µ) such that
A∩B (see Definition 1.8.3) is countable (mod 0 with respect to µB) for almost
every B ∈ B. Then there exists a countable partition γ = {γ1, γ2, . . . } of X
(mod 0) such that each γj ∈ γ intersects almost every B at not more than one
point, which is then an atom of µB, in particular

A∨ B = γ ∨ B (mod 0).

Furthermore, if H(A|B) <∞, then γ can be chosen so that

H(γ) < H(A|B) + 3
√

H(A|B) <∞.

Definition 1.9.2. Let (X,F , µ) be a Lebesgue space. Let T : X → X be
a measurable endomorphism. We say that T is essentially countable to one if
the measures µA of a canonical system of conditional measures for the partition
A := T−1(ε) are purely atomic (mod 0 with respect to µA), for almost all A ∈ A.
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Lemma 1.9.3. If T is essentially countable to one and preserves µ then there
exists a measurable set Y ⊂ X of full measure such that T (Y ) ⊂ Y and

1. T−1(x) ∩ Y is countable for every x ∈ Y , i.e. T |Y is countable to one.
Moreover for almost every x ∈ Y T−1(x) ∩ Y consists only of atoms of the
conditional measure µT−1(x);

2. T (B) is measurable if B ⊂ Y is measurable;
3. T |Y is forward quasi-invariant, namely µ(B) = 0 for B ⊂ Y implies

µ(T (B)) = 0.

Proof. Let Y ′ be the union of atoms mentioned in Definition 1.9.2.. We can
write, due to Theorem 1.9.1, Y ′ =

⋃

j γj , so Y ′ is measurable. Set Y =
⋂∞
n=0 T

−n(Y ′). Denote the partition T−1(ε) in Y by ζ. Property 1. follows from
the construction. To prove 2. we use the fact that (Y/ζ,Fζ , µζ) is a Lebesgue
space and the factor map Tζ : Yζ → X is an automorphism (Th. 1.6.11). So,
for measurable B ⊂ Y , the set

{A ∈ ζ : µA(B ∩A) 6= 0} = {A ∈ ζ : A ∩B 6= ∅} (1.9.1)

is measurable by Theorem 1.6.7(2) and therefore its image under Tζ , equal to
T (B), is measurable. If µ(B) = 0, then the set in (1.9.1) has measure µζ equal
to 0, hence, as Tζ is isomorphism, we obtain that T (B) is measurable and of
measure 0. ♣

The key property in the above proof is the equality (1.9.1). Without as-
suming that µA are purely atomic there could exist B of measure 0 with
C := {A ∈ ζ : µA(B ∩A) 6= 0} not measurable in Fζ .

To have such a situation just consider a non-measurable C ⊂ Y/ζ. Consider
the disjoint union D := C ∪ Y and denote the embedded C by C′. Finally,
defining measure onD, put µ(C′) = 0 and µ on the embedded Y . Define T (c′) =
T (c) for C ∋ c and c′ being the image of c under the abovementioned embedding.
Thus C′ is measurable, of measure 0, whereas T (C′) is not measurable because
C is not measurable and Tζ is isomorphism.

Definition 1.9.4. Let (X,F , µ) and (X ′,F ′, µ′) be probability measure spaces.
Let T : X → X ′ be a measurable homomorphism. We say that a real, nonneg-
ative, measurable function J is a weak Jacobian if there exists E of measure
0 such that for every measurable A ⊂ X \ E on which T is injective, the set
T (A) is measurable and µ(T (A)) =

∫

A
J dµ. We say J is strong Jacobian, or

just Jacobian, if the above holds without assuming A ⊂ X \ E.
We say that T is forward quasi-invariant if (µ(A) = 0) ⇒ (µ′(T (A)) = 0).

Notice that if T is forward quasi-invariant then automatically a weak Jacobian
is a strong Jacobian.

Proposition 1.9.5. Let (X,F , µ) be Lebesgue space and T : X → X be a mea-
surable, essentially countable to one, endomorphism. Then there exists a weak
Jacobian J = Jµ. It is unique (mod 0). For T restricted to Y (Lemma 1.9.3) J
is a strong Jacobian.
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Proof. Consider the partition γ = {γ1, γ2, . . . } given by Theorem 1.9.1 with
A = ε and B = T−1(ε). Then for each j the map T |γj∩Y is injective. Moreover
by Lemma 1.9.3, T |γj∩Y maps measurable sets onto measurable sets and is
forward quasi-invariant. Therefore J exists on each γj ∩ Y by Radon–Nikodym
theorem.

By the presentation of each A ⊂ Y as
⋃∞
j=1 A ∩ γj the function J satisfies

the assertion of the Proposition. The uniqueness follows from the uniqueness of
Jacobian in Radon-Nikodym theorem on each γj ∩ Y . ♣

Theorem 1.9.6. Let (X,F , ν) be a Lebesgue space. Let T : X → X be a
ν preserving endomorphism, essentially countable to one. Then its Jacobian
Jν , strong on Y defined in Lemma 1.9.3, weak on X, has logarithm equal to
Iν(ε|T−1(ε)). (We do not need to assume here T (Y ) ⊂ Y . I stands for the
information function, see Sections 1.4 and 1.8 ).

Proof. Consider already T restricted to Y . Let Z ⊂ Y be an arbitrary measur-
able set such that T is 1–to–1 on it. For each y ∈ Y denote by A(y) the element
of ζ = T−1(ε) containing y. We obtain

ν
(

T (Z)
)

= ν
(

T−1
(

T (Z)
)

)

=

∫

T−1
(

T (Z)
)

1 dν(y)

=

∫

T−1
(

T (Z)
)

(∫

A(y)

11Z(x)
/

νA(y){x}) dνA(y)(x)

)

dν(y)

=

∫

T−1
(

T (Z)
)
(11Z(y)/νA(y){y}) dν(y) =

∫

Z

(1/νA(y){y}) dν(y).

Therefore Jν(y) = 1/νA(y){y}) and its logarithm equal to Iν(ε|T−1(ε))(y).
♣

Theorem 1.9.6 gives rise to the so called Rohlin formula:

Theorem 1.9.7. Let (X,F , µ) be a Lebesgue space. Let T : X → X be a
measure µ-preserving endomorphism, essentially countable to one. Suppose that
on each component A of the ergodic decomposition (cf. Theorem 1.8.11) the
restriction TA has a countable one-sided generator of finite entropy. Then

hµ(T ) = Hµ(ε|T−1(ε)) =

∫

Iµ(ε|T−1(ε)) dµ =

∫

log Jµ dµ.

Proof. The third equality follows from Theorem 1.9.6, the second one is the
definition of the conditional entropy, see Sec. 8. To prove the first equality
we can assume, due to Theorem 1.8.11, that T is ergodic. Then, for ζ, a
countable one-sided generator of finite entropy, with the use of Theorems 1.8.5
and 1.8.7(b), we obtain

H(ε|T−1(ε)) = H(ε|ζ−) = lim
n→∞

H(ζn|ζ−) = H(ζ|ζ−) = h(T, ζ) = h(T ).

♣
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Remark. The existence of a countable one-sided generator, without demanding
finite entropy, is a general, not very difficult, fact, namely the following holds:

Theorem 1.9.8. Let (X,F , µ) be Lebesgue space. Let T : X → X be a µ-
preserving aperiodic endomorphism, essentially countable to one. Then there
exists a countable one-sided generator, namely a countable partition ζ such that
ζ ∨ ζ− = ε (mod 0).

Aperiodic means there exists no B of positive measure and a positive in-
teger n so that T n|B = id. For the proof see [Rohlin 1967, Sec. 10.12-13] or
[Parry 1969]. To construct ζ one uses the partition γ ascribed to ε and T−1(ε)
according to Theorem 1.9.1 and so-called Rohlin towers.

The existence of a one-sided generator with finite entropy is in fact equivalent
to H(ε|ε−) = h(T ) <∞. The proof of the implication to the right is contained
in Proof of Th. 1.9.7. The reverse implication, the construction of the partition,
is not easy, it uses in particular the estimate in Th. 1.9.1.

The existence of a one-sided generator with finite entropy is a strong prop-
erty. It may fail even for exact endomorphisms, see Sec. 10 and Exercise 1.22.
Neither its existence implies exactness, Exercise 1.22. To the contrary, for au-
tomorphisms, two-sided generators, even finite, always exist, provided the map
is aperiodic.

1.10 Mixing properties

In this section we examine briefly some mixing properties of a measure pre-
serving endomorphism that are stronger than ergodicity. A measure preserving
endomorphism is said to be weakly mixing if and only if for every two measurable
sets A and B

lim
n→∞

1

n

n−1
∑

j=0

|µ(T−j(B) ∩A) − µ(A)µ(B)| = 0

To see that a weakly mixing transformation is ergodic, suppose that T−1(B) =
B. Then T−k(B) = B for all k ≥ 0 and consequently for every n,

1

n

n−1
∑

j=0

|µ(T−j(B) ∩B) − µ(B)µ(B)| = |µ(B) − µ(B)2| → 0.

Thus µ(B) − µ(B)2 = 0 and therefore µ(B) = 0 or 1.
A measure preserving endomorphism is said to be mixing if and only if for

every two measurable sets A and B

lim
n→∞

µ(T−n(B) ∩A) − µ(A)µ(B) = 0

Clearly, every mixing transformation is weakly mixing. The property equivalent
to the mixing property is the following: for all square integrable functions f and
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g

lim
n→∞

∫

f(g ◦ T n) dµ =

∫

f dµ

∫

g dµ.

Indeed, the former property follows from the latter if we substitute the indicator
functions 11A, 11B in place of f, g respectively. To prove the opposite implication
notice that with the help of Hölder inequality it is sufficient to restrict our
considerations to simple functions f =

∑

i ai11Ai
and g =

∑

j aj11Aj
, where (Ai)

and (Bj) are arbitrary finite partitions. Then

∣

∣

∣

∣

∫

f(g ◦ T n) dµ−
∫

f dµ

∫

g dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

i,j

aibj(µ(Ai ∩ T−n(Bj)) − µ(Ai)µ(Bj))

∣

∣

∣

∣

∣

∣

→ 0

because every summand converges to 0 as n→ ∞.
In the sequel we will deal also with stronger mixing properties. An endomor-

phism is called K-mixing if for every measurable set A and every finite partition
A

lim
n→∞

sup
B∈F(A∞

n )

|µ(A ∩B) − µ(A)µ(B)| = 0,

Recall that F(A∞
n ) for n ≥ 0 means the complete σ-algebra assigned to the par-

tition A∞
n =

∨∞
j=n T

−j(A). The following theorem provides us with alternative
definitions of the K-mixing property in the case when T is an automorphism.

Theorem 1.10.1. Let (X,F , µ) be a Lebesgue space and T : X → X be its
measure-preserving automorphism. Then the following conditions are equiva-
lent:

(a) T is K-mixing.

(b) For every finite partition A Tail(A) :=
∧∞
n=0

∨∞
k=n T

−k(A) is equal to the
trivial partition ν = {X} (mod 0).

(c) For every finite partition A 6= ν, hµ(T,A) > 0 (T has completely positive
entropy)

(d) There exists a forward invariant exhausting measurable partition α (i.e.
satisfying T−1(α) ≤ α, T n(α) ր ε, see Definition 1.6.4) such that T−n(α) ց ν.

The property Tail(A) = ν is a version of the 0-1 Law . An automorphism
satisfying (d) is usually called: K-automorphism. The symbol K comes from
the name: Kolmogorov. Each partition satisfying the properties of α in (d) is
called K-partition.

Remark. the properties (a)–(c) make sense for endomorphisms and they are
equivalent (proofs are the same as for automorphisms). Moreover they hold for
an endomorphism iff they hold for its natural extension.
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Proof. (a part of) To show the reader what Theorem 1.10.1 is about let us prove
at least some implications:

(a)⇒(b) Let A ∈ F(Tail(A)) for a finite partition A. Then for every n ≥ 0,
A ∈ F(

∨∞
k=n T

−k(A)). Hence, by K-mixing, µ(A ∩ A) − µ(A)µ(A) = 0 and
therefore µ(A) = 0 or 1.

(b)⇒(c) Suppose (b) and assume h(T,A) = 0 for a finite partition A. Then
H(A|A−) = 0, hence I(A|A−) = 0 a.s. (see Section 1.8), hence A ≤ A−. Thus,

∞
∨

k=0

T−k(A) =
∞
∨

k=1

T−k(A) and
∞
∨

k=m

T−k(A) =
∞
∨

k=n

T−k(A)

for every m,n ≥ 0. So ν =
∧∞
n=0

∨∞
k=n T

−k(A) =
∨∞
k=0 T

−k(A) ≥ A. So
A = ν the trivial partition. Thus, for every non-trivial partition A we have
h(T,A) > 0.

(b)⇒(d) (in case there exists a finite two-sided generator B, meaning that
∨∞
n=−∞ T n(B) = ε). Notice that α =

∨

T∞
n=0T

−n(B) is exhausting. ♣

Let us finish the Section with the following useful:

Definition 1.10.2. A measure preserving endomorphism is said to be exact if

∞
∧

n=0

T−n(ε) = ν,

(Remind that ε is the partition into points and ν is the trivial partition {X}.)

Exercise. Prove that exactness is equivalent to the property that µe(T
n(A)) →

1 for every A of positive measure (µe is the outer measure generated by µ), or
to the property that µ(T n(A)) → 1 provided µ(A) > 0 and the sets T n(A) are
measurable.

The property of being exact implies the natural extension to be aK-automorphism
(in Theorem 1.10.1(d) set for α the lift of ε). The converse is of course false.
The automorphisms of spaces not being one atom spaces, are not exact. Ob-
serve however that if T is an automorphism and α is a measurable partition
satisfying (d), then the factor map T/α on X/α is exact.

Exercise. Prove that T is the natural extension of T/α.

Recall finally (Section 1.9) that even for exact endomorphisms, h(ε|T−1(ε))
can be strictly less than h(T ).

1.11 Probability laws and Bernoulli property

Let (X,F , µ) be a probability space and, whenever it is needed, a Lebesgue
space, and let T : X → X be an endomorphism preserving µ. Let f and g be
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real-valued square-integrable functions on X . For every positive integer n, the
n-th correlation of the pair f, g, is the number

Cn(f, g) :=

∫

f · (g ◦ T n) dµ−
∫

f dµ

∫

g dµ.

provided the above integrals exist. Notice that due to T -invariance of µ we can
also write

Cn(f, g) =

∫

(f − Ef)
(

(g − Eg) ◦ T n
)

dµ,

where Ef =
∫

f dµ and Eg =
∫

g dµ.
Keep g : X → R a square-integrable function. The limit

σ2 = σ2(g) = lim
n→∞

1

n

∫

(

n−1
∑

j=0

g ◦ T j − nEg
)2

dµ (1.11.1)

is called asymptotic variance or dispersion of g, provided it exists. Write g0 =
g − Eg. Then we can rewrite the above formula as

σ2 = lim
n→∞

1

n

∫

(

n−1
∑

j=0

g0 ◦ T j
)2

dµ. (1.11.2)

Another useful expression for the asymptotic variance is the following.

σ2(g) =

∫

g2
0 dµ+ 2

∞
∑

j=1

∫

g0 · (g0 ◦ T j) dµ. (1.11.3)

The convergence of the series of correlations Cn(g, g) in (1.11.3) easily implies
that σ2(g) from this formula is equal to σ2 defined in (1.11.1), compare the
computation in the proof of Theorem 1.11.3 later on.

We say that the Law of Iterated Logarithm, LIL, holds for g if σ2(g) exists
(i.e. the above series converges) and

lim sup
n→∞

∑n−1
j=0 g ◦ T j − nEg
√
n log logn

=
√

2σ2 µ- almost surely . (1.11.4)

µ almost surely, (a.s.), means µ almost everywhere, (a.e.). This is the language
of probability theory.

We say that the Central Limit Theorem, CLT, holds, if for all r ∈ R, in the
case σ2 6= 0,

µ

({

x ∈ X :

∑n−1
j=0 g ◦ T j − nEg

√
n

< r

})

→ 1

σ
√

2π

∫ r

−∞
e−t

2/2σ2

dt, (1.11.5)

and in the case σ2 = 0 the convergence holds for r 6= 0 with 0 on the right hand
side for r < 0 and 1 for r > 0.
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The LIL and CLT for σ2 6= 0 are often, and this is the case in Theorem
1.11.1 below, a consequence of the Almost Sure Invariance Principle, ASIP,
which says that the sequence of random variables g, g ◦T , g ◦T 2, centered at the
expectation value i.e. if Eg = 0, is ”approximated with the rate n1/2−ε” with
some ε > 0, depending on δ in Theorem 1.11.1 below, by a martingale difference
sequence and a respective Brownian motion.

Theorem 1.11.1. Let (X,F , µ) be a probability space and T an endomorphism
preserving µ. Let G ⊂ F be a σ-algebra. Write Gnm :=

∨n
j=m T

−j(G) (notation
from Section1.6) for all m ≤ n ≤ ∞, and suppose that the following property,
called φ-mixing, holds:

There exists a sequence φ(n), n = 0, 1, . . . of positive numbers satisfying

∞
∑

n=1

φ1/2(n) <∞, (1.11.6)

such that for every A ∈ Gm0 and B ∈ G∞
n , 0 ≤ m ≤ n we have

|µ(A ∩B) − µ(A)µ(B)| ≤ φ(n−m)µ(A). (1.11.7)

Now consider a G∞
0 measurable function g : X → R such that

∫

|g|2+δ dµ <∞ for some δ > 0,

and that for all n ≥ 1

∫

|h− E(h|Gn0 )|2+δ) dµ ≤ Kn−s, for K > 0, s > 0 large enough. (1.11.8)

(A concrete formula for s, depending on δ, can be given.)

Then g satisfies CLT and LIL.

LIL for σ2 6= 0 is a special case, for ψ(n) =
√

2 log logn, of the following
property for a square integrable function g : X → R for which σ2 exists, provided
∫

g dµ = 0: for every real positive non-decreasing function ψ and one has,

µ











x ∈ X :
n
∑

j=0

g(T j(x)) > ψ(n)
√
σ2n for infinitely many n









 = 0 or 1

according as the integral
∫∞
1

ψ(t)
t exp(− 1

2ψ
2(t)) dt converges or diverges.

As we already remarked, this Theorem, for σ2 6= 0, is a consequence of ASIP
and similar conclusions for the standard Brownian motion. We do not give the
proofs here. For ASIP and further references see [Philipp, Stout 1975, Ch. 4
and 7]. Let us discuss only the existence of σ2. It follows from the following
consequence of (1.11.7): For α, β square integrable real-valued functions on X ,
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α measurable with respect to Gm0 and β measurable with respect to G∞
n , we

have
∣

∣

∣

∣

∫

(αβ dµ− EαEβ) dµ

∣

∣

∣

∣

≤ 2(φ(n−m))1/2‖α‖2‖β‖2. (1.11.9)

The proof of this inequality is not difficult, but tricky, with the use of Hölder
inequality, see [Ibragimov 1962] or [Billingsley 1968]. It is sufficient to work
with simple functions α =

∑

i ai11Ai
, β =

∑

j aj11Aj
for finite partitions (Ai)

and (Bj), as in dealing with mixing properties in Section 1.10. Note that if
instead of (1.11.7) we have stronger:

|µ(A ∩B) − µ(A)µ(B)| ≤ φ(n−m)µ(A)µ(B), (1.11.10)

as will be the case in Chapter 3, then we very easily obtain in (1.11.9) the
estimate by φ(n −m)‖α‖1‖β‖1, by the computation the same as for mixing in
Section 1.10.

We may assume that g is centered at the expectation value. Write g =

kn + rn = E(g|G[n/2]
0 ) + (g − E(g|G[n/2]

0 ). We have
∣

∣

∣

∣

∫

g(g ◦ T n) dµ
∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

kn(kn ◦ T n) dµ
∣

∣

∣

∣

+

∣

∣

∣

∣

∫

kn(rn ◦ T n) dµ
∣

∣

∣

∣

+

∣

∣

∣

∣

∫

rn(kn ◦ T n) dµ
∣

∣

∣

∣

+

∣

∣

∣

∣

∫

rn(rn ◦ T n) dµ
∣

∣

∣

∣

≤

2(φ(n− [n/2]))1/2‖kn‖2
2 + 2‖kn‖2‖rn‖2 + ‖rn‖2

2 ≤
2(φ(n− [n/2]))1/2‖kn‖2

2 + 2K[n/2]−s‖kn‖2 +K[n/2]−2s,

the first summand estimated according to (1.11.9). For s > 1 we thus obtain
convergence of the series of correlations.

Let us go back to the discussion of the φ-mixing property. If G is associated to
a finite partition that is a one-sided generator, φ-mixing with φ(n) → 0 as n→
∞ (that is weaker than (1.11.6)), implies K-mixing (see Section 1.10). Indeed
B is the same in both definitions, whereas A in K-mixing can be approximated
by sets belonging to Gm0 . We leave details to the reader.

Intuitively both notions mean that any event B in remote future weakly
depends on the present state A, i.e. |µ(B) − µ(B|A)| is small.

In applications G will be usually associated to a finite or countable partition.
In Theorems 1.11.1, the case σ2 = 0 is easy. It relies on Theorem 1.11.3

below. Let us first introduce the following fundamental

Definition 1.11.2. Two functions f, g : X → R (or C) are said to be cohomol-
ogous in a space K of real (or complex) -valued functions on X (or f is called
cohomologous to g), if there exists h ∈ K such that

f − g = h ◦ T − h. (1.11.11)

If f, g are defined mod 0, then (1.11.11) is understood a.s. This formula is called
a cohomology equation.
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Theorem 1.11.3. Let f be a square integrable function on a probability space
(X,F , µ), centered at the expectation value. Assume that

∞
∑

n=0

n|
∫

f · (f ◦ T n) dµ| <∞. (1.11.12)

Then the following three conditions are equivalent:
(a) σ2(f) = 0;

(b) All the sums Sn = Snf =
∑n−1
j=0 f ◦ T j have the norm in L2 (the space

square integrable functions) bounded by the same constant;
(c) f is cohomologous to 0 in the space H = L2.

Proof. The implication (c)⇒(a) follows immediately from (1.11.1) after substi-
tuting f = h ◦ T − h. Let us prove (a)⇒(b). Write Cj for the correlations
∫

f · (f ◦ T j) dµ, j = 0, 1, . . . . Then

∫

|Sn|2 dµ = nC2
0 + 2

n
∑

j=1

(n− j)Cj

= n
(

C2
0 + 2

∞
∑

j=1

Cj

)

− 2n

∞
∑

j=n+1

Cj − 2

n
∑

j=1

j · Cj = nσ2 − In − IIn.

Since In → 0 and IIn stays bounded as n→ ∞ and σ2 = 0, we deduce that all
the sums Sn are uniformly bounded in L2.

(b)⇒(c): f = h ◦ T − h for any h, a limit in the weak topology, of the
sequence 1

nSn bounded in L2(µ). We leave the easy computation to the reader.
(This computation will be given in detail in the similar situation of Bogolyubov–
Krylov Theorem, in Remark 2.1.14.). ♣

Now Theorem 1.11.1 for σ2 = 0 follow from (c), which gives
∑n−1

j=0 f ◦ T j =
h ◦ T n − h, with the use of Borel–Cantelli lemma.

Remark. Theorem 1.11.1 in the two-sided case: where g depens on Gj = T j(G)
for j = . . . ,−1, 0, 1, . . . for an automorphism T , also holds. In (1.11.8) one
should replace Gn0 by Gn−n.

Given two finite partitions A and B of a probability space and ε ≥ 0 we
say that B is ε-independent of A if there is a subfamily A′ ⊂ A such that
µ(
⋃A′) > 1 − ε and for every A ∈ A′

∑

B∈B

∣

∣

∣

∣

µ(A ∩B)

µ(A)
− µ(B)

∣

∣

∣

∣

≤ ε. (1.11.13)

Given an ergodic measure preserving endomorphism T : X → X of a
Lebesgue space, a finite partition A is called weakly Bernoulli (abbr. WB)
if for every ε > 0 there is an N = N(ε) such that the partition

∨s
j=n T

−j(A) is
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ε-independent of the partition
∨m
j=0 T

−j(A) for every 0 ≤ m ≤ n ≤ s such that
n−m ≥ N .

Of course in the definition of ε-independence we can consider any measur-
able (maybe uncountable) partition A and write conditional measures µA(B)
in (1.11.13). Then for T an automorphism we can replace in the definition of
WB

∨s
j=n T

−j(A) by
∨s−n
j=0 T

−j(A) and
∨m
j=0 T

−j(A) by
∨m−n
j=−n T

−j(A) and
set n = ∞, n −m ≥ N . WB in this formulation becomes one more version of
weak dependence of present (and future) from remote past.

If ε = 0 and N = 1 then all partitions T−j(A) are mutually independent
(recall that A,B are called independent if µ(A ∩ B) = µ(A)µ(B) for every
A ∈ A, B ∈ B.). We say then that A is Bernoulli. If A is a one-sided generator
(two-sided generator), then clearly T on (X,F , µ) is isomorphic to one-sided
(two-sided) Bernoulli shift of ♯A symbols, see Chapter 0, Examples 0.10. The
following famous theorem of Friedman and Ornstein holds.

Theorem 1.11.4. If A is a finite weakly Bernoulli two-sided generating parti-
tion of X for an automorphism T , then T is isomorphic to a two-sided Bernoulli
shift.

Of course the standard Bernoulli partition (in particular the number of its
states) in the above Bernoulli shift can be different from the image under the
isomorphism of the WB partition.

Bernoulli shift above is unique in the sense that all two-sided Bernoulli shifts
of the same entropy are isomorphic [Ornstein 1970].

Note that φ-mixing in the sense of (1.11.10), with φ(n) → 0, for G associated
to a finite partition A, implies weak Bernoulli property.

Central Limit Theorem is a much weaker property than LIL. We want to
end this Section with a useful abstract theorem that allows us to deduce CLT
for g without specifying G. This Theorem similarly as Theorem 1.11.1 can be
proved with the use of an approximation by a martingale difference sequence.

Theorem 1.11.5. Let (X,F , µ) be a probability space and T : X → X an
automorphism preserving µ. Let F0 ⊂ F be a σ-algebra such that T−1(F0) ⊂ F0.
Denote Fn = T−n(F0) for all integer n = . . . ,−1, 0, 1, . . . Let g be a real-valued
square integrable function. If

∑

n≥0

‖E(g|Fn) − Eg‖2 + ‖g − E(g|F−n)‖2 <∞, (1.11.14)

then g satisfies CLT.

Exercises

Ergodic theorems, ergodicity
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1.1. Prove that for any two σ-algebras F ⊃ F ′ and φ an F -measurable function,
the conditional expectation value operator Lp(X,F , µ) ∋ φ → E(φ|F ′) has
norm 1 in Lp, for every 1 ≤ p ≤ ∞.

Hint: Prove that E((ϑ◦ |φ|)|F ′) ≥ ϑ◦E((|φ|)|F ′) for convex ϑ, in particular
for t 7→ tp.

1.2. Prove that if S : X → X ′ is a measure preserving surjective map for
measure spaces (X,F , µ) and (X ′,F ′, µ′) and there are measure preserving en-
domorphisms T : X → X and T ′ : X ′ → X ′ satisfying S ◦ T = T ′ ◦ S, then T
ergodic implies T ′ ergodic, but not vice versa. Prove that if (X,F , µ) is Rohlin’s
natural extension of (X ′,F ′, µ′), then (X ′,F ′, µ′) implies (X,F , µ) ergodic.

1.3. (a) Prove Maximal Ergodic Theorem: Let f ∈ L1(µ) for T a measure
preserving endomorphism of a probability space (X,F , µ). Then for A := {x :
supn≥0

∑n
i=0 f(T i(x)) > 0} it holds

∫

A f ≥ 0.
(b) Note that this implies the Maximal Inequality for the so-called maximal

function f∗ := supn≥1
1
n

∑n−1
i=0 f(T i(x)):

µ({f∗ > α} ≤ 1

α

∫

{f∗>α}
f dµ, for every real α.

(c) Deduce Birkhoff’s Ergodic Theorem .
Hint: One can proceed directly. Another way is to prove first the a.e. con-

vergence on a set D of functions dense in L1. Decomposed functions in L2 in
sums g = h1 + h2 , where h1 is T invariant in the case T is an automorphism
(i.e. h1 = h1 ◦ T ) and h2 = −g ◦ T + g). Consider only g ∈ L∞. If T is not an
automorphism, h1 = U∗(h1) for U∗ being conjugate to the Koopman operator
U(f) = f ◦ T , compare Sections 4.2 and 4.7. To pass to the closure of D use
the Maximal Inequality. One can also just refer to the Banach Principle below.
Its assumption supn |Tnf | < ∞ a.e. for Tnf = 0

n−1

∑n−1
k=0 f ◦ T k, follows from

the Maximal Inequality. See [Petersen 1983].

1.4. Prove the Banach Principle: Let 1 ≤ p <∞ and let {Tn} be a sequence of
bounded linear operators on Lp. If supn |Tnf | < ∞ a.e. for each f ∈ Lp then
the set of f for which Tnf converges a.e. is closed in Lp.

1.5. Let (X,F , µ) be a probability space, let F1 ⊂ F2 ⊂ · · · ⊂ F be an
increasing to F sequence of σ-algebras and φ ∈ Lp, 1 ≤ p ≤ ∞. Prove
Martingale Convergence Theorem in the version of Theorem 1.1.4, saying that
φn := E(φ|Fn) → E(φ|F) a.e. and in Lp.

Steps:
1) Prove: µ{maxi≤n φi > α} ≤ 1

α

∫

{maxi≤n φi>α} φn dµ. (Hint: decompose

X =
⋃n
k=1Ak where Ak := {maxi<k φi ≤ α < φk} and use Tchebyshev inequal-

ity on each Ak. Compare Lemma 1.5.1).
2) Use Banach Principle checking first the convergence a.e. on the set of

indicator functions on each Fn.
1.6. For a Lebesgue integrable function f : R → R the Hardy-Littlewod maxi-
mal function is

Mf(t) = sup
ε>0

1

2ε

∫ ε

−ε
|f(t+ s)| ds.
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(a) Prove the Maximal Inequality of F. Riesz m({x ∈ R : Mf(x) > α}) ≤
2
α‖f‖1, for every α > 0, where m is the Lebesgue measure.
(b) Prove the Lebesgue differentiation theorem: For a.e. t

lim
ε→0

1

2ε

∫ ε

−ε
|f(t+ s)| ds = f(t).

Hint: Use Banach Principle (Exercise 1.4) using the fact that the above
equality holds on the set of differentiable functions, which is dense in L1.
(c) Generalize this theory to f : Rd → R, d > 1; the constant 2 is then replaced
by another constant resulting from Besicovitch covering theorem, see Chapter
7.

Lebesgue spaces, measurable partitions

1.7. Let T be an ergodic automorphism of a probability non-atomic measure
space and A its partition into orbits {T n(x), n = . . . ,−1, 0, 1 . . .}. Prove that
A is not measurable.

Suppose we do not assume ergodicity of T . What is the largest measurable
partition, smaller than the partition into orbits? (Hint: Theorem 1.8.11.)

1.8. Prove that the following partitions of measure spaces are not measurable:
(a) Let T : S1 → S1 be a mapping of the unit circle with Haar (length)

measure defined by T (z) = e2πiαz for an irrational α. P is the partition into
orbits;

(b) T is the automorphism of the 2-dimensional torus R2/Z2, given by a
hyperbolic integer matrix of determinant 1. Let P be the partition into stable,
or unstable, lines (i.e. straight lines parallel to an eigenvector of the matrix);

(c) Let T : S1 → S1 be defined by T (z) = z2. Let P be the partition into
grand orbits, i.e. equivalence classes of the relation x ∼ y iff ∃m,n ≥ 0 such
that Tm(x) = T n(y).

1.9. Prove that every Lebesgue space is isomorphic to the unit interval equi-
pped with the Lebesgue measure together with countably many atoms.

1.10. Prove that every separable complete metrisable (Polish) space with a
measure on the σ-algebra containing all open sets, minimal among complete
measures, is Lebesgue space.

Hint: [Rohlin 1949, 2.7].

1.11. Let (X,F , µ) be a Lebesgue space. Then Y ⊂ X,µe(Y ) > 0 is mea-
surable iff (Y,FY , µY ) is a Lebesgue space, where µe is the outer measure,

FY = {A ∩ Y : A ∈ F} and µY (A) = µe(A∩Y )
µe(Y ) .

Hint: If B=(Bn) is a basis for (X,F , µ), then (B′
n) = (Bn ∩Y ) is a basis for

(Y,FY , µY ). Add to Y one point for each sequence (B′
n
εn) whose intersection

is missing in Y and in the space Ỹ obtained in such a way generate complete
measure space (Ỹ , F̃ , µ̃) from the extension B̃ of the basis (B′

n). Borel sets with
respect to B in X correspond to Borel sets with respect to B̃ and sets of µ
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measure 0 correspond to sets of µ̃ measure 0. So measurability of Y implies
µ̃(Ỹ \ Y ) = 0.

1.12. Prove Theorem1.6.6.
Hint: In the case when both spaces are unit intervals with standard Lebesgue

measure, consider all intervals J ′ with rational endpoints. Each J = T−1(J ′) is
contained in a Borel set BJ with µ(BJ \ J) = 0. Remove from X a Borel set of
measure 0 containing

⋃

J(BJ \ J). Then T becomes a Borel map, hence it is a
Baire function, hence due to the injectivity it maps Borel sets to Borel sets.

1.13. (a) Consider the unit square [0, 1]×[0, 1] equipped with Lebesgue measure.
For each x ∈ [0, 1] let Ax be the partition into points (x′, y) for x′ 6= x and the
interval {x}× [0, 1]. What is

∧

xAx ? Let Bx be the partition into the intervals
{x′} × [0, 1] for x′ 6= x and the points {(x, y) : y ∈ [0, 1]}. What is

∨

x Bx ?
(b) Find two measurable partitions A,A′ of a Lebesgue space such that their

set-theoretic intersection (i.e. the largest partition such that A,A′ are finer than
this partition) is not measurable.

1.14. Prove that if F : X → X is an ergodic endomorphism of a Lebesgue
space then its natural extension is also ergodic.

Hint: See [Kornfeld , Fomin & Sinai 1982, Sec.10.4].

1.15. Find an example of T : X → X an endomorphism of a probability space

(X,F , µ), injective and onto, such that for the system · · · T→ X
T→ X , natural

extension does not exist.
Hint: Set X to be the unit circle and T irrational rotation. Let A be a set

consisting of exactly one point in each T -orbit. Set B =
⋃

j≥0 T
j(A). Notice

that B is not Lebesgue measurable and that the outer measure of B is 1 (use
unique ergodicity of T , i.e. that (1.2.2) holds for every x)

Let F be the σ-algebra consisting of all the sets C = B ∩D for D Lebesgue
measurable, set µ(C) = Leb(D), and for C ⊂ X \ B, set µ(C) = 0. Note
that

⋂

n≥0 T
n(B) = ∅ and in the set-theoretic inverse limit the set π−1

−n(B) =

π−1
0 (T n(B)) would be of measure 1 for every n ≥ 0.

Entropy, generators, mixing

1.16. Prove Theorem 1.4.7 provided (X,F , ρ) is a Lebesgue space, using The-
orem 1.8.11 (ergodic decomposition theorem) for ρ.

1.17. (a) Prove that in a Lebesgue space d(A,B) := H(A|B) + H(B|A) is a
metric in the space Z of countable partitions (mod 0) of finite entropy. Prove
that the metric space (Z, d) is separable and complete.

(b) Prove that if T is an endomorphism of the Lebesgue space, then the
function A → h(T,A) is continuous for A ∈ Z with respect to the above metric
d.

Hint: | h(T,A) − h(T,B)| ≤ max{H(A|B),H(B|A)}. Compare the proof of
Th. 1.4.5.

1.18. (a) Let d0(A,B) :=
∑

i µ(Ai ÷ Bi) for partitions of a probability space
into r measurable sets A = {Ai, i = 1, . . . , r} and B = {Bi, i = 1, . . . , r}. Prove
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that for every r and every d > 0 there exists d0 > 0 such that if A,B are
partitions into r sets and d0(A,B) < d0, then d(A,B) < d

(b) Using (a) give a simple proof of Corollary 1.8.10. (Hint: Given an
arbitrary finite A construct B ≤ Bm so that d0(A,B) be small for m large. Next
use (a) and Theorem 1.4.4(d)).

1.19. Prove that there exists a finite one-sided generator for every T , a con-
tinuous positively expansive map of a compact metric space (see the definition
of positively expansive in Ch.2, Sec.5).

1.20. Compute the entropy h(T ) for Markov chains, see Chapter 0.

1.21. Prove that the entropy h(T ) defined either as supremum of h(T,A) over
finite partitions, or over countable partitions of finite entropy, or as sup H(ξ|ξ−)
over all measurable partitions ξ that are forward invariant (i.e. T−1(ξ) ≤ ξ), is
the same.

1.22. Let T be an endomorphism of the 2-dimensional torus R2/Z2, given by
an integer matrix of determinant larger than 1 and with eigenvalues λ1, λ2 such
that |λ1| < 1 and |λ2| > 1. Let S be the endomorphism of R2/Z2 being the
Cartesian product of S1(x) = 2x (mod 1) on the circle R/Z and of S2(y) = y+α
(mod 1), the rotation by an irrational angle α. Which of the maps T, S is exact?
Which has a countable one-sided generator of finite entropy?

Answer: T does not have the generator, but it is exact. The latter holds be-
cause for each small parallelepiped P spanned by the eigendirections there exists
n such that T n(P ) covers the torus with multiplicity bounded by a constant not
depending on P . This follows from the fact that λj are algebraic numbers and
from Roth’s theorem about Diophantine approximation. S is not exact, but it
is ergodic and has a generator.

1.23. (a) Prove that ergodicity of an endomorphism T : X → X for a proba-
bility space (X,F , µ) is equivalent to the non-existence of a non-constant mea-
surable function φ such that UT (φ) = φ, where UT is Koopman operator, see
1.2.1 and notes following it.

(b) Prove that for an automorphism T , weak mixing is equivalent to the
non-existence of a non-constant eigenfunction for UT acting on L2(X,F , µ).

(c) Prove that if T is a K-mixing automorphism then L2⊖constant functions
decomposes in a countable product of pairwise orthogonal UT -invariant sub-
spaces Hi each of which contains hi such that for each i all U jT (hi), j ∈ Z are
pairwise orthogonal and span Hi. (This property is called: countable Lebesgue
spectrum.)

Hint: use condition (d) in 1.10.1

1.24. Prove that if the definition of partition A ε-independent of partition B
is replaced by

∑

A∈A,B∈B |µ(A ∩B)− µ(A)µ(B)|, then the definition of weakly
Bernoulli is equivalent to the old one. (Note that now the expression is sym-
metric with respect to A,B.)
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ble family µ̃Π,n to µ̃Π is known as Kolmogorov Extension Theorem (or Kol-
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1.7.2. Our proof of σ-additivity of µ̃ on X̃ via Lusin theorem is also a variant
of Kolmogorov’s proof. The proofs of σ-additivity on algebras depend unfor-
tunately on topological concepts. Halmos wrote [Halmos 1950, p. 212]: “this
peculiar and somewhat undesirable circumstance appears to be unavoidable” In-
deed the σ-additivity may be not true, see [Halmos 1950, p. 214]. Our example
of non-existence of natural extension, Exercise 1.15, is in the spirit of Halmos’
example. There might be troubles even with extending a measure from cylinders
in product of two measure spaces, see [Marczewski & Ryll-Nardzewski 1953] for
a counterexample. On the other hand product measures extend to generated σ-
algebras without any additional assumptions [Halmos 1950], [Billingsley 1979].

For Th. 1.9.1: the existence of a countable partition into cross-sections, see
[Rohlin 1949]; for bounds of its entropy, see for example [Rohlin 1967, Th. 10.2],
or [Parry 1969]. The simple proof of Th. 1.8.6 via convergence in measure has
been taken from [Rohlin 1967] and [Walters 1982]. Proof of Th. 1.8.11(b) is
taken from [Rohlin 1967, sec. 8.10-11 and 9.8].

For Th. 1.9.6 see [Parry 1969, L. 10.5]; our proof is different. For the con-
struction of a one-sided generator and a 2-sided generator see again [Rohlin 1967],
[Parry 1969] or [Cornfeld, Fomin & Sinai 1982]. The same are references to the
theory of measurable invariant partitions: exhausting and extremal, and to
Pinsker partition, which we omitted because we do not need these notions fur-
ther in the book, but which are fundamental to understand deeper the measure-
theoretic entropy theory. Finally we encourage the reader to become acquainted
with spectral theory of dynamical systems, in particular in relation to mixing
properties; for an introduction see for example [Cornfeld, Fomin & Sinai 1982],
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[Parry 1981] (in particular Appendix), [Walters 1982].
Th. 1.11.1 can be found in [Philipp, Stout 1975]. See also

[Przytycki, Urbański & Zdunik 1989]. For (1.11.9) see [Ibragimov 1962, 1.1.2]
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in [Gordin 1969]. We owe the idea of the proof of the exactness via Roth’s
theorem in 1.22 to Wieslaw Szlenk. Generalizations to higher dimensions lead
to Wolfgang Schmidt’s Diophantine Approximation Theorem.



Chapter 2

Ergodic theory on compact

metric spaces

In the previous chapter a measure preserved by a measurable map T was given
a priori. Here a continuous mapping T of a topological compact space is given
and we look for various measures preserved by T . Given a real continuous
function φ on X we try to maximize the functional measure theoretical entropy
+integral, i.e. hµ(T ) +

∫

φdµ. Supremum over all probability measures on the
Borel σ-algebra turns out to be topological pressure, similar to P in the Fi-
nite Variational Principle or P (α) for φα on the Cantor set, discussed in the
Introduction. We discuss equilibria, namely measures on which supremum is
attained. This chapter provides an introduction to the theory called thermody-
namical formalism, which will be the main technical tool in this book. We will
continue to develop the thermodynamical formalism in more specific situations
in Chapter 4.

2.1 Invariant measures for continuous mappings

We recall in this section some basic facts from functional analysis needed to
study the space of measures and invariant measures. We recall Riesz Represen-
tation Theorem, weak∗ topology, Schauder Fixed Point Theorem. We recall also
Krein–Milman theorem on extremal points and its stronger form: Choquet rep-
resentation theorem. This gives a variant of Ergodic Decomposition Theorem
from Chapter 1.

Let X be a topological space. The Borel σ-algebra B of subsets of X is
defined to be generated by open subsets of X . We call every probability measure
on the Borel σ-algebra of subsets of X , a Borel probability measure on X . We
denote the set of all such measures by M(X).

Denote by C(X) the Banach space of real-valued continuous functions on
X with the supremum norm: sup |φ| := supx∈X |φ(x)|. Sometimes we shall use
the notation ||φ||∞, introduced in Section 1.1 in L∞(µ), though it is compatible

75
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only if µ is positive on open sets, even in absence of µ.
Note that each Borel probability measure µ on X induces a bounded linear

functional Fµ on C(X) defined by the formula

Fµ(φ) =

∫

φdµ. (2.1.1)

One can extend the notion of measure and consider σ-additive set functions,
known as signed measures. Just in the definition of measure from Section 1.1
consider µ : F → [−∞,∞) or µ : F → (−∞,∞] and keep the notation (X,F , µ)
from Ch.1. The set of signed measures is a linear space. On the set of finite
signed measures, namely with the range R, one can introduce the following total
variation norm:

v(µ) := sup

{

n
∑

i=1

|µ(Ai)|
}

,

where the supremum is taken over all finite sequences (Ai) of disjoint sets in F .
It is easy to prove that every finite signed measure is bounded and that it

has finite total variation. It is also not difficult to prove the following

Theorem 2.1.1 (Hahn–Jordan decomposition). For every signed measure µ
on a σ-algebra F there exists Aµ ∈ F and two measures µ+ and µ− such that
µ = µ+ − µ−, µ− is zero on all measurable subsets of Aµ and µ− is zero on all
measurable subsets of X \Aµ.

Notice that v(µ) = µ+(X) + µ−(X).
A measure (or signed measure) is called regular, if for every A ∈ F and ε > 0

there exist E1, E2 ∈ F such that E1 ⊂ A ⊂ IntE2 and for every C ∈ F with
C ⊂ E2 \ E1, we have |µ(C)| < ε.

If X is a topological space, denote the space of all regular finite signed mea-
sures with the total variation norm, by rca(X). The abbreviation rca replaces
regular countably additive.

If F = B, the Borel σ-algebra, and X is metrizable, regularity holds for
every finite signed measure. It can be proved by Carathéodory’s outer measure
argument, compare the proof of Corollary 1.8.10.

Denote by C(X)∗ the space of all bounded linear functionals on C(X). This
is called the dual space (or conjugate space). Bounded means here bounded
on the unit ball in C(X), which is equivalent to continuous. The space C(X)∗

is equipped with the norm ||F || = sup{F (φ) : φ ∈ C(X), |φ| ≤ 1}, which makes
it a Banach space.

There is a natural order in rca(X): ν1 ≤ ν2 iff ν2 − ν1 is a measure.
Also in the space C(X)∗ one can distinguish positive functionals, similarly

to measures amongst signed measures, as those which are non-negative on the
set of functions C+(X) := {φ ∈ C(X) : φ(x) ≥ 0 for every x ∈ X}. This gives
the order: F ≤ G for F,G ∈ C(X)∗ iff G− F is positive.

Remark that F ∈ C(X)∗ is positive iff ||F || = F (11), where 11 is the function
on X identically equal to 1. Also for every bounded linear operator F : C(X) →
C(X) which is positive, namely F (C+(X)) ⊂ C+(X), we have ||F || = |F (11)|.
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Remark that (2.1.1) transforms measures to positive linear functionals.
The following fundamental theorem of F. Riesz says more about the trans-

formation µ 7→ Fµ in (2.1.1) (see [Dunford & Schwartz 1958, pp. 373,380] for
the history of this theorem):

Theorem 2.1.2 (Riesz representation theorem). If X is a compact Hausdorff
space, the transformation µ 7→ Fµ defined by (2.1.1) is an isometric isomor-
phism between the Banach space C(X)∗ and rca(X). Furthermore this isomor-
phism preserves order.

In the sequel we shall often write µ instead of Fµ and vice versa and µ(φ)
or µφ instead of Fµ(φ) or

∫

φdµ.
Notice that in Theorem 2.1.2 the hard part is the existence, i.e. that for

every F ∈ C(X)∗ there exists µ ∈ rca(X) such that F = Fµ. The uniqueness is
just the following:

Lemma 2.1.3. If µ and ν are finite regular Borel signed measures on a compact
Hausdorff space X, such that

∫

φdµ =
∫

φdν for each φ ∈ C(X), then µ = ν.

Proof. This is an exercise on the use the regularity of µ and ν. Let η := µ−ν =
η+ − η− in the Hahn–Jordan decomposition. Suppose that that µ 6= ν. Then
η+ (or η−) is non-zero, say η+(X) = η+(Aη) = ε > 0, where Aη is the set
defined in Theorem 2.1.1. Let E1 be a closed set and E2 be an open set, such
that E1 ⊂ Aη ⊂ E2, η

−(E2 \ Aη) < ε/2 and η+(Aη \ E1) < ε/2. There exists
φ ∈ C(X) with values in [0, 1] identically equal 1 on E1 and 0 on X \E2. Then

∫

φdη =

∫

E1

φdη +

∫

Aη\E1

φdη +

∫

E2\Aη

φdη +

∫

X\E2

φdη

=

∫

E1

φdη+ +

∫

Aη\E1

φdη+ −
∫

E2\Aη

φdη−

≥ η+(E1) −
∫

E2\Aη

φdη−

≥ ε− ε/2 > 0. (2.1.2)

♣

The space C(X)∗ can be also equipped with the weak∗ topology. In the
case where X is metrizable, i.e. if there exists a metric on X such that the
topology induced by this metric is the original topology on X , weak∗ topology is
characterized by the property that a sequence {Fn : n = 1, 2, . . .} of functionals
in C(X)∗ converges to a functional F ∈ C(X)∗ if and only if

lim
n→∞

Fn(φ) = F (φ) (2.1.3)

for every function φ ∈ C(X).
If we do not assume X to be metrizable, weak∗ topology is defined as the

smallest one in which all elements of C(X) are continuous on C(X)∗ (recall that
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φ ∈ C(X) acts on F ∈ C(X)∗ by F (φ)). One says weak∗ to distinguish this
topology from the weak topology where one considers all continuous functionals
on C(X)∗ and not only those represented by f ∈ C(X). This discussion of
topologies concerns of course every Banach space B and its dual B∗.

Using the bijection established by Riesz representation theorem we can move
the weak∗ topology from C(X)∗ to rca(X) and restrict it to M(X). The topol-
ogy on M(X) obtained in this way is usually called the weak∗ topology on the
space of probability measures (sometimes one omits ∗ to simplify the language
and notation but one still has in mind weak∗, unless stated otherwise). In view
of (2.1.3), if X is metrizable, this topology is characterized by the property that
a sequence {µn : n = 1, 2, . . .} of measures in M(X) converges to a measure
µ ∈M(X) if and only if

lim
n→∞

µn(φ) = µ(φ) (2.1.4)

for every function φ ∈ C(X). Such convergence of measures will be called weak∗

convergence or weak convergence and can be also characterized as follows.

Theorem 2.1.4. Suppose that X is metrizable (we do not assume compactness
here). A sequence {µn : n = 1, 2, . . .}, of Borel probability measures on X
converges weakly to a measure µ if and only if limn→∞ µn(A) = µ(A) for every
Borel set A such that µ(∂A) = 0.

Proof. Suppose that µn → µ and µ(∂A) = 0. Then there exist sets E1 ⊂ IntA
and E2 ⊃ A such that µ(E2 \ E1) = ε is arbitrarily small. Indeed metrizability
of X implies that every open set, in particular intA, is the union of a sequence
of closed sets and every closed set is the intersection of a sequence of open sets.
For example IntA =

⋃∞
n=1{x ∈ X : infz /∈intA ρ(x, z) ≥ 1/n} for a metric ρ.

Next, there exist f, g ∈ C(X) with range in the unit interval [0, 1] such that
f is identically 1 on E1, 0 on X \ intA, g identically 1 on clA and 0 on X \E2.
Then µn(f) → µ(f) and µn(g) → µ(g). As µ(E1) ≤ µ(f) ≤ µ(g) ≤ µ(E2) and
µn(f) ≤ µn(A) ≤ µn(g) we obtain

µ(E1) ≤ µ(f) = lim
n→∞

µn(f) ≤ lim inf
n→∞

µn(A)

≤ lim sup
n→∞

µn(A) ≤ lim
n→∞

µn(g) = µ(g) ≤ µ(E2).

As also µ(E1) ≤ µ(A) ≤ µ(E2), letting ε→ 0 we obtain limn→∞ µn(A) = µ(A).

Proof in the opposite direction follows from the definition of integral: ap-
proximate uniformly an arbitrary continuous function f by simple functions
∑k

i=1 εi11Ei
where Ei = {x ∈ X : εi ≤ f(x) < εi+1}, for an increasing sequence

εi, i = 1, . . . , k such that εi − εi−1 < ε and µ(f−1({εi})) = 0, with ε → 0. It is
possible to find such numbers εi because only countably many sets f−1(a) for
a ∈ R can have non-zero measure. ♣

Example 2.1.5. The assumption µ(∂A) = 0 is substantial. Let X be the
interval [0, 1]. Denote by δx the Dirac delta measure concentrated at the point
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x, which is defined by the following formula:

δx(A) =

{

1, if x ∈ A

0, if x /∈ A

for all sets A ∈ B .
Consider non-atomic probability measures µn supported respectively on the

ball B(x, 1
n ). The sequence µn converges weakly to δx but does not converge on

{x}.

Of particular importance is the following

Theorem 2.1.6. The space M(X) is compact in the weak∗ topology.

This theorem follows immediately from compactness in weak∗ topology of
any subset of C(X)∗ closed in weak∗ topology, which is bounded in the standard
norm of the dual space C(X)∗ (compare for example [Dunford & Schwartz 1958,
V.4.3], where this result is proved for all spaces dual to Banach spaces). M(X)
is weak∗-closed since it is closed in the dual space norm and convex, by Hahn–
Banach theorem. (Caution: convexity is a substantial assumption. Indeed,
the unit sphere in an infinite dimensional Banach space for example, is never
weak∗-closed, as 0 is in its closure.

It turns out (see [Dunford & Schwartz 1958, V.5.1]) that if X is compact
metrizable, then every weak∗-compact subset of the space C(X)∗ with weak∗

topology is metrizable, hence in particular M(X) is metrizable. (Caution:
C(X)∗ itself is not metrizable for infinite X . The reason is for example that it
does not have a countable basis of topology at 0.)

Let now T : X → X be a continuous transformation of X . The mapping
T is measurable with respect to the Borel σ-algebra. At the very beginning
of Section 1.2 we have defined T -invariant measures µ to satisfy the condition
µ = µ ◦ T−1. It means that Borel probability T -invariant measures are exactly
the fixed points of the transformation T∗ : M(X) → M(X) defined by the
formula T∗(µ) = µ ◦ T−1.

We denote the set of all T -invariant measures in M(X) by M(X,T ). This
notation is consistent with the notation from Section 1.2. We omit here the
σ-algebra F because it is always the Borel σ-algebra B.

Noting that
∫

φd(µ ◦ T−1) =
∫

φ ◦ T dµ for any µ ∈ M(X) and any inte-
grable function φ (Proposition 1.2.1), it follows from Lemma 2.1.3 that a Borel
probability measure µ is T -invariant if and only if for every continuous function
φ : X → R

∫

φdµ =

∫

φ ◦ T dµ. (2.1.5)

In order to look for fixed points of T∗ one can apply the following very general
result whose proof (and the definition of locally convex topological vector spaces,
abbreviation: LCTVS) can be found for example in [Dunford & Schwartz 1958]
or [Edwards 1995].
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Theorem 2.1.7 (Schauder–Tychonoff Theorem [Dunford & Schwartz 1958, V.10.5]).
If K is a non-empty compact convex subset of an LCTVS then any continuous
transformation H : K → K has a fixed point.

Assume from now on that X is compact and metrizable. In order to
apply the Schauder–Tychonoff theorem consider the LCTVS C(X)∗ with weak∗

topology and K ⊂ C(X)∗, being the image of M(X) under the identification
between measures and functionals, given by the Riesz representation theorem.
With this identification we can consider T∗ acting on K. Notice that T∗ is
continuous on M(X) (or K) in the weak∗ topology. Indeed, if µn → µ weakly∗,
then for every continuous function φ : X → R, since φ ◦ T is continuous, we
get µn(φ ◦ T ) → µ(φ ◦ T ), i.e. T∗(µn)(φ) → T∗(µ)(φ), hence T∗(µn) → T∗(µ)
weakly∗.

We obtain

Theorem 2.1.8 (Bogolyubov–Krylov theorem [Walters 1982, 6.9.1]). If T :
X → X is a continuous mapping of a compact metric space X, then there exists
on X a Borel probability measure µ invariant under T .

Thus, our space M(X,T ) is non-empty. It is also weak∗ compact, since it is
closed as the set of fixed points for a continuous transformation.

As an immediate consequence of this theorem and Theorem 1.8.11 (Ergodic
Decomposition Theorem), we get the following:

Corollary 2.1.9. If T : X → X is a continuous mapping of a compact metric
space X, then there exists a Borel ergodic probability measure µ invariant under
T .

We shall use the notation Me(X,T ) for the set of all ergodic measures in
M(X,T ). Write also E(M(X,T )) for the set of extreme points in M(X,T ).

Thus, because of Theorem 1.2.8 and Corollary 2.1.9, we know thatMe(X,T ) =
E(M(X,T )) 6= ∅.

In fact Corollary 2.1.9 can be obtained in a more elementary way without
using Theorem 1.8.11. Namely it now immediately follows from Theorem 1.2.8
and the following

Theorem 2.1.10 (Krein–Milman theorem on extreme points [Dunford & Schwartz 1958,
V.8.4]). If K is a non-empty compact convex subset of an LCTVS then the set
E(K) of extreme points of K is nonempty and moreover K is the closure of the
convex hull of E(K).

Below we state Choquet’s representation theorem which is stronger than
Krein–Milman theorem. It corresponds to the Ergodic Decomposition The-
orem (Theorem 1.8.11). We formulate it in C(X)∗ with weak∗ topology as
in [Walters 1982, p. 153]. The reader can find a general LCTVS version in
[Phelps 1966]. For example it is sufficient to add to the assumptions of the
Krein–Milman theorem, the metrizability of K.

We rely here also on [Ruelle 1978, Appendix A.5], where the reader can find
further references.
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Theorem 2.1.11 (Choquet representation theorem). Let K be a nonempty
compact convex set in M(X) with weak∗ topology, for X a compact metric space.
Then for every µ ∈ K there exists a “mass distribution” i.e. measure αµ ∈
M(E(K)) such that

µ =

∫

mdαµ(m).

This integral converges in weak∗ topology which means that for every f ∈ C(X)

µ(f) =

∫

m(f) dαµ(m). (2.1.6)

Notice that we have had already the formula analogous to (2.1.6) in Remark
1.6.10.

Notice that Krein–Milman theorem follows from Choquet representation the-
orem because one can weakly approximate αµ by measures on E(K) with finite
support (finite linear combinations of Dirac measures).

Exercise. Prove that if we allow αµ to be supported on the closure of E(K),
then the existence of such αµ follows from the Krein–Milman theorem.

Example 2.1.12. For K = M(X) we have E(K) = {Dirac measures on X}.
Then αµ{δx : x ∈ A} = µ(A) for every A ∈ B defines a Choquet representation
for every µ ∈M(X). (Exercise)

Choquet’s theorem asserts the existence of αµ satisfying (2.1.6) but does not
claim uniqueness, which is usually not true. A compact closed set K with the
uniqueness of αµ satisfying (2.1.6), for every µ ∈ M(K) is called simplex (or
Choquet simplex).

Theorem 2.1.13. the set K = M(X) or K = M(X,T ) for every continuous
T : X → X is a simplex.

A proof in the case of K = M(X) is very easy, see Example 2.1.12. A
proof for K = M(X,T ) is not hard either. The reader can look in [Ruelle 1978,
A.5.5]. The proof there relies on the fact that two different measures µ1, µ2 ∈
E(M(X,T )) are singular (see Theorem 1.2.6). Observe that ||µ1−µ2|| = 2. One
proves in fact that for every µ1, µ2 ∈M(X,T ), ||αµ1 − αµ2 || = ||µ1 − µ2||.

Let us go back to Schauder–Tychonoff theorem (Th 2.1.7). We shall use it
in this book later, in Section 4.2, for maps different from T∗. Just Bogolyubov–
Krylov theorem proved above with the help of Theorem 2.1.7, has a different
more elementary proof due to the fact that T∗ is affine. A general theorem on
the existence of a fixed point for a family of commuting continuous affine maps
on K is called Markov–Kakutani theorem, [Dunford & Schwartz 1958, V.10.6],
[Walters 1982, 6.9]).

Remark 2.1.14. An alternative proof of Theorem 2.1.8. Take an arbi-
trary ν ∈M(X) and consider the sequence

µn = µn(ν) =
1

n

n−1
∑

j=0

T j∗ (ν)
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In view of Theorem 2.1.4, it has a weakly convergent subsequence, say {µnk
:

k = 1, 2, . . .}. Denote its limit by µ. We shall show that µ is T -invariant.
We have

T∗(µnk
) = T∗

(

1

nk

nk−1
∑

j=0

T j∗ (ν)

)

=

(

1

nk

nk−1
∑

j=0

T j+1
∗ (ν)

)

So for every φ ∈ C(X) we have

|µ(φ) − T∗(µ(φ))| =

∣

∣

∣

∣

lim
k→∞

(

µnk
(φ) − T∗(µnk

)(φ)
)

∣

∣

∣

∣

≤

lim
k→∞

1

nk
|ν(φ) − T nk

∗ (ν)(φ)| ≤ lim
k→∞

2

nk
||φ||∞ = 0.

This in view of Lemma 2.1.3 finishes the proof.

Remark 2.1.15. If in the above proof we consider ν = δx, a Dirac measure,
then T j∗ (δx) = δT j(x) and µn(φ) = 1

n

∑n−1
j=0 φ(T j(x)). If we have a priori µ ∈

M(X,T ) then

µn(δx) =
1

n

n−1
∑

j=0

δT j(x)

is weakly convergent for µ-a.e. x ∈ X by Birkhoff’s Ergodic Theorem.

Remark 2.1.16. Recall that in Birkhoff’s Ergodic Theorem (Chapter 1), for
µ ∈M(X,T ) for every integrable function φ : X → R one considers

limn→∞
1
n

∑n−1
j=0 φ(T j(x)) for a.e. x. This “almost every” depends on φ. If X is

compact, as it is the case in this chapter, one can reverse the order of quantifiers
for continuous functions.

Namely there exists Λ ∈ B such that µ(Λ) = 1 and for every φ ∈ C(X) and

x ∈ Λ the limit limn→∞
1
n

∑n−1
j=0 φ(T j(x)) exists.

Remark 2.1.17. We could take in Remark 2.1.14 an arbitrary sequence νn ∈
M(X) and take µn := µn(νn). This gives a general method of constructing mea-
sures in the space M(X,T ), see for example the proof of Variational Principle
in Section 2.5. This point of view is taken from [Walters 1982].

We end this Section with the following lemma useful in the sequel.

Lemma 2.1.18. For every finite partition P of the space (X,B, µ), with X a
compact metric space, B the Borel σ-algebra and µ ∈M(X,T ), if

∑

A∈P µ(∂A) =
0, then the entropy Hν(P) is a continuous function of ν ∈ M(X,T ) at µ. The
entropy hν(T,P) is upper semicontinuous at µ.

Proof. The continuity of Hν(P) follows immediately from Theorem 2.1.4. This

fact applied to the partitions
∨n−1
i=1 T

−i P gives the upper semicontinuity of
hν(T,P) being the limit of the decreasing sequence of continuous functions
1
n Hν(

∨n−1
i=1 T

−iP). See Lemma 1.4.3. ♣
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2.2 Topological pressure and topological entropy

This section is of topological character and no measure is involved. We introduce
and examine here some basic topological invariants coming from thermodynamic
formalism of statistical physics.

Let U = {Ai}i∈I and V = {Bj}j∈J be two covers of a compact metric space
X . We define the new cover U ∨ V putting

U ∨ V = {Ai ∩Bj : i ∈ I, j ∈ J} (2.2.1)

and we write
U ≺ V ⇐⇒ ∀j∈J∃i∈IBj ⊂ Ai (2.2.2)

Let, as in the previous section, T : X → X be a continuous transformation of
X . Let φ : X → R be a continuous function. In the context of this book such a
function is often called potential. Let U be a finite, open cover of X . For every
integer n ≥ 1, we set

Un = U ∨ T−1(U) ∨ . . . ∨ T−(n−1)(U),

for every set Y ⊂ X ,

Snφ(Y ) = sup
{

n−1
∑

k=0

φ ◦ T k(x) : x ∈ Y
}

,

and for every n ≥ 1,

Zn(φ,U) = inf
V

{

∑

U∈V
expSnφ(U)

}

(2.2.3)

where V ranges over all covers of X contained (in the sense of inclusion) in Un.
The quantity Zn(φ,U) is sometimes called the partition function.

Lemma 2.2.1. The limit P(φ,U) = limn→∞
1
n logZn(φ,U) exists and moreover

it is finite. In addition P(φ,U) ≥ −||φ||∞.

Proof. Fix m,n ≥ 1 and consider arbitrary covers V ⊂ Um, G ⊂ Un of X . If
U ∈V and V ∈G then

Sm+nφ(U ∩ T−m(V )) ≤ Smφ(U) + Snφ(V )

and thus

exp
(

Sm+nφ(U ∩ T−m(V ))
)

≤ expSmφ(U) expSnφ(V )

Since U ∩ T−m(V ) ∈ V ∨ T−m(G) ⊂ Um ∨ T−m(Un) = Um+n, we therefore
obtain,

Zm+n(φ,U) ≤
∑

U∈V

∑

V∈G
exp
(

Sm+nf(U ∩ T−m(V ))
)

≤
∑

U∈V

∑

V∈G
expSmφ(U) expSnφ(V )

=
∑

U∈V
expSmφ(U) ×

∑

V∈G
expSnφ(V ). (2.2.4)
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Ranging now over all V and G as specified in definition (2.2.3), we get Zm+n(φ,U) ≤
Zm(φ,U) · Zn(φ,U). This implies that

logZm+n(φ,U) ≤ logZm(φ,U) + logZn(φ,U).

Moreover, Zn(φ,U) ≥ exp(−n||φ||∞). So, logZn(φ,U) ≥ −n||φ||∞. Now to
finish the proof we apply Lemma 1.4.3. ♣

Notice that, although in the notation P(φ,U), the transformation T does
not directly appear, however this quantity depends obviously also on T . If we
want to indicate this dependence we write P(T, φ,U) and similarly Zn(T, φ,U)
for Zn(φ,U). Given an open cover V of X let

osc(φ,V) = sup
V ∈V

(

sup{|φ(x) − φ(y)| : x, y ∈ V }
)

.

Lemma 2.2.2. If U and V are finite open covers of X such that U ≻ V, then
P(φ,U) ≥ P(φ,V) − osc(φ,V).

Proof. Take U ∈ Un. Then there exists V = i(U) ∈ Vn such that U ⊂ V . For
every x, y ∈ V we have |Snφ(x) − Snφ(y)| ≤ osc(φ,V)n and therefore

Snφ(U) ≥ Snφ(V ) − osc(φ,V)n (2.2.5)

Let now G ⊂ Un be a cover of X and let G̃ = {i(U) : U ∈ Un}. The family G̃ is
also an open finite cover of X and G̃ ⊂ Vn. In view of (2.2.5) and (2.2.3) we get

∑

U∈G
expSnφ(U) ≥

∑

V∈G̃

expSnφ(V )e− osc(φ,V)n ≥ e− osc(φ,V)nZn(φ,V).

Therefore, applying (2.2.3) again, we get Zn(φ,U) ≥ exp(− osc(φ,V)n)Zn(φ,V).
Hence P(φ,U) ≥ P(φ,V) − osc(φ,V). ♣

Definition 2.2.3 (topological pressure). Consider now the family of all se-
quences (Vn)∞n=1 of open finite covers of X such that

lim
n→∞

diam(Vn) = 0, (2.2.6)

and define the topological pressure P(T, φ) as the supremum of upper limits

lim sup
n→∞

P(φ,Vn),

taken over all such sequences. Notice that by Lemma 2.2.1, P(T, φ) ≥ −||φ||∞.

The following lemma gives us a simpler way to calculate topological pressure,
showing that in fact in its definition we do not have to take the supremum.

Lemma 2.2.4. If (Un)∞n=1 is a sequence of open finite covers of X such that
limn→∞ diam(Un) = 0, then the limit limn→∞ P(φ,Un) exists and is equal to
P(T, φ).
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Proof. Assume first that P(T, φ) is finite and fix ε > 0. By the definition of
pressure and uniform continuity of φ there exists W , an open cover of X , such
that

osc(φ,W) ≤ ε

2
and P(φ,W) ≥ P(T, φ) − ε

2
. (2.2.7)

Fix now q ≥ 1 so large that for all n ≥ q, diam(Un) does not exceed a Lebesgue
number of the cover W . Take n ≥ q. Then Un ≻ W and applying (2.2.7) and
Lemma 2.2.2 we get

P(φ,Un) ≥ P(φ,W) − ε

2
≥ P(T, φ) − ε

2
− ε

2
= P(T, φ) − ε. (2.2.8)

Hence, letting ε → 0, lim infn→∞ P(φ,Un) ≥ P(T, φ). This finishes the proof
in the case of finite pressure P(T, φ). Notice also that actually the same proof
goes through in the infinite case. ♣

Since in the definition of numbers P(φ,U) no metric was involved, they do
not depend on a compatible metric under consideration. And since also the
convergence to zero of diameters of a sequence of subsets of X does not depend
on a compatible metric, we come to the conclusion that the topological pressure
P(T, φ) is independent of any compatible metric (depends of course on topology).

The reader familiar with directed sets will notice easily that the family of
all finite open covers U of X equipped with the relation ”≺” is a directed set
and topological pressure P(T, φ) is the limit of the generalized sequence P(φ,U).
However we can assure him/her that this remark will not be used anywhere in
this book.

Definition 2.2.5 (topological entropy). If the function φ is identically zero,
the pressure P(T, φ) is usually called topological entropy of the map T and is
denoted by htop(T ). Thus, we can define

htop(T ) := sup
U

lim sup
n→∞

1

n
log
(

inf
Un≺V

#V
)

.

Notice that, due to φ ≡ 0, we could replace limdiam(U)→0 P(φ,U) in the definition
of topological pressure, by supU here, and V being a subset of Un by Un ≺ V .

In the rest of this section we establish some basic elementary properties of
pressure and provide its more effective characterizations. Applying Lemma 2.2.2,
we obtain

Corollary 2.2.6. If U is a finite, open cover of X, then P(T, φ) ≥ P(φ,U) −
osc(φ,U).

Lemma 2.2.7. P(T n, Snφ) = nP(T, φ) for every n ≥ 1. In particular htop(T n) =
nhtop(T ).

Proof. Put g = Snφ. Take U , a finite open cover of X . Let U = U ∨ T−1(U) ∨
. . . ∨ T−(n−1)(U). Since now we actually deal with two transformations T and
T n, we do not use the symbol Un in order to avoid possible misunderstandings.
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For any m ≥ 1 consider an open set U ∈ U ∨ T−1(U) ∨ . . . ∨ T−(nm−1)(U) =
U ∨ T−n(U) ∨ . . . ∨ T−n(m−1)(U). Then for every x ∈ U we have

mn−1
∑

k=0

φ ◦ T k(x) =
m−1
∑

k=0

g ◦ T nk(x),

and therefore, Smnφ(U) = Smg(U), where the symbol Sm is considered here
with respect to the map T n. Hence Zmn(T, φ,U) = Zm(T n, g,U), and this
implies that P(T n, g,U) = nP(T, φ,U). Since given a sequence (Uk)∞k=1 of open
covers of X whose diameters converge to zero, the diameters of the sequence of
its refinements Uk also converge to zero, applying now Lemma 2.2.4 finishes the
proof. ♣
Lemma 2.2.8. If T : X → X and S : Y → Y are continuous mappings of
compact metric spaces and π : X → Y is a continuous surjection such that
S ◦ π = π ◦ T , then for every continuous function φ : Y → R we have P(S, φ) ≤
P(T, φ ◦ π).

Proof. For every finite, open cover U of Y we get

P(S, φ,U) = P(T, φ ◦ π, π−1(U)). (2.2.9)

In view of Corollary 2.2.6 we have

P(T, φ ◦ π) ≥ P(T, φ ◦ π, π−1(U)) − osc(φ ◦ π, π−1(U))

= P(T, φ ◦ π, π−1(U)) − osc(φ,U). (2.2.10)

Let (Un)∞n=1, be a sequence of open finite covers of Y whose diameters converge
to 0. Then also limn→∞ osc(φ,Un)) = 0 and therefore, using Lemma 2.2.4,
(2.2.9) and (2.2.10) we obtain

P(S, φ) = lim
n→∞

P(S, φ,Un) = lim
n→∞

P(T, φ ◦ π, π−1(Un)) ≤ P(T, φ ◦ π)

The proof is finished. ♣
In the sequel we will need the following technical result.

Lemma 2.2.9. If U is a finite open cover of X then P(φ,Uk) = P(φ,U) for
every k ≥ 1.

Proof. Fix k ≥ 1 and let γ = sup{|Sk−1φ(x)| : x ∈ X}. Since Sk+n−1φ(x) =
Snφ(x) + Sk−1φ(T n(x)), for every n ≥ 1 and x ∈ X , we get

Snφ(x) − γ ≤ Sk+n−1φ(x) ≤ Snφ(x) + γ.

Therefore, for every n ≥ 1 and every U ∈ Uk+n−1,

Snφ(U) − γ ≤ Sk+n−1φ(U) ≤ Snφ(U) + γ.

Since (Uk)n = Uk+n−1, these inequalities imply that

e−γZn(φ,Uk) ≤ Zn+k−1(φ,U) ≤ eγZn(φ,Uk).
Letting now n→ ∞, the required result follows. ♣
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2.3 Pressure on compact metric spaces

Let ρ be a metric on X . For every n ≥ 1 we define the new metric ρn on X by
putting

ρn(x, y) = max{ρ(T j(x), T j(y)) : j = 0, 1, . . . , n− 1}.

Given r > 0 and x ∈ X by Bn(x, r) we denote the open ball in the metric ρn
centered at x and of radius r. Let ε > 0 and let n ≥ 1 be an integer. A set F ⊂ X
is said to be (n, ε)-spanning if and only if the family of balls {Bn(x, ε) : x ∈ F}
covers the space X . A set S ⊂ X is said to be (n, ε)-separated if and only if
ρn(x, y) ≥ ε for any pair x, y of different points in S. The following fact is
obvious.

Lemma 2.3.1. Every maximal, in the sense of inclusion, (n, ε)-separated set
forms an (n, ε)-spanning set.

We would like to emphasize here that the word maximal referring to sep-
arated sets will be in this book always understood in the sense of inclusion
and not in the sense of cardinality. We finish this section with the following
characterization of pressure.

Theorem 2.3.2. For every ε > 0 and every n ≥ 1 let Fn(ε) be a maximal
(n, ε)-separated set in X. Then

P(T, φ) = lim
ε→0

lim sup
n→∞

1

n
log

∑

x∈Fn(ε)

expSnφ(x)

= lim
ε→0

lim inf
n→∞

1

n
log

∑

x∈Fn(ε)

expSnφ(x).

Proof. Fix ε > 0 and let U(ε) be a finite cover of X by open balls of radii ε/2.
For any n ≥ 1 consider U , a subcover of U(ε)n such that

Zn(φ,U(ε)) =
∑

U∈U
expSnφ(U),

where Zn(φ,U(ε)) was defined by formula (2.2.3). For every x ∈ Fn(ε) let U(x)
be an element of U containing x. Since Fn(ε) is an (n, ε)-separated set, we
deduce that the function x 7→ U(x) is injective. Therefore

Zn(φ,U(ε)) =
∑

U∈U
expSnφ(U) ≥

∑

x∈Fn(ε)

expSnφ(U(x)) ≥
∑

x∈Fn(ε)

expSnφ(x).

Thus by Lemma 2.2.1,

P(φ,U(ε)) ≥ lim sup
n→∞

1

n
log

∑

x∈Fn(ε)

expSnφ(x).
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Hence, letting ε→ 0 and applying Lemma 2.2.4 we get

P(T, φ) ≥ lim sup
ε→0

lim sup
n→∞

1

n
log

∑

x∈Fn(ε)

expSnφ(x). (2.3.1)

Let now V be an arbitrary finite open cover of X and let δ > 0 be a Lebesgue
number of V . Take ε < δ/2. Since for any k = 0, 1, . . . , n − 1 and for every
x ∈ Fn(ε),

diam
(

T k(Bn(x, ε))
)

≤ 2ε < δ,

we conclude that for some Uk(x) ∈ V ,

T k(Bn(x, ε)) ⊂ Uk(x).

Since the family {Bn(x, ε) : x ∈ Fn(ε)} covers X (by Lemma 2.3.1), it implies
that the family {U(x) : x ∈ Fn(ε)} ⊂ Vn also covers X , where U(x) = U0(x) ∩
T−1(U1(x)) ∩ . . . ∩ T−(n−1)(Un−1(x)). Therefore,

Zn(φ,V) ≤
∑

x∈Fn(ε)

expSnφ(U(x)) ≤ exp
(

osc(φ,V)n)
∑

x∈Fn(ε)

expSnφ(x).

Hence

P(φ,V) ≤ osc(φ,V) + lim inf
n→∞

1

n
log

∑

x∈Fn(ε)

expSnφ(x),

and consequently

P(φ,V) − osc(φ,V) ≤ lim inf
ε→0

lim inf
n→∞

1

n
log

∑

x∈Fn(ε)

expSnφ(x).

Letting diam(V) → 0 we get

P(T, φ) ≤ lim inf
ε→0

lim inf
n→∞

1

n
log

∑

x∈Fn(ε)

expSnφ(x).

Combining this and (2.3.1) finishes the proof. ♣

Frequently we shall use the notation

P(T, φ, ε) := lim sup
n→∞

1

n
log

∑

x∈Fn(ε)

expSnφ(x)

and

P(T, φ, ε) := lim inf
n→∞

1

n
log

∑

x∈Fn(ε)

expSnφ(x)

Actually these limits depend also on the sequence (Fn(ε))
∞
n=1 of maximal (n, ε)-

separated sets under consideration. However it will be always clear from the
context which sequence is being considered.
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2.4 Variational Principle

In this section we shall prove the theorem called Variational Principle. It has
a long history and establishes a useful relationship between measure-theoretic
dynamics and topological dynamics.

Theorem 2.4.1 (Variational Principle). If T : X → X is a continuous trans-
formation of a compact metric space X and φ : X → R is a continuous function,
then

P(T, φ) = sup

{

hµ(T ) +

∫

φdµ : µ ∈M(T )

}

,

where M(T ) denotes the set of all Borel probability T -invariant measures on X.
In particular, for φ ≡ 0,

htop(T ) = sup{hµ(T ) : µ ∈M(T )}.

The proof of this theorem consists of two parts. In the Part I we show that
hµ(T )+

∫

φdµ ≤ P(T, φ) for every measure µ ∈M(T ) and the Part II is devoted
to proving inequality sup{hµ(T ) +

∫

φdµ : µ ∈M(T )} ≥ P(T, φ).

Proof of Part I. Let µ ∈ M(T ). Fix ε > 0 and consider a finite partition
U = {A1, . . . , As} of X into Borel sets. One can find compact sets Bi ⊂ Ai,
i = 1, 2, . . . , s, such that for the partition V = {B1, . . . , Bs, X \ (B1 ∪ . . .∪Bs)}
we have

Hµ(U|V) ≤ ε,

where the conditional entropy Hµ(U|V) has been defined in (1.3.3). Therefore,
as in the proof of Theorem 1.4.4(d), we get for every n ≥ 1 that

Hµ(Un) ≤ Hµ(Vn) + nε. (2.4.1)

Our first aim is to estimate from above the number Hµ(Vn) +
∫

Snφdµ.
Putting bn =

∑

B∈Vn expSnφ(B), keeping notation k(x) = −x log x, and using
concavity of the logarithmic function we obtain by Jensen inequality,

Hµ(Vn) +

∫

Snφdµ ≤
∑

B∈Vn

µ(B)
(

Snφ(B) − logµ(B)
)

=
∑

B∈Vn

µ(B) log
(

eSnφ(B)/µ(B)
)

≤ log
(

∑

B∈Vn

eSnφ(B)
)

. (2.4.2)

(Compare the Finite Variational Principle in the Introduction).
Take now 0 < δ < 1

2 inf{ρ(Bi, Bj) : 1 ≤ i 6= j ≤ s} > 0 so small that

|φ(x) − φ(y)| < ε (2.4.3)
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whenever ρ(x, y) < δ. Consider an arbitrary maximal (n, δ)-separated set En(δ).
Fix B ∈ Vn. Then, by Lemma 2.3.1, for every x ∈ B there exists y ∈ En(δ)
such that x ∈ Bn(y, δ), whence |Snφ(x) − Snφ(y)| ≤ εn by (2.4.3). Therefore,
using finiteness of the set En(δ), we see that there exists y(B) ∈ En(δ) such
that

Snφ(B) ≤ Snφ(y(B)) + εn (2.4.4)

and

B ∩Bn(y(B), δ) 6= ∅.

The definitions of δ and of the partition V imply that for every z ∈ X ,

#{B ∈ V : B ∩B1(z, δ) 6= ∅} ≤ 2.

Thus

#{B ∈ Vn : B ∩Bn(z, δ) 6= ∅} ≤ 2n.

Therefore the function Vn ∋ B 7→ y(B) ∈ En(δ) is at most 2n to 1. Hence,
using (2.4.4),

2n
∑

y∈En(δ)

expSnφ(y) ≥
∑

B∈Vn

exp
(

Snφ(B) − εn
)

= e−εn
∑

B∈Vn

expSnφ(B).

Taking now the logarithms of both sides of this inequality, dividing them by n
and applying (2.4.2), we get

log 2 +
1

n
log
(

∑

y∈En(δ)

expSnφ(y)
)

≥ −ε+
1

n
log
(

∑

B∈Vn

expSnφ(B)
)

≥ 1

n
Hµ(Vn) +

1

n

∫

Snφdµ− ε.

So, by (2.4.1),

1

n
log
(

∑

y∈En(δ)

expSnφ(y)
)

≥ 1

n
Hµ(Un) +

∫

φdµ− (2ε+ log 2).

In view of the definition of entropy hµ(T,U), presented just after Lemma 1.4.2,
by letting n→ ∞, we get

P(T, φ, δ) ≥ hµ(T,U) +

∫

φdµ− (2ε+ log 2).

Applying now Theorem 2.3.2 with δ → 0 and next letting ε → 0, and finally
taking supremum over all Borel partitions U lead us to the following

P(T, φ) ≥ hµ(T ) +

∫

φdµ− log 2.
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And applying with every n ≥ 1 this estimate to the transformation T n and to
the function Snφ, we obtain

P(T n, Snφ) ≥ hµ(T
n) +

∫

Snφdµ− log 2

or equivalently, by Lemma 2.2.7 and Theorem 1.4.6(a)

nP(T, φ) ≥ n hµ(T ) + n

∫

φdµ− log 2

Dividing both sides of this inequality by n and letting then n → ∞, the proof
of Part I follows. ♣

In the proof of part II we will need the following two lemmas.

Lemma 2.4.2. If µ is a Borel probability measure on X, then for every ε > 0
there exists a finite partition A such that diam(A) ≤ ε and µ(∂A) = 0 for every
A ∈ A.

Proof. Let E = {x1, . . . , xs} be an ε/4-spanning set (that is with respect to the
metric ρ = ρ1) of X . Since for every i ∈ {1, . . . , s} the sets {x : ρ(x, xi) = r},
ε/4 < r < ε/2, are closed and mutually disjoint, only countably many of them
can have positive measure µ. Hence, there exists ε/4 < t < ε/2 such that for
every i ∈ {1, . . . , s}

µ({x : ρ(x, xi) = t}) = 0. (2.4.5)

Define inductively the sets A1, A2, . . . , As putting A1 = {x : ρ(x, x1) ≤ t} and
for every i = 2, 3, . . . , s

Ai = {x : ρ(x, xi) ≤ t} \ (A1 ∪A2 ∪ . . . ∪Ai−1).

The family U = {A1, . . . , As} is a partition of X with diameter not exceeding
ε. Using (2.4.5) and noting that generally ∂(A \B) ⊂ ∂A∪ ∂B, we conclude by
induction that µ(∂Ai) = 0 for every i = 1, 2, . . . , s. ♣

Proof of Part II. Fix ε > 0 and let En(ε), n = 1, 2, . . ., be a sequence of maximal
(n, ε)-separated set in X . For every n ≥ 1 define measures

µn =

∑

x∈En(ε) δx expSnφ(x)
∑

x∈En(ε) expSnφ(x)
and mn =

1

n

n−1
∑

k=0

µn ◦ T−k,

where δx denotes the Dirac measure concentrated at the point x (see (2.1.2)).
Let (ni)

∞
i=1 be an increasing sequence such that mni

converges weakly, say to
m and

lim
i→∞

1

ni
log

∑

x∈Eni
(ε)

expSnφ(x) = lim sup
n→∞

1

n
log

∑

x∈En(ε)

expSnφ(x). (2.4.6)
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Clearly m ∈ M(T ). In view of Lemma 2.4.2 there exists a finite partition γ
such that diam(γ) ≤ ε and µ(∂G) = 0 for every G ∈ γ. For any n ≥ 1 put
gn =

∑

x∈En(ε) expSnφ(x). Since #(G∩En(ε)) ≤ 1 for every G ∈ γn, we obtain

Hµn
(γn) +

∫

Snφdµn =
∑

x∈En(ε)

(

− logµn(x) + Snφ(x)
)

µn(x)

=
∑

x∈En(ε)

expSnφ(x)

gn

(

Snφ(x) − log
(expSnφ(x)

gn

)

)

= g−1
n

∑

x∈En(ε)

expSnφ(x)
(

Snφ(x) − Snφ(x) + log gn
)

= log gn (2.4.7)

Fix now M ∈ N and n ≥ 2M . For j = 0, 1, . . . ,M − 1, let s(j) = E(n−jM ) − 1,
where E(x) denotes the integer part of x. Note that

s(j)
∨

k=0

T−(kM+j)γM = T−jγ ∨ . . . ∨ T−(s(j)M+j)−(M−1)γ

= T−jγ ∨ . . . ∨ T−((s(j)+1)M+j−1)γ

and
(s(j) + 1)M + j − 1 ≤ n− j + j − 1 = n− 1.

Therefore, setting Rj = {0, 1, . . . , j−1, (s(j)+1)M + j, . . . , n−1}, we can write

γn =

s(j)
∨

k=0

T−(kM+j)γM ∨
∨

i∈Rj

T−iγ.

Hence

Hµn
(γn) ≤

s(j)
∑

k=0

Hµn

(

T−(kM+j)γM
)

+ Hµn

(

∨

i∈Rj

T−iγ
)

≤
s(j)
∑

k=0

Hµn◦T−(kM+j)(γM ) + log
(

#
(

∨

i∈Rj

T−iγ
))

.

Summing now over all j = 0, 1, . . . ,M − 1, we then get

M Hµn
(γn) ≤

M−1
∑

j=0

s(j)
∑

k=0

Hµn◦T−(kM+j)(γM ) +

M−1
∑

j=0

log(#γ#Rj )

≤
n−1
∑

l=0

Hµn◦T−l(γM ) + 2M2 log #γ

≤ nH 1
n

Pn−1
l=0 µn◦T−l(γ

M ) + 2M2 log #γ.
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And applying (2.4.7) we obtain,

M log
(

∑

x∈En(ε)

expSnφ(x)
)

≤ nHmn
(γM ) +M

∫

Snφdµn + 2M2 log #γ.

Dividing both sides of this inequality by Mn, we get,

1

n
log
(

∑

x∈En(ε)

expSnφ(x)
)

≤ 1

M
Hmn

(γM ) +

∫

φdmn + 2
M

n
log #γ.

Since ∂T−1(A) ⊂ T−1(∂A) for every set A ⊂ X , the measure m of the bound-
aries of the partition γM is equal to 0. Letting therefore n → ∞ along the
subsequence {ni} we conclude from this inequality, Lemma 2.1.18 and Theo-
rem 2.1.4 that

P(T, φ, ε) ≤ 1

M
Hm(γM ) +

∫

φdm.

Now letting M → ∞ we get,

P(T, φ, ε) ≤ hm(T, γ) +

∫

φdm ≤ sup

{

hµ(T ) +

∫

φdµ : µ ∈M(T )

}

.

Applying finally Theorem 2.3.2 and letting εց 0, we get the desired inequality.
♣

Corollary 2.4.3. Under assumptions of Theorem 2.4.1

P(T, φ) = sup{hµ(T ) +

∫

φdµ : µ ∈Me(T )},

where Me(T ) denotes the set of all Borel ergodic probability T -invariant mea-
sures on X.

Proof. Let µ ∈ M(T ) and let {µx : x ∈ X} be the ergodic decomposition of µ.
Then hµ =

∫

hµx
dµ(x) and

∫

φdµ =
∫

(
∫

φdµx) dµ(x). Therefore

hµ+

∫

φdµ =

∫ (

hµx
+

∫

φdµx

)

dµ(x)

and consequently, there exists x ∈ X such that hµx
+
∫

φdµx ≥ hµ +
∫

φdµ
which finishes the proof. ♣

Corollary 2.4.4. If T : X → X is a continuous transformation of a compact
metric space X, φ : X → R is a continuous function and Y is a forward
invariant subset of X (i.e. T (Y ) ⊂ Y ), then P(T |Y , φ|Y ) ≤ P(T, φ).

Proof. The proof follows immediatly from Theorem 2.4.1 by the remark that
each T |Y -invariant measure on Y can be treated as a measure on X and it is
then T -invariant. ♣



94 CHAPTER 2. COMPACT METRIC SPACES

2.5 Equilibrium states and expansive maps

We keep in this section the notation from the previous one. A measure µ ∈M(T )
is called an equilibrium state for the transformation T and function φ if

P(T, φ) = hµ(T ) +

∫

φdµ.

The set of all those measures will be denoted by E(φ). In the case φ = 0 the
equilibrium states are also called maximal measures. Similarly (in fact even
easier) as Corollary 2.4.4 one can prove the following.

Proposition 2.5.1. If E(φ) 6= ∅ then E(φ) contains ergodic measures.

As the following example shows there exist transformations and functions
which admit no equilibrium states.

Example 2.5.2. Let {Tn : Xn → Xn}n≥1 be a sequence of continuous map-
pings of compact metric spaces Xn such that for every n ≥ 1

htop(Tn) < htop(Tn+1) and sup
n

htop(Tn) <∞ (2.5.1)

The disjoint union ⊕∞
n=1Xn of the spaces Xn is a locally compact space, and let

X = {ω} ∪ ⊕∞
n=1Xn be its Alexandrov one-point compactification. Define the

map T : X → X by T |Xn
= Tn and T (ω) = ω. The reader will check easily that

T is continuous. By Corollary 2.4.4 htop(Tn) ≤ htop(T ) for all n ≥ 1. Suppose
that µ is an ergodic maximal measure for T . Then µ(Xn) = 1 for some n ≥ 1
and therefore

htop(T ) = hµ(Tn) ≤ htop(Tn) < htop(Tn+1) ≤ htop(T )

which is a contradiction. In view of Proposition 2.5.1 this shows that T has no
maximal measure.

A more difficult problem is to find a transitive and smooth example without
maximal measure (see for instance [Misiurewicz 1973]).

The remaining part of this section is devoted to provide sufficient conditions
for the existence of equilibrium states and we start with the following simple
general criterion which will be the base to obtain all others.

Proposition 2.5.3. If the function M(T ) ∋ µ → hµ(T ) is upper semi-continuous
then each continuous function φ : X → R has an equilibrium state.

Proof. By the definition of weak∗ topology the function M(T ) ∋ µ →
∫

φdµ
is continuous. Therefore the lemma follows from the assumption, the weak∗-
compactness of the set M(T ) and Theorem 2.4.1 (Variational Principle). ♣

As an immediate consequence of Theorem 2.4.1 we obtain the following.

Corollary 2.5.4. If htop(T ) = 0 then each continuous function on X has an
equilibrium state.
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A continuous transformation T : X → X of a compact metric space X
equipped with a metric ρ is said to be (positively) expansive if and only if

∃δ > 0 such that (ρ(T n(x), T n(y)) ≤ δ ∀n ≥ 0 ) =⇒ x = y.

The number δ which appeared in this definition is called an expansive constant
for T : X → X .

Although at the end of this section we will introduce a related but different
notion of expansiveness of homeomorphisms, we will frequently omit the word
”positively”. Note that the property of being expansive does not depend on the
choice of a metric compatible with the topology. From now on in this chapter
the transformation T will be assumed to be positively expansive, unless stated
otherwise. The following lemma is an immediate consequence of expansiveness.

Lemma 2.5.5. If A is a finite Borel partition of X with diameter not ex-
ceeding an expansive constant then A is a generator for every Borel probability
T -invariant measure µ on X.

The main result concerning expansive maps is the following.

Theorem 2.5.6. If T : X → X is positively expansive then the function
M(T ) ∋ µ → hµ(T ) is upper semi-continuous and consequently (by Proposi-
tion 2.5.3) each continuous function on X has an equilibrium state.

Proof. Let δ > 0 be an expansive constant of T and let µ ∈ M(T ). By
Lemma 2.4.2 there exists a finite partition A of X such that diam(A) ≤ δ
and µ(∂A) = 0 for every A ∈ A.

Consider now a sequence (µn)
∞
n=1 of invariant measures converging weakly

to µ. In view of Lemma 2.5.5 and Theorem 1.8.7(b), we have

hν(T ) = hν(T,A)

for every ν ∈ M(T ), in particular for ν = µ and ν = µn with n = 1, 2, . . . .
Hence, due to Lemma 2.1.18

hµ(T ) = hµ(T,A) ≥ lim sup
n→∞

hµn
(T,A) = lim sup

n→∞
hµn

(T ).

The proof is finished. ♣

Below we prove three additional interesting results about expansive maps.

Lemma 2.5.7. If U is a finite open cover of X with diameter not exceeding an
expansive constant of an expansive map T : X → X, then limn→∞ diam(Un) =
0.

Proof. Let U = {U1, U2, . . . , Us}. By expansiveness for every sequence (an)
∞
n=0

of elements of the set {1, 2, . . . , s}

#
(

∞
⋂

n=0

T−n(Uan

)

≤ 1
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and hence

lim
k→∞

diam
(

k
⋂

n=0

T−n(Uan
)
)

= 0.

Therefore, given a fixed ε > 0 there exists a minimal finite k = k({an}) such
that

diam
(

k
⋂

n=0

T−n(Uan
)
)

< ε.

Note now that the function {1, 2, . . . , s}N ∋ {an} 7→ k({an}) is continuous, even
more, it is locally constant. Thus, by compactness of the space {1, 2, . . . , s}N,
this function is bounded, say by t, and therefore

diam(Un) < ε

for every n ≥ t. The proof is finished. ♣

Combining now Lemma 2.2.4, Lemma 2.5.7 and Lemma 2.2.9, we get the
following fact corresponding to Theorem 1.8.7 b).

Proposition 2.5.8. If U is a finite open cover of X with diameter not exceeding
an expansive constant then P(T, φ) = P(T, φ,U).

As the last result of this section we shall prove the following.

Proposition 2.5.9. There exists a constant η > 0 such that ∀ ε > 0∃n(ε) ≥ 1,
such that

ρ(x, y) ≥ ε =⇒ ρn(ε)(x, y) > η.

Proof. Let U = {U1, U2, . . . , Us} be a finite open cover of X with diameter not
exceeding an expansive constant δ and let η be a Lebesgue number of U . Fix
ε > 0. In view of Lemma 2.5.7 there exists an n(ε) ≥ 1 such that

diam(Un(ε)) < ε. (2.5.2)

Let ρ(x, y) ≥ ε and suppose that ρn(ε)(x, y) ≤ η. Then,

∀ (0 ≤ j ≤ n(ε) − 1) ∃ (Uij ∈ U) such that T j(x), T j(y) ∈ Uij

and therefore

x, y ∈
n(ε)−1
⋂

j=0

T−j(Uij ) ∈ Un(ε)

Hence diam(Un(ε)) ≥ ρ(x, y) ≥ ε which contradicts (2.5.2). The proof is fin-
ished. ♣
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As we have mentioned at the begining of this section there is a notion related
to positive expansiveness which makes sense only for homeomorphisms. Namely
we say that a homeomorphism T : X → X is expansive if and only if

∃δ > 0 such that (ρ(T n(x), T n(y)) ≤ δ ∀n ∈ Z) =⇒ x = y

We will not explore this notion in our book — we only want to emphasize that
for expansive homeomorphisms analogous results (with obvious modifications)
can be proved (in the same way) as for positively expansive mappings. Of course
each positively expansive homeomorphism is expansive. However if there exists
a positively expansive homeomorhism T : X → X for X a compact metric
space, then X is finite. See for example [Coven & Keane 2006].

2.6 Topological pressure as a function on the

Banach space of continuous functions. The

issue of uniqueness of equilibrium states

Let T : X → X be a continuous mapping of a compact topological space
X . We shall discuss here the topological pressure function P : C(X) → R,
P(φ) = P(T, φ). Assume that the topological entropy is finite, htop(T ) < ∞.
Hence, the pressure P is also finite, because for example

P(φ) ≤ htop(T ) + supφ. (2.6.1)

This estimate follows directly from the definitions, see Section 1.2. It is also an
immediate consequence of Theorem 2.4.1 (Variational Principle) in case X is
metrizable.

Let us start with the following easy

Theorem 2.6.1. The pressure function P is Lipschitz continuous with the Lip-
schitz constant 1.

Proof. Let φ ∈ C(X). Recall from Section 2.2 that in the definition of pressure
we have considered the following partition function

Zn(φ,U) = inf
V

{

∑

U∈V
expSnφ(U)

}

,

where V ranges over all covers of X contained in Un. Now if also ψ ∈ C(X),
then we obtain for every open cover U and positive integer n that

Zn(ψ,U)e−||φ−ψ||∞n ≤ Zn(φ,U) ≤ Zn(ψ,U)e||φ−ψ||∞n

Taking limits if n ր ∞ we get P(ψ) − ||φ− ψ||∞ ≤ P(φ) ≤ P(ψ) + ||φ − ψ||∞,
hence |P (ψ) − P (φ)| ≤ ||ψ − φ||∞. ♣

Theorem 2.6.2. If X is a compact metric space then the topological pressure
function P : C(X) → R is convex.
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We provide two different proofs of this important theorem. One elementary,
the other relying on the Variational Principle (Theorem 2.4.1).

Proof 1. By Hölder inequality applied with the exponents a = 1/α, b = 1/(1 −
α), so that 1/a+1/b = α+1−α = 1 we obtain for an arbitrary finite set E ⊂ X

1

n
log
∑

E

eSn(αφ)+Sn(1−α)ψ) =
1

n
log
∑

E

eαSn(φ)e(1−α)Sn(ψ)

≤ 1

n
log
(

∑

E

eSn(φ)
)α(∑

E

eSn(ψ)
)1−α

≤ α
1

n
log
(

∑

E

eSn(φ)
)

+ (1 − α)
1

n
log
(

∑

E

eSn(ψ)
)

.

To conclude the proof apply now the definition of pressure with E = Fn(ε) that
are (n, ε)-separated sets, see Theorem 2.3.2. ♣

Proof 2. It is sufficient to prove that the function

P̂ := sup
µ∈M(X,T )

Lµφ where Lµφ := hµ(T ) + µφ

(where µφ abbreviates
∫

φ dµ, see Section 2.1) is convex, because by the Vari-

ational Principle P̂ (φ) = P (φ).
That is we need to prove that the set

A := {(φ, y) ∈ C(X) × R : y ≥ P̂ (φ)}

is convex. Observe however that by its definition A =
⋂

µ∈M(X,T ) L
+
µ , where by

L+
µ we denote the upper half space {(φ, y) : y ≥ Lµφ}. Since all the halfspaces

L+
µ are convex, the set A is convex as their intersection. ♣

Remark 2.6.3. We can write Lµφ = µφ − (−hµ(T )). The function P̂(φ) =
supµ∈M(T ) Lµφ defined on the space C(X) is called the Legendre–Fenchel trans-
form of the convex function µ 7→ −hµ(T ) on the weakly∗-compact convex
set M(T ). We shall abbreviate the name Legendre–Fenchel transform to LF-
transform. Observe that this transform generalizes the standard Legendre trans-
form of a strictly convex function h on a finite dimensional linear space, say Rn,

y 7→ sup
x∈Rn

{〈x, y〉 − h(x)},

where 〈x, y〉 is the scalar (inner) product of x and y.

Note that −hµ(T ) is not strictly convex (unless M(X,T ) is a one element
space) because it is affine, see Theorem 1.4.7.

Proof 2 just repeats the standard proof that the Legendre transform is con-
vex.

In the sequel we will need the so called geometric form of the Hahn–Banach
theorem (see [Bourbaki 1981, Th.1, Ch.2.5], or Ch. 1.7 of [Edwards 1995]).
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Theorem 2.6.4 (Hahn–Banach). Let A be an open convex non-empty subset
of a real topological vector space V and let M be a non-empty affine subset of V
(linear subspace moved by a vector) which does not meet A. Then there exists a
codimension 1 closed affine subset H which contains M and does not meet A.

Suppose now that P : V → R is an arbitrary convex continuous function
on a real topological vector space V . We call a continuous linear functional
F : V → R tangent to P at x ∈ V if

F (y) ≤ P (x+ y) − P (x) (2.6.2)

for every y ∈ V . We denote the set of all such functionals by V ∗
x,P . Sometimes

the term supporting functional is being used in the literature.
Applying Theorem 2.6.4 we easily prove that for every x the set V ∗

x,P is non-
empty. Indeed, we can consider the open convex set A = {(x, y) ∈ V ×R} : y >
P (x)} in the vector space V × R with the product topology and the one-point
set M = {x, P (x)}, and define a supporting functional we look for, as having
the graph H − {x, P (x)} in V × R.

We would also like to bring reader’s attention to the following another general
fact from functional analysis.

Theorem 2.6.5. Let V be a separable Banach space and P : V → R be a convex
continuous function. Then for every x ∈ V the function P is differentiable at
x in every direction (Gateaux differentiable), or in a dense in the weak topology
set of directions, if and only if V ∗

x,P is a singleton.

Proof. Suppose first that P is not differentiable at some point x and direction
y. Choose an arbitrary F ∈ V ∗

x,P . Non-differentiability in the direction y ∈ V
implies that there exist ε > 0 and a sequence {tn}n≥1 converging to 0 such that

P (x+ tny) − P (x) ≥ tnF (y) + ε|tn|. (2.6.3)

In fact we can assume that all tn, n ≥ 1, are positive by passing to a subsequence
and replacing y by −y if necessary. We shall prove that (2.6.3) implies the
existence of F̂ ∈ V ∗

x,P \ {F}. Indeed, take Fn ∈ V ∗
x+tny,P

. Then, by (2.6.2)
applied for Fn at x+ tny and −tny in place of x and y, we have

P (x) − P (x+ tny) ≥ Fn(−tny) (2.6.4)

The inequalities (2.6.3) and (2.6.4) give

tnF (y) + εtn ≤ tnFn(y).

Hence

(Fn − F )(y) ≥ ε. (2.6.5)

In the case when P is Lipschitz continuous, and this is the case for topological
pressure see (Theorem 2.6.1), which we are mostly interested in, all Fn’s, n ≥ 1,
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are uniformly bounded. Indeed, let L be a Lipschitz constant of P . Then for
every z ∈ V and every n ≥ 1,

Fn(z) ≤ P (x+ tny + z) − P (x+ tny) ≤ L||z||

So, ||Fn|| ≤ L for every n ≥ 1. Thus, there exists F̂ = limn→∞ Fn, a weak∗-limit
of a sequence {Fn}n≥1 (subsequence of the previous sequence). We used here the
fact that a bounded set is metrizable in weak∗-topology, (compare Section 2.1).

By (2.6.5) (F̂ − F )(y) ≥ ε. Hence F̂ 6= F . Since

P (x+ tny + v) − P (x+ tny) ≥ Fn(v) for all n and v ∈ V

passing with n to ∞ and using continuity of P , we conclude that F̂ ∈ V ∗
x,P .

If we do not assume that P is Lipschitz continuous, we restrict Fn to the
1-dimensional space spanned by y i.e. we consider Fn|Ry. In view of (2.6.5) for
every n ≥ 1 there exists 0 ≤ sn ≤ 1 such that Fn(sny)−F (sny) = ε. Passing to
a subsequence, we may assume that limn→∞ sn = s for some s ∈ [0, 1]. Define

fn = snFn|Ry + (1 − sn)F |Ry.

Then fn(y) − F (y) = ε hence ||fn − F |Ry|| = ε
||y|| for every n ≥ 1. Thus the

sequence {fn}n≥1 is uniformly bounded and, consequently, it has a weak-∗ limit

f̂ : Ry → R. Now we use Theorem 2.6.4 (Hahn–Banach) for the affine set M

being the graph of f̂ translated by (x, P (x)) in V ×R. We extend M to H and
find the linear functional F̂ ∈ V ∗

x,P whose graph is H − (x, P (x)), continuous

since H is closed. Since F̂ (y) − F (y) = f̂(y) − F (y) = ε, F̂ 6= F .
Suppose now that V ∗

x,P contains at least two distinct linear functionals, say

F and F̂ . So, F (y)− F̂ (y) > 0 for some y ∈ V . Suppose on the contrary that P
is differentiable in every direction at the point x. In particular P is differentiable
in the direction y. Hence

lim
t→0

P (x+ ty) − P (x)

t
= lim
t→0

P (x− ty) − P (x)

−t
and consequently

lim
t→0

P (x+ ty) + P (x− ty) − 2P (x)

t
= 0.

On the other hand, for every t > 0, we have P (x + ty) − P (x) ≥ F (t) = tF (y)
and P (x− ty) − P (x) ≥ F̂ (−ty) = −tF̂ (y), hence

lim inf
t→0

P (x + ty) + P (x− ty) − 2P (x)

t
≥ F (y) − F̂ (y) > 0,

a contradiction.
In fact F (y)− F̂ (y) = ε > 0 implies F (y′)− F̂ (y′) ≥ ε/2 > 0 for all y′ in the

neighbourhood of y in the weak topology defined just by {y′ : (F − F̂ )(y− y′) <
ε/2}. Hence P is not differentiable in a weak*-open set of directions. ♣
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Let us go back now to our special situation:

Proposition 2.6.6. If µ ∈ M(T ) is an equilibrium state for φ ∈ C(X), then
the linear functional represented by µ is tangent to P at φ.

Proof. We have
µ(φ) + hµ = P (φ)

and for every ψ ∈ C(X)

µ(φ+ ψ) + hµ ≤ P (φ+ ψ).

Subtracting the sides of the equality from the respective sides of the latter
inequality we obtain µ(ψ) ≤ P (φ + ψ) − P (φ) which is just the inequality
defining tangent functionals. ♣

As an immediate consequence of Proposition 2.6.6 and Theorem 2.6.5 we get
the following.

Corollary 2.6.7. If the pressure function P is differentiable at φ in every
direction, or at least in a dense, in the weak topology set of directions, then
there is at most one equilibrium state for φ.

Due to this Corollary, in future (see Chapter 4), in order to prove uniqueness
it will be sufficient to prove differentiability of the pressure function in a weak*-
dense set of directions.

The next part of this section will be devoted to kind of reversing Propo-
sition 2.6.6 and Corollary 2.6.7. and to better understanding of the mutual
Legendre–Fenchel transforms −h and P . This is a beautiful topic but will not
have applications in the rest of this book. Let us start with a characterization
of T -invariant measures in the space of all signed measures C(X)∗ formulated
by means of the pressure function P .

Theorem 2.6.8. For every F ∈ C(X)∗ the following three conditions are equiv-
alent:

(i) For every φ ∈ C(X) it holds F (φ) ≤ P(φ).

(ii) There exists C ∈ R such that for every φ ∈ C(X) it holds F (φ) ≤ P(φ)+C.

(iii) F is represented by a probability invariant measure µ ∈M(X,T ).

Proof. (iii) ⇒ (i) follows immediately from the Variational Principle:

F (φ) ≤ F (φ) + hµ(T ) ≤ P(φ) for every φ ∈ C(X).

(i) ⇒ (ii) is obvious. Let us prove that (ii) ⇒ (iii). Take an arbitrary non-
negative φ ∈ C(X), i.e. such that for every x ∈ X,φ(x) ≥ 0. For every real
t < 0 we have

F (tφ) ≤ P(tφ) + C
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Since tφ ≤ 0 it immediately follows from (2.6.1) that P(tφ) ≤ P(0). Hence
F (tφ) ≤ P (0) + C. So,

|t|F (φ) ≥ −(C + P(0)), hence F (φ) ≥ −(C + P(0))

|t| .

Letting t → −∞ we obtain F (φ) ≥ 0. We estimate the value of F on constant
functions t. For every t > 0 we have F (t) ≤ P(t) + C ≤ P(0) + t + C. Hence

F (1) ≤ 1 + P(0)+C
t . Similarly F (−t) ≤ P(−t) +C = P(0)− t+C and therefore

F (1) ≥ 1 − P(0)+C
t . Letting t → ∞ we thus obtain F (1) = 1. Therefore by

Theorem 2.1.1 (Riesz Representation Theorem), the functional F is represented
by a probability measure µ ∈M(X). Let us finally prove that µ is T -invariant.
For every φ ∈ C(X) and every t ∈ R we have by (i) that

F (t(φ ◦ T − φ)) ≤ P(t(φ ◦ T − φ)) + C.

It immediately follows from Theorem 2.4.1 (Variational Principle) that P(t(φ ◦
T − φ)) = P(0). Hence

|F (φ ◦ T ) − F (φ)| ≤
∣

∣

∣

∣

P(0) + C

t

∣

∣

∣

∣

.

Thus, letting |t| → ∞, we obtain F (φ ◦ T ) = F (φ), i.e T -invariance of µ. ♣

We shall prove the following.

Corollary 2.6.9. Every functional F tangent to P at φ ∈ C(X), i.e. F ∈
C(X)∗φ,P , is represented by a probability T -invariant measure µ ∈M(X,T ).

Proof. Using Theorem 2.6.1, we get for every ψ ∈ C(X) that

F (ψ) ≤ P (φ+ψ)−P (φ) ≤ P (ψ)+|P (φ+ψ)−P (ψ)|−P (φ) ≤ P (ψ)+||φ||∞−P (φ).

So condition (ii) of Theorem 2.6.8 holds, hence (iii) holds meaning that F is
represented by µ ∈M(X,T ). ♣

We can now almost reverse Proposition 2.6.6. Namely being a functional
tangent to P at φ implies being an “almost” equilibrium state for φ.

Theorem 2.6.10. It holds that F ∈ C(X)∗φ,P if and only if F , actually the
measure µ = µF ∈ M(X,T ) representing F , is a weak∗-limit of measures µn ∈
M(X,T ) such that

µnφ+ hµn
(T ) → P(φ).

Proof. In one way the proof is simple. Assume that µ = limn→∞ µn in the weak∗

topology and µnφ+hµn
(T ) → P (φ). We proceed as in Proof of Proposition 2.6.6.

In view of Theorem 2.4.1 (Variational Principle) µn(φ+ψ)+hµn
(T ) ≤ P(φ+ψ)

which means that µn(ψ) ≤ P(φ + ψ) − (µnφ + hµn
(T )). Thus, letting n → ∞,

we get µ(ψ) ≤ P(φ + ψ) − P(φ). This means that µ ∈ C(X)∗φ,P.
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Now, let us prove our theorem in the other direction. Recall again that
the function µ 7→ hµ(T ) on M(X,T ) is affine (Theorem 1.4.7), hence concave.
Set hµ(T ) = lim supν→µ hν(T ), with ν → µ in weak*-topology. The function

µ 7→ hµ(T ) is also concave and upper semicontinuous on M(T ) = M(X,T ). In
the sequel we shall prefer to consider the function µ 7→ −hµ(T ) which is lower
semicontinuous and convex.

We need the following.

Lemma 2.6.11 (On composing two LF-transformations.). For every µ ∈M(T )

sup
ϑ∈C(X)

(

µϑ− sup
ν∈M(T )

(νϑ− (−hν(T )))
)

= −hµ(T )), (2.6.6)

which, due to the Variational Principle, takes the form

sup
ϑ∈C(X)

(

µϑ− P(ϑ)
)

= −hµ(T )). (2.6.7)

Proof. To prove (2.6.6), observe first that for every ϑ ∈ C(X),

µϑ− sup
ν∈M(T )

(νϑ− (−hν(T ))) ≤ µϑ− (µϑ− (−hµ(T ))) = −hµ(T )).

Notice that we obtained above −hν(T )) rather than merely −hν(T )), by taking
all sequences µn → µ, writing on the right hand side of the above inequality the
expression µϑ− (µnϑ− (−hµn

ϑ(T ))), and letting n→ ∞. So

sup
ϑ∈C(X)

(

µϑ− sup
ν∈M(T )

(νϑ− (−hν(T )))
)

≤ −hµ(T ). (2.6.8)

This says that the LF-transform of the LF-transform of −hµ(T ) is less than or
equal to −hµ(T ). The preceding LF-transform was discussed in Remark 2.6.3.
The following LF-transformation, leading from ϑ→ P(ϑ) to ν → −(− hν(T )) is

defined by supϑ∈C(X)

(

µϑ− P(ϑ)
)

.

Let us prove now the opposite inequality. We refer to the following conse-
quence of the geometric form of Hahn–Banach Theorem [Bourbaki 1981, Ch. II.§5.
Prop. 5]:

Let M be a closed convex set in a locally convex vector space V . Then
every lower semi-continuous convex function f defined on M is the supremum
of a family of functions bounded above by f , which are restrictions to M of
continuous affine functions on V .

We shall apply this theorem to V = C∗(X) endowed with the weak∗-
topology, to f(ν) = hν(T ). We use the fact that every linear functional con-
tinuous with respect to this topology is represented by an element belong-
ing to C(X). (This is a general fact concerning dual pairs of vector spaces,
[Bourbaki 1981, Ch. II.§6. Prop. 3]). Thus, for every ε > 0 there exists
ψ ∈ C(X) such that for every ν ∈M(T ),

(ν − µ)(ψ) ≤ −hν(T ) − (−hµ(T )) + ε. (2.6.9)
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So
µψ − sup

ν∈M(T )

(νψ − (−hν(T ))) ≥ −hµ(T ) − ε.

Letting ε→ 0 we obtain

sup
ϑ∈C(X)

(

µϑ− sup
ν∈M(T )

(νϑ− (−hν(T )))
)

≥ −hµ(T ).

♣

Continuation of Proof of Theorem 2.6.10. Fix µ = µF ∈ C(X)∗φ,P. From µψ ≤
P (φ+ ψ) − P (φ) we obtain

P (φ+ ψ) − µ(φ+ ψ) ≥ P(φ) − µφ for all ψ ∈ C(X).

So,
inf

ψ∈C(X)
{P(ψ) − µψ} ≥ P(φ) − µφ. (2.6.10)

This expresses the fact that the supremum (– infimum above) in the definition
of the LF-transform of P at F is attained at φ at which F is tangent to P .

By Lemma 2.6.11 and (2.6.10) we obtain

hµ ≥ P(φ) − µφ. (2.6.11)

So, by the definition of hµ there exists a sequence of measures µn ∈M(T ) such
that limn→∞ µn = µ and limn→∞ hµn

≥ P (φ) − µφ. The proof is finished. ♣

Remark 2.6.12. In Lemma 2.6.11 we considered as µ = µF an arbitrary µ ∈
M(T ); we did not assume that µF is tangent to P , i.e. that F ∈ C(X)∗φ,P .
Then considering ε > 0 in (2.6.9) was necessary; without ε > 0 this formula
might happen to be false, see Example 2.6.15.

In the proof of Theorem 2.6.10, for µ ∈ C(X)∗φ,P, we obtain from (2.6.11)
and the inequality hν(T ) ≤ P(φ) − νφ for every ν ∈M(T ) that

hν(T ) − hµ(T ) ≤ (µ− ν)φ, (2.6.12)

which is just (2.6.9) with ε = 0.
The meaning of this, is that if µ = µF is tangent to P at φ then φ is tangent

to −h, the LF-transform of P, at µ.
Conversely, if ψ satisfies (2.6.12) i.e. ψ is tangent to −h at µ ∈ M(T ) then,

as in the second part of the proof of Theorem 2.6.10 we can prove the inequality
analogous to (2.6.10), namely that

sup
ν∈M(T )

νψ − (−hµ(T )) = P(ψ) ≤ µψ − (−hµ(T )).

Hence µ is tangent to P at ψ

Assume now the upper semicontinuity of the entropy hµ(T ) as a function of
µ. Then, as an immediate consequence of Theorem 2.6.10, we obtain.
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Corollary 2.6.13. If the entropy is upper semicontinuous, then a functional
F ∈ C(X)∗ is tangent to P at φ ∈ C(X) if and only if it is represented by a
measure which is an equilibrium state for φ.

Recall that the upper semicontinuity of entropy implies the existence of at
least one equilibrium state for every continuous φ : XR, already by Proposi-
tion 2.5.3)

Now we can complete Corollary 2.6.7.

Corollary 2.6.14. If the entropy is upper semicontinuous then the pressure
function P is differentiable at φ ∈ C(X) in every direction, or in a set of direc-
tions dense in the weak topology, if and only if there is at most one equilibrium
state for φ.

Proof. This Corollary follows directly from Corollary 2.6.13 and Theorem 2.6.5.
♣

After discussing functionals tangent to P and proving that they coincide
with the set of equilibrium states for maps for which the entropy is upper semi-
continuous as the function on M(T ) the question arises of whether all measures
in M(T ) are equilibrium states of some continuous functions. The answer given
below is no.

Example 2.6.15. We shall construct a measure m ∈ M(T ) which is not an
equilibrium state for any φ ∈ C(X). Here X is the one sided shift space Σ2

with the left side shift map σ. Since this map is obviously expansive, it follows
from Theorem 2.5.6 that the entropy function is upper semicontinues. Let mn ∈
M(σ) be the measure equidistributed on the set Pern of points of period n, i.e.

mn =
∑

x∈Pern

1

CardPern
δx

where δx is the Dirac measure supported by x. mn converge weak∗ to µmax, the
measure of maximal entropy: log 2. (Check that this follows for example from
the part II of the proof of the Variational Principle.) Let tn, n = 0, 1, 2, . . . be
a sequence of positive real numbers such that

∑∞
n=0 tn = 1. Finally define

m =

∞
∑

n=0

tnmn

Let us prove that there is no φ ∈ C(X) tangent to h at m. Let µn = Rnµmax +
∑n−1
j=0 tjmj , where Rn =

∑∞
j=n tj . We have of course hmn

(σ) = 0, n = 1, 2, . . . .
Therefore, hm(σ) = 0 . This follows for example from Theorem 1.8.11 (er-
godic decomposition theorem) or just from the fact that h is affine on M(σ),
Theorem 1.4.7.

Thus, since h is affine,

hµn
(σ) − hm(σ) = Rn hµmax(σ) = Rn log 2 (2.6.13)
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and for an arbitrary φ ∈ C(Σ2)

(µn −m)φ = (Rnµmax −
∞
∑

j=n

tjmj)φ ≤ Rnεn (2.6.14)

where εn → 0 as n → ∞ because mj → µmax. The inequalities (2.6.13) and
(2.6.14) prove that φ is not ”tangent” to h at m. More precisely, we obtain
hµn

(σ) − hm(σ) > (µn −m)φ for n large, i.e.

− hµn
(σ) − (− hm(σ)) > (µn −m)ψ

for ψ = −φ, opposite to the tangency inequality (2.6.12). So, by Remark 2.6.12,
m is not tangent to any φ for the pressure function P.

In fact it is easy to see that m is not an equilibrium state for any φ ∈ C(Σ2)
directly: For an arbitrary φ ∈ C(Σ2) we have µmaxφ < P(φ) because hµmax(σ) >
0. So mnφ < P (φ) for all n large enough as mn → µmax. Also mnφ ≤ P (φ) for
all n’s. So for m being the average of mn’s we have mφ = mφ+ hm(σ) < P(φ).
So φ is not an equilibrium state.

The measure m in this example is very non-ergodic, this is necessary as will
follow from Exercise 2.15.

Exercises

Topological entropy

2.1. Let T : X → X and S : Y → Y be two continuous maps of compact metric
spaces X and Y respectively. Show that htop(T × S) = htop(T ) + htop(S).

2.2. Prove that T : X → X is an isometry of a compact metric space X , then
htop(T ) = 0

2.3. Show that if T : X → X is a local homeomorphism of a compact connected
metric space and d = #T−1(x) (note that it is independent of x ∈ X), then
htop(T ) ≥ log d.

2.4. Prove that if f : M →M is a C1 endomorphism of a compact differentiable
manifold M , then htop(f) ≥ log deg(f), where deg(f) means degree of f .

Hint: Look for (n, ǫ)-separated points in f−n(x) for “good” x.
See [Misiurewicz & Przytycki 1977] or [Katok & Hasselblatt 1995].

2.5. Let S1 = {z ∈ C : |z| = 1} be the unit circle and let fd : S1 → S1 be the
map defined by the formula fd(z) = zd. Show that htop(fd) = log d.

2.6. Let σA : ΣA → ΣA be the shift map generated by the incidence matrix A.
Prove that htop(σA) is equal to the logarithm of the spectral radius of A.

2.7. Show that for every continuous potential φ, P(φ) ≤ htop(T ) + sup(φ) (see
(2.6.1)).
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2.8. Provide an example of a transitive diffeomorphism without measures of
maximal entropy.

2.9. Provide an example of a transitive diffeomorphism with at least two mea-
sures of maximal entropy.

2.10. Find a sequence of continuous maps Tn : Xn → Xn such that htop(Tn+1) >
htop(Tn) and limn→∞ htop(Tn) <∞.

Topological pressure: functional analysis approach

2.11. Prove that for an arbitrary convex continuous function P : V → R on a
real Banach space V the set of tangent functionals:

⋃

x∈V V
∗
x,P is dense in the

norm topology in the set of so-called P -bounded functionals:

{F ∈ V ∗ : (∃C ∈ R) such that (∀ x ∈ V ), F (x) ≤ P (x) + C}.

Remark. The conclusion is that for P being the pressure function on C(X),
tangent measures are dense in M(X,T ) , see Theorem 2.5.6. Hint: This follows
from Bishop – Phelps Theorem, see [Bishop & Phelps 1963] or Israel’s book
[Israel 1979, pp. 112–115], which can be stated as follows:

For every P -bounded functional F0, for every x0 ∈ V and for every ε > 0
there exists x ∈ V and F ∈ V ∗ tangent to P at x such that

‖F − F0‖ ≤ ε and ‖x− x0‖ ≤ 1

ε

(

P (x0) − F0(x0) + s(F0)
)

,

where s(F0) := supx′∈V {F0x
′ − P (x′)} (this is −h, the LF-transform of P ).

The reader can imagine F0 as asymptotic to P and estimate how far is the
tangency point x of a functional F close to F0.

2.12. Prove that in the situation from Exercise 2.11, for every x ∈ V , the set
V ∗
x,P is convex and weak∗-compact.

2.13. Let Eφ denote the set of all equilibrium states for φ ∈ C(X).
(i) Prove that Eφ is convex.
(ii) Find an example that Eφ is not weak∗-compact.
(iii) Prove that extremal points of Eφ are extremal points of M(X,T ).
(iv) Prove that almost all measures in the ergodic decomposition of an ar-

bitrary µ ∈ Eφ belong also to Eφ. (One says that every equilibrium state has a
unique decomposition into pure, i.e. ergodic, equilibrium states .)

Hints: In (ii) consider a sequence of Smale horseshoes of topological entropies
log 2 converging to a point fixed for T . To prove (iii) and (iv) use the fact that
entropy is an affine function of measure.

2.14. Find an example showing that the point (iii) of Exercise 2.13 is false if
we consider C(X)∗φ,P rather than Eφ.

Hint: An idea is to have two fixed points p, q and two trajectories (xn), (yn)
such that xn → p, yn → q for n → ∞ and xn → q, yn → p for n → −∞.
Now take a sequence of periodic orbits γk approaching {p, q} ∪ {xn} ∪ {yn}



108 CHAPTER 2. COMPACT METRIC SPACES

with periods tending to ∞. Take their Cartesian products with corresponding
invariant subsets Ak’s of small horseshoes of topological entropies less than log 2
but tending to log 2, diameters of the horseshoes shrinking to 0 as k → ∞. Then,
for φ ≡ 0, the set C(X)∗φ,P consists of exactly one measure: 1

2 (δp + δq). (One

cannot repeat the proof in Exercise 2.13(iii) with the function hµ instead of the
entropy function hµ, because hµ is no more affine! )

This is Peter Walters’ example; for details see [Walters 1992].

2.15. Suppose that the entropy function hµ is upper semicontinuous (then for
each φ ∈ C(x) C(X)∗φ,P = Eφ, see Corollary 2.6.13). Prove that

(i) every µ ∈ M(T ) which is a finite combination of ergodic masures µ =
∑

tjmj , mj ∈M(T ), is tangent to P more precisely there exists φ ∈ C(X) such
that µ,mj ∈ C(X)∗φ,P and moreover they are equilibrium states for φ.

(ii) if µ =
∫

Me(T )mdα(m) where Me(X,T ) consists of ergodic measures in

M(X,T ) and α is a probability non-atomic measure on Me(X,T ), then there
exists φ ∈ C(X) which has uncountably many ergodic equilibria in the support
of α.

(iii) the set of elements of C(X) with uncountably many ergodic equilibria
is dense in C(X).

Hint: By Bishop – Phelps Theorem (Remark in Exercise 2.11) there exists
ν ∈ Eφ arbitrarily close to µ. Then in its ergodic decomposition there are all
the measures µj because all ergodic measures are far apart from each other (in
the norm in C(X)∗). These measures by Exercise 2.13 belong to the same Eφ
what proves (i). For more details and proofs of (ii) and (iii) see [Israel 1979,
Theorem V.2.2] or [Ruelle 1978, 3.17, 6.15].

Remark. In statistical physics the occurence of more then one equilibrium
for φ ∈ C(X) is called “phase transition”. (iii) says that the set of functions
with “very rich” phase transition is dense. For the further discussion see also
[Israel 1979, V.2].

2.16. Prove the following. Let P : V → R be a continuous convex function on
a real Banach space V with norm ‖ · ‖V . Suppose P is differentiable at x ∈ V in
every direction. Let W ⊂ V be an arbitrary linear subspace with norm ‖ · ‖W
such that the embedding W ⊂ V is continuous and the unit ball in (W, ‖·‖W ) is
compact in (V, ‖ · ‖V ). Then P |W is differentiable in the sense that there exists
a functional F ∈ V ∗ such that for y ∈W it holds

|P (x+ y) − P (x) − F (y)| = o(‖y‖W ).

Remark. In Chapter 3 we shall discuss W being the space of Hölder continuous
functions with an arbitrary exponent α < 1 and the entropy function will be
upper semicontinuous. So the conclusion will be that uniqueness of the equilib-
rium state at an arbitrary φ ∈ C(X) is equivalent to the differentiability in the
direction of this space of Hölder functions.

2.17. (Walters) Prove that the pressure function P is Frechet differentiable at
φ ∈ C(X) if and only if P affine in a neighbourhood of φ. Prove also the
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conclusion: P is Frechet differentiable at every φ ∈ C(X) if and only if T is
uniquely ergodic, namely if M(X,T ) consists of one element.

2.18. Prove S. Mazur’s Theorem: If P : V → R is a continuous convex function
on a real separable Banach space V then the set of points at which there exists
a unique functional tangent to P is dense Gδ.

Remark. In the case of the pressure function on C(X) this says that for a
dense Gδ set of functions there exists at most one equilibrium state. Mazur’s
Theorem contrasts with the theorem from Exercise 16 (iii).
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[Ruelle 1978]. The material of Section 2.6 is mostly taken from [Ruelle 1978],
[Israel 1979] and [Ellis 1985]. See also [Walters 1992].
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Chapter 3

Distance expanding maps

We devote this Chapter to a study in detail of topological properties of distance
expanding maps. Often however weaker assumptions will be sufficient. We
always assume the maps are continuous on a compact metric space X , and we
usually assume that the maps are open, which means that open sets have open
images. This is equivalent to saying that if f(x) = y and yn → y then there
exist xn → x such that f(xn) = yn for n large enough.

In view of Section 3.6, in theorems with assertions of topological character,
only the assumption that a map is expansive leads to the same conclusions as
if we assumed that the map is expanding. We shall prove in Section 3.6 that
for every expansive map there exists a metric compatible with the topology on
X given by an original metric, such that the map is distance expanding with
respect to this new metric.

Recall that for (X, ρ), a compact metric space, a continuous mapping T :
X → X is said to be distance expanding (with respect to the metric ρ) if there
exist constants λ > 1, η > 0 and n ≥ 0, such that for all x, y ∈ X

ρ(x, y) ≤ 2η =⇒ ρ(T n(x), T n(y)) ≥ λρ(x, y) (3.0.1)

We say that T is distance expanding at a set Y ⊂ X if the above holds for
all z ∈ Y and for every x, y ∈ B(z, η) .

In the sequel we will always assume that n = 1 i.e. that

ρ(x, y) ≤ 2η =⇒ ρ(T (x), T (y)) ≥ λρ(x, y), (3.0.2)

unless otherwise stated. One can achieve this in two ways:
(1) If T is Lipschitz continuous (say with constant L > 1), replace the metric

ρ(x, y) by
∑n−1
j=0 ρ(T

j(x), T j(y)). Of course then λ and η change. As an exercise

you can check that the number 1+(λ−1)
(

L−1
Ln−1

)

can play the role of λ in (3.0.2).
Notice that the ratio of both metrics is bounded; in particular they yield the

same topologies.
For another improvement of ρ, working without assuming Lipschitz continu-

ity of T , see Lemma 3.6.3.

111



112 CHAPTER 3. DISTANCE EXPANDING MAPS

(2) Work with T n instead of T .
Sometimes, in order to simplify notation, we shall write expanding, instead

of distance expanding.

3.1 Distance expanding open maps, basic prop-

erties

Let us first make a simple observation relating the property of being expanding
and being expansive.

Theorem 3.1.1. Distance expanding property implies forward expansive prop-
erty.

Proof. By the definition of “expanding” above, if 0 < ρ(x, y) ≤ 2η, then
ρ(T (x), T (y)) ≥ λρ(x, y) . . . ρ(T n(x), T n(y)) ≥ λnρ(x, y), until for the first time
n it happens ρ(T n(x), T n(y)) > 2η. Such n exists since λ > 1. Therefore T is
forward expansive with the expansivness constant δ = 2η. ♣

Let us prove now a lemma where we assume only T : X → X to be a
continuous open map of a compact metric space X . We do not need to assume
in this lemma that T is distance expanding.

Lemma 3.1.2. If T : X → X is a continuous open map, then for every η > 0
there exists ξ > 0 such that T (B(x, η)) ⊃ B(T (x), ξ) for every x ∈ X.

Proof. For every x ∈ X let

ξ(x) = sup{r > 0 : T (B(x, η)) ⊃ B(T (x), r)}.

Since T is open, ξ(x) > 0. Since T (B(x, η)) ⊃ B(T (x), ξ(x)), it suffices to show
that ξ = inf{ξ(x) : x ∈ X} > 0. Suppose conversely that ξ = 0. Then there
exists a sequence of points xn ∈ X such that

ξ(xn) → 0 as n→ ∞ (3.1.1)

and, as X is compact, we can assume that xn → y for some y ∈ X . Hence
B(xn, η) ⊃ B(y, 1

2η) for all n large enough. Therefore

T (B(xn, η)) ⊃ T

(

B

(

y,
1

2
η

))

⊃ B(T (y), ε) ⊃ B

(

T (xn),
1

2
ε

)

for some ε > 0 and again for every n large enough. The existence of ε such
that the second inclusion holds follows from the openness of T . Consequently
ξ(xn) ≥ 1

2ε for these n, which contradicts (3.1.1). ♣

Definition 3.1.3. If T : X → X is an expanding map, then by (3.0.1), for
all x ∈ X , the restriction T |B(x,η) is injective and therefore it has the inverse
map on T (B(x, η)). (The same holds for expanding at a set Y for all x ∈ Y .)
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If additionally T : X → X is an open map, then, in view of Lemma 3.1.2, the
domain of the inverse map contains the ball B(T (x), ξ). So it makes sense to
define the restriction of the inverse map,

T−1
x : B(T (x), ξ) → B(x, η) (3.1.2)

Observe that for every y ∈ X and every A ⊂ B(y, ξ)

T−1(A) =
⋃

x∈T−1(y)

T−1
x (A) (3.1.3)

Indeed, the inclusion ⊃ is obvious. So suppose that x′ ∈ T−1(A). Then y′ =
T (x′) ∈ B(y, ξ). Hence y ∈ B(y′, ξ). Let x = T−1

x′ (y). As T−1
x and T−1

x′ coincide
on y, they coincide on y′ because they map y′ into B(x, η) and T is injective on
B(x, η). Thus x′ = T−1

x (y′).
The formula (3.1.3) for all A = B(y, ξ) implies that T is a so-called covering

map. (This property is in fact a standard definition of a covering map, except
that for general covering maps, on non-compact spaces ξ may depend on y. We
proved in fact that a local homeomorphism of a compact space is a covering
map)

From now on throughout this Section, wherever the notation T−1 appears,
we assume also the expanding property, i.e. (3.0.2). We then get the following.

Lemma 3.1.4. If x ∈ X and y, z ∈ B(T (x), ξ) then

ρ(T−1
x (y), T−1

x (z)) ≤ λ−1ρ(y, z)

In particular T−1
x (B(T (x), ξ)) ⊂ B(x, λ−1ξ) ⊂ B(x, ξ) and

T (B(x, λ−1ξ)) ⊃ B(T (x), ξ) (3.1.4)

for all ξ > 0 small enough (what specifies the inclusion in Lemma 3.1.2).

Definition 3.1.5. For every x ∈ X , every n ≥ 1 and every j = 0, 1, . . . , n− 1
write xj = T j(x). In view of Lemma 3.1.4 the composition

T−1
x0

◦ T−1
x1

◦ . . . ◦ T−1
xn−1

: B(T n(x), ξ) → X

is well-defined and will be denoted by T−n
x .

Below we collect the basic elementary properties of maps T−n
x . They follow

immediately from (3.1.3) and Lemma 3.1.4. For every y ∈ X

T−n(A) =
⋃

x∈T−n(y)

T−n
x (A) (3.1.5)

for all sets A ⊂ B(y, ξ);

ρ(T−n
x (y), T−n

x (z)) ≤ λ−nρ(y, z) for all y, z ∈ B(T n(x), ξ); (3.1.6)

T−n
x (B(T n(x), r)) ⊂ B(x,min{η, λ−nr}) for every r ≤ ξ. (3.1.7)

Remark. All these properties hold, and notation makes sense, also for open
maps T : X → X expanding at Y ⊂ X , provided x, T (x), . . . , T n(x) ∈ Y .
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3.2 Shadowing of pseudoorbits

We keep the notation of Section 3.1. We consider an open distance expanding
map T : X → X with the constants η, λ, ξ.

Let n be a non-negative integer or +∞. Given α ≥ 0 a sequence (xi)
n
0 is

said to be an α-pseudo-orbit (alternatively called: α-orbit, α-trajectory, α-T -
trajectory) for T : X → X of length n+ 1 if for every i = 0, . . . , n− 1

ρ(T (xi), xi+1) ≤ α. (3.2.1)

Of course every (genuine) orbit (x, T (x), . . . , T n(x)), x ∈ X , is an α-pseudo-
orbit for every α ≥ 0. We shall prove a kind of a converse fact, that in the case
of open, distance expanding maps, each “sufficiently good” pseudo-orbit can
be approximated (shadowed) by an orbit. To make this precise we proceed as
follows. Let β > 0. We say that an orbit of x ∈ X , β-shadows the pseudo-orbit
(xi)

n
0 if and only if for every i = 0, . . . , n

ρ(T i(x), xi) ≤ β. (3.2.2)

Definition 3.2.1. We say that a continuous map T : X → X has the shadowing
property if for every β > 0 there exists α > 0 such that every α-pseudo-orbit of
finite or infinite length can be β-shadowed by an orbit.

Note that due to the compactness of X shadowing property for all finite n
implies shadowing with n = ∞.

Here comes a simple observation yielding the uniqueness of the shadowing.
Assume only that T is expansive (cf. Section 2.2).

Proposition 3.2.2. If 2β is less than an expansiveness constant of T (we do
not need to assume here that T is expanding with respect to the metric ρ) and
(xi)

∞
0 is an arbitrary sequence of points in X, then there exists at most one

point x whose orbit β-shadows the sequence (xi)
∞
i=0.

Proof. Suppose the forward orbits of x and y β-shadow (xi). Then for every
n ≥ 0 we have ρ(T n(x), T n(y)) ≤ 2β. Then since 2β is the expansiveness
constant for T we get x = y. ♣

We shall now prove some less trivial results, concerning the existence of
β-shadowing orbits.

Lemma 3.2.3. Let T : X → X be an open distance expanding map. Let
0 < β < ξ , 0 < α ≤ min{(λ− 1)β, ξ}. If (xi)

∞
0 is an α-pseudo-orbit, then the

points x′i = T−1
xi

(xi+1) are well-defined and

(a) For all i = 0, 1, 2, . . . , n− 1,

T−1
x′

i
(B(xi+1, β)) ⊂ B(xi, β)
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and consequently, for all i = 0, 1, . . . , n, the compositions

Si := T−1
x′
0
◦ T−1

x′
1
◦ . . . ◦ T−1

x′
i−1

: B(xi, β) → X

are well-defined.

(b) The sequence of closed sets Si(B(xi, β)), i = 0, 1, . . . , n, is descending.

(c) The intersection
n
⋂

i=0

Si(B(xi, β)

is non-empty and the forward orbits (for times 0, 1, . . . , n) of all the points of
this intersection β-shadow the pseudo-orbit (xi)

n
0 .

Proof. x′i are well-defined by α ≤ ξ. In order to prove (a) observe that by (3.1.7)
and we have

T−1
x′

i
(B(xi+1, β)) ⊂ B(x′i, λ

−1β) ⊂ B(xi, λ−1β + λ−1α)

and λ−1β + λ−1α ≤ β as α ≤ (λ− 1)β. The statement (b) follows immediately
from (a). The first part of (c) follows immediately from (b) and the compactness
of the space X . To prove the second part denote the intersection which appears
in (c) by A. Then T i(A) ⊂ B(xi, β) for all i = 0, 1, . . . , n. Thus the forward
orbit of every point in A, β shadows (xi)

n
0 . The proof is finished. ♣

As an immediate consequence of Lemma 3.2.3 we get the following.

Corollary 3.2.4 (Shadowing lemma). Every open, distance expanding map
satisfies the shadowing property. More precisely, for all β > 0 and α > 0 as in
Lemma 3.2.3 every α-pseudo-orbit (xi)

n
0 can be β-shadowed by an orbit in X.

As a consequence of Corollary 3.2.4 we shall prove the following.

Corollary 3.2.5 (Closing lemma). Let T : X → X be an expansive map,
satisfying the shadowing property. Then for every β > 0 there exists α > 0 such
that if x ∈ X and ρ(x, T l(x)) ≤ α for some l ≥ 1, then there exists a periodic
point of period l whose orbit β-shadows the pseudo-orbit (x, T (x), . . . , T l−1(x)).
The choice of α to β is the same as in the definition of shadowing.

In particular the above holds for every T : X → X an open, distance ex-
panding map.

Proof. We can assume without loss of generality that 2β is less than the expan-
sivness constant for T . Since ρ(x, T l(x)) ≤ α, the sequence made up as the infi-
nite concatenation of the sequence (x, T (x), . . . , T l−1(x)) is an α-pseudo-orbit.
Hence, by shadowing with n = ∞, there is a point y ∈ X whose orbit β-shadows
this pseudo-orbit. But note that then the orbit of the point T l(y) also does it
and therefore, by Proposition 3.2.2, T l(y) = y. The proof is finished. ♣
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Note that the assumption T is expansive is substantial. The adding ma-
chine map, see Example 0.5, satisfies the shadowing property, whereas it has
no periodic orbits at all. In fact the same proof yields the following periodic
shadowing.

Definition 3.2.6. We say that a continuous map T : X → X satisfies periodic
shadowing property if for every β > 0 there exists α > 0 such that for every
finite n and every periodic α-pseudo-orbit x0, . . . , xn−1, that is a sequence of
points x0, . . . , xn−1 such that ρ(T (xi), x(i+1)(modn)) ≤ α, there exists a point
y ∈ X of period n such that for all 0 ≤ i < n, ρ(T i(y), xi) ≤ β.

Note that shadowing and periodic shadowing can hold for the maps that
are not expansive. One can just add artificially the missing periodic orbits, of
periods 2n to the adding machine space. This example appears in fact as the
nonwandering set for any Feigenbaum-like map of the interval, see Section 6.6.

3.3 Spectral decomposition. Mixing properties

Let us start with general observations concerning iterations of continuous map-
pings

Definition 3.3.1. Let X be a compact metric space. We call a continuous
mapping T : X → X topologically transitive if for all non-empty open sets
U, V ⊂ X there exists n ≥ 0 such that T n(U) ∩ V 6= ∅. By compactness of X
topological transitivity implies that T maps X onto X .

Example 3.3.2. Consider a topological Markov chain ΣA, or Σ̃A in a one-sided
or two-sided shift space of d states, see Example 0.4. Observe that the left shift
map s on the topological Markov chain is topologically transitive iff the matrix
A is irreducible that is for each i, j there exists an n > 0 such that the i, j-th
entry Ani,j of the n-th composition matrix An is non-zero.

One can consider a directed graph consisting of d vertices such that there is
an edge from a vertex vi to vj iff Ai,j 6= 0; then one can identify elements of
the topological Markov chain with infinite paths in the graph (that is sequences
of edges indexed by all integers or nonnegative integers depending on whether
we consider the two-sided or one-sided case, such that each edge begins at
the vertex, where the preceding edge ends). Then it is easy to see that A is
irreducible iff for every two vertices v1, v2 there exists a finite path from vi to
vj .

A notion stronger than the topological transitivity, which makes a non-trivial
sense only for non-invertible maps T , is the following

Definition 3.3.3. A continuous mapping T : X → X for a compact metric
space X is called topologically exact (or locally eventually onto) if for every open
set U ⊂ X there exists n > 0 such that T n(U) = X .
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In Example 3.3.2 in the one-sided shift space case topological exactness is
equivalent to the property that there exists n > 0 such that the matrix An has
all entries positive. Such a matrix is called aperiodic.

In the two-sided case aperiodicity of the matrix is equivalent to topological
mixing of the shift map. We say a continuous map is topologically mixing if for
every non-empty open sets U, V ⊂ X there exists N > 0 such that for every
n ≥ N we have T n(U) ∩ V 6= ∅.
Proposition 3.3.4. The following 3 conditions are equivalent:

(1) T : X → X is topologically transitive.

(2) For all non-empty open sets U, V ⊂ X and every N ≥ 0 there exists n ≥ N
such that T n(U) ∩ V 6= ∅.
(3) There exists x ∈ X such that every y ∈ X is its ω-limit point, that is for
every N ≥ 0 the set {T n(x)}∞n=N is dense in X.

Proof. Let us prove first the implication (1)⇒(3). So, suppose T : X → X is
topologically transitive. Then for every open non-empty set V ⊂ X , the set

K(V ) := {x ∈ X : there exists n ≥ 0 such that T n(x) ∈ V } =
⋃

n≥0

T−n(V )

is open and dense in X . Let {Vk}k≥1 be a countable basis of topology of X . By
Baire’s category theorem, the intersection

K :=
⋂

k≥1

⋂

N≥0

K(T−N(Vk))

is a dense Gδ subset of X . In particular K is non-empty and by its definition
the trajectory (T n(x))∞n=N is dense in X for every x ∈ K. Thus (1) implies (3).

Let us now prove that (3)⇒(2). Indeed, if (T n(x))∞0 is a trajectory satisfying
the condition (3), then for all non-empty open sets U, V ⊂ X and N ≥ 0, there
exist n ≥ m > 0, n − m ≥ N such that Tm(x) ∈ U and T n(x) ∈ V . Hence
T n−m(U) ∩ V 6= ∅. Thus (3) implies (2). Since (2) implies (1) trivially, the
proof is complete. ♣

Definition 3.3.5. A point x ∈ X is called wandering if there exists an open
neighhbourhood V of x such that V ∩ T n(V ) = ∅ for all n ≥ 1. Otherwise x is
called non-wandering. We denote the set of all non-wandering points for T by
Ω or Ω(T ).

Proposition 3.3.6. For T : X → X satisfying the periodic shadowing property,
the set of periodic points is dense in the set Ω of non-wandering points.

Proof. Given β > 0 let α > 0 come from the definition of shadowing. Take
any x ∈ Ω(T ). Then by the definition of Ω(T ) there exists y ∈ B(x, α/2)
and n > 0 such that T n(y) ∈ B(x, α/2). So ρ(y, T n(y)) ≤ α. Therefore
(y, T (y), . . . , T n(y)) can be β-shadowed by a periodic orbit. Since we can take
β arbitrarily small, we obtain the density of periodic points in Ω(T ). ♣
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Remark 3.3.7. It is not true that for every open, distance expanding map
T : X → X we have Per = X . Here is an example: Let X = {(1/2)n : n =
0, 1, 2, . . .} ∪ {0}. Let T ((1/2)n) = (1/2)n−1 for n > 0, T (0) = 0, T (1) = 1. Let
the metric be the restriction to X of the standard metric on the real line. Then
T : X → X is distance expanding but Ω(T ) = Per(T ) = {0} ∪ {1}. See also
Exercise 3.3.

Here is the main theorem of this section. Its assertion holds under the
assumption that T : X → X is open, distance expanding and even under weaker
assumptions below.

Theorem 3.3.8 (on the existence of Spectral Decomposition). Suppose that
T : X → X is an open map which satisfies also the periodic shadowing property
and is expanding at the set of nonwandering points Ω(T ) (equal here to Per(T ),
the closure of the set of periodic points, by Proposition 3.3.6). Then Ω(T ) is the
union of finitely many disjoint compact sets Ωj , j = 1, . . . , J , with

(T |Ω(T ))
−1(Ωj) = Ωj

and each T |Ωj
is topologically transitive.

Each Ωj is the union of k(j) disjoint compact sets Ωkj which are cyclically

permuted by T and such that T k(j)|Ωk
j

is topologically exact.

Proof of Theorem 3.3.8. Let us start with defining an equivalence relation ∼ on
Per(T ). For x, y ∈ Per(T ) we write x ∼→ y if for every ε > 0 there exist x′ ∈ X
and positive integer m such that ρ(x, x′) < ε and Tm(x′) = Tm(y). We write
x ∼ y if x ∼→ y and y ∼→ x. Of course for every x ∈ Per(T ), x ∼ x, so the
relation is symmetric.

Now we shall prove it is transitive. Suppose that x ∼ y and y ∼ z. Let
ky, kz denote periods of y, z respectively.

Let x′ be close to x and T n(x′) = T n(y) = y; an integer n satisfiying the
latter equality exists since we can take an integer so that the first equality holds
and then take any larger integer divisible by ky. Choose n divisible by kykz.
Next, since T is open, for y′ close enough to y, with Tm(y′) = Tm(z) = z for
m divisible by kz , there exists x′′ close to x′ such that T n(x′′) = y′. Hence
T n+m(x′′) = Tm(y′) = z = T n+m(z), since both m and n are divisible by kz.
Thus x ∼ z. We have thus shown that ∼ is an equivalence relation. This proof
is illustrated at Figure 3.1.

(Figure 3.2 illustrates the transitivity for hyperbolic sets Per(T ), see Exer-
cises or [Katok & Hasselblatt 1995], where x ∼ y if the unstable manifold of x
intersects transversally the stable manifold of y. In our expanding case the role
of transversality is played by the openness of T .)

So far we have not used the expanding assumption.
Observe now that for all x, y ∈ Per(T ), ρ(x, y) ≤ ξ implies x ∼ y. Indeed, we

can take x′ = T
−nkxky
x (y) for n arbitrarily large. Then x′ is arbitrarily close to

x and T nkxky (x′) = y = T nkxky(y). Hence the number of equivalence classes of
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y′

x x′x′′

Tm(y′) = Tm(z) = zT n(x′) = T n(y) = y

Figure 3.1: Transitivity, the expanding case.

∼ is finite. Denote them P1, . . . , PN . Moreover the sets P1, . . . , PN are pairwise
disjoint and the distances between them are at least ξ. We have T (Per(T )) =
Per(T ), and if x ∼ y then T (x) ∼ T (y). The latter follows straight from the
definition of ∼. So T permutes the sets Pi. This permutation decomposes into
cyclic permutations we were looking for. More precisely: consider the partition
of Per(T ) into the sets of the form

∞
⋃

n=0

T n(Pi), i = 1, . . . , N.

The unions are in fact formed over finite families. It does not matter in which
place the closure is placed in these unions, because X is compact so for every
A ⊂ X we have T (A) = T (A). We consider this partition as a partition into the
Ωj ’s we were looking for. The Ωkj ’s are the summands T n(Pi) in the unions.

Observe now that T is topologically transitive on each Ωj .

Indeed, if periodic x, y belong to the same Ωj there exist x′ ∈ B(x, ξ) and
y′ ∈ B(y, ξ) such that T n(x′) = T n0(y) and Tm(y′) = Tm0(x) for some natural
numbers n,m and n0 ≤ ky,m0 ≤ kx. For an arbitrary β > 0 choose α > 0 from
the definition of periodic shadowing and consider x′′, y′′ such that ρ(x′′, x) ≤
α, ρ(y′′, y) ≤ α and T n1(x′′) = x′, Tm1(y′′) = y′ for some natural numbers
n1,m1, existing by the expanding property at Per(T ). Then the sequence of
points T (x′′), . . . , T n1+n+ky−n0(x′′), T (y′′), . . . , Tm1+m+kx−m0(y′′) is a periodic
α-pseudo-orbit, of period n1 + n + ky − n0 + m1 + m + kx − m0, so it can
be β-shadowed by a periodic orbit. Thus, there exists z ∈ Per(T ) such that
ρ(z, x) ≤ β and ρ(TN(z), y) ≤ β for an integer N > 0. Now take arbitrary open
sets U and V in X intersecting Ωj and consider periodic points x ∈ Ωj ∩U and
y ∈ Ωj ∩ V

Take β such that B(x, β) ⊂ U and B(y, β) ⊂ V . We find a periodic point
z as above. Note that, provided β ≤ ξ, z ∼ x and TN(z) ∼ y. We obtain
TN(z) ∈ TN(U ∩ Ωj) ∩ (V ∩ Ωj) so this set is nonempty. This proves the
topological transitivity of T |Ωj

.
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Note that by the way we proved that the orbits (their finite parts)
x′′, . . . , T n1(x′′) = x′, . . . , T n(x′) and y′′, . . . , Tm1(y′′) = y′, . . . , Tm(y′) with
n1, n and m1,m arbitrarily large, can be arbitrarily well shadowed by parts of
periodic orbits. This corresponds to the approximation of a transversal homo-
clinic orbit or of cycles of transversal heteroclinic orbits by periodic ones, in the
hyperbolic theory for diffeomorphisms (see also Exercise3.6).

This analogy justifies the name heteroclinic cycle points for the points x′ and
y′, or heteroclinic cycle orbits for their orbits discussed above. Thus we proved

Lemma 3.3.9. Under the assumptions of Theorem 3.3.8 every heteroclinic cy-
cle point is a limit of periodic points.

The following is interesting in itself:

Lemma 3.3.10. T |Per(T ) is an open map.

Proof. Fix x, y ∈ Per(T ) and ρ(T (x), y) ≤ ε ≤ ξ/3. Since T is open, by Lemma
3.1.2, and due to the expanding property at Per(T ) there exists ŷ = T−1

x (y) ∈
B(x, λ−1ξ/3). We want to prove that ŷ ∈ Per(T ).

There exist z1, z2 ∈ Per(T ) such that ρ(z1, x) ≤ λ−1ξ/3 and ρ(z2, y) ≤ ξ/3.
Hence ρ(T (z1), z2) ≤ ξ, hence T (z1) ∼ z2, hence z1 and z2 belong to the same
Ωj . Then T−1

x (z2) is a heteroclinic cycle point, so by Lemma 3.3.9 T−1
x (z2),

hence ŷ, are limits of periodic points. ♣

Continuation of the proof of Theorem 3.3.8. We can prove now the
topological exactness of T k(j)|Ωk

j
. So fix Ωkj = Pi with T k(j)(Pi) = Pi. Let

{xs}, s = 1, . . . , S be a ξ′/2-spanning set in Pi, where ξ′ is a constant having the
properties of ξ for the map T |Per, existing by the openness of T |

Per(T )
(Lemma

3.1.2 and 3.3.10). Write k(Pi) =
∏S
s=1 kxs

. Take an arbitrary open set U ⊂ Pi.
It contains a periodic point x.

Note that for every ball B = B(y, r) in Per(T ) with the origin at y ∈ Per(T )
and radius r less than η and λ−kyξ′, we have T ky(B) ⊃ B(y, λkyr). Repeating
this step by step we obtain T nk(y)(B) ⊃ B(y, ξ′), see (3.1.7).

Let us go back to U and consider Bx = B(x, r) ⊂ U with r ≤ λ−k(Pi)ξ′.
Then T nk(Pi)(Bx) is an increasing family of sets for n = 0, 1, 2, . . . .

By the definition of ∼, the set
⋃

n≥0 T
nk(Pi)(Bx) contains {xs : s = 1, . . . , S},

because the points xs are in the relation ∼ with x. This uses the fact proved
above, see Lemma 3.3.9, that x′ in the definition of ∼, such that Tm(x′) =
Tm(xs), belongs to Per(T ). It belongs even to Pi, since for z ∈ Per(T ) close to
x′ we have z ∼ xs, with the use of the same x′ as one of a heteroclinic cycle
points. Hence, by the observation above

⋃

n≥0 T
nk(Pi)(Bx) contains the ball

B(xs, ξ
′) for each s. So it contains Pi. Since T nk(Pi)(Bx) is an increasing family

of open sets in Per(T ) that is compact, just one of these sets covers Per(T ). The
topological exactness and therefore Theorem 3.3.8 is proved. ♣
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Remark 3.3.11. In Theorem 3.3.8 one can replace the assumption of periodic
shadowing by just PerT = Ω(T ). (By analogy to Axiom A diffeomorphisms we
can call an open map T : X → X expanding on Ω(T ) and such that Per(T ) =
Ω(T ), an Axiom A Ω distance expanding map.)

Indeed, in Proof of Theorem 3.3.8 we used shadowing only to approximate
heteroclinic cycle points by periodic ones. It is sufficient however to notice
that heteroclinic cycle points are non-wandering, by the openness of T . (In
particular periodic shadowing is not needed in Lemma 3.3.9 to conclude the
non-wandering).

This yields topological transitivity of each T |Ωj
with the proof similar as

before. We find the periodic point z by Per(T ) = Ω(T ).

We do not know whether expanding on Ω(T ) implies Ω(T ) = Per(T ), For
diffeomorphisms hyperbolic on Ω it does not.

. As a corollary we obtain the following two theorems.

Theorem 3.3.12. Let T : X → X be a continuous mappping for X a compact
metric space. Assume that T is open distance expanding, or at least expanding
at the set Per(T ) satisfying the periodic shadowing property. Then, if T is
topologically transitive, or is surjective and its spectral decomposition consists

of just one set Ω1 =
⋃k(1)
k=1 Ωk1, the following properties hold:

(1) The set of periodic points is dense in X, which is thus equal to Ω1.

(2) For every open U ⊂ X there exists N = N(U) such that
⋃N
j=0 T

j(U) = X.

(3) (∀r > 0)(∃N)(∀x ∈ X)
⋃N
j=0 T

j(B(x, r)) = X.

(4) The following specification property holds: For every β > 0 there exists a
positive integer N such that for every n ≥ 0 and every T -orbit (x0, . . . xn) there
exists a periodic point y of period not larger than n + N whose orbit for the
times 0, . . . , n β-shadows (x0, . . . xn).

Proof. By the topological transitivity, for every open set U there exists n ≥ 1
such that T n(U)∩U 6= ∅, (use the condition (2) in Proposition 3.3.4 for N = 1).
Hence for the set Ω of the non-wandering points, we have Ω = X . This gives
the density of Per(T ) by Proposition 3.3.6.

If we assume only that there is one Ω1(= Ω = Per(T )) in the Spectral
Decomposition, then for an arbitrary z ∈ X we find by the surjectivity of T an
infinite backward orbit z−n of z. Notice then, that z−n → Ω and T n(z) → Ω,
which follows easily from the definition of Ω. So for every α > 0 there exist
w1, w2 ∈ Per(T ) and natural numbers k, n such that T k(w2) ∼ w1, ρ(w1, z−n) ≤
α and ρ(w2, T

n(z)) ≤ α. This allows us to find a periodic point in B(z, β),
where β > 0 is arbitrarily small and α chosen for β from the periodic shadowing
property.

We conclude that X =
⋃J
j=1 Ωj , each Ωj is T -invariant, closed, and also

open since Ωj ’s are at least ξ-distant from each other. So J = 1. Otherwise, by
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the topological transitivity, for j 6= i there existed n such that T n(Ωj)∩Ωi 6= ∅,
what would contradict the T -invariance of Ωj .

Thus X =
⋃k(1)
k=1(Ω

k
1), and the assertion (2) follows immediately from the

topological exactness of T k(1) on each set Ωk1 , k = 1, . . . , k(1).
The property (3) follows from (2), where given r we choose N = max{N(U)}

associated to a finite cover ofX by sets U of diameter not exceeding r/2. Indeed,
then for every B(x, r) the set U containing x is a subset of B(x, r).

Now let us prove the specification property. By the property (3) for every
α > 0 there exists N = N(α) such that for every v, w ∈ X there exists m ≤ N
and z ∈ B(v, α) such that Tm(z) ∈ B(w,α).

Consider any T -orbit x0, . . . xn. Then consider an α-pseudo-orbit x0, . . . xn−1, z, . . . , T
m−1(z)

with m ≤ N and z ∈ B(xn, α, T
m(z)) ∈ B(x0, α). By Corollary 3.2.5 we can

β-shadow it by a periodic orbit of period n+m ≤ n+N . ♣

The same proof yields this.

Theorem 3.3.13. Let T satisfy the assumptions of Theorem 3.3.12, and let it
be also topologically mixing, i.e. k(1) = 1. Then

(1) T is topologically exact, i.e. for every open U ⊂ X there exists N = N(U)
such that TN(U) = X.

(2) (∀r > 0)(∃N)(∀x ∈ X) TN(B(x, r)) = X.

3.4 Hölder continuous functions

For distance expanding maps, Hölder continuous functions play a special role.
Recall that a function φ : X → C (or R) is said to be Hölder continuous with
an exponent 0 < α ≤ 1 if and only if there exists C > 0 such that

|φ(y) − φ(x)| ≤ Cρ(y, x)α

for all x, y ∈ X . All Hölder continuous functions are continuous, if α = 1 they
are usually called Lipschitz continuous.

Let C(X) denote, as in the previous chapters, the space of all continuous,
real or complex-valued functions defined on a compact metric space X and for
ψ : X → C we write ‖ψ‖∞ := sup{|ψ(x)| : x ∈ X} for its supremum norm. For
any α > 0 let Hα(X) denote the space of all Hölder continuous functions with
exponent α > 0. If ψ ∈ Hα(X) let

ϑα,ξ(ψ) = sup

{ |ψ(y) − ψ(x)|
ρ(y, x)α

: x, y ∈ X, x 6= y, ρ(x, y) ≤ ξ

}

and

ϑα(ψ) = sup

{ |ψ(y) − ψ(x)|
ρ(y, x)α

: x, y ∈ X,x 6= y

}

.

Note that

ϑα(ψ) ≤ max

{

2||ψ||∞
ξα

, ϑα,ξ(ψ)

}

.
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The reader will check easily that Hα(X) becomes a Banach space when
equipped with the norm

‖ψ‖Hα
= ϑα(ψ) + ‖ψ‖∞.

Thus, to estimate in future ||ψ||Hα
it is enough to estimate ϑα,ξ(ψ) and

||ψ||∞.

The following result is a straightforward consequence of Arzela-Ascoli theo-
rem.

Theorem 3.4.1. Any bounded subset of the Banach space Hα(X) with the
norm ‖ · ‖Hα

is relatively compact as a subset of the Banach space C(X) with
the supremum norm ‖ · ‖∞. Moreover if {ψn : n = 1, 2, . . .} is a sequence of
continuous functions in Hα(X) such that ‖xn‖Hα

≤ C for all n ≥ 1 and some
constant C and if limn→∞ ‖ψn−ψ‖∞ = 0 for some ψ ∈ C(X), then ψ ∈ Hα(X)
and ‖ψ‖Hα

≤ C.

Now let us formulate a simple but very basic lemma in which you will see a
coherence of the expanding property of T and the Hölder continuity property
of a function.

Lemma 3.4.2 (Pre-Bounded Distortion Lemma for Iteration). Let T : X → X
be a distance expanding map and φ : X → C be a Hölder continuous function
with the exponent α. Then for every positive integer n and all x, y ∈ X such
that

ρ(T j(x), T j(y)) < 2η for all j = 0, 1, . . . , n− 1, (3.4.1)

we have, with C(T, φ) :=
(

ϑα(φ)
1−λ−α

)

|Snφ(x) − Snφ(y)| ≤ C(T, φ)ρ(T n(x), T n(y))α, (3.4.2)

where Snφ(z) :=
∑n−1

j=0 φ ◦ T j(x).
If T is open we can assume x, y ∈ T−n

z (B(T n(z), ξ) for a point z ∈ X,
instead of (3.4.1). Then in (3.4.2) we can replace ϑα by ϑα,ξ.

The point of (3.4.2) is that the coefficient C(T, φ) = ϑα(φ)
1−λ−α does not depend

on x, y nor on n.

Proof. By (3.0.2) we have ρ(T j(x), T j(y)) ≤ λ−(n−j)ρ(T n(y), T n(z)) for every
0 ≤ j ≤ n. Hence

|φ(T j(y)) − φ(T j(z))| ≤ ϑα(φ)λ−(n−j)αρ(T n(y), T n(z))α
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Thus

|Snφ(y) − Snφ(z)| ≤ ϑα(φ)ρ(T n(y), T n(z))α
n−1
∑

j=0

λ−(n−j)α

≤ ϑα(φ)ρ(T n(y), T n(z))α
∞
∑

j=0

λ−jα

=
ϑα(φ)

1 − λ−α
ρ(T n(y), T n(z))α

The proof is finished. ♣

For an open distance expanding topologically transitive map we can replace
topological pressure defined in Chapter 2 by a corresponding notion related with
a “tree” of pre-images of an arbitrary point.

Proposition 3.4.3. If T : X → X is a topologically transitive open distance
expanding map, then for every Hölder continuous potential φ : X → R and for
every x ∈ X there exists the limit

Px(T, φ) := lim
n→∞

1

n
log

∑

x∈T−n(x)

expSnφ(x)

and it is equal to the topological pressure P(T, φ). In addition, there exists a
constant C such that for all x, y ∈ X and every positive integer n

∑

x∈T−n(x) expSnφ(x)
∑

y∈T−n(y) expSnφ(y)
< C (3.4.3)

Proof. If ρ(x, y) < ξ then (3.4.3) follows immediately from Lemma 3.4.2 with
the constant, C = C1 := exp(C(T, φ)ξα), since this is the bound for the ratio of
corresponding summands for each backward trajectory, by Lemma 3.4.2. Now
observe that by the topological transitivity of T there exists N (depending on
ξ) such that for all x, y ∈ X there exists 0 ≤ m < N such that Tm(B(x, ξ)) ∩
B(y, ξ) 6= ∅. Indeed, by condition (3) in Proposition 3.3.4 we can find two
blocks of a trajectory of z with dense ω-limit set, say T k(z), . . . , T k

′

(z) and
T l(z), . . . , T l

′

(z) with l > k′, each ξ-dense in X . Then we set N = l′ − k. We
can find t between k and k′ and s between l and l′ so that T t(z) ∈ B(x, ξ) and
T s(z) ∈ B(y, ξ). We have m := s− t ≤ N .

Now fix arbitrary x, y ∈ X . So, there exists a point y′ ∈ T−m(B(y, ξ)) ∩
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B(x, ξ). We then have

∑

x∈T−n(x)

expSnφ(x) ≤ C1

∑

y′∈T−n(y′)

expSnφ(y′)

= C1 exp(−Smφ(T n(y′)))
∑

y′∈T−n(y′)

expSn+mφ(y′)

≤ C1 exp(−m inf φ)
∑

y′∈T−(n+m)(Tm(y′))

expSn+mφ(y′)

≤ C1 exp(−m inf φ)
∑

y′∈T−(n+m)(Tm(y′))

expSnφ(Tm(y′)) expSmφ(y′)

≤ C1 exp(m supφ−m inf φ)
∑

y′∈T−(n+m)(Tm(y′))

expSnφ(Tm(y′))

≤ C1 exp(2N ||φ||∞)DN
∑

y′∈T−n(Tm(y′))

expSnφ(y′)

≤ C2
1 exp(2N ||φ||)DN

∑

y∈T−n(y)

expSnφ(y),

where D = sup{#(T−1(z)) : z ∈ X} <∞. This proves (3.4.3).
Observe that each set T−n(x) is (n, 2η)-separated, whence

lim sup
n→∞

1

n
log

∑

x∈T−n(x)

expSnφ(x) ≤ P(T, φ),

by the characterization of pressure given in Theorem 2.3.2.
In order to prove the opposite inequality fix ε < 2ξ and for every n ≥ 1, an

(n, ε)-separated set Fn. Cover X by finitely many balls

B(z1, ε/2), B(z2, ε/2), . . . , B(zk, ε/2).

Then Fn = Fn ∩
(

⋃k
j=1 T

−n(B(zj , ε/2)
)

)

and therefore

∑

z∈Fn

exp(Snφ(z)) ≤
k
∑

j=1

∑

Fn∩T−n(B(zj ,ε/2))

exp(Snφ(z)).

Consider an arbitrary j and y ∈ Fn ∩ T−n(B(zj , ε/2)). Let zj,y ∈ T−n(zj)
be defined by y ∈ T−n

zj,y
(B(zj , ε/2). We shall show that the function y 7→ zj,y

is injective. Indeed, suppose that zj = zj,a = zj,b for some a, b ∈ Fn ∩
T−n(B(zj , ε/2)). Then

ρ(T l(a), T l(b)) ≤ ρ(T l(a), T l(zj)) + ρ(T l(zj), T
l(b)) ≤ ε

2
+
ε

2
= ε

for every 0 ≤ l ≤ n. So, a = b since Fn is (n, ε)-separated.
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Hence, using Lemma 3.4.2 (compare (3.4.3)), we obtain

∑

z∈Fn

exp(Snφ(z)) ≤
k
∑

j=1

C
∑

zj

exp(Snφ(zj)) ≤ kC2
∑

x∈T−n(x)

exp(Snφ(x))

Letting nր ∞, next ε→ 0, and then applying Theorem 2.3.2, we therefore get

P(T, φ) ≤ lim inf
n→∞

1

n
log

∑

x∈T−n(x)

expSnφ(x).

Thus

lim inf
n→∞

1

n
log

∑

x∈T−n(x)

expSnφ(x) ≥ P(T, φ) ≥ lim sup
n→∞

1

n
log

∑

x∈T−n(x)

expSnφ(x).

So lim inf = lim sup above, the limit exists and is equal to P(T, φ). ♣

Remark 3.4.4. It follows from Proposition 3.4.3, the proof of the Variational
Principle Part II (see Section 2.4), and the expansiveness of T that for every

x ∈ X every weak limit of the measures 1
n

∑n−1
k=0 µn ◦ T−k, for

µn =

∑

x∈T−n(x) δx expSnφ(x)
∑

x∈T−n(x) expSnφ(x)

and δx denoting the Dirac measure concentrated at the point x, is an equilibrium
state for φ. In fact our very special situation we can say a lot more about the
measures involved. Chapter 4 will be devoted to this end.

Let us finish this section with one more very useful fact (compare Theorem
1.11.3.)

Proposition 3.4.5. Let T : X → X be an open, distance expanding, topo-
logically transitive map. If φ, ψ ∈ Hα(X), then the following conditions are
equivalent.

(1) If x ∈ X is a periodic point of T and if n denotes its period, then Snφ(x) −
Snψ(x) = 0.

(2) There exists a constant C > 0 such that for every x ∈ X and integer n ≥ 0,
we have |Snφ(x) − Snψ(x)| ≤ C.

(3) There exists a function u ∈ Ha such that φ− ψ = u ◦ T − u.

Proof. The implications (3) =⇒ (2) =⇒ (1) are very easy. The first one is
obtained by summing up the equation in (3) along the orbit x, T (x), . . . , T n−1(x)
which gives C = 2 sup |u|. The second one holds because otherwise, if Snφ(x)−
Snψ(x) = K 6= 0 for x of period n, then we have Sjnφ(x)−Sjnψ(x) = jK which
contradicts (2) for j large enough. Now let us prove (1) =⇒ (3). Let x ∈ X be
a point such that for every N ≥ 0 the orbit (xn)∞N is dense in X . Such x exists
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by topological transitivity of T , see Proposition 3.3.4. Write η = φ− ψ. Define
u on the forward orbit of x, the set A = {T n(x)}∞0 by u(xn) = Snη(x). If x is
periodic then X is just the orbit of x and the function u is well defined due to
the equality in (1). So, suppose that x is not periodic. Set xn = T n(x). Then
xn 6= xm for m 6= n hence u is well defined on A. We will show that it extends
in a Hölder continuous manner to A = X . Indeed, if we take points xm, xn ∈ A
such that m < n and ρ(xm, xn) < ε for ε small enough, then xm, . . . , xn−1

can be β-shadowed by a periodic orbit y, . . . , T n−m−1(y) of period n − m by
Corollary 3.2.5, where ε is related to β in the same way as α related to β in
that Corollary. Then by the Lemma 3.4.2

|u(xn) − u(xm)| = |Snη(x) − Smη(x)| = |Sn−mη(xm)|
= |Sn−mη(xm) − Sn−mη(y)| ≤ ϑ(φ)αε

α.

In particular we proved that u is uniformly continuous on A which allows us to
extend u continuously to A. By taking limits we see that this extension satisfies
the same Hölder estimate on A as on A. Also the equality in (3) true on A,
extends to A by the definition of u and by the continuity of η and u . The proof
is finished. ♣

Remark 3.4.6. The equality in (3) is called cohomology equation and u is a
solution of this equation, compare Section 1.11. Here the cohomology equation
is solvable in the space K = Hα. Note that proving 3) =⇒ 2) we used only the
assumption that u is bounded. So, going through 2) =⇒ 1) =⇒ 3) we prove
that if the cohomology equation is solvable with u bounded, then automatically
u ∈ Hα. The reader will see later that frequently, even under assumptions on
T weaker than expanding, to prove that u is a “good” function it suffices to
assume u to be measurable and finite almost everywhere, for some probability
T -invariant measure with support X . Often u is forced to be as regular as φ
and ψ are. This type of theorems are called Livśic type theorems.

3.5 Markov partitions and symbolic represen-

tation

We shall prove in this section that the topological Markov chains (Chapter 0,
Example 0.6) describe quite precisely the dynamics of general open expanding
maps.

This can be done through so called Markov partitions of X . The sets of a
partition will play the role of “cylinders” {i0 = Const} in the symbolic space
ΣA.

Definition 3.5.1. A finite cover ℜ = {R1, . . . , Rn} of X is said to be a Markov
partition of the space X for the mapping T if diam(ℜ) < min{η, ξ} and the
following conditions are satisfied.

(a) Ri = IntRi for all i = 1, 2, . . . , d
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(b) IntRi ∩ IntRj = ∅ for all i 6= j

(c) IntRj ∩ T (IntRi) 6= ∅ =⇒ Rj ⊂ T (Ri) for all i, j = 1, 2, . . . , d

Theorem 3.5.2. For an open, distance expanding map T : X → X there exist
Markov partitions of arbitrarily small diameters.

Proof. Fix β < min{η/4, ξ} and let α be the number associated to β as in
Lemma 3.2.3. Choose 0 < γ ≤ min{β/2, α/2} so small that

ρ(x, y) ≤ γ =⇒ ρ(T (x), T (y)) ≤ α/2. (3.5.1)

Let E = {z1, . . . , zr} be a γ-spanning set of X . Define the space Ω by putting

Ω = {q = (qi) ∈ EZ
+

: ρ(T (qi), qi+1) ≤ α for all i ≥ 0}

By definition, all elements of the space Ω are α-pseudo-orbits and therefore, in
view of Corollary 3.2.4 and Lemma 3.2.3, for every sequence q ∈ Ω there exists
a unique point whose orbit β-shadows q. Denote this point by Θ(q). In this
way we have defined a map Θ : Ω → X . We will need some of its properties.

Let us show first that Θ is surjective. Indeed, since E is a γ spanning set,
for every x ∈ X and every i ≥ 0 there exists qi ∈ E such that

ρ(T i(x), qi) < γ.

Therefore, using also (3.5.1),

ρ(T (qi), qi+1) ≤ ρ(T (qi), T (T i(x)))+ρ(T i+1(x), qi+1) < α/2+γ ≤ α/2+α/2 = α

for all i ≥ 0. Thus q = (qi)
∞
i=0 ∈ Ω and (as γ < β) x = Θ(q). The surjectivity

of Θ is proved.
Now we shall show that Θ is continuous. For this aim we will need the

following notation. If q ∈ Ω then we put

q(n) = {p ∈ Ω : pi = qi for every i = 0, 1, . . . , n} (3.5.2)

To prove continuity suppose that p, q ∈ Ω, p(n) = q(n) with some n ≥ 0 and
put x = Θ(q), y = Θ(p). Then for all i = 0, 1, . . . , n,

ρ(T i(x), T i(y)) ≤ ρ(T i(x), qi) + ρ(pi, T
i(y)) ≤ β + β = 2β

As β < η, we therefore obtain by (3.0.2) that

ρ(T i+1(x), T i+1(y)) ≥ λρ(T i(x), T i(y))

for i = 0, 1, . . . , n − 1, (see (3.1.6)), and consequently ρ(x, y) ≤ λ−n2β. The
continuity of Θ is proved.

Now for every k = 1, . . . , r define the sets

Pk = Θ({q ∈ Ω : q0 = zk}).
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Since Θ is continuous, Ω is a compact space, and the sets {q ∈ Ω : q0 = zk} are
closed in Ω, all sets Pk are closed in X .

Denote
W (k) = {l : ρ(T (zk), zl) ≤ α}.

The following basic property is satisfied:

T (Pk) =
⋃

l∈W (k)

Pl. (3.5.3)

Indeed, if x ∈ Pk then x = Θ(q) for q ∈ Ω with q0 = zk. By the definition of Ω
we have q1 = zl for some l ∈W (k). We obtain T (x) ∈ Pl.

Conversely, let x ∈ Pl for l ∈ W (k). It means that x = Θ(q) for some q ∈ Ω
with q0 = zl. By the definition of W (k) the concatenation zkq belongs to Ω and
therefore the point T (Θ(zkq)) β-shadows q. Thus T (Θ(zkq)) = Θ(q) = x, hence
x ∈ T (Pk).

Let now

Z = X \
∞
⋃

n=0

T−n(
r
⋃

k=1

∂Pk
)

.

Note that the boundary set ∂Pk := Pk \ IntPk is closed, by definition. It is
also nowhere dense, since Pk itself is closed. Indeed, by the definition of interior
each point in ∂Pk is a limit of a sequence of points belonging to X \ Pk, hence
belonging to X \ Pk, hence not belonging to ∂Pk. Since T is open, also all the
sets T−n(∂Pk) are nowhere dense. They are closed by the continuity of T . We
conclude, referring to Baire Theorem, that Z is dense in X ; its complement is
of the first Baire category.

For any x ∈ Z denote

P (x) = {k ∈ {1, . . . , r} : x ∈ Pk},

Q(x) =
{

l /∈ P (x) : Pl ∩ (
⋃

k∈P (x)

Pk) 6= ∅
}

,

and

S(x) =
⋂

k∈P (x)

IntPk \
(

⋃

k∈Q(x)

Pk

)

=
⋂

k∈P (x)

IntPk \
(

⋃

k/∈P (x)

Pk)
)

.

We shall show that the family {S(x) : x ∈ Z} is in fact finite and moreover,
that the family {S(x) : x ∈ Z} is a Markov partition of diameter not exceeding
2β.

Indeed, since diam(Pk) ≤ 2β for every k = 1, . . . , r we have

diam(S(x)) ≤ 2β (3.5.4)

As the sets S(x) are open, we have

Int S(x) = S(x) (3.5.5)
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for all x ∈ Z. This proves the property (a) in Definition 3.5.1.
We shall now show that for every x ∈ Z

T (S(x)) ⊃ S(Tx). (3.5.6)

Note first that for K(x) :=
⋃

k∈P (x) Pk ∪
⋃

l∈Q(x) Pl we have diam(K(x)) ≤ 8β

and therefore, by the assumption β < η/4, the map T restricted to K(x) (and
even to its neighbourhood U ) is injective.

Consider k ∈ P (x). Then there exists l ∈ W (k) such that T (x) ∈ Pl,
see (3.5.3), and using the definition of Z we get T (x) ∈ Int(Pl). Using the
injectivity of T |U and the continuity of T , and then (3.5.3), we obtain IntPk ⊃
T |−1
U (Int(T (Pk)), hence

T (IntPk) ⊃ Int(T (Pk)) ⊃ IntPl ⊃ S(T (x)),

and therefore
T
(

⋂

k∈P (x)

IntPk

)

⊃ S(T (x)). (3.5.7)

Now consider k ∈ Q(x). Observe that by the injectivity of T |K(x) the as-
sumption x /∈ Pk implies T (x) /∈ Pl, l ∈W (k).

Thus, using (3.5.3), we obtain

T (Pk) ⊂
⋃

l/∈P (T (x))

Pl.

Hence
T (

⋃

l∈Q(x)

Pl) ∩ S(T (x)) = ∅.

Combining this and (3.5.7) gives

T
(

⋂

k∈P (x)

IntPk \
(

⋃

k∈Q(x)

Pk

))

⊃ S(T (x)),

which exactly means that formula (3.5.6) is satisfied and therefore

T (S(x)) ⊃ S(Tx). (3.5.8)

We shall now prove the following claim.

Claim. If x, y ∈ Z then either S(x) = S(y) or S(x) ∩ S(y) = ∅.

Indeed, if P (x) = P (y) then also Q(x) = Q(y) and consequently S(x) =
S(y). If P (x) 6= P (y) then there exists k ∈ P (x) ÷ P (y), say k ∈ P (x) \ P (y).
Hence S(x) ⊂ IntPk and S(y) ⊂ X \ Pk. Therefore S(x) ∩ S(y) = ∅ and the
Claim is proved.

(One can write the family S(x) as
∨

k=1,...,r{IntPk, X \ Pk}, compare nota-
tion in Ch.1. Then the assertion of the Claim is immediate.)
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Since the family {P (x) : x ∈ Z} is finite so is the family {S(x) : x ∈ Z}.
Note that S(x) ∩ S(y) = ∅ implies IntS(x) ∩ IntS(y) = ∅. This is a general
property of pairs of open sets, U∩V = ∅ implies U∩V = ∅ implies IntU∩V = ∅
implies IntU ∩ V = ∅ implies IntU ∩ IntV = ∅.

Since
⋃

x∈Z S(x) ⊃ Z and Z is dense in X , we thus have
⋃

x∈Z S(x) = X .

That the family {S(x) : x ∈ Z} is a Markov partition for T of diameter not
exceeding 2β follows now from (3.5.5), (3.5.6), (3.5.4) and from the claim. The
proof is finished. ♣

Remark 3.5.3. If in Theorem 3.5.2 we omit the assumption that T is an open
map, but assume that X ⊂ W and T extends to an open map in W , then the
assertion about the existence of the Markov partition holds for X̃, an arbitrarily
small T invariant extension of X .

The proof is the same. One finds X̃ := Θ(Ω) ⊃ X ; it need not be equal
to X . The only difficulty is to verify that the sets T−j(∂Pk) for all j ≥ 1 are
nowhere dense. We can prove it assumed λ > 2, where it follows immediately
from

Lemma 3.5.4. For each cylinder [q0, . . . , qn] its Θ-image contains an open set
in X̃.

Proof. Let L := sup |T ′|. Assume γ << α. Choose an arbitrary qn+1, . . . such
that for all j ≥ n we have ρ(T (qj), qj+1) ≤ γ. Let x = Θ((q0, . . . )). We prove

that every y ∈ X̃ close enough to x, ρ(x, y) ≤ ǫ, belongs to Θ([q1, . . . , qn]).
Since y ∈ X̃ , by forward invariance of X̃ we get T n+1(y) ∈ X̃. Hence there

exists a sequence of points z0, · · · ∈ E such that T n+1(y) = Θ((z0, . . . )). In
consequence the sequence s = (q0, . . . , qn, z0, z1, . . . ) of points in E satisfies the
following

ρ
(

T (qj), qj+1

)

≤ α for j = 0, 1, . . . , n− 1.

ρ
(

T (qn), z0
)

≤ ρ
(

T (qn), qn+1

)

+ ρ
(

qn+1, T
n+1(x)

)

+ ρ
(

T n+1(x), T n+1(y)
)

+

ρ
(

T n+1(y), z0
)

≤ γ +
1/λ

1 − 1/λ
γ + Ln+1ǫ+

1/λ

1 − 1/λ
α ≤ α

as we can assume λ > 2 and

ρ(T (zj), zj+1) ≤ α for j = 0, 1, ....

Therefore Θ(s) = y and s ∈ [q0, ..., qn]. ♣

Therefore there is an arbitrary small extension of X to a compact set X̃
which is F = T n invariant for an integer n > 0 and has Markov partition {Ri}
for F . Then take X̂ =

⋃

j≥0 T
j(X̃). It is easy to check that the family of

the closures of the intersections of the sets T−j
Tn−j(x)(IntRi), for x ∈ IntRk and

interiors in X̃ constitutes a Markov partition of X̂ for T .



132 CHAPTER 3. DISTANCE EXPANDING MAPS

Example 3.5.5. It is not true that in the situation of Remark 3.5.3 one can
always extend X to a T -invariant set X̃ , in an arbitrarily small neighbourhood
of X , on which T is open (i.e. (X̃, T ) is a repeller, see Section 5.1). Indeed,
consider in the plane the set X being the union of a circle together with its
diameter interval. It is easy to find a mapping T defined on a neighbourhood
of X , preserving X , smooth and expanding. Then at least one of the preimages
of one of two triple points (end points of the diameter) is not a triple point.
Denote it by A. T restricted to X is not open at A. Adding a short arc γ
starting at A, disjoint from X (except A), a preimage of an arc in X does not
make T open. Indeed, it is not open at the second end of γ. (It is not open also
at T -preimages of A but we can cope with this trouble by adding preimages of
γ under iteration of T .)

On the other hand, (X,T ) can be extended to a repeller if X is a Cantor
set. This fact will be applied in Section 10.6.

Proposition 3.5.6. Let T : W →W be an open continuous map of a compact
metric space (W,ρ). Let X ⊂W be a T -invariant set, such that T is expanding
in a neighbourhood U of X, i.e. (3.0.1) holds for x, y ∈ U . Then, in an arbi-
trarily small neighbourhood of X in W there exists a Cantor set X̃ containing
X such that T is open on it.

Proof. One can change the metric ρ on W to a metric ρ′ giving the same topol-
ogy, such that (X,T ) is distance expanding on U in ρ′ in the sense of (3.0.2),
see Section 3.1 for T Lipschitz or the formula defining ρ′ in Lemma 3.6.3 in the
general case.

First we prove that there exist arbitrarily small r > 0 such that B(X, r) :=
{z ∈ W : ρ′(z,X) < r} ⊂ U , consists of a finite number of open domains
Uk(r) ⊂W , with pairwise disjoint closures in W .

For any z, z′ ∈ B(X, r) define z ∼r z′ if there exists a sequence x1, ..., xn ∈ X
such that z ∈ B(x1, r), z

′ ∈ B(xn, r) and for all k = 1, ..., n − 1, B(xk, r) ∩
B(xk+1, r) 6= ∅, the balls in (W,ρ′). This is an equivalence relation, each equiv-
alence class contains a point in X , and for x ∈ Vr ∩ X,x′ ∈ V ′

r ∩ X ′ for two
different equivalence classes Vr, V

′
r , we have ρ(x, x′) ≥ r. So by compactness

of X there is at most a finite number of the equivalence classes. Denote their
number by N(r). Clearly, for every r < r′ for every Vr there exists Vr′ such
that Vr ⊂ Vr′ and every Vr′ contains some Vr. Hence the function r 7→ N(r)
is monotone decreasing. Let r1 > r2 > ... > rn > ... ց 0 be the sequence of
consecutive points of its discontinuity. Take any r > 0 not belonging to this
sequence. Let rj < r < rj−1. Denote ε = (rj−1 − r)/2. Consider two different

sets Vr and V ′
r . Suppose there is z0 ∈ V r ∩ V

′
r. Then there are points z ∈ Vr

and z′ ∈ V ′
r such that ρ′(z, z′) < ε. Then z ∼r+ε z′. So both Vr and V ′

r are
contained in the same equivalence class of ∼r+ε. So N(r) > N(r + ε) what
contradicts the definition of ε.

Observe that supk diamUk(r) → 0 as r → 0 since X is a Cantor set. Indeed,
for every δ > 0 there is a covering of X by pairwise disjoint closed sets Aj of
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diameter < δ. Then for r < infj 6=j′ dist(Aj , Aj′ )/2 each two distinct Aj , Aj′

belong to different ∼r equivalence classes.
Thus, we can assume for Uk = Uk(r), that diamUk < ξ. So we can consider

the branches of g = T−1
x on Uk’s for all x ∈ X , see Lemma 3.1.2. Then each g

maps Ūk into some Uk′ because it is a contraction (by the factor λ−1). Then
denote g by gk′,k. Finally define

X̃ =

∞
⋂

n=0

⋃

k1,...,kn

gk1,k2 ◦ gk2,k3 ◦ ... ◦ gkn−1,kn
(Ukn

), (3.5.9)

the union over all k1, ..., kn such that gkj,kj+1 exist for all j = 1, ..., n − 1. It

follows that for r small enough the family of sets {Uk(r) ∩ X̃} is a Markov
partition of X̃ with pairwise disjoint “cylinders”, and (X̃, T ) is topologically
conjugate to a topological Markov chain, see Example 0.4. Hence T is open on
X̃ (see more details below). ♣

Each Markov partition gives rise to a coding (symbolic representation) of
T : X → X as follows (an example was provided in Proposition 3.5.6 above).

Theorem 3.5.7. Let T : X → X be an open, distance expanding map. Let
{R1, . . . , Rd} be a Markov partition. Let A = (ai,j) be a d × d matrix with
ai,j = 0 or 1 depending as the intersection T (IntRi) ∩ IntRj is empty or not.
Then consider the corresponding one-sided topological Markov chain ΣA with
the left shift map σ : ΣA → ΣA, see Ch.0.3. Define the map π : ΣA → X by

π((i0, i1, . . . )) =

∞
⋂

n=0

T−n(Rin).

Then π is a well defined Hölder continuous mapping onto X and T ◦ π = π ◦ σ.
Moreover π|π−1(X\S

∞
n=0 T

−n(
S

i ∂Ri)) is injective.

Proof. For an arbitrary sequence (i0, i1, . . . ) ∈ ΣA, ai,j = 1 implies T (Rin) ⊃
Rin+1 . Since diamRin < 2η, T is injective on Rin , hence there exists an inverse

branch T−1
Rin

on Rin+1 The subscript Rin indicates that we take the branch

leading to Rin , compare notation from Section 3.1. Thus, T−1
Rin

(Rin+1) ⊂ Rin .
Hence

T−1
Ri0

T−1
Ri1

. . . T−1
Rin

(Rin+1) ⊂ T−1
Ri0

T−1
Ri1

. . . T−1
Rin−1

(Rin).

So
⋂

n≥0 T
−n(Rin) 6= ∅, as the intersection of a descending family of compact

sets. We have used here that

T−1
Ri0

. . . T−1
Rin−1

(Rin) = T−1
Ri0

. . . T−1
Rin−2

(T−1(Rin) ∩Rin−1)

= T−1
Ri0

. . . T−1
Rin−3

(T−2(Rin) ∩ T−1Rin−1 ∩Rin−2)

= . . .

=

n
⋂

k=0

T−k(Rik)
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following from T−1
Rik

(A) = T−1(A) ∩Rik for every A ⊂ Rik+1
, k = 0, . . . , n− 1.

Our infinite intersection consists of only one point, since diam(Ri) are all
less than an expansivness constant.

Let us prove now that π is Hölder continuous. Indeed, ρ′((in), (i′n)) ≤ λ−N1

implies in = i′n for all n = 0, . . . , N − 1, where the metric ρ′ comes from
Example 0.4, with the factor λ = λ(ρ′) > 1. Then, for x = π((in)), y = π((i′n))
and every n : 0 ≤ n < N we have T n(x), T n(y) ∈ Rin , hence ρ(T n(x), T n(y)) ≤
diamRin ≤ ξ, hence ρ(x, y) ≤ λ−(N−1)ξ. Therefore π is Hölder continuous,
with exponent min{1, logλ/ logλ(ρ′)}.

Let us deal now with the injectivity. If x = π((in)) and T n(x) ∈ IntRin for
all n = 0, 1, . . . , then T n(x) /∈ Rj for all j 6= in. So, if x ∈ ⋂n T−n(Ri′n), then
all i′n = in.

Finally π maps ΣA onto X . Indeed, by definition π(ΣA) contains

X \ ⋃∞
n=0 T

−n(
⋃

i ∂Ri) which is dense in X . Since π(ΣA) is compact, it is
therefore equal to X . ♣

Remark. One should not think that π is always injective on the whole ΣA.
Consider for example the mapping of the unit interval T (x) = 2x(mod 1),
compare Example 0.4. Then the dyadic expansion of x is not unique for
x ∈ ⋃∞

n=0 T
−n({ 1

2}). Dyadic expansion is the inverse, π−1, of the coding ob-
tained from the Markov partition [0, 1] = {[0, 1

2 ], [12 , 1]}.
Recall finally that σ : ΣA → ΣA is an open, distance expanding map. The

partition into the cylinders Ci := {(in) : i0 = i} for i = 1, . . . , d, is a Markov
partition into closed-open sets. The corresponding coding π is just the identity.

Another fact concerning a similarity between (ΣA, σ) and (X,T ) is the fol-
lowing

Theorem 3.5.8. For every Hölder continuous function φ : X → R the function
φ ◦π is Hölder continuous on ΣA and the pressures coincide, P(T, φ) = P(σ, φ ◦
π).

Proof. The function φ ◦ π is Hölder continuous as a composition of Hölder con-
tinuous functions. Consider next an arbitrary point x ∈ X \⋃∞

n=0 T
−n(
⋃

i ∂Ri).
Then, using Proposition 3.4.3 for T and σ we obtain

P(T, φ) = Px(T, φ) = Pπ−1(x)(σ, φ ◦ π) = P(σ, φ ◦ π).

The middle equality follows directly from the definitions. ♣

Finally we shall prove that π is injective in the measure-theoretic sense.

Theorem 3.5.9. For every ergodic Borel probability measure µ on ΣA, invari-
ant under the left shift map σ, positive on open sets, the mapping π yields an iso-
morphism between the probability spaces (ΣA,FΣA

, µ) and the (X,FX , µ ◦π−1),
for F respective (completed) Borel σ-algebras, conjugating the shift map σ to
the transformation T : X → X (i.e. π ◦ σ = T ◦ π).
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Proof. The set ∂ =
⋃d
i=1 ∂(Ri), and hence π−1(∂), have non-empty open com-

plements in ΣA. Since T (∂) ⊂ ∂, we have σ(π−1(∂)) ⊂ π−1(∂), hence π−1(∂)) ⊂
σ−1(π−1(∂)). Since µ is σ-invariant, we conclude by ergodicity of µ that
µ(π−1(∂)) is either equal to 0 or to 1. But the complement of π−1(∂), as a
non-empty open set, has positive measure µ. Hence µ(π−1(∂)) = 0. Hence
µ(E) = 0 for E :=

⋃∞
n=0 σ

−n(π−1(∂)) and by Theorem 3.5.7 π is injective on
ΣA \ E. This proves that π is the required isomorphism. ♣

3.6 Expansive maps are expanding in some me-

tric

Theorem 3.1.1 says that distance expanding maps are expansive. In this sec-
tion we prove the following much more difficult result which can be considered
as a sort of the converse statement and which provides an additional strong
justification to explore expanding maps.

Theorem 3.6.1. If a continuous map T : X → X of a compact metric space
X is (positively) expansive then there exists a metric on X, compatible with
the topology, such that the mapping T is distance expanding with respect to this
metric.

The proof of Theorem 3.6.1 given here relies heavily on the old topological
result of Frink (see [Frink 1937], comp. [Kelley 1955, p. 185]) which we state
below without proof.

Lemma 3.6.2 (The Metrization Lemma of Frink). Let {Un}∞n=0} be a sequence
of open neighborhoods of the diagonal ∆ ⊂ X ×X such that U0 = X ×X,

∞
⋂

n=1

Un = ∆, (3.6.1)

and for every n ≥ 1
Un ◦ Un ◦ Un ⊂ Un−1. (3.6.2)

Then there exists a metric ρ, compatible with the topology on X, such that for
every n ≥ 1,

Un ⊂ {(x, y) : ρ(x, y) < 2−n} ⊂ Un−1. (3.6.3)

We will also need the following almost obvious result.

Lemma 3.6.3. If T : X → X is a continuous map of a compact metric space
X and T n is distance expanding for some n ≥ 1, then T is distance expanding
with respect to some metric compatible with the topology on X.

Proof. Let ρ be a compatible metric with respect to which T n is distance ex-
panding and let λ > 1 and η > 0 be constants such that

ρ(T n(x), T n(y)) ≥ λρ(x, y)
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whenever ρ(x, y) < 2η. Put ξ = λ
1
n and define the new metric ρ′ by setting

ρ′(x, y) = ρ(x, y) +
1

ξ
ρ(T (x), T (y)) + . . .+

1

ξn−1
ρ(T n−1(x), T n−1(y))

Then ρ′ is a metric on X compatible with the topology and ρ′(T (x), T (y)) ≥
ξρ′(x, y) whenever ρ′(x, y) < 2η. ♣

Now we can pass to the proof of Theorem 3.6.1.

Proof of Theorem 3.6.1. Let d be a metric on X compatible with the topology,
and let 3θ > 0 be an expansive constant associated to T which does not exceed
the constant η claimed in Proposition 2.5.9. For any n ≥ 1 and γ > 0 let

Vn(γ) = {(x, y) ∈ (X ×X) : d(T j(x), T j(y)) < γ for every j = 0, . . . , n}.

Then in view of Proposition 2.5.9 there exists M ≥ 1 such that

VM (3θ) ⊂ {(x, y) : d(x, y) < θ}. (3.6.4)

Define U0 = X × X and Un = VMn(θ) for every n ≥ 1. We will check that
the sequence {Un}∞n=0 satisfies the assumptions of Lemma 3.6.2. Indeed, (3.6.1)
follows immediately from expansiveness of T . Now we shall prove condition
(3.6.2). We shall proceed by induction. For n = 1 nothing has to be proved.
Suppose that (3.6.2) holds for some n ≥ 1. Let (x, u), (u, v), (v, y) ∈ Un+1.
Then by the triangle inequality

d(T j(y), T j(x)) < 3θ for every j = 0, . . . , (n+ 1)M.

Therefore, using (3.6.4), we conclude that

d(T j(y), T j(x)) < θ for every j = 0, . . . ,Mn.

Equivalently (x, y) ∈ VMn(θ) = Un which finishes the proof of (3.6.2).
So, we have shown that the assumptions of Lemma 3.6.2 are satisfied, and

therefore we obtain a compatible metric ρ on X satisfying (3.6.3). In view of
Lemma 3.6.3 it sufficies to show that T 3M is expanding with respect to the
metric ρ. So suppose that 0 < ρ(x, y) < 1

16 . Then by (3.6.1) there exists an
n ≥ 0 such that

(x, y) ∈ Un \ Un+1. (3.6.5)

As 0 < ρ(x, y) < 1
16 , this and (3.6.3) imply that n ≥ 3. It follows from

(3.6.5) and the definitions of Un and VMn(θ), that there exists Mn < j ≤
(n + 1)M such that d(T j(y), T j(x)) ≥ θ. Since 3 ≤ n we conclude that
d(T i(T 3M (x)), T i(T 3M (y))) ≥ θ for some 0 ≤ i ≤ (n − 2)M and therefore
(T 3M (x), T 3M (y)) /∈ Un−2. Consequently, by (3.6.3) and (3.6.5) we obtain that

ρ(T 3M (x), T 3M (y)) ≥ 2−(n−1) = 2 · 2−n > 2ρ(x, y).

The proof is finished. ♣
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Exercises

3.1. Prove the following Shadowing Theorem generalizing Corollary 3.2.4 (Shad-
owing lemma) and Corollary 3.2.5 (Closing lemma):

Let T : X → X be an open map, expanding at a compact set Y ⊂ X . Then,
for every β > 0 there exists α > 0 such that for every map Γ : Z → Z for a
set Z and a map Φ : Z → B(Y, α) satisfying ρ(TΦ(z),ΦΓ(z)) ≤ α for every
z ∈ Z, there exists a map Ψ : Z → X satisfying TΦ = ΦΓ (hence T (Y ′) ⊂ Y ′

for Y ′ = Ψ(Z)) and such that for every z ∈ Z, ρ(Ψ(z),Φ(z)) ≤ β. If Z is a
metric space and Γ,Φ are continuous, then Ψ is continuous. If T (Y ) ⊂ Y and
the map T |Y : Y → Y be open, then Y ′ ⊂ Y .

(Hint: see 5.1)

3.2. Prove the following structural stability theorem.
Let T : X → X be an open map with a compact set Y ⊂ X such that

T (Y ) ⊂ Y . Then for every λ > 1 and β > 0 there exists α > 0 such that if
S : X → X is distance expanding at Y with the expansion factor λ and for all
y ∈ Y ρ(S(y), T (y)) ≤ α then there exists a continuous mapping h : Y → X such
that Sh|Y = hT |Y , in particular S(Y ′) ⊂ Y ′ for Y ′ = h(Y ), and ρ(h(z), z) ≤ β.

Hint: apply the previous exercise for Z = Y,Γ = T |Y ,Φ = id, T = S and
Y = Y . Compare also 5.1

3.3. Prove that if T : X → X is an open, distance expanding map and X is
compact connected, then T : X → X is topologically exact.

3.4. Prove that for T : X → X a continuous map on a compact metric space X
the topological entropy is attained on the set of non-wandering points, namely
htop(T ) = htop(T |Ω(T ).

Hint: Use the Variational Principle (Theorem 2.4.1).

3.5. Prove Lemma 3.3.9 and hence Theorem 3.3.8 (Spectral Decomposition)
without the assumption of periodic shadowing, assuming that T is a branched
covering of the Riemann sphere.

3.6. Prove the existence of stable and unstable manifolds for hyperbolic sets
and Smale’s Spectral Decomposition Theorem for Axiom A diffeomorphisms.

An invariant set Λ for a diffeomorphism T is called hyperbolic if there exist
constants λ > 1 and C > 0 such that the tangent bundle on X restricted to
tangent spaces over points in Λ, TΛX decomposes into DT -invariant subbundles
TΛX = T uΛX ⊕ T sΛX such that ||DT n(v)|| ≥ Cλn for all v ∈ T uΛX and n ≥ 0
and ||DT n(v)|| ≥ Cλn for all v ∈ T sΛX and n ≤ 0.

Prove that for every x ∈ Λ the sets Wu(x) = {y ∈ X : ρ(T n(x), T n(y)) →
0 as n→ −∞}, and W s(x) = {y ∈ X : ρ(T n(x), T n(y)) → 0 as n→ ∞} are
immersed manifolds. (They are called unstable and stable manifolds.)

Assume next that a diffeomorphism T : X → X satisfies Smale’s Axiom A
condition, that is the set of non-wandering points Ω is hyperbolic and Ω = Per.

Then the relation between periodic points is as follows. x ∼ y if there are
points z ∈Wu(x)∩W s(y) and z′ ∈Wu(y)∩W s(x) where Wu(x)a and W s(y),
and Wu(y)a and W s(x) respectively, intersect transversally, that is the tangent
spaces to these manifolds at z and z′ span the whole tangent spaces.
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W s(z)

z

Wu(y)

Wu(x)

y
W s(x)

x

W s(y)

Wu(x)

Figure 3.2: Transitivity for diffeomorphisms.

Prove that this relation yields Spectral Decomposition, as in Theorem 3.3.8,
with topological transitivity assertion rather than topological exactness of course.

As one of the steps prove a lemma corresponding to Lemma 3.3.9 about
approximation of a transversal heteroclinic cycle points by periodic ones. That
is assume that x1, x2, . . . , xn are hyperbolic periodic points (i.e. their orbits are
hyperbolic sets) for a diffeomorphism, and Wu

xi
has a point pi of transversal

intersection with W s
x(i+1)modn

for each i = 1, . . . , n. Then pi ∈ Per.

(For the theory of hyperbolic sets for diffeomorphisms see for example

[Katok & Hasselblatt 1995].)

3.7. Prove directly that 1) =⇒ 2) in Proposition 3.4.5, using the specification
property, Theorem 3.3.12.

3.8. Suppose T : X → X is a distance expanding map on a closed surface.
Prove that there exist a Markov partition for an iterate TN compatible with
a cell complex structure. That is elements Ri of the partitions are topological
discs, the 1-dimensional “skeleton”

⋃

i ∂Ri is a graph consisting of a finite num-
ber of continuous curves “edges” intersecting one another only at end points,
called “vertices”. Intersection of each two Ri is empty or one vertex or one edge,
each vertex is contained in 2 or 3 edges.

(Hint: Start with any cellular partition, with Ri being nice topological discs
and correct it by adding or subtracting components of T−N(Ri), T

−2N(Ri), etc.
See [Farrell & Jones 1979] for details. )

3.9. Prove that if T is an expanding map of the 2-dimensional torus R2/Z2, a
factor map of a linear map of R2 given by an integer matrix with two irrational
eigenvalues of different moduli (for example

(

0 11
−1 7

)

but not
(

2 0
0 3

)

), then ∂Ri
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cannot be differentiable.
(Hint: Smooth curves T n(∂Ri) become more and more dense in R2/Z2 as

n → ∞, stretching in the direction of the eigenspace corresponding to the
eigenvalue with a larger modulus. So they cannot omit IntRi.

The same argument, looking backward, says that the components of T−n(IntRi)
are dense and very distorted, since the eigenvalues have different moduli. The
curve ∂Ri must manoeuvre between them, so it is “fractal”. See [Przytycki & Urbański 1989]
for more details.)
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Chapter 4

Thermodynamical

formalism

In Chapter 2 (Th. 2.5.6) we proved that for every positively expansive map
T : X → X of a compact metric space and an arbitrary continuous function φ :
X → R there exists an equilibrium state. In Remark 3.4.4 we provided a specific
construction for T an open distance expanding topologically transitive map
and a Hölder continuous function φ. Here we shall construct this equilibrium
measure with a greater care and study its miraculous regularity with respect to
the “potential” function φ, its “mixing” properties and uniqueness. So, for the
entire chapter we fix an open, distance expanding, topologically transitive map
T : X → X of a compact metric space (X, ρ), with constants η, λ, ξ introduced
in Chapter 3.

4.1 Gibbs measures: introductory remarks

A probability measure µ on X and the Borel σ-algebra of sets is said to be a
Gibbs state (measure) for the potential φ : X → R if there exist P ∈ R and
C ≥ 1 such that for all x ∈ X and all n ≥ 1,

C−1 ≤ µ
(

T−n
x (B(T n(x), ξ))

)

exp(Snφ(x) − Pn)
≤ C (4.1.1)

If in addition µ is T -invariant, we call µ an invariant Gibbs state (or measure).

We denote the set of all Gibbs states of φ by Gφ. It is obvious that if µ is
a Gibbs state of φ and ν is equivalent to µ with Radon–Nikodym derivatives
uniformly bounded from above and below, then ν is also a Gibbs state. The
following proposition shows that the converse is also true and it identifies the
constant P appearing in the definition of Gibbs states as the topological pressure
of φ.

141
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Proposition 4.1.1. If µ and ν are Gibbs states associated to the map T and
a Hölder continuous function φ and the corresponding constants are denoted
respectively by P,C and Q,D then P = Q = P(T, φ) and the measures µ and ν
are equivalent with mutual Radon–Nikodym derivatives uniformly bounded.

Proof. Since X is a compact space, there exist finitely many points x1, . . . , xl ∈
X such that B(x1, ξ)∪ . . .∪B(xl, ξ) = X . We claim that for every compact set
A ⊂ X , every δ > 0, and for all n ≥ 1 large enough,

µ(A) ≤ CDl exp((Q− P )n)(ν(A) + δ). (4.1.2)

By the compactness of A and by the regularity of the measure ν there exists
ε > 0 such that ν(B(A, ε)) ≤ ν(A) + δ. Fix an integer n ≥ 1 so large that
ξλ−n < ε

2 and for every 1 ≤ i ≤ l let

X(i) = {x ∈ T−n(xi) : A ∩ T−n
x (B(xi, ξ)) 6= ∅}.

Then

A ⊂
l
⋃

i=1

⋃

x∈X(i)

T−n
x (B(xi, ξ)) ⊂ B(A, ε)

and, since for any fixed 1 ≤ i ≤ l the sets T−n
x (B(xi, ξ)) for x ∈ T−n(xi) are

mutually disjoint, it follows from (4.1.1) that

µ(A) ≤ µ
(

l
⋃

i=1

⋃

x∈X(i)

T−n
x (B(xi, ξ))

)

≤
l
∑

i=1

∑

x∈X(i)

µ
(

T−n
x (B(xi, ξ))

)

≤ C

l
∑

i=1

∑

x∈X(i)

exp(Snφ(x) − Pn)

= C exp((Q− P )n)

l
∑

i=1

∑

x∈X(i)

exp(Snφ(x) −Qn)

≤ CD exp((Q− P )n)

l
∑

i=1

∑

x∈X(i)

ν
(

T−n
x (B(xi, ξ))

)

≤ CD exp((Q− P )n)lν(B(A, ε))

≤ CDl exp((Q− P )n)(ν(A) + δ)

Exchanging the roles of µ and ν we also obtain

ν(A) ≤ CDl exp((P −Q)n)(µ(A) + δ) (4.1.3)

for all n ≥ 1 large enough. So, if P 6= Q, say P < Q, then it follows from (4.1.3)
applied to the compact setX that ν(X) = 0. Hence P = Q, and, as by regularity
of µ and ν, (4.1.2) and (4.1.3) continue to be true for all Borel subsets of X ,
we conclude that µ and ν are equivalent with the Radon–Nikodym derivative
dµ/dν bounded from above by CDl and from below by (CDl)−1 (letting δ → 0).
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It is left to show that P = P(T, φ). Looking at the expression after the third
inequality sign in our estimates of µ(A) with A = X we get

0 = logµ(X) ≤ logC + log
(

l
∑

i=1

∑

x∈X(i)

exp(Snφ(x))
)

− Pn.

Since for every i, X(i) is an (η, n)-separated set, taking into account division by
n in the definition of pressure, we can replace here

∑

i by a largest summand
for each n. We get P ≤ P (T, φ).

On the other hand for an arbitrary x ∈ X ,

∑

y∈T−n(x)

exp(Snφ(y) − Pn) ≤ C
∑

y∈T−n(x)

µ
(

T−n
y (B(x, ξ))

)

≤ Cµ(X) = C

gives P(T, φ) = Px(T, φ) ≤ P , for Px defined in 3.4.3 applicable due to topolog-
ical transitivity of T . The proof is finished. ♣

Remark 4.1.2. In order to prove Proposition 4.1.1 except the part identifying
P as P(T, φ) we used only the inequalities

C−1 ≤ µ
(

T−n
x (B(T n(x), ξ)

)

expPn

ν
(

T−n
x (B(T n(x), ξ)

)

expQn
≤ C.

We needed the function φ in (4.1.1) and its Hölder continuity only to prove that
P = Q = P (T, φ). Hölder continuity allows us also to replace x in Snφ(x) by
an arbitrary point contained in T−n

x (B(T n(x), ξ)).

Remark 4.1.3. For R = {R1, . . . , Rd}, a Markov partition of diameter smaller
than ξ, (4.1.1) produces a constant C depending on R (see Exercise 4.1) such
that

C−1 ≤ µ
(

Rj0,...,jn−1)

exp(Snφ(x) − Pn)
≤ C (4.1.4)

for every admissible sequence j0, j1, . . . , jn−1 and every x ∈ Rj0,...,jn−1 . In
particular (4.1.4) holds for the shift map of a one-sided topological Markov
chain.

The following completes Proposition 4.1.1.

Proposition 4.1.4. If φ and ψ are two arbitrary Hölder continuous functions
on X, then the following conditions are equivalent:

(1) φ−ψ is cohomologous to a constant in the space of bounded functions (see
Definition 1.11.2).

(2) Gφ = Gψ.

(3) Gφ ∩Gψ 6= ∅.
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Proof. Of course (2) implies (3). That (1) implies (2) is also obvious. If (3) is
satisfied, that is if there exists µ ∈ Gφ ∩Gψ , then it follows from (4.1.1) that

D−1 ≤ exp(Sn(φ)(x) − Sn(ψ)(x) − nP(φ) + nP(ψ)) ≤ D

for some constant D, all x ∈ X and n ∈ N. Applying logarithms we see that the
condition (2) in Proposition 3.4.5 is satisfied with φ and ψ replaced by φ−P(φ)
and ψ − P(ψ) respectively. Hence, by this Proposition, φ− P (φ) and ψ − P(ψ)
are cohomologous, which finishes the proof. ♣

We shall prove later that the class of Gibbs states associated to T and φ is
not empty (Section 4.3 and contains exactly one Gibbs state which is T -invariant
(Corollary 4.2.14). Actually we shall prove a stronger uniqueness theorem. We
shall prove that any invariant Gibbs state is an equilibrium state for T and φ
and prove (Section 4.6) uniqueness of the equilibrium states for open expanding
topologically transitive maps T and Hölder continuous functions φ : X → R.

Proposition 4.1.5. A probability T -invariant Gibbs state µ is an equilibrium
state for T and φ.

Proof. Consider an arbitrary finite partition P into Borel sets of diameter
less than min(η, ξ). Then for every x ∈ X we have T−n

x (B(T n(x), ξ)) ⊃
Pn(x), where Pn(x) is the element of the partition Pn =

∨n
j=0 P that con-

tains x. Hence µ
(

T−n
x (B(T n(x), ξ))

)

≥ µ(Pn(x)). Therefore by the Shannon–
McMillan–Breiman Theorem and (4.1.1) one obtains

hµ(T ) ≥ hµ(T,P) ≥
∫

(

lim sup
n→∞

1

n
(n P(T, φ))− Snφ(x)

)

dµ = P(T, φ)−
∫

φdµ.

or in other words, hµ(T ) +
∫

φdµ ≥ P(T, φ) which just means that µ is an
equilibrium state. ♣

4.2 Transfer operator and its conjugate. Mea-

sures with prescribed Jacobians

Suppose first that we are in the situation of Chapter 1, i.e. T is a measurable
map. Suppose that m is backward quasi-invariant with respect to T , i.e.

T∗(m) = m ◦ T−1 ≺ m. (4.2.1)

(Sometimes this property is called non-singular.) Then by the Radon–Nikodym
Theorem there exists an m-integrable function Φ : X → [0,∞) such that for
every measurable set A ⊂ X we have

m(T−1(A)) =

∫

A

Φdm.
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One writes d(m ◦ T−1)/dm = Φ. In the situation of this Chapter, where T is a
local homeomorphism (one does not need expanding yet) if T−1 has d branches
on a ball B(x, ξ) mapping the ball onto U1, . . . , Ud respectively, then

Φ =

d
∑

j=1

Φj where Φj := d(m ◦ (T |Uj
)−1)/dm.

If we consider measures absolutely continuous with respect to a backward quasi-
invariant “reference measure” m then the transformation µ 7→ T∗(µ) can be
rewritten in the language of densities with respect to m as follows,

dµ/dm 7→ d(T∗µ)/dm =

d
∑

j=1

(

(dµ/dm) ◦ (T |Uj
)−1
)

Φj . (4.2.2)

It is comfortable to define

Ψ(z) =
d(m ◦ (T |Uj

)−1)

dm
(T (z)), (4.2.3)

i.e. Ψ = Φj ◦T for z ∈ Uj . Notice that Ψ is defined on a set whose T -image has
full measure (which is maybe larger than just a set of full measure, in the case
a set of measure zero is mapped by T to a set of positive measure), see Section
4.6 for further discussion.

The transformation in (4.2.2) can be considered as a linear operator Lm :
L1(m) → L1(m), called the transfer operator,

Lm(u)(x) =
∑

x∈T−1(x)

u(x)Ψ(x).

This definition makes sense, because if we change u on a set A of measure 0,
then even if m(T (A)) > 0, we have Φj |T (A)∩B(x,ξ) = 0 m-a.e., hence Lm(u) does
not depend on the values of u on T (A). We have the convention that if u is not
defined (on a set of measure 0) and Ψ = 0, then uΨ = 0.

The transformation Lm makes in fact sense in a more general situation,
where T : X → X is measurable map of a probability space (X,F ,m), backward
quasi-invariant (non-singular), finite (or countable) -to-one. Instead of Uj we
write X =

⋃

Xj, where Xj are measurable, pairwise disjoint, and for each j the
map T |Xj

→ T (Xj) is a measurable isomorphism.

Proposition 4.2.1.
∫

Lm(u) dm =

∫

u dm for all u ∈ L1(m). (4.2.4)

Conversely, if (4.2.4) holds where in the definition of Lm we put an arbitrary
m integrable function Ψ, then Ψ satisfies (4.2.3).
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Proof. It is sufficient to consider u = 11A the indicator function for an arbitrary
measurable A ⊂ Xj . We have

∫

Lm(11A) dm =

∫

T (A)

Ψ ◦ (T |Xj
)−1 dm =

∫

T (A)

Φj dm = m(A),

the latter true by change of coordinates if and only if Φj is Jacobian as above.
Compare Lemma 4.2.5. ♣

It follows from (4.2.4) that Lm restricted to non-negative functions is an
isometry in the L1(m) norm. The transfer operator Lm : L1(m) → L1(m) is an
example of Markov operator, see Exercise 4.4

By (4.2.2) we obtain the following characterization of probability T -invariant
measures absolutely continuous with respect to m.

Proposition 4.2.2. The probability measure µ = hm for h ∈ L1(m), h ≥ 0, is
T -invariant if and only if

Lm(h) = h.

Remark 4.2.3. For the operator Lm we have the identity

Lm
(

f · (g ◦ T )
)

= Lm(f) · g. (4.2.5)

making sense for any measurable functions f, g : X → R. Hence, using (4.2.4),
for all f ∈ L∞(µ) and g ∈ L1(µ), we get

∫

f · (g ◦ T ) dm =

∫

Lm(f · (g ◦ T )) dm =

∫

Lm(f) · g dm (4.2.6)

and iterating this equality, we get

∫

f · (g ◦ T n) dm =

∫

Lnm(f) · g dm. (4.2.7)

for all n = 1, 2, . . . .

Remark 4.2.4. Since Lm acts on L1(m) we can consider its adjoint operator
L∗
m : L∞(m) → L∞(m). Notice that

∫

L∗
m(f) · g dm =

∫

f · Lm(g) dm =

∫

Lm((f ◦ T ) · g) dm =

∫

(f ◦ T ) · g dm,

by definition and (4.2.4). Hence L∗
m(f) = f ◦ T .

Recall from Section 1.2 that h → h ◦ T is called Koopman operator, here
acting on L∞(m). So the operator conjugate to Lm is this Koopman operator.
If one considers both operators acting on L2(m), which is the case for m being
T invariant (see Exercise 4.3), then these operators are mutually conjugate.
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Continuous potential case

After this introduction, the appearance of the following linear operator,
called or Ruelle or Araki or also transfer operator, is not surprising:

Lφ(u)(x) =
∑

x∈T−1(x)

u(x) exp(φ(x)). (4.2.8)

If the function φ is fixed we omit sometimes the subscript φ at L. The function
φ is often called a potential function. This term is compatible with the term
used for φ in Section 4.1 for P = 0. It will become clear later on. The transfer’s
adjoint operator will be our tool to find a backward quasi-invariant measure
m such that Ψ will be a scalar multiple of expφ, hence Lm will be a scalar
multiple of Lφ. Then in turn we will look for fixed points of Lm to find invariant
measures. Restricting our attention to expφ, we restrict considerations to Ψ
strictly positive defined everywhere. One sometimes allows φ to have the value
−∞, but we do not consider this case in our book. See e.g. [Keller 1998].

Let us now be more specific. Let φ : X → R be a continuous func-
tion. Consider Lφ acting on the Banach space of continuous functions Lφ :
C(X) → C(X). It is a continuous linear operator and its norm is equal to
supx

∑

x∈T−1(x) exp(φ(x)) = supLφ(11) as this is a positive operator i.e. it maps

real non-negative functions to real non-negative functions (see Section 2.1). Con-
sider the adjoint operator L∗

φ : C∗(X) → C∗(X). Note that as conjugate to a
positive operator it is also positive, i.e. transforms measures into measures.

Lemma 4.2.5. For every µ ∈ C∗(X) and every Borel set A ⊂ X on which T
is injective

L∗
φ(µ)(A) =

∫

T (A)

exp(φ ◦ (T |A)−1)dµ (4.2.9)

Proof. It is sufficient to prove (4.2.9) for A ⊂ B(x, r) with any x ∈ X and r > 0
such that T is injective on B(x, 2r) (say r = η). Now approximate in point-
wise convergence the indicator function χA by uniformly bounded continuous
functions with support in B = B(x, 2r). We have for any such function f ,

L∗
φ(µ)(f) = µ(Lφ(f)) =

∫

T (B)

(f exp(φ)) ◦ (T |B)−1dµ.

We used here the fact that the only branch of T−1 mapping T (B) to the support
of f is that one leading T (B) to B. Passing with f to the limit χA on both
sides (Dominated Convergence Theorem, Section 1.1) gives (4.2.9). ♣

Observe that whereas Lφ transports a measure from the past (more precisely:
transports a density, see (4.2.2)), L∗

φ pulls a measure back from the future with

Jacobian expφ ◦ T−1. This is the right operator to use, to look for the missing
“reference measure” m.
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Definition 4.2.6. J is called the weak Jacobian if J : X → [0,∞) and there
exists a Borel set E ⊂ X such that µ(E) = 0 and for every Borel set A ⊂ X on
which T is injective, µ(T (A \ E)) =

∫

A Jdµ.

Recall from Chapter 1 (Def. 1.9.4) that a measurable function J : X →
[0,∞) is called the Jacobian or the strong Jacobian of a map T : X → X with
respect to a measure µ if for every Borel set A ⊂ X on which T is injective
µ(T (A)) =

∫

A
Jdµ. In particular µ is forward quasi-invariant (cf. Lemma 1.9.3

and Definition 1.9.4).

Notice that if µ is backward quasi-invariant then the condition that J is the
weak Jacobian translates to µ(A) =

∫

T (A)
1

J◦(T |A)−1 dµ.

Corollary 4.2.7. If a probability measure µ satisfies L∗
φ(µ) = cµ (i.e. µ is an

eigen-measure of L∗
φ corresponding to a positive eigenvalue c), then c exp(−φ)

is the Jacobian of T with respect to µ.

Proof. Substitute cµ in place of L∗(µ) in (4.2.9). It then follows that µ is
backward quasi-invariant and c exp(−φ) is the weak Jacobian of T with respect
to µ. Since 1

exp(−φ) = expφ is positive everywhere, c exp(−φ) is the strong

Jacobian of T . ♣

Theorem 4.2.8. Let T : X → X be a local homeomorphism of a compact metric
space X and let φ : X → R be a continuous function. Then there exists a Borel
probability measure m = mφ and a constant c > 0, such that L∗

φ(m) = cm. The
function c exp(−φ) is the strong Jacobian for T with respect to the measure m.

Proof. Consider the map l(µ) := L∗(µ)
L∗(µ)(11) on the convex set of probability mea-

sures on X , i.e. on M(X), endowed with the weak* topology (Sec. 2.1). The
transformation l is continuous in this topology since µn → µ weak* implies
for every u ∈ C(X) that L∗(µn)(u) = µn(L(u)) → µ(L(u)) = L∗(µ)(u). As
M(X) is weak* compact (see Th. 2.1.6) we can use Theorem 2.1.7 (Schauder-
Tychonoff fixed point theorem) to find m ∈ M(X) such that l(m) = m. Hence
L∗(m) = cm for c = L∗(m)(11). Thus T has the Jacobian equal to c exp(−φ),
by Corollary 4.2.7. ♣

Note again that we write expφ in order to guarantee it never vanishes, so
that there exists the Jacobian for T with respect to m. To find an eigen-measure
m for L∗ (i.e. with a weak Jacobian being a multiple of exp(−φ) ) we could
perfectly well allow expφ = 0.

We have the following complementary fact in the case when Jacobian J
exists.

Proposition 4.2.9. If T : X → X is a local homeomorphism of a compact
metric space X and a Jacobian J with respect to a probability measure m exists,
then for every Borel set A

1

d

∫

A

J dm ≤ m(T (A)) ≤
∫

A

J dm.



4.2. TRANSFER OPERATOR 149

where d is the degree of T (d := supx∈X ♯T
−1({x})). In particular if m(A) = 0,

then m(T (A)) = 0.

Proof. Let us partition A into finitely many Borel sets, say A1, A2, . . . , An, of
diameters so small that T restricted to each of them is injective. Then, on the
one hand,

m(T (A)) = m
(

n
⋃

i=1

T (Ai)
)

≤
n
∑

i=1

m(T (Ai)) =

n
∑

i=1

∫

Ai

J dm =

∫

A

J dm.

and on the other hand, since the multiplicity of the family {T (Ai) : 1 ≤ i ≤ n}
does not exceed d,

m(T (A)) = m
(

n
⋃

i=1

T (Ai)
)

≥ 1

d

n
∑

i=1

m(T (Ai)) =
1

d

n
∑

i=1

∫

Ai

J dm =
1

d

∫

A

J dm.

The proof is finished. ♣

Let us go back to T , a distance expanding topologically transitive open map.

Proposition 4.2.10. The measure m produced in Theorem 4.2.8 is positive on
non-empty open sets. Moreover for every r > 0 there exists α = α(r) > 0 such
that for every x ∈ X, m(B(x, r)) ≥ α.

Proof. For every open U ⊂ X there exists n ≥ 0 such that
⋃n
j=0 T

j(U) = X
(Theorem 3.3.12). So, by Proposition 4.2.9, m(U) = 0 would imply that
1 = m(X) ≤∑n

j=0m(T j(U)) = 0, a contradiction.
Passing to the second part of the proof, let x1, . . . , xm be an r/2-net in

X and α := min1≤j≤m{m(B(xj , r/2))}. Since for every x ∈ X there exists j
such that ρ(x, xj) ≤ r/2, we have B(x, r) ⊃ B(xj , r/2), and so m(B(x, r)) ≥
m(B(xj , r/2)). Thus it is enough to set α(r) := α. ♣

Proposition 4.2.11. The measure m is a Gibbs state of φ and log c = P(T, φ).

Proof. We have for every x ∈ X and every integer n ≥ 0,

m(B(T n(x), ξ)) =

∫

T−n
x (B(Tn(x),ξ))

cn exp(−Snφ) dm.

Since, by Lemma 3.4.2, the ratio of the supremum and infimum of the integrand
of the above integral is bounded from above by a constant C > 0 and is bounded
from below by C−1, we obtain

1 ≥ m(B(T n(x), ξ)) ≥ C−1cn exp(−Snφ(x))m
(

T−n
x (B(T n(x), ξ))

)

and

α(ξ) ≤ m(B(T n(x), ξ)) ≤ Ccn exp(−Snφ(x))m(T−n
x (B(T n(x), ξ)

)

).
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Hence

α(ξ)C−1 ≤ m(T−n
x (B(T n(x), ξ)))

exp(Snφ(x) − n log c)
≤ C,

and therefore m is a Gibbs state. That log c = P(T, φ) follows now from Propo-
sition 4.1.1. ♣

We give now a simple direct proof of the equality log c = P(T, φ). First note
that by the definition of Lφ and a simple inductive argument, for every integer
n ≥ 0,

Lnφ(u)(x) =
∑

x∈T−n(x)

u(x) exp(Snφ(x)). (4.2.10)

The estimate (3.4.3) can be rewritten as

C−1 ≤ Ln(11)(x)/Ln(11)(y) ≤ C for every x, y ∈ X. (4.2.11)

Now cn = cnm(11) = (L∗)n(m)(11) = m(Ln(11)) and hence

log c = lim
n→∞

1

n
logm(Ln(11)) = P (T, φ),

where the last equality follows from (4.2.11) and Proposition 3.4.3.

Note that in the last equality above we used the property thatm is a measure,
more precisely that the linear functional corresponding to m is positive. For m
a signed eigen-measure and c a complex eigenvalue for L∗ we would obtain only
log |c| ≤ P (T, φ) (one should consider a function u such that sup |u| = 1 and
m(u) = 1 rather than the function 11) and indeed usually the point spectrum of
L∗ is big, see for example [Baladi 2000, Theorem 2.5].

We are already in the position to prove some ergodic properties of Gibbs
states.

Theorem 4.2.12. If T : X → X is an open, topologically exact, distance ex-
panding map, then the system (T,m) is exact in the measure theoretic sense,
namely for every A of positive measure m(T n(A)) → 1 as n → ∞ (see Defini-
tion 1.10.2 and the exercise following it).

Proof. Let E be an arbitrary Borel subset of X with m(E) > 0. By regularity
of the measure m we can find a compact set A ⊂ E such that m(A) > 0. Fix an
arbitrary ε > 0. As in the proof of Proposition 4.1.1, we find for every n large
enough, a cover of A by sets Dν of the form T−n

x (B(xi, ξ)), x ∈ X(i), i = 1, . . . , l
such that m(

⋃

ν Dν) ≤ m(A) + ε. Hence m(
⋃

ν(Dν \ A)) ≤ ε . Since the
multiplicity of this cover is at most l, we have

∑

ν

m(Dν \A) ≤ lε.

Hence,
∑

ν m(Dν \A)
∑

νm(Dν)
≤ lε

m(A)
.
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Therefore for all n large enough there exists D = Dν = T−n
x (B), with some

B = B(xi, ξ)), 1 ≤ i ≤ l, such that

m(D \A)

m(D)
≤ lε

m(A)
.

Hence, as B \ T n(A) ⊂ T n(D \A),

m(B \ T n(A))

m(B)
≤
∫

D\A c
n exp(−Snφ)dm

∫

D
cn exp(−Snφ)dm

≤ C2m(D \A)

m(D)
≤ C2 lε

m(A)
.

By the topological exactness of T , there exists N ≥ 0 such that for every i we
have TN(B(xi, ξ)) = X . In particular TN(B) = X . So, using Proposition 4.2.9,
we get

m(X \ TN(T n(A))) ≤ m(TN(B \ T n(A))) ≤ cN (inf expφ)−N
Clε

m(A)
.

Letting ε→ 0, we obtainm(X\TN(T n(A))) → 0 as n→ ∞. Hencem(TN+n(A))
→ 1. ♣

We have considered here a special Gibbs measure m = mφ. Notice however
that by Proposition 4.1.1 the assertion of Theorem 4.2.12 holds for every Gibbs
measure associated to T and φ.

Corollary 4.2.13. If T : X → X is an open, topologically transitive, distance
expanding map, then for every Hölder potential φ : X → R, every Gibbs measure
for φ is ergodic.

Proof. By Th. 3.3.8 and Th. 3.3.12 there exists a positive integer N such that
TN is topologically mixing on a TN -invariant closed-open set Y ⊂ X , where all
T j(Y ) are pairwise disjoint and

⋃

j=0,...,N−1 T
j(Y ) = X . So our TN |Y , being

also an open expanding map, is topologically exact by Theorem 3.3.8, hence
exact in the measure-theoretic sense by Theorem 4.2.12. Let m(E) > 0. Then
there is k ≥ 0 such that m(E ∩ T k(Y )) > 0. Then for every j = 0, . . . , N − 1
we have m(TNnT j(E ∩T k(Y ))) → m(T j(T k(Y ))), hence m(

⋃

n≥0 T
n(E)) → 1.

For E being T -invariant this yields m(E) = 1. This implies ergodicity. ♣

With the use of Proposition 1.2.7 we get the following fact promised in
Section 4.1.

Corollary 4.2.14. If T : X → X is an open, topologically transitive, distance
expanding map, then for every Hölder continuous potential φ : X → R, there is
at most one invariant Gibbs measure for φ.
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4.3 Iteration of the transfer operator. Existence

of invariant Gibbs measures

It is comfortable to consider the normalized operator Lφ with φ = φ− P(T, φ).

We have Lφ = e−P(T,φ) Lφ (recall that P(T, φ) = log c). Then for the reference

measure m = mφ satisfying L∗
φ(m) = eP(φ)m we have L∗

φ
(m) = m, i.e.

∫

udm =

∫

Lφ(u)dm for every u ∈ C(X). (4.3.1)

For a fixed potential φ we often denote Lφ by L0. By (4.2.11), for all x, y ∈ X,
and all non-negative integers n,

Ln0 (11)(x)/Ln0 (11)(y) ≤ C. (4.3.2)

Multiplying this inequality by Ln0 (11)(y) and then integrating with respect to
the variable x and y we get respectively the first and the third of the following
inequalities below

C−1 ≤ inf Ln0 (11) ≤ supLn0 (11) ≤ C. (4.3.3)

By (3.4.2) for every x, y ∈ X such that x ∈ B(y, ξ) we have an inequality which
is more refined than (3.4.3). Namely,

Lnφ(11)(x)

Lnφ(11)(y)
=

∑

x∈T−n(x) expSnφ(x)
∑

y∈T−n(y) expSnφ(y)

≤ sup
x∈T−n(x)

expSnφ(x)

expSnφ(yn(x))
≤ exp(C1ρ(x, y)

α), (4.3.4)

where C1 = ϑα(φ)
1−λ−α and yn(x) := T−n

x (y). By this estimate and by (4.3.3) we
get for all n ≥ 1 and all x, y ∈ X such that x ∈ B(y, ξ), the following

Ln0 (11)(x) − Ln0 (11)(y) =
(Ln0 (11)(x)

Ln0 (11)(y)
− 1
)

Ln0 (11)(y)

≤ C| exp(C1ρ(x, y)
α) − 1| ≤ C2ρ(x, y)

α (4.3.5)

with C2 depending on C,C1 and ξ.

Proposition 4.3.1. There exists a positive function uφ ∈ Hα(X) such that
L0(uφ) = uφ and

∫

uφ dm = 1.

Proof. By (4.3.5) and (4.3.3) the functions Ln0 (11) have uniformly bounded
norms in the space Hα(X) of all Hölder continuous functions, see Sec. 3.4. Hence
by Arzela–Ascoli theorem there exists a limit uφ ∈ C(X) for a subsequence of

un = 1
n

∑n−1
j=0 Lj0(11), n = 1, . . . . Of course uφ ∈ Hα(X), C−1 ≤ uφ ≤ C, and

using (4.3.3), a straightforward computation shows that L0(uφ) = uφ (com-
pare 2.1.14). Also

∫

uφ dm = limn→∞
∫

un dm =
∫

11 dm = 1. The proof is
finished. ♣
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Combining this proposition, Proposition 4.2.2, Proposition 4.2.11 and Corol-
lary 4.2.14, we get the following.

Theorem 4.3.2. For every Hölder continuous function φ : X → R there exists
a unique invariant Gibbs state associated to T and φ, namely µφ = uφmφ.

In the rest of this Section we study in detail the iteration of L0 on the real
or complex Banach spaces C(X) and an Hα.

Definition 4.3.3. We call a bounded linear operator Q : B → B on a Banach
space B almost periodic if for every b ∈ B the family {Qn(b)}∞n=0 is relatively
compact, i.e. its closure in B is compact in the norm topology.

Proposition 4.3.4. The operators Ln0 acting on C(X) have the norms uni-
formly bounded for all n = 1, 2, . . . .

Proof. By the definition of L, by (4.3.3) and by
∫

Ln0 (11) dµφ = 1, for every
u ∈ C(X) we get

sup |Ln0 (u)| ≤ sup |u| supLn0 (11) ≤ C sup |u|. (4.3.6)

♣

Remark that in the Proof above, instead of referring to the form of L one can
only refer to the fact that L is a positive operator, hence its norm is attained
at 11.

Consider an arbitrary function h : [0,∞) → [0,∞) such that h(0) = 0,
continuous at 0 and monotone increasing. We call such a function an abstract
modulus of continuity. If u : X → C is a function such that there is ξ > 0 such
that for all x, y ∈ X with ρ(x, y) ≤ ξ

|u(x) − u(y)| ≤ h(ρ(x, y)) (4.3.7)

we say that h is a modulus of continuity of u. Given also b ≥ 0 we denote by
Cbh(X) the set of all functions u ∈ C(X) such that ‖u‖∞ ≤ b and h is a modulus
of continuity of u with fixed ξ > 0. By Arzela-Ascoli theorem each Cbh(X) is a
compact subset of C(X).

Theorem 4.3.5. The operator L0 : C(X) → C(X) is almost periodic. More-
over, if b ≥ 0, h is an abstract modulus of continuity, θ ≥ 0, and ξ as
in Lemma 3.1.2 then for all φ ∈ Hα with ϑα(φ) ≤ θ there exists b̂ and Ĉ
depending only on b and θ such that for the abstract modulus of continuity
ĥ(t) = Ĉ(tα + h(t))

{Ln0 (u) : u ∈ Cbh(X), n ≥ 0} ⊂ C b̂
ĥ
(X). (4.3.8)

Proof. It follows from (4.3.6) that we can set b̂ = Cb. For every x ∈ X and
n ≥ 0 denote exp(Snφ(x)) by En(x). Consider arbitrary points x ∈ X and
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y ∈ B(x, ξ). Use the notation yn(x) := T−n
x (y), the same as in (4.3.4). Fix

u ∈ Cbh By (4.3.5) and (4.3.3) we have for every u ∈ C(X)

|Ln0 (u)(x) − Ln0 (u)(y)| =
∣

∣

∣

∑

x∈T−n(x)

u(x)En(x) − u(yn(x))En(yn(x)
∣

∣

∣

≤
∣

∣

∣

∑

x∈T−n(x)

u(x)(En(x) − En(yn(x)))
∣

∣

∣+
∣

∣

∣

∑

x∈T−n(x)

En(yn(x))(u(x) − u(yn(x))
∣

∣

∣

≤ ‖u‖∞C2ρ(x, y)
α + Ch

(

sup
x∈T−n(x)

|u(x) − u(yn(x))|
)

≤ bC2ρ(x, y)
α + Ch(λ−nρ(x, y)) ≤ bC2ρ(x, y)

α + Ch(ρ(x, y)). (4.3.9)

Therefore we are done by setting Ĉ := max(bC2, C). ♣

For u ∈ Hα we obtain the fundamental estimate (4.3.10).

Theorem 4.3.6. There exist constants C3, C4 > 0 such that for every u ∈ Hα,
all n = 1, 2, . . . and λ > 1 from the expanding property of T ,

ϑα(Ln0 (u)) ≤ C3λ
−nαϑα(u) + C4‖u‖∞, (4.3.10)

Proof. Continuing the last line of (4.3.9) and using ρ(x, yn(x)) ≤ λ−nρ(x, y) we
obtain

|Ln0 (u)(x) − Ln0 (u)(y)| ≤ ‖u‖∞C2ρ(x, y)
α + Cϑα,ξ(u)λ

−nαρ(x, y)α.

This proves (4.3.10), provisionally with ϑα,ξ rather than ϑα, with C3 = C from
(3.4.3) and (4.3.3) and with C4 = C2 (recall that the latter constant is of order
CC1 where C1 appeared in (4.3.4)). To get a bound on ϑα replace C4 by
max{C4, 2C/ξ

α}, see (4.3.6) and Section 3.4. ♣

Corollary 4.3.7. There exist an integer N > 0 and real numbers 0 < τ <
1, C5 > 0 such that for every u ∈ Hα,

‖LN0 (u)‖Hα
≤ τ‖u‖Hα

+ C5‖u‖∞ (4.3.11)

Proof. This Corollary immediately follows from (4.3.10) and Proposition 4.3.4.
♣

In fact a reverse implication, yielding (4.3.10) for iterates of LN , holds

Proposition 4.3.8. (4.3.11) together with (4.3.6) imply

∃C6 > 0 ∀n = 1, 2, . . . ‖LnN0 (u)‖Hα
≤ τn‖(u)‖Hα

+ C6‖u‖∞ (4.3.12)

Proof. Substitute in (4.3.11) LN0 (u) in place of u etc. n times using ‖Lj0(u)‖∞ ≤
C‖u‖∞. We obtain (4.3.12) with C6 = CC5/(1 − τ). ♣
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4.4 Convergence of Ln. Mixing properties of

Gibbs measures

Recall that by Proposition 4.3.1 there exists a positive function uφ ∈ Hα(X)
such that L0(uφ) = uφ and

∫

uφdmφ = 1.

It is convenient to replace the operator L0 = Lφ by the operator L̂ = L̂φ
defined by

L̂(u) =
1

uφ
L0(uuφ).

If we denote the operator of multiplication by a function w by the same
symbol w then we can write

L̂(u) = u−1
φ ◦ L0 ◦ uφ.

Since L̂ and L0 are conjugate by the operator uφ, their spectra are the same.
In addition, as this operator uφ is positive, non-negative functions go to non-
negative functions. Hence measures are mapped to measures by the conjugate
operator.

Proposition 4.4.1. L̂ = Lψ where ψ = φ+ log uφ− log uφ ◦T = φ−P(T, φ)+
log uφ − log uφ ◦ T.

Proof.

L̂(u)(x) =
1

uφ(x)

∑

T (x)=x

u(x)uφ(x) expφ(x) =

∑

T (x)=x

u(x) exp(φ(x) + log uφ(x) − log uφ(x)).

♣

Note that the eigenfunction uφ for L0 has changed to the eigenfunction 11

for L̂. In other words we have the following

Proposition 4.4.2. L̂(11) = 11, i.e. for every x ∈ X

∑

x∈T−1(x)

expψ(x) = 1. (4.4.1)

♣

Note that Jacobian of T with respect to the Gibbs measure µ = uφm (see
Th. 4.3.2) is (uφ ◦ T )(exp(−φ))u−1

φ = exp(−ψ). So for ψ the reference measure
(with Jacobian exp(−ψ)) and the invariant Gibbs measure coincide.

Note that passing from Lφ, through Lφ, to Lψ we have been replacing φ by
cohomological (up to a constant) functions. By Proposition 4.1.4. this does not
change the set of Gibbs states.
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One can think of the transformation u 7→ u/uφ as new coordinates on C(X)
or Hα(X) (real or complex-valued functions). L0 changes in these coordinates
to Lψ and the functional m(u) to m(uφu). The latter, denote it by mψ, is the
eigen-measure for L∗

ψ with the eigenvalue 1. It is positive because the operator
uφ is positive (see the comment above). So exp(−ψ) is the Jacobian for mψ

by Corollary 4.2.7. Hence by (4.4.1), mψ is T -invariant. This is our invariant
Gibbs measure µ.

Proposition 4.3.4 applied to L̂ takes the form:

Proposition 4.4.3. ‖L̂‖∞ = 1.

Proof. sup |L̂(u)| ≤ sup |u| because L̂ is an operator of “taking an average” of u
from the past (by Proposition 4.4.2). The equality follows from L̂(11) = 11. ♣

The topological exactness of T gives a stronger result:

Lemma 4.4.4. Let T : X → X be a topologically exact, distance expanding
open map. Suppose that g : [0,∞) → [0,∞) is an abstract modulus of continuity.
Then for every K > 0 and δ1 > 0 there exist δ2 > 0 and n > 0 such that

• for all φ ∈ Hα with ‖φ‖Hα
≤ K and

• for all u ∈ C(X,R) with g being its modulus of continuity and such that
∫

udµ = 0 and ‖u‖∞ ≥ δ1,

we have for L̂ = L̂φ
‖L̂n(u)‖∞ ≤ ‖u‖∞ − δ2.

Proof. Fix ε > 0 so small that g(ε) < δ1/2. Let n be ascribed to ε according
to Theorem 3.3.13(2), namely ∀x T n(B(x, ε)) = X . Since

∫

udµ = 0, there
exist y1, y2 ∈ X such that u(y1) ≤ 0 and u(y2) ≥ 0. For an arbitrary x ∈ X
choose x′ ∈ B(y1, ε)∩T−n(x) (it exists by the definition of n). We have u(x′) ≤
u(y1) + g(ε) ≤ δ1/2 ≤ ‖u‖∞ − δ1/2. So,

L̂n(u)(x) = u(x′) expSnψ(x′) +
∑

x∈T−n(x)\{x′}
u(x) expSnψ(x)

≤ (‖u‖∞ − δ1/2) expSnψ(x′) + ‖u‖∞
∑

x∈T−n(x)\{x′}
expSnψ(x)

≤ ‖u‖∞
(

∑

x∈T−n(x)

expSnψ(x)
)

− (δ1/2) expSnψ(x′)

= ‖u‖∞ − (δ1/2) expSnψ(x′).

Similarly for x′′ ∈ B(y2, ε) ∩ T−n(x)

L̂n(u)(x) ≥ −‖u‖∞ + (δ1/2) expSnψ(x′′).

Thus we have proved our lemma with δ2 := (δ1/2) infx∈X expSnψ(x). To finish
the proof we need to relate δ2 to φ rather than to ψ. To this end notice that for
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every x ∈ X we have ψ(x) ≥ φ(x)−2 log ‖(uφ)‖∞−P (T, φ) ≥ −3 log ‖(uφ)‖∞−
htop(T ), and ‖uφ)‖∞ ≤ C, where C depends on K, see (4.3.3), (3.4.2), (3.4.3).

♣

We shall prove now a theorem which completes Proposition 4.3.4 and The-
orem 4.3.5.

Theorem 4.4.5. For every u ∈ C(X,C) and T , topologically exact distance
expanding open map, we have for c = eP (T,φ)

lim
n→∞

‖c−nLnφ(u) −mφ(u)uφ‖∞ = 0 (4.4.2)

In particular if
∫

u dµ = 0, then

lim
n→∞

‖L̂n(u)‖∞ = 0 (4.4.3)

Moreover the convergences in (4.4.2) and (4.4.3) are uniform for u ∈ Cbh
and φ in an arbitrary bounded subset H of in Hα(X).

Proof. For real-valued u, with
∫

udµ = 0, the sequence an(u) := ‖L̂n(u)‖∞ is
monotone decreasing by Proposition 4.4.3. Suppose that limn→∞ an = a > 0.
By Theorem 4.3.5 all the iterates L̂n(u) have a common modulus of continuity
g. So applying Lemma 4.4.4 with this g and δ1 = a we find n0 and δ2 > 0
such that ‖L̂n0

(

L̂n(u)
)

‖∞ ≤ ‖L̂n(u)‖∞ − δ2 for every n ≥ 0. So, for n such

that ‖L̂n(u)‖∞ < a+ δ2 we obtain ‖L̂n+n0(u)‖∞ < a, a contradiction with the
definition of a. This proves (4.4.3) for u real-valued. For u complex-valued with
∫

udµ = 0, decompose u in the real and complex parts.
To prove (4.4.2) notice first that for an arbitrary u ∈ C(X,C) the conver-

gence in (4.4.3) yields, due to L̂(11) = 11,

||L̂n(u) − µ(u)11||∞ = ||L̂n(u− µ(u)11)||∞ → 0.

Change now coordinates on C(X) to go back to L0 and next replace it by c−1Lφ.
One obtains (4.4.2).

For the last part of the theorem, set

an := sup{||L̂nφ(u) : φ ∈ H,u ∈ Cbh;u ≥ 0}

and proceed in the same way as above with the help of the full power of
Lemma 4.4.4. ♣

Note that (4.4.2) means weak*-convergence of measures

lim
n→∞

∑

x∈T−n(x)

c−n exp(Snφ(x))δx → uφ(x)mφ

for every x ∈ X . Using (4.4.2) also for u = 11, we obtain

lim
n→∞

Lnφ(11)(x))−1
∑

x∈T−n(x)

(exp(Snφ(x))δx → mφ. (4.4.4)
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In the sequel one can consider either C(X,R) or C(X,C). Let us decide for
C(X,C).

Note that by L∗
φ(mφ) = cmφ, we have the L-invariant decomposition

C(X) = span(uφ) ⊕ ker(mφ). (4.4.5)

For u ∈ span(uφ) we have Lφ(u) = cu. On ker(mφ), by Theorem 4.4.5, c−nLnφ →
0 in strong topology. Denote (Lφ)|ker(mφ) by Lker,φ. For Lker,φ restricted to Hα

we can say more about the above convergence:

Theorem 4.4.6. There exists an integer n > 0 such that for c = eP (T,φ)

‖c−nLnker,φ‖Hα
< 1.

Proof. Again it is sufficient to consider a real-valued function u with µ(u) = 0
and the operator L̂. Set δ = min{1/8C4, 1/4}, with C4 taken from (4.3.10). By
Theorem 4.3.6 for u such that ‖u‖Hα

≤ 1 all functions L̂n(u) have the same
modulus of continuity g(ε) = C7ε

α with C7 = C3 + C4 > 0. Hence, from
Theorem 4.4.5 we conclude that (∃n1)(∀n ≥ n1)(∀u : ‖u‖Hα

≤ 1)

‖L̂n(u)‖∞ ≤ δ. (4.4.6)

Next, for n2 satisfying C3λ
−n2αC7 + C4δ ≤ 1/4, again by Theorem 4.3.6, we

obtain
ϑα(L̂n2(L̂n1(u)) ≤ 1/4.

Hence ‖L̂n1+n2(u)‖Hα
≤ 1/2. The theorem has thus been proved with n =

n1 + n2. ♣

Note that Theorem 4.4.5 could be deduced from Theorem 4.4.6 by approxi-
mation of continuous functions uniformly by Hölder ones, and using Proposition
4.3.4.

Corollary 4.4.7. The convergences in Theorem 4.4.5 for u ∈ Hα are expo-
nential. Namely there exist 0 < τ < 1 and C ≥ 0 such that for every function
u ∈ Hα

‖c−nLnφ(u)−mφ(u)uφ‖∞ ≤ ‖c−nLnφ(u)−mφ(u)uφ‖Hα
≤ C‖u−mφ(u)uφ‖Hα

τn.
(4.4.7)

In particular if
∫

udµ = 0 then

‖L̂n(u)‖∞ ≤ ‖L̂n(u)‖Hα
≤ C‖u‖Hα

τn. (4.4.8)

Remark 4.4.8. Theorem 4.4.6 along with (4.4.5) and the fact that c−1Lφ(uφ) =
uφ implies that the spectrum of the operator Lφ : Hα → Hα consists of two
parts, the number c = eP (T,φ) which is its simple and isolated eigenvalue, and
the rest, contained in a disc centered at 0 with radius < c. There thus exists a
”spectral gap”. An isolated eigenvalue moves analytically for analytic family of
transfer operators induced by analytic families of maps T and potential func-
tions φ, yielding the analyticity of P (T, φ). See Section 5.4 and the Notes at
the end of this chapter.
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Now we can study “mixing” properties of the dynamical system (T, µ) for
our invariant Gibbs measure µ. Roughly speaking the speed of mixing is related
to the speed of convergence of Lnker,φ to 0.

The first dynamical (mixing) consequence of Theorem 4.4.6 is the following
result known in the literature as the exponential decay of correlations, see the
definition in Section 1.11.

Theorem 4.4.9. There exist C ≥ 1 and ρ < 1 such that for all f ∈ Hα and all
g ∈ L1(µ),

Cn(f, g) ≤ Cρn‖f − Ef‖Hα
‖g − Eg‖1.

Proof. Set F = f − Ef, G = g − Eg and consider L̂ acting on C(X), as a
restriction of Lµ acting on L1(µ). By (4.2.7) and by (4.4.8) we obtain

|Cn(f, g)| =

∣

∣

∣

∣

∫

F · (G ◦ T n) dµ
∣

∣

∣

∣

=

∣

∣

∣

∣

∫

L̂n(F ) ·Gdµ
∣

∣

∣

∣

≤ Cτn‖F‖Hα
‖G‖1.

♣

Exercise. Prove that for all µ square-integrable functions f, g one has
∫

f · (g ◦ T n) dµ → Ef · Eg. (Hint: approximate f and g by Hölder functions.
Of course the information on the speed of convergence would become lost.)

The convergence in the exercise is one of several equivalent definitions of
the mixing property, see Section 1.10. We proved however earlier the stronger
property: measure-theoretical exactness, Theorem 4.2.12.

We can make a better use of the exponential convergence in Theorem 4.4.9
for T being the shift on the one-sided shift space:

Theorem 4.4.10. Let σ : ΣA → ΣA be a topologically mixing topological one-
sided Markov chain with the alphabet {1, . . . , d} and σ the left shift, see Chap-
ter 0. Let F be the σ-algebra generated by the partition A into 0-cylinders,
i.e sets with fixed 0-th symbol. For every 0 ≤ k ≤ l denote by F l

k the σ-

algebra generated by Al
k =

∨l
j=k T

−j(A), i.e. by the sets (cylinders) with fixed
k, k + 1, . . . , l’th symbols. Let φ : ΣA → R be a Hölder continuous function.

Then there exist 0 < ρ < 1 and C > 0 such that for every n ≥ k ≥ 0, every
function f : ΣA → R measurable with respect to Fk

0 and every µφ-integrable
function g : ΣA → R

∣

∣

∣

∣

∫

f · (g ◦ T n) dµφ − Ef · Eg
∣

∣

∣

∣

≤ Cρn−k‖f − Ef‖1‖g − Eg‖1. (4.4.9)

Proof. Assume Ef = Eg = 0. By Theorem 4.4.9,

∣

∣

∣

∣

∫

f ·(g◦T n) dµ
∣

∣

∣

∣

=

∣

∣

∣

∣

∫

g · L̂n−k(L̂k(f)) dµ

∣

∣

∣

∣

≤ ‖g‖1Cρ
n−k‖L̂k(f)‖Hα

. (4.4.10)
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Decompose f into real and imaginary parts and represent each one by the dif-
ference of nowhere negative functions. This allows, in the estimates to follow,
to assume that f ≥ 0.

Notice that for every cylinder A ∈ A and x ∈ A, in the expression

L̂k(f)(x) =
∑

Tk(y)=x

f(y) expSkψ(y)

there is no dependence of f(y) on x ∈ A because f is constant on cylinders of
Ak

0 . So

supA L̂k(f)

infA L̂k(f
≤ sup

B∈Ak
0

sup
y,y′∈B

exp
(

Skψ(y) − Skψ(y′)
)

≤ C,

with the constant C resulting from Section 3.4. So,

sup
A

L̂k(f) ≤ C

µ(A)

∫

L̂k(f) dµ =
C

µ(A)
‖f‖1 ≤

( C

infA∈A µ(A)

)

‖f‖1 = C′‖f‖1,

where the last equality defines C′.
It is left still to estimate the pseudonorms ϑα,ξ and ϑα of L̂k(f), cf. Sec-

tion 3.4. We assume that ξ is less than the minimal distance between the
cylinders in A. We have, similarly to (4.3.5), for x, y belonging to the same
cylinder A ∈ A,

|L̂k(f)(x) − L̂k(f)(y)| =

∣

∣

∣

∣

( L̂k(f)(x)

L̂k(f)(y)
− 1

)∣

∣

∣

∣

|L̂k(f)(y)|

≤ (expC1ρ(x, y)
α − 1)‖C′‖f‖1 ≤ C′′ρ(x, y)α‖f‖1.

for a constant C′′.
Hence, ϑα,ξ(L̂k(f)) ≤ ‖f‖1C

′′ and, passing to ϑα as in Section 3.4, we get

ϑα(L̂k(f)) ≤ ‖f‖1 max{C′′, 2C′ξ−α}.

Thus, continuing (4.4.10), we obtain for a constant C that

Cn(f, g) ≤ ‖f‖1‖g‖1Cρ
n−k.

♣

An immediate corollary from Theorem 4.4.10 is that for every B1 ∈ Fk
0 and

a Borel B2 (i.e. B2 ∈ F∞
0 ),

|µ(B1 ∩ T−n(B2)) − µ(B1)µ(B2)| ≤ Cρn−kµ(B1)µ(B2). (4.4.11)

Compare it with (1.11.10). Therefore, for any non-negative integer t and every
A ∈ Fk

0
∑

B∈At
0

|µ(T−n(B)|A) − µ(B)| ≤ Cρn−k,
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for the conditional measures µ(·|A), with respect to A.

This means that A satisfies the weak Bernoulli property, hence the natural
extension (X̃, T̃ , µ̃) is measure-theoretically isomorphic to a two-sided Bernoulli
shift, see Section 1.11.

Corollary 4.4.11. Every topologically exact, distance expanding open map T :
X → X, with invariant Gibbs measure µ = µφ for a Hölder continuous function

φ : X → R, has the natural extension (X̃, T̃ , µ̃) measure-theoretically isomorphic
to a two-sided Bernoulli shift.

Proof. Let π : ΣA → X be the coding map from a one-sided topological Markov
chain, due to a Markov partition, see Theorem 3.5.7. Since the map π is Hölder
continuous, the function φ ◦ π : ΣA → R is also Hölder continuous, hence we
have the invariant Gibbs measure µφ◦π. For this measure we can apply Theorem
4.4.10 and its corollaries. Recall also that by Theorem 3.5.9 π yields a measure-
theoretical isomorphism between µφ◦π and µφ◦π ◦ π−1, Therefore to end the
proof it is enough to prove the following.

Lemma 4.4.12. The measures µφ and µφ◦π ◦ π−1 coincide.

Proof. The function exp(−φ ◦ π + P − h) for h := log uφ◦π + log uφ◦π ◦ σ), is
the strong Jacobian for the shift map σ and the measure µφ◦π, where P is the
topological pressure for both (σ, φ ◦ π) and (T, φ), see Theorem 3.5.8. Since
π yields a measure-theoretical isomorphism between µφ◦π and µφ◦π ◦ π−1, the
measure µφ◦π ◦π−1 is forward quasi-invariant under T with the strong Jacobian
exp(−φ + P − h ◦ π−1). T with respect to µφ has strong Jacobian of the same
form, maybe with a priori different h cohomologous to 0 in bounded functions.
Therefore both measures are equivalent, hence as ergodic they coincide. ♣

4.5 More on almost periodic operators

In this Section we show how to deduce Theorem 4.4.5 (on convergence) and The-
orem 4.4.6 and Corollary 4.4.7 (exponential convergence) from general functional
analysis theorems. We do not need this later on in our book, but the theorems
are useful in other important situations.

Recall (Definition 4.3.3) that Q : F → F a bounded linear operator of a
Banach space is called almost periodic if for every b ∈ F the sequence Qn(b)
is relatively compact. By the Banach–Steinhaus Theorem there is a constant
C ≥ 0 such that ‖Qn‖ ≤ C for every n ≥ 0.

Theorem 4.5.1. If Q : F → F is an almost periodic operator on a complex
Banach space F , then

F = F0 ⊕ Fu, (4.5.1)

where F0 = {x ∈ F : limn→∞ An(x) = 0} and Fu is the closure of the linear
subspace of F generated by all eigenfunctions of eigenvalues of modulus 1.
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Adding additional assumptions one gains additional information on the above
decomposition.

Definition 4.5.2. Let F = C(X) and suppose Q : F → F is positive, namely
f ≥ 0 implies Q(f) ≥ 0. Then Q is called primitive if for every f ∈ C(X), f ≥
0, f 6≡ 0 there exists n ≥ 0 such that for every x ∈ X it holds Qn(f)(x) > 0. If
we change the order of the quantifiers to: . . . for every x there exists n . . . , then
we call Q non-decomposable.

Theorem 4.5.3. For Q : C(X) → C(X), a (real or complex) linear almost
periodic positive primitive operator of spectral radius equal to 1, we have

(1) dim(C(X)u) = 1 in the decomposition (4.5.1),

(2) the eigenvalue corresponding to C(X)u is equal to 1 and the respective
eigenfunction uQ is positive (everywhere > 0).

(3) In addition there exists a probability measure mQ on X invariant under
the adjoint operator Q∗, such that for every u ∈ C(X) we have the strong
convergence,

Qn(u) → uQ

∫

u dmQ.

Proof. This is just a repetition of considerations of Sections 2-4. First find a
probability measure m such that Q∗(m) = m as in Theorem 4.2.8 (we leave
a proof that the eigenvalue is equal to 1, to the reader). Next observe that

by the almost periodicity of Q the sequence of averages an := 1
n

∑n−1
j=0 Q

j(11) is
relatively compact (an exercise). Let uQ be any function in the limit. Then uQ ≥
0 is an eigenfunction for the eigenvalue 1. It is not identically 0 since

∫

andm = 1
for all n ≥ 0. We have uQ = Q(uQ) > 0 because Q is nondecomposable.

Finally for Q̂(u) := Q(uuQ)u−1
Q we have Q̂(11) = 11 and we repeat Proof of

Theorem 4.4.5, replacing the property of topological exactness by primitivity.
♣

Notice that this yields Theorem 4.4.5 because of

Proposition 4.5.4. If an open expanding map T is topologically exact then for
every continuous function φ the transfer operator Q = Lφ is primitive.

The proof is easy, it is in fact contained in the proof of Lemma 4.4.4.
Assume now only that T is topologically transitive. Let Ωk denote the sets

from spectral decomposition X = Ω =
⋃n
k=1 Ωk as in Theorem 3.3.8. Write

uQ ∈ C(X) for an eigenfunction of the operator Q as before. Notice now (exer-
cise!) that the space Fu for the operator Q = Lφ is spanned by n eigenfunctions

vt =
∑n
k=1 χΩkλ−tkuQ, t = 1, . . . , n, where χ means indicator functions, with

λ = ε2πi/n. Each vt corresponds to the eigenvalue λt. Thus the set of these
eigenvalues is a cyclic group.

It is also an easy exercise to describe Fu if X = Ω =
⋃J
j=1

⋃k(j)
k=1 Ωkj . The set

of eigenvalues is the union of J cyclic groups. It is harder to understand Fu and
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the corresponding set of eigenvalues for T open expanding, without assuming
Ω = X .

A general theorem related to Theorem 4.4.6 and Corollary 4.4.7 is the fol-
lowing.

Theorem 4.5.5 (Ionescu Tulcea and Marinescu). Let (F, | · |) be a Banach
space equipped with a norm | · | and let E ⊂ F be its dense linear subspace. E
is assumed to be a Banach space with respect a norm ‖ · ‖ defined on it. Let
Q : F → F be a bounded linear operator which preserves E, whose restriction
to E is also bounded with respect to the norm ‖ · ‖.

Suppose the following conditions are satisfied.

(1) If (xn : n = 1, 2, . . .) is a sequence of points in E such that ‖xn‖ ≤ K1

for all n ≥ 1 and some constant K1, and if limn→∞ |xn − x| = 0 for some
x ∈ F , then x ∈ E and ‖x‖ ≤ K1.

(2) There exists a constant K such that |Qn| ≤ K for all n = 1, 2, . . . .

(3) ∃N ≥ 1 ∃τ < 1 ∃K2 > 0 ‖QN(x)‖ ≤ τ‖x‖ +K2|x| for all x ∈ E.

(4) For any bounded subset A of the Banach space E with the norm ‖ · ‖, the
set QN (A) is relatively compact as a subset of the Banach space F with
the norm | · |.

Then

(5) There exist at most finitely many eigenvalues of Q : F → F of modulus 1,
say γ1, . . . , γp.

(6) Let Fi = {x ∈ F : Q(x) = γix}, i = 1, . . . , p. Then Fi ⊂ E and dim(Fi) <
∞.

(7) The operator Q : F → F can be represented as

Q =

p
∑

i=1

γiQi + S

where Qi and S are bounded, Qi(F ) = Fi, supn≥1 |Sn| <∞ and

Q2
i = Qi, QiQj = 0 (i 6= j), QiS = SQi = 0

Moreover,

(8) S(E) ⊂ E and S|E considered as a linear operator on (E, ‖ ·‖), is bounded
and there exist constants K3 > 0 and 0 < τ̃ < 1 such that

‖Sn|E‖ ≤ K3τ̃
n

for all n ≥ 1.



164 CHAPTER 4. THERMODYNAMICAL FORMALISM

The proof of this theorem can be found in [Ionescu Tulcea & Marinescu 1950].
Now, in view of Theorem 3.4.1 and Corollary 4.3.7, Theorem 4.5.5 applies

to the operator Q = Lφ : C(X) → C(X) if one substitutes F = C(X), E =
Hα(X). If T is topologically exact and in consequence Q is primitive on C(X),
then dim(⊕Fi) = 1 and the corresponding eigenvalue is equal to 1, as in Theorem
4.5.3.

4.6 Uniqueness of equilibrium states

We have proved already the existence (Theorem 4.3.2) and uniqueness (Corol-
lary 4.2.14) of invariant Gibbs states and proved that invariant Gibbs states are
equilibrium states (Proposition 4.1.5). Here we shall give three different proofs
of uniqueness of equilibrium states.

Let ν be a T -invariant measure and let a finite real function Jν be the
corresponding Jacobian in the weak sense, Jν is defined ν-a.e. By the invariance
of ν we have ν(E) = 0 ⇒ ν(T−1(E)) = ν(E) = 0, i.e. ν is backward quasi-
invariant. At the beginning of Section 4.2 we defined in this situation Ψ = Φx◦T
with Φx =

dν◦T−1
x

dν defined for ν-a.e. point in the domain of a branch T−1
x . (In

Section 4.2 we used notation Φj for Φx.) By definition Φx is strong Jacobian
for T−1

x .
Notice that for ν-a.e. z

(Jν ◦ T−1
x ) · Φx(z) =

{

1, if Φx(z) 6= 0;

0, if Φx(z) = 0.
(4.6.1)

Indeed, after removal of {z : Φx(z) = 0} the measures ν and ν ◦ T−1 are
equivalent, hence Jacobians of T and T−1

x are mutual reciprocals. We can fix Jν
on the set T−1({z : Φx(z) = 0}) arbitrarily, since this set has measure ν equal
to 0.

Recall that we have defined Lν : L1(ν) → L1(ν), the transfer operator
associated with the measure ν as follows

Lν(g)(x) =
∑

y∈T−1(x)

g(y)Ψ(y).

Recall that if T maps a set A of measure 0 to a set of positive measure, then
Ψ is specified, equal to 0, on a subset of A that is mapped by T to a set of full
measure ν in T (A).

Then since ν is T -invariant, Lν(11) = 11 and for every ν-integrable function
g we have

∫

Lν(g) dν =
∫

g dν, compare (4.2.4).

Lemma 4.6.1. Let ψ : X → R be a continuous function such that Lψ(11) = 11,
i.e. for every x,

∑

y∈T−1(x) exp(ψ(y)) = 1, and let ν be an ergodic equilib-

rium state for ψ. Then Jν is strong Jacobian and Jν = exp(−ψ) ν-almost
everywhere.
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Proof. The proof is based on the following computation using the inequality
1 + log(x) ≤ x, with the equality only for x = 1.

1 =

∫

11 dν ≥
∫

Lν(Jν expψ) dν =

∫

Jν expψ dν

≥
∫

(

1 + log(Jν expψ
)

) dν = 1 +

∫

ψdν +

∫

log Jν dν

= 1 +

∫

ψdν + hν(T ) ≥ 1.

To obtain the first inequality, write

Lν(Jν expψ)(x) =
∑

y∈T−1(x)

Jν(y)(expψ(y))Ψ(y)

which is equal to 1 if Ψ(y) > 0 for all y ∈ T−1(x)), or < 1 otherwise. This
follows from (4.6.1) and from

∑

y∈T−1(x) expψ(y) = 1.
The last inequality follows from

∫

ψdν + hν(T ) = P (ψ) ≥ lim sup
n→∞

1

n
log

∑

y∈T−n(x)

expSnψ(y) = 0,

see Theorem 2.3.2, since all points in T−n(x) are (n, η)-separated, for η > 0
defined in Chapter 3.

Therefore, all the inequalities in this proof must become equalities. Thus,
the Jacobian Φx 6= 0 for each branch T−1

x and Jν = exp(−ψ), ν- a.e. ♣

Notice that we have not assumed above that ψ is Hölder. Now, we shall
assume it.

Theorem 4.6.2. There exists exactly one equilibrium state for each Hölder
continuous potential φ.

Proof. Let ν be an equilibrium state for φ. As in Sec.4 set ψ = φ − P (T, φ) +
log uφ ◦ T − log uφ and ν is also equilibrium state for ψ. Then by Lemma 4.6.1
its Jacobian is strong Jacobian, equal to exp(−ψ). Hence,

ν
(

T−n
z (B(T n(z), ξ))

)

=

∫

B(Tn(z),ξ)

exp (Snψ(T−n
z (x))

)

dν(x)

=

∫

B(Tn(z),ξ)

uφ(x)

uφ(T n(x))
exp(Snφ− nP (T, φ))(T−n

z (x)) dν(x).

So, by pre-bounded distortion lemma (Lemma 3.4.2),

inf |uφ|
sup |uφ|

BC−1 ≤ ν
(

T−n
z (B(T n(z), ξ))

)

exp(Snφ− nP (T, φ))(z)
≤ sup |uφ|

inf |uφ|
C,

where B = inf{ν(B(y, ξ)}. It is positive by Proposition 4.2.10.
Therefore ν is an invariant Gibbs state for φ; unique by Corollary 4.2.14. ♣
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Remark 4.6.3. In fact already the knowledge that exp(−ψ) is weak Jacobian
implies automatically that it is a strong Jacobian. Indeed by the invariance of
ν we have

∑

y∈T−1(x)

Φy(y) = 1 =
∑

y∈T−1(x)

expψ(y)

and each non-zero summand on the left is equal to a corresponding summand
on the right. So there are no summands equal to 0.

Uniqueness. Proof II. We shall provide the second proof of Lemma 4.6.1.
It is not so elementary as the previous one, but it exhibits a relation with the
finite space prototype lemma in Introduction.

For every y ∈ X put A(y) := T−1
(

T
(

{y}
)

)

. Let {νA} denote the canonical

system of conditional measures for the partition of X into the sets A = A(y),
see Section 1.6.

Since there exists a finite one-sided generator, see Lemma 2.5.5, with the use
of Theorem 1.9.7 we obtain

0 = P (T, ψ) = hν(T ) +

∫

ψ dν = Hν

(

ε | T−1(ε)
)

+

∫

ψ dν =

=

∫

(

∑

z∈A(y)

νA(y)({z})
(

− log
(

νA(y)({z})
)

+ ψ(z)
)

)

dν(y).

The latter expression is always negative except for the case νA(y)(z) =

expψ(z) ν-a.e. by the prototype lemma. So for a set Y = T−1
(

T (Y )
)

of full
measure ν, for every y ∈ Y we have

νA(y)({y}) = expψ(y), in particular νA(y)({y}) 6= 0. (4.6.2)

Hence, for every Borel set Z ⊂ Y such that T is 1–to–1 on it, we can repeat
the calculation in the proof of Theorem 1.9.6 and get

ν
(

T (Z)
)

=

∫

Z

1/νA(y)({y}) dν(y)

So our Jacobian for T |Y is equal to 1/νA(y) hence to exp(−ψ) by (4.6.2) and

it is strong on Y . Observe finally that ν
(

T (X \ Y )
)

= 0 because X \ Y =

T−1
(

T (X \ Y )
)

and ν is T -invariant. So exp(−ψ) is a strong Jacobian on X .

Uniqueness. Proof III. Due to Corollary 2.6.7 it is sufficient to prove the
differentiability of the pressure function φ 7→ P(T, φ) at Hölder continuous φ, in
a set of directions dense in the weak topology on C(X).

Lemma 4.6.4. Let φ : X → R be a Hölder continuous function with exponent
α and let µφ denote the invariant Gibbs measure for φ. Let F : X → R be an
arbitrary continuous function. Then, for every x ∈ X,

lim
n→∞

∑

y∈T−n(x)
1
nSnF exp(Snφ)(y)

∑

y∈T−n(x) exp(Snφ)(y)
=

∫

F dµφ. (4.6.3)
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In addition the convergence is uniform for an equicontinuous family of F ’s and
for φ’s in a bounded subset of the Banach space of Hölder functions Hα(X).

Proof. The left hand side of (4.6.3) can be written in the form

lim
n→∞

1
n

∑n−1
j=0 Lnφ(F ◦ T j)(x)
Lnφ(11)(x)

= lim
n→∞

1
n

∑n−1
j=0 Ln−j(F · Lj(11))(x)

Ln(11)(x)
. (4.6.4)

where L = L0 = e−P (T,φ)Lφ.
Since by Theorem 4.3.5 F · Lj(11) is an equicontinuous family of functions,

we obtain the uniform convergence

Ln−j(F · Lj(11))(x) → uφ(x)

∫

F · Lj(11) dmφ

as n− j → ∞, see Theorem 4.4.5.
Therefore we can continue (4.6.4) to get

lim
n→∞

1
n

∑n−1
j=0 uφ(x)

∫

F · Lj(11) dmφ

uφ(x)
= lim

n→∞
1

n

n−1
∑

j=0

∫

F · Lj(11) dmφ =

∫

F dµφ

since Lj(11) uniformly converges to uφ and µφ = uφmφ. ♣

Now we shall calculate the derivative dP(T, φ + tγ)/dt for all Hölder con-
tinuous functions φ, γ : X → R at every t ∈ R. In particular, this will give
differentiability at t = 0. Thus our dense set of directions is spanned by the
Hölder continuous functions γ.

Theorem 4.6.5. We have

d

dt
P(T, φ+ tγ) =

∫

γ dµφ+tγ (4.6.5)

for all t ∈ R.

Proof. Write

Pn(t) :=
1

n
log

∑

y∈T−n(x)

exp(Sn(φ+ tγ))(y) (4.6.6)

and

Qn(t) :=
dPn
dt

(t) =

1
n

∑

y∈T−n(x) Snγ(y) exp(Sn(φ + tγ))(y)
∑

y∈T−n(x) exp(Sn(φ+ tγ)(y)
. (4.6.7)

By Lemma 4.6.4, limn→∞Qn(t) =
∫

γ dµφ+tγ and the convergence is locally
uniform with respect to t. Since, in addition, limn→∞ Pn(t) = ¶(t), we conclude
that P (T, φ + tγ) = limn→∞ Pn(t) is differentiable and the derivative is equal
to the limit of derivatives: limn→∞Qn(t) =

∫

γ dµφ+tγ , ♣
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Notice that the differential (Gateaux) operator γ 7→
∫

γ dµφ is indeed the
one from Proposition 2.6.6. Notice also that a posteriori, by Corollary 2.6.7, we
proved that for φ Hölder continuous, P (T, φ) is differentiable in the direction of
every continuous function. This is by the way obvious in general: two different
supporting functionals are different restricted to any dense subspace.

4.7 Probability laws and σ2(u, v)

The exponential convergences in Section 4.4 allow us to prove the probability
laws.

Theorem 4.7.1. Let T : X → X be an open distance expanding topologically
exact map and µ the invariant Gibbs measure for a Hölder continuous function
φ : X → R. Then if g : X → R satisfies

∞
∑

n=0

‖L̂n(g − µ(g))‖2 <∞, (4.7.1)

in particular if g is Hölder continuous, the Central Limit Theorem (CLT) holds
for g. If g is Hölder continuous then the Law of Iterated Logarithm (LIL) holds.

Proof. We first show how CLT can be deduced from Theorem 1.11.5. We can
assume µ(g) = 0. Let (X̃, F̃ , µ̃) be the natural extension (see Section 1.7).
Recall that X̃ can be viewed as the set of all T -trajectories (xn)n∈Z (or backward
trajectories), T̃ ((xn)) = (xn+1) and πn((xn)) = xn. It is sufficient now to check
(1.11.14) for the automorphism T̃ the function g̃ = g ◦ π0 and F̃0 = π−1

0 (F) for
the completed Borel σ-algebra F . Since g̃ is measurable with respect to F̃0 it is
also measurable with respect to all F̃n = T̃−n(F̃0) for n ≤ 0 hence g̃ = E(g̃|F̃n).
So we need only to prove

∑∞
n≥0 ‖E(g̃|F̃n)‖2 <∞.

Since for n ≥ 0 we have π0 ◦ T̃ n = T̃ n ◦ π0 we have E(g̃|F̃n) = E(g|Fn) ◦ π0.
So, we need to prove that

∑∞
n≥0 ‖E(g|Fn)‖2 <∞.

Let us start with a general fact concerning an arbitrary probability space
(X,F , µ) and an endomorphism T preserving µ.

Lemma 4.7.2. Let U denote the unitary operator on L2(X,F , µ) associated
to T , namely U(f) = f ◦ T (called Koopman operator, see the beginning of
Section 4.2 and Section 1.2). Let U∗ be the operator conjugate to U acting also
on L2(X,F , µ). Then for every k ≥ 0 the operator UkU∗k is the orthogonal
projection of H0 = L2(X,F , µ) onto Hk = L2(X,T−k(F), µ).

Proof. For each k ≥ 0 the function Uk(u) = u ◦ T k is measurable with respect
to T−k(F), so the range of UkU∗k is indeed in Hk = L2(X,T−k(F), µ).

For any u, v ∈ H0 write
∫

u · v dµ = 〈u, v〉, the scalar product of u and v.
For arbitrary f, g ∈ H0 we calculate

〈UkU∗k(f), g ◦ T k〉 = 〈UkU∗k(f), Uk(g)〉
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= 〈U∗k(f), g〉 = 〈f, Uk(g)〉 = 〈f, g ◦ T k〉.
It is clear that all functions in Hk = L2(X,T−k(F), µ) are represented by g ◦T k
with g ∈ L2(X,F , µ). Therefore by the above equality for all h ∈ Hk, we obtain

〈f − UkU∗k(f), h〉 = 〈f, h〉 − 〈f, h〉 = 0. (4.7.2)

In particular for f ∈ Hk we conclude from (4.7.2) for h = f − UkU∗k(f), that
〈f − UkU∗k(f), f − UkU∗k(f)〉 = 0 hence UkU∗k(f) = f . Therefore UkU∗k is
a projection onto Hk, which is orthogonal by (4.7.2). ♣

Since the conditional expectation value f 7→ E(f |T−k(F)) is also the or-
thogonal projection onto Hk we conclude that E(f |T−k(F)) = UkU∗k(f).

Now, let us pass to our special situation of Theorem 4.7.1.

Lemma 4.7.3. For every f ∈ L2(X,F , µ) we have U∗(f) = L̂(f).

Proof. 〈U∗f, g〉 = 〈f, Ug〉 =
∫

f · (g ◦ T ) dµ =
∫

L̂(f · (g ◦ T )) dµ =,
∫

(L̂(f)) · g dµ = 〈L̂(f), g〉, compare (4.2.7). ♣

Proof of Theorem 4.7.1. Conclusion. We can assume that µ(g) = 0. We have

∞
∑

n≥0

‖E(g|Fn)‖2 =

∞
∑

n≥0

‖UnU∗n(g)‖2 =

∞
∑

n≥0

‖L̂n(g)‖2 <∞,

where the inequality been assumed in (4.7.1). Thus CLT has been proved by
applying Theorem 1.11.5. If g is Hölder continuous it satisfies (4.7.1). Indeed
L̂k(g) converges to 0 in the sup norm exponentially fast as k → ∞ by Corol-
lary 4.4.7 (see (4.4.8)). This implies the same convergence in L2 hence the
convergence of the above series. ♣

We have proved CLT and LIL using Theorem 1.11.5. Now let us show how
to prove CLT and LIL with the use of Theorem 1.11.1, for Hölder continuous g.
As in the Proof of Corollary 4.4.11, let π : ΣA → X be the coding map from a 1-
sided topological Markov chain with d symbols generated by a Markov partition,
see Section 3.5. Since π is Hölder continuous, if g and φ are Hölder continuous,
then the compositions g◦π, φ◦π are Hölder continuous too. π is an isomorphism
between the measures µφ◦π on ΣA and µφ on X , see Section 3.5 and Lemma
4.4.12. The function g ◦ π satisfies the assumptions of Theorem 1.11.1 with
respect to the σ-algebra F associated to the partition of ΣA into 0-th cylinders,
see Theorem 4.4.10. φ-mixing follows from (4.4.10) and the estimate in (1.11.8)
is exponential with an arbitrary δ due to the Hölder continuity of g ◦ π. Hence,
by Theorem 1.11.1, g ◦ π and therefore g satisfy CLT and LIL.

In Section 4.6 we calculated the first derivative of the pressure function.
Here using the same method we calculate the second derivative and we see that
it is a respective dispersion (asymptotic variance) σ2, see Section 1.11.
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Theorem 4.7.4. For all φ, u, v : X → R Hölder continuous functions there
exists the second derivative given by Ruelle’s formula

∂2

∂s∂t
P (T, φ+ su+ tv)|s=t=0 = lim

n→∞
1

n

∫

Sn(u−µφu)Sn(v−µφv) dµφ, (4.7.3)

where µφ is the invariant Gibbs measure for φ. In particular

∂2

∂t2
P (T, φ+ tv)|t=0 = σ2

µφ
(v)

(where σ2
µφ

(v) is the asymptotic variance discussed in CLT, Section 1.11). In

addition, the function (s, t) 7→ P (T, φ+ su+ tv) is C2-smooth.

Proof. By Sec. 4.6 , see (4.6.3), (4.6.7),

∂2

∂s∂t
P (T, φ+ su+ tv)|t=0

=
∂

∂s
lim
n→∞

1
n

∑

y∈T−n(x) Snv(y) expSn(φ+ su)(y)
∑

y∈T−n(x) expSn(φ+ su)(y)
. (4.7.4)

Now we change the order of ∂/∂s and lim. This will be justified if we prove the
uniform convergence of the resulting derivative functions.

Fixed x ∈ X and n we abbreviate in the further notation
∑

y∈T−n(x) to
∑

y

and compute

Fn(s) :=
∂

∂s

(

∑

y Snv(y) expSn(φ+ su)(y)
∑

y expSn(φ+ su)(y)

)

=

∑

y Snu(y)Snv(y) expSn(φ + su)(y)
∑

y expSn(φ+ su)(y)

−

(

∑

y Snu(y) expSn(φ+ su)(y)
)(

∑

y Snv(y) expSn(φ + su)(y)
)

×
(

∑

y

expSn(φ+ su)(y)
)2

=
Ln
(

(Snu)(Snv)
)

(x)

Ln(11)(x)
− Ln(Snu)(x)

Ln(11)(x)

Ln(Snv)(x)

Ln(11)(x)
.

As in Section 4.6 we write here L = L0 = e−P (T,φ+su)Lφ+su. It is useful to
write the later expression for Fn(s) in the form

Fn(s) =

∫

(Snu)(Snv) dµs,n −
∫

(Snu) dµs,n

∫

(Snv) dµs,n (4.7.5)

or

Fn(s) =
n−1
∑

i,j=0

∫

(u ◦ T i − µs,n(u ◦ T i))(v ◦ T j − µs,n(v ◦ T j)) dµs,n, (4.7.6)
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where µs,n is the probability measure distributed on T−n(x) according to the
weights exp(Sn(φ + su))(y)/

∑

y expSn(φ + su)(y).

Note that 1
nFn(s) with Fn(s) as in the formula (4.7.6) resembles already

(4.7.3) because µs,n → mφ+su in the weak∗-topology, see (4.4.4). However we
still need to work a little bit.

For each i, j denote the respective summand in (4.7.6) by Ki,j . To simplify
notation denote u ◦ T i by ui and v ◦ T j by vj . We have

Ki,j =
Ln
(

(ui − µs,nui)(vj − µs,nvj)
)

(x)

Ln(11)(x)

and for 0 ≤ i ≤ j < n, using (4.2.7) twice,

Ki,j =
Ln−j

(

(

Lj−i((u − µs,nui)Li(11))
)(

v − µs,nvj
)

)

(x)

Ln(11)(x)
. (4.7.7)

By Corollary 4.4.7 for τ < 1 and Hölder norm ‖ · ‖Hα
for an exponent α > 0,

transforming the integral as in Proof of Theorem 4.4.9, we get

‖Lj−i((u− µs,nui)Li(11)) − uφ+su

(∫

ui dmφ+su − µs,nui)

)

‖Hα
≤ Cτ j−i

where C depends only on Hölder norms of u and φ+ su. The difference in the
large parentheses, denote it by Di,n, is bounded by Cτn−i in the Hölder norm,
again by Corollary 4.4.7.

We conclude that for all j the functions

Lj :=
∑

i≤j
Lj−i((u− µs,nui)Li(11))

are uniformly bounded in the Hölder norm ‖ · ‖Hα
by a constant C depending

again only on ||u||Hα
and ||φ+su||Hα

. Hence summing over i ≤ j in (4.7.7) and
applying Ln−j we obtain

∥

∥

∥

j
∑

i=0

Ki,j −
j
∑

i=0

∫

(ui − µs,nui)(vj − µs,nvj) dmφ+su

∥

∥

∥

∞
≤ Cτn−j .

Here C depends also on ||v||Hα
. We can replace the first sum by the second sum

without changing the limit in (4.7.4) since after summing over j = 0, 1, . . . , n−1,
dividing by n and passing with n to ∞, they lead to the same result. Let us show
now that µs,n can be replaced by mφ+su in the above estimate without changing
the limit in (4.7.4). Indeed, using the formula ab− a′b′ = (a− a′)b′ + a(b− b′),
we obtain
∣

∣

∣

∣

∫

(ui −mφ+suui)(vj −mφ+suvj) dmφ+su −
∫

(ui − µs,nui)(vj − µs,nvj) dmφ+su

∣

∣

∣

∣

≤ |(µs,nui −mφ+suui) · (mφ+suvj − µs,nvj)

+

∣

∣

∣

∣

∫

(ui −mφ+suui) · (µs,nvj −mφ+suvj) dmφ+su

∣

∣

∣

∣

.
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Since Di,n ≤ Cτn−i and Dj,n ≤ Cτn−j , the first summand is bounded above by
τn−iτn−j . Note that the second summand is equal to 0. Thus, our replacement
is justified.

The last step is to replace m = mφ+su by the invariant Gibbs measure
µ = µφ+su.

Similarly as above we can replace m by µ in mui,mvi. Indeed,

|mui − µui| =

∣

∣

∣

∣

∫

u · Li(11) dm−
∫

uuφ+su dm

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

u · (Li(11) − uφ+su) dm

∣

∣

∣

∣

≤ Cm(u)τ i. (4.7.8)

Thus the resulting difference is bounded by Cm(u)m(v)τ iτ j . Finally we justify
the replacement of m by µ at the second integral in the previous formula. To
simplify notation write F = u − µu,G = v − µv. Since j ≥ i, using (4.7.8), we
can write

∣

∣

∣

∣

∫

(F ◦ T i)(G ◦ T j) dm−
∫

(F ◦ T i)(G ◦ T j) dµ
∣

∣

∣

∣

=

=

∣

∣

∣

∣

∫

(F · (G ◦ T j−i)) ◦ T i dm−
∫

(F · (G ◦ T j−i)) ◦ T i dµ
∣

∣

∣

∣

≤ Cτ i
∫

|F · (G ◦ T j−i)| dm ≤ Cm(F )m(G)τ iτ j−i = Cm(F )m(G)τ j

by Theorem 4.4.9 (exponential decay of correlations), the latter C depending
again on the Hölder norms of u, v, φ+ su. Summing over all 0 ≤ i ≤ j < n gives
the bound Cm(F )m(G)

∑n−1
j=0 jτ

j and our replacement is justified. For i > j

we do the same replacements changing the roles of u and v. The C2-smoothness
follows from the uniformity of the convergence of the sequence of the functions
Fn(s), for φ+ tv in place of φ, with respect to the variables (s, t), resulting from
the proof. ♣

Exercises

4.1. Prove that (4.1.1) with an arbitrary 0 < ξ′ ≤ ξ in place of ξ implies (4.1.1)
for every 0 < ξ′ ≤ ξ (with C depending on ξ′).

4.2. Let A = (aij) be a non-zero k × k matrix with all entries non-negative.
Assume that A is irreducible, namely that for any pair (i, j) there is some
n > 0 such that the i, j)-th entry anij of An is positive. Prove that there is a
unique positive eigenvalue λ with left (row) and right (column) eigenvectors v =
(v1, . . . , vk) and u = (u1, . . . , uk) with all coordinates positive. The eigenvalue
λ is simple. All other eigenvalues have absolute values smaller than λ.

Check that the matrix P = (pij) with pij := viaij/λvj is stochastic, that
is 0 ≤ pij ≤ 1 and

∑

i pij = 1 for all j = 1, . . . , k. (One interprets pij as the
probability of i under the condition j. Caution: often the roles of i and j are
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opposite.) Notice that q = (u1v1, . . . , ukvk) satisfies Pq = q (it is the stationary
probability distribution).

Prove that for each pair (i, j) limn→∞ λ−nanij → uivj .
Identify the vectors u and v for a piecewise affine (piecewise increasing) map-

ping of the interval T : [0, 1] → [0, 1]. More precisely, let 0 = x1 < x2 < . . . <
xk < xk+1 = 1 and for each i = 1, . . . , k let xi = yi,1 < yi,2 < . . . < yi,k+1 =
xi+1. Consider T affine on each interval [yi,j , yi,j+1) mapping it onto [xj , xj+1),
such that T ′ = Constaij . Consider the potential function φ = − logF ′. What
is the eigen-measure of the related transfer operator? What is the invariant
Gibbs measure? Compare Exercise 4.7.

4.3. Prove that if a probability measure m is T -invariant then Lm(L2(m)) ⊂
L2(m) and the norm of L in L2(m) is equal to 1.

4.4. A linear operator Q : L1(µ) → L1(µ) for a measure space (X,F , µ) (we
allow µ to be infinite, say σ-finite) is called Markov operator if for all u ≥ 0, u ∈
L1(µ) the following two conditions hold.

(a) Q(u) ≥ 0 (compare the notion of positive operator),

(b) ||Q(u)||1 = ||u||1 (compare (4.2.4).
(This notion generalizes the notion of transfer operator Lm, see Section 4.2.)

Prove that

(1) ||Q(u)||1 ≤ ||u||1 for all u ∈ L1(µ),

(2) If |Qn(u)| ≤ g for some positive u, g ∈ L1(µ) and all n = 1, 2, . . . , then there
exists nonzero u∗ ∈ L1(µ) such that Q(u∗) = u∗.

(3) Suppose additionally that there is a compact set A ⊂ L1 such that for d the
distance in L1, for every u ∈ L1(µ) it holds d(Qn(u), A) → 0 as n → ∞. (This
property is called strongly constrictive).

Then there exist two finite sequences of non-negative functions gi ∈ L1(µ), ki ∈
L∞(µ), i = 1, . . . , p, and a linear bounded operator S : L1(µ) → L1(µ) such that
for every u ∈ L1(µ)

Q(u) =

r
∑

i=1

λi(u)gi + S,

where λi(u) =
∫

uki dµ, the functions gi have disjoint supports and are permuted
by Q, and ||QnS(u)||1 → 0 as n→ ∞.

Hint: See the Spectral Decomposition Theorem in [Lasota & Mackey 1985]
and [Lasota, Li & Yorke 1984].

(4) Suppose additionally that there is A ⊂ X with µ(A) > 0 such that for every
u ∈ L1(µ) we have Qn(u) > 0 on A for all n large enough. Then lim ||Qn(u) −
(
∫

u dµ)u∗||1 = 0. (This property is called asymptotically stable.)
Hint: Deduce it from (3), see the Asymptotic Stability Section in

[Lasota & Mackey 1985] .

(5) Prove that if a Markov operatorQ satisfies the following lower bound function
property:
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There exists a nonnegative integrable function h : X → R such that ||h||1 > 0
and such that for every non-negative u ∈ L1(µ) with ||u||1 = 1,

lim
n→∞

||min(Qn(u) − h, 0)||1 = 0,

then Q is asymptotically stable.
Hint: Consider u ∈ L1(µ) with

∫

u dµ = 0 and decompose it in positive and
negative parts u = u+ + u−. Using h observe that iterating Q on u+ and u−

we achieve the cancelling h− h. For details see [Lasota & Mackey 1985].
(Notice that the existence of the lower bound function u replaces the as-

sumption on the existence of the set A in (4) and allows to get rid of the
constrictivness assumption).

4.5. Consider a measure space (X,F , µ) and a measurable function K : X ×
X → R, non-negative and such that

∫

X
K(x, y) dµ(x) = 1 for all y ∈ X (such a

function is called a stochastic kernel. Define the associated integral operator by

P (u)(x) =

∫

X

K(x, y)u(y) dµ(y), for u ∈ L1(µ).

Consider the convolutions

Kn(x, y) :=

∫

K(x, zn−1)K(zn−1, zn−2) . . .K(z1, y) dµ(zn−1) . . . dµ(z1).

Prove that if there exists n ≥ 0 such that
∫

X infyKn(x, y) dµ(x) > 0, then
Q is asymptotically stable.

4.6. Let T : X → X be a measurable backward quasi-invariant endomorphism
of a measure space (X,F ,m). Suppose there exist disjoint sets A,B ⊂ X , both
of positive measure m, with T (A) = X .

Prove that for Lm : L1(m) → L1(m) being the transfer operator as in
Section 4.2 all λ with |λ| < 1 belong to its spectrum. In particular 1 is not an
isolated eigenvalue (there is no spectral gap, compare Remark 4.4.8). Is there a
spectral gap for Lφ for T : X → X an open expanding topologically transitive
map, acting on C(X) for Hölder continuous φ? (In Corollary 4.4.7 we restrict
the domain of Lφ to Hölder continuous functions).

Hint: Prove that all λ, |λ| < 1 belong to the spectrum of the conjugate
Koopman operator on L∞(m). Indeed L∗−λId is not onto, hence not invertible.
No function which is identically 0 on A and non-zero on B is in the image.

4.7. Let I1, I2, . . . , IN be a partition of the unit interval [0, 1] into closed subin-
tervals ((up to end points, i.e. every two neighbours have a common end point).
Let T : [0, 1] → [0, 1] be a piecewise C1+ǫ expanding mapping. This means
that the restriction of T to each Ij has an extension to a neighbourhood of the
closure of Ij which is differentiable with the first derivative Hölder continuous
of the modulus larger than 1. Suppose that each T (Ij) is union of some Ii’s
(Markov property) and for each Ij there is n such that T n(Ij) = [0, 1].

Prove the following so-called Folklore Theorem: There is an exact in the
measure-theoretic sense T -invariant probability measure µ on [0, 1] equivalent
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to the length measure l, with dµ
dl bounded and bounded away from 0, Hölder

continuous on each Ij .
Hint: consider the potential function φ = − log |T ′|.

4.8. For T as in Exercise 4.7 assume that T is C2 on Ij ’s, but do not assume
Markov property. Prove that there exists a finite number of T -invariant proba-
bility measure absolutely continuous with respect to the length measure l.

Hint: This is the famous Lasota–Yorke theorem [Lasota & Yorke 1973]. In-
stead of Hölder continuous functions consider the transfer operator L on the
functions of bounded variation of derivative.

In fact by Ionescu Tulcea, Marinescu Theorem 4.5.5 item (8), there exists
a spectral gap, see Remark 4.4.8, so we can prove probability laws as in Theo-
rem 4.7.1.

4.9. Prove the existence of an invariant Gibbs measure, Theorem 4.3.2, for φ
satisfying the following Bowen’s condition: there exists δ > 0 and C > 0 with
the property that whenever ρ(T i(x), T i(z)) ≤ δ for 0 ≤ i ≤ n− 1, then

∣

∣

∣

∣

n−1
∑

i=0

φ(T i(x)) − φ(T i(z))

∣

∣

∣

∣

≤ C,

and for T : X → X open topologically transitive map of a compact metric space
which is non-contracting, namely there exists η > 0 such that for all x, y ∈ X
ρ(x, y) ≤ η implies ρ(T (x), T (y)) ≥ ρ(x, y).

For m satisfying L∗
φ(m) = cm (see Theorem 4.2.8) prove the convergences

(4.4.2). and (4.4.3).
Hint: see [Walters 1978].

Bibliographical notes

Writing Sections 4.1 – 4.4 we relied mainly on the books [Bowen 1975] and
[Ruelle 1978]. See also [Zinsmeister 1996] and [Baladi 2000].

References to the facts in Section sec:4.5 concerning almost periodic oper-
ators can be found in [Lyubich & Lyubich 1986] and [Lyubich 1983]. For the
proof of Ionescu Tulcea & Marinescu Theorem see
[Ionescu Tulcea & Marinescu 1950]. For Markov operators see [Lasota & Mackey 1985].

As we mentioned already in Introduction, the first, simplest, proof of unique-
ness of equilibrium follows [Keller 1998]. The second is similar to one in [Przytycki 1990];
the idea taken from Ledrappier’s papers, see e.g.[Ledrappier 1984].

For the Perron–Frobenius theory for finite matrices, Exercise 4.2, see for
example [Walters 1982] and the references therein.

Folklore theorem in Exercise 4.7 can be found for example in
[Boyarsky & Góra 1997].

The consequences of holomorphic dependence of the operator on parameters
(in particular the holomorphic dependence of an isolated eigenvalue of multi-
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plicity one, see Remark 4.4.8) is comprehensively written in [Kato 1966]. See
our Section 5.4.

We owe Exercise 4.6 to R. Rudnicki.
In the next chapters we shall discuss special open distance expanding maps

(X,T ) with X embedded in a smooth manifold and T smooth (Cr). Then the
transfer operator for Cr or real-analytic potential can be restricted to Ck, k ≤ r.
The bigger k the more continuous spectrum is lost. In the C∞ and Cω (real-
analytic) cases the transfer operator has only pointwise spectrum. For this rich
theory and references see for example [Baladi 2000].



Chapter 5

Expanding repellers in

manifolds and in the

Riemann sphere,

preliminaries

In this chapter we shall consider a compact metric space X with an open, dis-
tance expanding map T on it, embedded isometrically into a smooth Rieman-
nian manifold M . We shall assume that T extends to a neighbourhood U of X
to a mapping f of class C1+ε for some 0 < ε ≤ 1 or smoother, including real-
analytic. C1+ε and more general Cr+ε for r = 1, 2, . . . means the r-th derivative
is Hölder continuous with the exponent ε for ε < 1 and Lipschitz continuous
for ε = 1. We shall assume also that there exists a constant λ > 1 such that
for every x ∈ U and for every non-zero vector v tangent to M at x, it holds
||Df(v)|| > λ||v||, where || · || is the norm induced by the Riemannian metric.
The pair (X, f) will be called an expanding repeller and f an expanding map.
If f is of some class A, e.g. Cα or analytic, we will say the expanding repeller
is of that class or that this is an A-expanding repeller. In particular, if f is
conformal we call (X, f) a conformal expanding repeller, abbr. CER. Finally if
we skip the assumption T = f |X is open on X , we will call (X, f) an expanding
set. Sometimes to distinguish the domain of f we shall write (X, f, U).

In Sections 5.2 and 5.3 we provide some introduction to conformal expanding
repellers, studying transfer operator, postponing the main study to Chapters 8
and 9, where we shall use tools of geometric measure theory.

In Section 5.4 we discuss analytic dependence of the transfer operator on
parameters.

177
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5.1 Basic properties

For any expanding set there exist constants playing the analogous role as con-
stants for (open) distance expanding maps:

Lemma 5.1.1. For any expanding set (X, f) with λ, U as in the definition and f
differentiable, for every η > 0 small enough, there exist U ′ ⊂ U a neighbourhood
of X such that B(X, η) ⊂ U ′, B(U ′, η) ⊂ U and for every x ∈ U ′ the map
f is injective on B(x, η). Moreover f(B(x, η)) ⊃ B(f(x), η) and f increases
distances on B(x, η) at least by the factor λ.

Proof. We leave the proof to the reader as an easy exercise; compare the Proof
of Lemma 5.1.2. ♣

In the sequel we shall consider expanding sets together with the constants
η, λ from Lemma 5.1.1. Write also ξ := λη. For the expanding repeller (X, f)
these constants satisfy the properties of the constants η, ξ, λ for the distance ex-
panding map T = f |X on X , provided η is small enough, compare Lemmas 3.1.2
and 3.1.4. For every x ∈ X we can consider the branch f−1

x on B(f(x), ξ), map-
ping f(x) to x, extending the branch T−1

x defined on B(f(x), ξ) ∩X . Similarly
we can consider such branches of f−1 for x ∈ U ′.

Let now X be a compact subset of M forward invariant, namely f(X) ⊂ X ,
for a continuous mapping f defined on a neighbourhood U of X . We say X
is a repeller if there exists a neighbourhood U ′ of X in U such that for every
y ∈ U ′ \X there exists n > 0 such that fn(y) /∈ U ′. In other words

X =
⋂

n>0

f−n(U ′). (5.1.1)

In the lemma below we shall see that the extrinsic property of being a repeller is
equivalent to the intrinsic property of being open for f on X . It is a topological
lemma, no differentiability is invoked.

Lemma 5.1.2. Let X be a compact subset of M forward invariant for a con-
tinuous mapping f defined on its neighbourhood U . Suppose that f is an open
map on U . Then if X is a repeller, f |X is an open map in X. Conversely, if f
is distance expanding on a neighbourhood of X and f |X is an open map, then
X is a repeller, i.e. satisfies (5.1.1).

Proof. If f |X were not open there would exist a sequence of points xn ∈ X
converging to x ∈ X a point y ∈ X such that f(y) = x and an open set V in
M containing y so that no xn is in f(V ∩ X) . But as f is open there exists
a sequence yn ∈ V , yn → y and f(yn) = xn for all n large enough. Thus the
forward trajectory of each yn stays in every U ′ even in X except yn itself which
is arbitrarily close to X with n respectively large. This contradicts the repelling
property.

Conversely, suppose that X is not a repeller. Then for U ′′ = B(X, r) ⊂ U ′

(U ′ from Lemma 5.1.1) with an arbitrary r < ξ there exists x ∈ U ′′ \ X such
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that its forward trajectory is also in U ′′. Then there exists n > 0 such that
dist(fn(x), X) < λdist(fn−1(x), X). Let y be a point in X closest to fn(x).
Then by Lemma 5.1.1 there exists y′ ∈ B(fn−1(x), η) such that f(y′) = y and
by the construction y′ /∈ X . Thus, letting r → 0, we obtain a sequence of
points xn not in X but converging to x0 ∈ X with images in X . So f(xn) /∈
f |X(B(x0, η) ∩ X) because they are f -images of xn ∈ B(x0, η) \X for n large
enough and f is injective on B(x0, η). But f(xn) → f(x0). So f(x0) does not
belong to the interior of f |X(B(x0, η) ∩X), so f |X is not open. ♣

To complete the description we provide one more fact:

Proposition 5.1.3. If (X, f) is an expanding set in a manifold M , then it is
a repeller iff there exists U ′′ a neighbourhood of X in M such that for every
sequence of points xn ∈ U ′′, n = 0,−1,−2, . . . ,−N , where N is any positive
number or ∞, such that f(xn) = xn+1 for n < 0, i.e. for every backward
trajectory in U ′′, there exists a backward trajectory yn ∈ X such that xn ∈
B(yn, η).

Additionally, if (X, f) is an expanding repeller and f maps X onto X, then
for every x0 ∈ U ′′ there exist xn and yn as above.

Proof. If U ′′ is small enough then by the openess of f |X if f(y) = z ∈ X and
y ∈ U ′′ then y ∈ X , compare Proof of Lemma 5.1.2. So, given xn, defining
yn = f−1

xn
(yn+1), starting with y0 ∈ X such that ρ(x0, y0) < ξ we prove that

yn ∈ X .
Conversely, if fn(x) ∈ U ′′ for all n = 0, 1, . . . , then for each n we consider

fn(x), fn−1(x), . . . , x as a backward trajectory and find a backward trajectory
y(n)0, y(n)−1, . . . , y(n)−n in X such that fn−i(x) ∈ B(y(n)−i, η) for all i =
0, . . . , n. In particular we deduce that ρ(x, y(n)−n) ≤ ηλ−n. We conclude that
the distance of x from X is arbitrarily small, i.e. x ∈ X .

To prove the last assertion, given only x0 we find y0 ∈ X close to x0, next
take any backward trajectory yn ∈ X existing by the “onto” assumption and
find xn = f−1

xn
(yn+1) by induction, analogously to finding yn for xn above. ♣

Remark 5.1.4. The condition after “iff” in this proposition (for N = ∞) can
be considered in the “inverse limit”, saying that every backward trajectory in
U ′′ is in the “unstable manifold” of a backward trajectory in X .

Now we shall prove a lemma corresponding to the Shadowing lemma 3.2.4.
For any two mappings F,G on the common domain A, to a metric space with a
metric ρ, we write dist(F,G) := supx∈A ρ(f(x), g(x)). Recall that we say that
a sequence of points (yi) β-shadows (xi) if ρ(xi, yi) ≤ β.

Lemma 5.1.5. Let (X, f, U) be an expanding set in a manifold M . Then for
every β : 0 < β < η there exist ε, α > 0 (it is sufficient that α+ε < (λ−1)β) such
that if a continuous mapping g : U →M is α-C0-close to f , i.e. dist(f, g) ≤ α,
then every ε−f -trajectory x = x0, x1, . . . , xn in U ′ can be β-shadowed by at least
one g-trajectory. In particular there exists Xg a compact forward g-invariant
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set, i.e. such that g(Xg) ⊂ Xg, and a continuous mapping hgf : Xg → M such
that dist(hgf , id|Xg

) ≤ β and hgf (Xg) = X.
If g is Lipschitz continuous, then hgf is Hölder continuous.

Proof. It is similar to that of Shadowing Lemma but needs some more care. If
we treat xi, i = 0, . . . , n as an α+ ε-trajectory for g we cannot refer to Proof of
Shadowing Lemma because we have not assumed g is expanding.

Let us make however similar choices as there, for β < η let α+ ε = β(λ−1).
Then by Lemma 5.1.1

f(clB(xi, β)) ⊃ clB(f(xi), λβ), i = 0, 1, . . . , n. (5.1.2)

We left it in Proof of Lemma 5.1.1 as an exercise. One proof could use an
integration.

We shall give however a standard topological argument, proving (5.1.2) with
λ′ ≤ λ arbitrarily close to λ for β small enough, using the local aproximation of
f by Df , which will be of use later on also for g. This argument corresponds to
Rouché’s theorem in 1 complex variable (preservance of index of a curve under
small perturbation).

In the closed ball B1 = clB(xi, β) for β small enough, f is β(λ−λ′)-C0-close
to Df , (locally it makes sense to compare f with Df using local charts on the
manifold M). To get β independent of i we use f being C1.

Hence f and Df are homotopic as maps of the sphere S1 = ∂B1 to M \ z
for any z ∈ B(f(xi), λ

′β), just along the intervals joining the corresponding
image points. If z were missing in f(B1) then we could project f(B1) to S2 =
∂B(f(xi), λ

′β) along the radii from z. Denote such a projection from any w by
Pw.

Pz ◦ f |S1 : S1 → S2 is not homotopic to a constant map, because it is
homotopic to Pz ◦Df |S1 which is homotopic to Pf(xi) ◦DF |S1 by using Pt, t ∈
[z, f(xi)], and finally Pf(xi) ◦Df |S1 is not homotopic to a constant because Df
is an isomorphism (otherwise, composing with Df−1 we would get the identity
on S1 homotopic to a constant map).

On the other hand Pz ◦ f |S1 is homotopic to a constant since it extends to
the continuous map Pz ◦ f |B1 .

Precisely the same topological argument shows that, setting xn+1 = f(xn),

g(clB(xi, β)) ⊃ clB(f(xi), λ
′β − α) ⊃

clB(xi+1, λ
′β − α− ε) ⊃ clB(xi+1, β) i = 0, 1, . . . , n. (5.1.3)

So the intersection A(x) :=
⋂n
j=0 g

−j(clB(xj , β)) is non-empty and the for-
ward g-trajectory of any point in A(x) β-shadows xi, i = 0, . . . , n− 1.

The sequenceB(x0, β) → f(B(x0, β)) ⊃ B(x1, β) → f(B(x1, β)) ⊃ B(x2, β) →
. . . is called a “telescope”. The essence of the proof was the existence and the
stability of telescopes.

To prove the last assertion, let ε = 0, xi ∈ X and n = ∞. For the above
sets A(x) = A(x, g, β) set
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X(g, β) =
⋃

x∈X
A(x, g, β) Xg = clX(g, β).

Suppose β < η. Then for x, y ∈ X x 6= y we haveA(x)∩A(y) = ∅ because the
constant of expansiveness of f on X is 2η. This allows us to define hgf (y) = x
for every y ∈ A(x).

If y ∈ clA(x) then by the definition for every n ≥ 0 fn(y) ∈ clA(fn(x)).
This proves the g-invariance of Xg and hgf ◦ g = f ◦ hgf . The continuity
of hgf holds because for an arbitrary n if y, y′ ∈ X(g, β) and dist(y, y′) is
small enough, say less than ε(n), then dist(gj(y), gj(y′)) < η − β for every
j = 0, 1, . . . , n. ε(n) does not depend on y, y′ since g is uniformly continuous
on a compact neighbourhood of X in M . Then dist(f j(x), f j(x′)) < 2η, where
x = hgf (y), x

′ = hgf (y
′). Hence dist(x, x′) < λ−n2η. We obtain hgf uniformly

continuous on X(g, β), hence it extends continuously to the closure Xg. ♣

If g is Lipschitz continuous with dist(g(y)−g(y′)) ≤ L dist(y, y′), then we set
ε(n) := (η − β)L−n. Then, for dist(y, y′) ≤ ε(n), we get dist(x, x′) ≤ λ−n2η =
Mε(n)log λ/ logL for M = ( 1

η−β )log λ/ logL2η. In consequence hgf is Hölder with

exponent logλ/ logL.
The existence of hgf does not depend on the construction of Xg. Namely

the following holds.

Proposition 5.1.6. Let Y be a forward g-invariant subset of U ′ ⊃ X defined in
Lemma 5.1.1, for continuous g : U → M α-close to f . Then, for every β : 0 <
β < η and for every α : 0 < α < β(λ − 1) there exists a unique transformation
hgf : Y → U such that hgf ◦ g = f ◦ hgf and ρ(hgf , id|Y ) < β . (We call such
a transformation hgf a semiconjugacy to the image.) This transformation is
continuous, and ρ(hgf , id|Y ) ≤ α

λ−1 . If g|Y is positively expansive and 2β is less
than the constant of expansiveness then hgf is injective (called then a conjugacy
to the image Xf ). If X is a repeller then Xf ⊂ X. If g is Lipschitz, then hgf
is Hölder continuous.

Proof. Each g-trajectory yn in Y is an α-f -trajectory and we can refer to Lemma
5.1.5 for α playing the role of ε and g = f . We find an f -trajectory xn such
that ρ(xn, yn) ≤ α/(λ − 1) and define hgf (yn) = xn. The uniqueness follows
from the positive expansivness of f with constant 2η > 2β. The continuity can
be proved as in Lemma 5.1.5. ♣

Proposition 5.1.7. Let (X, f, U) be an expanding set. Then there exists U a
neighbourhood of f in C1 topology, i.e. U = {g : U → M : g ∈ C1, ρ(f, g) <
α, ||Df(x) − Dg(x)|| < α ∀x ∈ U}, for a number α > 0, such that for every
g ∈ U there exists an expanding repeller Xg for g and a homeomorphism hgf :
Xg → X such that hgf ◦ g = f ◦ hgf on Xg. Moreover for each x ∈ X the
function U → M defined by g 7→ xg := h−1

gf (x) is Lipschitz continuous, where

U is considered with the metric ρ(g1, g2) (in C0 topology). All hgf and their
inverses are Hölder continuous with the same exponent and common upper bound
of their Hölder norms.
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Proof. For U small enough all g ∈ U are also expanding, with the constant λ
maybe replaced by a smaller constant but also bigger then 1 and η, U ′ the same.
Then Xg and hgf exist by Lemma 5.1.5. Since g is expanding, hence expansive
on Xg, hgf is injective by Proposition 5.1.6.

To prove Lipschitz continuity of xg, consider g1, g2 ∈ U . Then

h = h−1
g2f

◦ hg1f : Xg1 → Xg2

is a homeomorphism, such that ρ(g1, g2) < 2α/(λ − 1) < β for appropriate α,
where λ is taken to be common for all g ∈ U .

On the other hand by Proposition 5.1.6 aplied to g2 in place of f and g1 in
place of g, for the forward invariat set Y = Xg1 there exists a homeomorphism
hg1g2 : Y → Xg2 conjugating g1 to g2. We have ρ(hg1g2 , id|Xg1

) < ρ(g1, g2)/(λ−
1). By the uniqueness in Lemma 5.1.5, we have h = hg1g2 hence ρ(h, id|Xg1

) <
ρ(g1, g2)/(λ− 1), which yields the desired Lipschitz continuity of xg. ♣

Hölder continuity of hgf and h−1
gf follows from Lemma 5.1.5. Uniform Hölder

exponent results from the existence of a common Lipschitz constant and expand-
ing exponent for g C1-close to f . The uniformity of the Hölder norm follow sfrom
the formula ending Proof of Lemma 5.1.5.

Examples

Example 5.1.8. Let f : M →M be an expanding mapping on a compact man-
ifold M , that is the repeller X is the whole manifold. Then f is C1-structurally
stable. This means that there exists U , a neighbourhood of f in C1 topol-
ogy, such that for every g : M → M in U there exists a homeomorphism
hgf : M →M conjugating g and f .

This follows from Proposition 5.1.7. Note that Xg = M , since being home-
omorphic to M it is a boundaryless manifold of the same dimension as M and
it is compact, hence if U is small enough, it is equal to M (note that we have
not assumed connectedness of M).

A standard example of an expanding mapping on a compact manifold is an
expanding endomorphism of a torus f : Td = Rd/Zd → Td, that is a linear
mapping of Rd given by an integer matrix A, mod Zd.

Example 5.1.9. Let f : Cd → Cd be the cartesian product of z2’s, that is
f(z1, . . . , zd) = (z2

1 , . . . , z
2
d). Then the torus Td = {|zi| = 1, i = 1, . . . , d} is

an expanding repeller. By Proposition 5.1.7 it is stable under small C1, in
particular complex analytic, perturbations g. This means in particular that
there exists a topological d-dimensional torus invariant under g close to Td.

Example 5.1.10. Let fc : C̄ → C̄ be defined by fc(z) = z2 + c, c ≈ 0, compare
Introduction and Chapter 0. As in Example 5.1.9, there exists a Jordan curve
Xfc

close to the unit circle which is an fc-invariant repeller and a homeomorphic
conjugacy hfcf0 . It is not hard to see that Xfc

= J(fc) the Julia set, see
Example 0.6.
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The equation of a fixed point for fc is z2
c + c = zc and if we want a fixed

point zc to be attracting (note that there are 2 fixed points, except c = 1/4) we
want |f ′

c(zc)| = |2zc| < 1. This means c is in the domain M0 bounded by the
cardioid c = −(λ/2)2 + λ/2 for λ in the unit circle.

.

. ..
−2

i

0
1
4

M0

Figure 5.1: Mandelbrot set

It is not hard to prove that M0 is precisely the domain of c where the
homeomorphisms hfcf0 and in particular their domains Xfc

exist. Each Xfc
is

a Jordan curve (Xfc
, fc) is an expanding repeller and the “motion” c 7→ zc :=

h−1
fcf0

(z) is continuous for each z in the unit circle Xf0 . In fact Xfc
is equal to

Julia set J(fc) for fc. At c in the cardioid, a self-pinching of Xfc
at infinitely

many points happens. In fact the motion is holomorphic, see Section 5.2.

M0 is a part of the Mandelbrot set M where J(fc) is connected. When c
leaves M, the Julia set crumbles into a Cantor set.

5.2 Complex dimension one. Bounded distor-

tion and other techniques

The basic property is the so called Bounded Distortion for Iteration. We have
had already that kind of lemma, Lemma 3.4.2 (Pre-Bounded Distortion Lemma
for Iteration), used extensively in Chapter 4. Here it will get finally its geometric
sense.

Definition 5.2.1. We say that V an open subset of C or R has distortion with
respect to z ∈ V bounded by C if there exist R > r > 0 such that R/r ≤ C and
B(z, r) ⊂ V ⊂ B(z,R).

Lemma 5.2.2 (Bounded Distortion Lemma for Iteration). Let (X, f) be a
C1+ε-expanding set in R or a conformal expanding set in C. Then there ex-
ists a constant C > 0 such that
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1. For every x ∈ X and n ≥ 0, for every r ≤ ξ the distortion of the set
f−n
x (B(fn(x), r)) with respect to x is less than expCr in the conformal case and

less than expCrε in the real case.
2.The same bound holds for the distortion of fn(B(x, r′)) for any r′ > 0 un-

der the assumption f j(B(x, r′)) ⊂ B(f j(x), r) for every j = 1, . . . , n. Moreover

3. If y1, y2 ∈ B(x, r′) then ρ(fn(y1),f
n(x))

ρ(fn(y2),fn(x)) : ρ(y1,x)ρ(y2,x)
< expCr or expCrε.

Finally, in terms of derivatives,
4. expCr and expCrε bound the fractions

|(fn)′(x)|
r/ diam f−n

x (B(fn(x), r))
and

|(fn)′(x)|
diam fn(B(x, r′))/r′

from above and the inverses bound these fractions from below.
5. For y1, y2 ∈ f−n

x (B(fn(x), r))

| (f
n)′(y1)

fn)′(y2)
− 1| < Cr or Crε.

Proof. Cr and Crε bound the additive distortions of the functions log |(fn)′| and
Arg(fn)′ (in the complex holomorphic case) on the sets f−n

x (B(fn(x), r)) and
B(x, r′). Indeed, these functions are of the form Snψ for Hölder ψ = log |f ′|
or Arg f ′, see Chapter 3. We use Pre-Bounded Distortion Lemma 3.4.2. To
conclude the assertions involving diameters integrate |(fn)′| or the inverse along
curves. ♣

In the conformal situation, in C, instead of refering to Lemma 5.2.2, one can
often refer to Koebe Distortion Lemma, putting g = fn or inverse.

Lemma 5.2.3 (Koebe Distortion Lemma in the Riemann sphere). Given ε > 0
there exists a constant C = C(ε) such that for every λ : 0 < λ < 1 for every
conformal (holomorphic univalent) map on the unit disc in C to the Riemann
sphere C, g : D → C, such that diam(C \ g(D)) ≥ ε, for all y1, y2 ∈ λD,

|g′(y1)/g′(y2)| ≤ C(1 − λ)−4.

diameter and derivatives in the Riemann sphere metric.

One can replace D by any disc B(x, r) ⊂ C with diamC \ B(x, r) ≥ ε and
y1, y2 ∈ B(x, λr).

This Lemma follows easily from the classical lemma in the complex plane,
see for example [Carleson & Gamelin 1993, Section I.1].

Lemma 5.2.4 (Koebe Distortion Lemma). For every holomorphic univalent
function g : D → C for every z ∈ D

1 − |z|
(1 + |z|)3 ≤ |g′(z)

g′(0)
≤ 1 + |z|

(1 − |z|)3 .
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Remark 5.2.5. In the situation of Lemma 5.2.3, fixed an arbitrary g : D → C,
there exists C = C(g) such that for all y, y1, y2 ∈ λD

C−1(1 − λ) ≤ |g′(0)/g′(y)| ≤ C(1 − λ)−1

and in particular
|g′(y1)/g′(y2)| ≤ C(1 − λ)−2.

Of fundamental importance is the so-called holomorphic motion approach:

Definition 5.2.6. Let (X, ρX) and (Y, ρY ) be metric spaces. We call a mapping
f : X → Y quasisymmetric, if there exists a constant M > 0 such that for all
x, y, z ∈ X if ρX(x, y) = ρX(x, z), then ρY (f(x), f(y)) ≤MρY (f(x), f(z)).

In case X is an open subset of a Euclidean space of dimension at least 2, the
name quasiconformal is usually used. In this case, for homeomorphisms, several
equivalent definitions are being used.

Definition 5.2.7. Let A be a subset of C. A mapping iλ(z) for λ ∈ D the unit
disc, and z ∈ A is called a holomorphic motion of A if

(i) for every λ ∈ D the mapping iλ is an injection;
(ii) for every z ∈ A the mapping λ 7→ iλ(z) is holomorphic;
(iii) i0 is the identity (i.e. inclusion of A in C).

Lemma 5.2.8 (Mañé, Sad, Sullivan’s λ-lemma, see [Mañé, Sad & Sullivan 1983]).
Let iλ(z) be a holomorphic motion of A ⊂ C. Then every iλ has a quasisym-
metric extension iλ : A→ C which is an injection, for every z ∈ A the mapping
λ→ iλ(z) is holomorphic, and the map D × A ∋ (λ, z) 7→ iλ(z) is continuous.

Note that the assumption that the domain of lambdas is complex is sub-
stantial. If for example the motion is only for λ ∈ R, then the lemma is false.
Consider for example the motion of C such that the lower halfplane moves in
one direction, iλ(z) = z + λ, and the upper (closed) halfplane moves in the
opposite direction, iλ(z) = z−λ. Then iλ is even not continuous. However this
motion cannot be extended to complex lambdas, to injections.

Proof. The proof is based in the following: any holomorphic map of D to the
triply punctured sphere C\{0, 1,∞} is distance non-increasing for the hyperbolic
metrics on D and C \ {0, 1,∞} (Schwarz lemma). Choose three points of A and
normalize iλ (i.e. for each iλ compose it with a respective homography) so that
the images by iλ of these three points are constantly 0, 1 and ∞. (We can
assume A is infinite, otherwise the Lemma is trivial.)

For any three other points x, y, z ∈ A, consider the functions

x(λ) = iλ(x), y(λ) = iλ(y), z(λ) = iλ(z), w(λ) = (y(λ) − x(λ))/y(λ).

These functions avoid 0,1,∞. Fix any 0 < m < M <∞. Let y(0) ∈ A and y(0)
be in the ring P (m,M) = {m ≤ |y| ≤ M}. Then |x(0) − y(0)| small implies
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w(0) small, hence for any λ ≤ R for an arbitrary constant R : 0 < R < 1, the
hyperbolic distance between w(0) and w(λ) in C\{0, 1,∞} is less than R, hence
w(λ) is small. Therefore x(λ) − y(λ) is small.

Thus each iλ is uniformly continuous on A∩P (m,M). Moreover the family
iλ is equicontinuous for |λ| ≤ R

The annulus P (m,M) for m < 1 < M contains 1, so permuting the roles of
0,1,∞ we see that the annuli cover the sphere. So iλ has a continuous extension
to A. The extensions for |λ| ≤ R are equicontinuous.

Similarly we prove that if |x(0) − y(0)| is large, then x(λ) − y(λ) is large.
Therefore these extensions are injections.

To prove iλ is quasi-symmetric consider g(λ) = x(λ)−y(λ)
x(λ)−z(λ) . This function also

omits 0,1,∞. Assume |g(0)| = 1. Then for |λ| ≤ R < 1 the hyperbolic distance
of g(λ) from the unit circle is not larger than R. Therefore |g(λ)| is uniformly
bounded for |λ| ≤ R.

Note finally that for each x ∈ A the map λ 7→ iλ(x) is holomorphic as
the limit of holomorphic functions iλ(z), z → x, z ∈ A. In particular it is
continuous. So, due to the equicontinuity of the family iλ, i is continuous on
D ×A. ♣

Remark 5.2.9. For X ⊂ C a topologically transitive expanding repeller for f
holomorphic, λ-lemma gives a new proof of stability under holomorphic pertur-
bations of f to g, see Lemma 5.1.5 and Proposition 5.1.6. One can choose a pe-
riodic orbit P ⊂ X and consider A =

⋃∞
n=0(f |X)−n(P ). By Theorem 3.3.12(2),

A is dense in X . By Implicit Function Theorem P moves holomorphically un-
der small holomorphic perturbations g = gλ of f . So A moves holomorphically,
staying close to X (by the repelling property of (X, f)). So hfg’s can be defined
as iλ : X → Xg. Due to λ-lemma we conclude they are quasi-symmetric.

Remark 5.2.10. The maps iλ of the holomorphic motion in Lemma 5.2.8 are
Hölder continuous. Moreover, for λ ∈ A any compact subset of D, they have a
common Hölder exponent β = βA and a common norm in Hβ .

This follows from Slodkowski’s theorem [Slodkowski 1991] saying that the
motion iλ(z) extends to whole Riemann sphere, see also the recent book [Astala, Iwaniec & Martin 2008].
Then we refer to the fact that each quasisymmetric (K-quasiconformal) homeo-
morphism is Hölder, with exponent 1/K and uniformly bounded Hölder norm,
see [Ahlfors 1966].

5.3 Transfer operator for conformal expanding

repeller with harmonic potential

We consider a conformal expanding repeller, that is an expanding repeller (X, f)
for X ⊂ C and f conformal on a neighbourhood of X . This is a preparation to
a study in Chapters 8 and 9.

We consider potentials of the form φ = −t log |f ′| for all t real and related
transfer operators Lφ on (continuous) real functions on X , see Section 4.2. We
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proved in Chapter 4 that L has unique positive eigenfunction uφ and there exist
mφ onX the eigenmeasure of L∗, and µφ the invariant Gibbs measure equivalent

to it and uφ is the Radon–Nikodym derivative
dµφ

dmφ
. Our aim is to prove that

uφ has a real-analytic extension to a neighbourhood of X .
We begin with the following.

Definition 5.3.1. A conformal expanding repeller f : X → X is said to be
real-analytic if X is contained in a finite union of pairwise disjoint real-analytic
curves.

These curves will be denoted by Γ = Γf . Frequently in such a context we
will alternatively speak about real analyticity of the set X .

Theorem 5.3.2. If f : X → X is an orientation preserving conformal expand-
ing repeller, X ⊂ C, then the Radon–Nikodym derivative u = uφ = dµφ/dmφ

has a real-analytic real-valued extension on a neighbourhood of X in C. If f is
real-analytic, then u has a real-analytic extension on a neighbourhood of X in
Γ and complex-valued complex analytic extension on a neighbourhood in C.

Proof. Since f is conformal and orientation preserving, f is holomorphic on a
neighbourhood of X in C. Take r > 0 so small that for every x ∈ X , every
n ≥ 1 and every y ∈ f−n(x) the holomorphic inverse branch f−n

y : B(x, 2r) → C

sending x to y is well-defined.
Suppose first that (X, f) is real-analytic. (We could deduce this case from

the general case but we separate it as simpler.)
Take an atlas of real analytic maps (charts) φj : Γj → R for Γj the compo-

nents of Γ; they extend complex-analytically to a neighbourhood of Γ in C. (If
Γj is a closed curve we can use Arg).

For x ∈ Γj ∩J(f) we write Γj(x) and φj(x). For all k ≥ 1 and all y ∈ f−k(x)
consider for r small enough, the positive real-analytic function on φj(x)(B(x, r))

z ∈ mapsto|(f−k
y )′(φ−1

j(x)(z))|

for all z ∈ φj(x)(Γj(x) ∩ B(x, r)). Consider the following sequence of complex
analytic functions on z ∈ φj(x)(B(x, r))

gn(z) =
∑

y∈f−n(x)

(

(f−n
y )′(φ−1

j(x)(z))
)t

exp(−nP (t)),

where P (t) = P (f |X ,−t log |f ′|) denotes the pressure.
There is no problem here with raising to the t-th power since B(x, r), the

domain of all |(f−n
y )′| is simply connected. Since the latter functions are positive

in R, we can choose the branches of the t-th powers to be also positive in R. By
Koebe Distortion Lemma (or Bounded Distortion for Iteration Lemma 5.2.2)
for r small enough and every w = B′ := φ−1

j(x)(z) ∈ B(x, r), every n ≥ 1 and

every y ∈ f−n(x) we have |(f−n
y )′(w)| ≤ K|(f−n

y )′(x)|. Hence |gn(z)| ≤ Kgn(x).
Since, by (4.4.2) with u ≡ 1 and c = P (t), the sequence gn(x) converges, we see
that the functions {gn|B′}n≥1 are uniformly bounded. So they form a normal
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family in the sense of Montel, hence we can choose a convergent subsequence
gnj

. Since gn(z) converges to the u ◦ φ−1
j(x)(z) for all z ∈ X ∩B′, it follows that

the gnj
◦φj(x) converges to a complex-analytic function on B(x, r) extending u.

Let us pass now to the proof of the first part of this proposition. That is,
we relax the X-th real analyticity assumption and we want to construct a real-
analytic real-valued extension of u to a neighbourhood of X in C. Our strategy
is to work in C2, to use an appropriate version of Montel’s theorem and, in
general, to proceed similarly as in the first part of the proof. So, fix v ∈ X .
Identify now C, where our f acts, to R2 with coordinates x, y, the real and
complex part of z. Embed this into C2 with x, y complex. Denote the above
C = R2 by C0. We may assume that v = 0 in C0. Given k ≥ 0 and vk ∈ f−k(v)
define the function ρvk

: BC0(0, 2r) → C (the ball in C0) by setting

ρvk
(z) =

(f−k
vk

)′(z)

(f−k
vk )′(0)

,

Since BC0(0, 2r) ⊂ C0 is simply connected and ρvn
nowhere vanishes, all the

branches of logarithm log ρvn
are well defined on BC0(0, 2r). Choose this branch

that maps 0 to 0 and denote it also by log ρvn
. By Koebe’s Distortion Theo-

rem |ρvk
| and |Arg ρvk

| are bounded on B(0, r) by universal constants K1,K2

respectively. Hence | log ρvk
| ≤ K = (logK1) +K2. We write

log ρvk
=

∞
∑

m=0

amz
m

and note that by Cauchy’s inequalities

|am| ≤ K/rm. (5.3.1)

We can write for z = x+ iy in C0

Re log ρvk
= Re

∞
∑

m=0

am(x+iy)m =
∞
∑

p,q=0

Re

(

ap+q

(

p+ q

q

)

iq
)

xpyq :=
∑

cp,qx
pyq.

In view of (5.3.1), we can estimate |cp,q| ≤ |ap+q|2p+q ≤ Kr−(p+q)2p+q. Hence
Re log ρvk

extends, by the same power series expansion
∑

cp,qx
pyq, to the poly-

disc DC2(0, r/2) and its absolute value is bounded there from above by K. Now
for every k ≥ 0 consider a real-analytic function bk on BC0(0, 2r) by setting

bk(z) =
∑

vk∈f−k(0)

|(f−k
vk

)′(z)|t exp(−kP (t)).

By (4.4.2) the sequence bk(0) is bounded from above by a constant L. Each
function bk extends to the function

Bk(z) =
∑

vk∈f−k(0)

|(f−k
vk

)′(0)|t etRe log ρvk
(z) exp(−kP (t)).
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whose domain, similarly as the domains of the functions Re log ρvk
, contains the

polydisc DC2(0, r/2). Finally we get for all k ≥ 0 and all z ∈ DC2(0, r/2)

|Bk(z)| =
∑

vk∈f−k(0)

|(f−k
vk

)′(0)|t eRe(tRe log ρvk
(z)) exp(−kP (t))

≤
∑

vk∈f−k(0)

|(f−k
vk

)′(0)|t et|Re log ρvk
(z)| exp(−kP (t))

≤ eKt
∑

vk∈f−k(0)

|(f−k
vk

)′(0)|t exp(−kP (t)) ≤ eKt L.

Now by Cauchy’s integral formula (in DC2(0, r/2)) for the second derivatives we
prove that the family Bn is equicontinuous on, say, DC2(0, r/3). Hence we can
choose a uniformly convergent subsequence and the limit function G is complex
analytic and extends u on X ∩B(0, r/3), by (4.4.2). Thus we have proved that
u extends to a complex analytic function in a neighbourhood of every v ∈ X in
C2, i.e. real analytic in C0. These extensions coincide on the intersections of the
neighbourhoods, otherwise X is real analytic and we are in the case considered
at the beginning of the proof. See Chapter 9, Lemma 9.1.4 for more details. ♣

In Theorem 5.3.2 we wanted to be concrete and considered the potential
function −t log |f ′| (normalized). In fact we proved the following more general
theorem

Theorem 5.3.3. If f : X → X is an orientation preserving conformal expand-
ing repeller, X ⊂ C and φ is a real-valued function on X which extends to a
harmonic function on a neighbourhood of X in C, then uφ = dµφ/dmφ has a
real-analytic real-valued extension on a neighbourhood of X in C.

Proof. We can assume that pressure P (f, φ) = 0. As in the previous proof
choose 0 ∈ X . Assume that r is small enough that all vk ∈ f−k(0) and all
k = 1, 2, . . . all the branches f−k on B(0, r) and the compositions φ ◦ f−k exist
and are bounded by a constant K > 0. They are harmonic as the compositions
of holomorphic functions with harmonic φ. We have

bk(z) =
∑

vk∈f−k(0)

eSk(φ)(z) ≤ e2K
∑

vk∈f−k(0)

eSk(φ(0)) ≤ e2KL,

where L = supk Lφk(11)(0). We have used the estimate (5.3.1) for harmonic
functions uvk

= Sk(φ)(z) − Sk(φ)(0) =
∑∞
m=0 amz

m, where for each vk we

define Sk(φ)(z) =
∑k−1
i=0 φ(f i(f−k

vk
(z).

This version of (5.3.1) follows from Poisson formula for harmonic functions
uvk

, which are uniformly bounded on B(0, r) due to the uniform exponential
convergence to 0 of |f−i(0) − f−k(z)| as i → ∞. See for example Harnack’s
inequalities in [Hayman & Kennedy 1976, Section 1.5.6 Example 2]. ♣
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Remark 5.3.4. The Proofs of Theorem 5.3.2 and Theorem 5.3.3 are the same.
In Theorem 5.3.2 we explicitly write complex analytic power series extension
in C

2 of log |(f−k)′|, whereas in Theorem 5.3.3 we observe that a general har-
monic function is real-analytic and discuss in particular its domain in complex
extension. For a more precise description of domains of complex extensions of
harmonic functions (in any dimension) see [Hayman & Kennedy 1976, Section
1.5.3]; more references are provided there.

Remark 5.3.5. A version of Theorem 5.3.3 holds in the real case (say if X
is in a finite union of pairwise disjoint circles and straight lines), with finite
smoothness.

Namely, if we assume the potential φ is Cr+ε for r ≥ 1, 0 ≤ ε ≤ 1 and
r + ε > 1, then for m the density uφ of the invariant Gibbs measure µφ with
respect to the eigenmeasure mφ of L, see the beginning of this Section, is Cr+ε.

For a sketch of the proof see Chapter 6, Section 6.4 and Exercise 6.5. See also
[Boyarsky & Góra 1997]. This is related to the Cr+ε-rigidity, see Exercise 5.1.

5.4 Analytic dependence of transfer operator on

potential function

In this section we prove a fundamental theorem about the real-analytic de-
pendence of transfer operators acting on Banach space of Hölder continuous
functions, with respect to the vector space of real-valued Hölder continuous
potentials, and then we derive some consequences concerning real-analytic de-
pendence of pressure with respect to potential and conformal expanding map
(repeller) depending pointwise complex-analytically on a complex parameter.
We will apply Mañé, Sad, Sullivan’s λ-lemma, see Section 5.2. In Chapter 8 we
will deduce the real-analytic dependence of Hausdorff dimension of a conformal
expanding repeller, on parameter.

Let T be a continuous open topologically mixing distance expanding map
on a compact metric space (X, ρ), cf. Chapters 3 and 4. For every point
x ∈ X define Hβ;x to be the Banach space of complex valued Hölder continuous
functions with exponent β, whose domain is the ball B(x, δ) with δ > 0 so small
that all the inverse branches of T are well defined on B(x, δ), for example δ ≤ ξ
in Section 3.1. The Hölder variation ϑβ and the Hölder norm || · ||β = || · ||Hβ

are defined in the standard way, see Chapter 3.
Let L(F ) and L(F1, F2) denote the spaces of continuous linear operators

from F to itself or from F1 to F2 respectively, for F, F1, F2 Banach spaces.
For every function Φ : G→ L(Hβ) for any set of parameters G and for every

x ∈ X define the function Fx : G→ L(Hβ,Hβ;x) by the formula

Φx(λ)(ψ) = Φ(λ)(ψ)|B(x,δ).

Sometimes we write Φ(λ)x.
We start with the following.



5.4. ANALYTIC DEPENDENCE OF TRANSFER OPERATOR 191

Lemma 5.4.1. Let G be an open subset of a complex plane C and fix a function
Φ : G → L(Hβ). If for every x ∈ X the function Φx : G → L(Hβ ,Hβ;x) is
complex analytic and sup{||Φx(λ)||β : x ∈ X : λ ∈ G} < +∞, then the function
Φ : G→ L(Hβ) is complex analytic.

Proof. Fix λ0 ∈ G and take r > 0 so small that the disc centered at λ0 of radius
r, D(λ0, r), is contained in G. Then for each x ∈ X

Φx(λ) =

∞
∑

n=0

ax,n(λ− λ0)n λ ∈ D(λ0, r).

with some ax,n ∈ L(Hβ,Hβ;x), convergence in the operators norm.
Put M = sup{||Φx(λ)||β : x ∈ X : λ ∈ G} < +∞. It follows from Cauchy’s

inequalities that
||ax,n||β ≤Mr−n. (5.4.1)

Now for every n ≥ 0 define the operator an by

an(φ)(z) = az,n(φ)(z), φ ∈ Hβ , z ∈ X.

Then
||an(φ)||∞ ≤ ||az,n||∞||φ||∞ ≤ ||az,n||β ||φ||β . (5.4.2)

Now, if |z − x| < δ, then for every φ ∈ Hβ and every w ∈ D(x, δ) ∩D(z, δ),

∞
∑

n=0

ax,n(φ)(w)(λ − λ0)n = (Φx(λ)(φ))(w) = (Φ(λ)(φ))(w) = (Φz(λ)(φ))(w)

=

∞
∑

n=0

az,n(φ)(w)(λ − λ0)n

for all λ ∈ D(λ0, r). The uniqueness of coefficients of Taylor series expansion
implies that for all n ≥ 0,

ax,n(φ)(w) = az,n(φ)(w).

Since x, z ∈ D(x, δ) ∩D(z, δ), we thus get, using (5.4.1),

|an(φ)(z) − an(φ)(x)| = |az,n(φ)(z) − ax,n(φ)(x)| = |ax,n(φ)(z) − ax,n(φ)(x)|
≤ ||ax,n(φ)||β |x− z|β ≤ ||ax,n||β ||φ||β |x− z|β

≤Mr−n||φ||β |x− z|β.

Consequently, ϑβ(an(φ)) ≤Mr−n||φ||β . Combining this with (5.4.2), we obtain
||an(φ)||β ≤ 2Mr−n||φ||β . Thus an ∈ L(Hβ) and ||an||β ≤ 2Mr−n. Thus the
series

∞
∑

n=0

an(λ− λ0)n
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converges absolutely uniformly on D(λ0, r/2) and ||∑∞
n=0 an(λ−λ0)n||β ≤ 2M

for all λ ∈ D(λ0, r/2). Finally, for every φ ∈ Hβ and every z ∈ X ,

(

∞
∑

n=0

an(λ− λ0)n
)

(φ)(z) =

∞
∑

n=0

an(φ)(z)(λ − λ0)n =

∞
∑

n=0

az,n(φ)(z)(λ − λ0)n

=
(

∞
∑

n=0

az,n(λ− λ0)n
)

(φ)(z) = Φz(λ)(φ)(z)

= (Φ(λ)φ)(z).

So, Φ(λ)(φ) =
(
∑∞
n=0 an(λ− λ0)n

)

(φ) for all φ ∈ Hβ , and consequently, Φ(λ) =
∑∞

n=0 an(λ− λ0)n, λ ∈ D(λ0, r/2). We are done. ♣

The main technical result of this section concerns the analytic dependence
of transfer operator Lφλ

, on parameter λ, is the following

Theorem 5.4.2. Suppose that G is an open subset of the complex space Cd

with some d ≥ 1. If for every λ ∈ G, φλ : X → C is a β-Hölder complex valued
potential, H = sup{||φλ||β : λ ∈ G} < ∞, and for every z ∈ X the function
λ 7→ φλ(z), λ ∈ G, is holomorphic, then the map λ 7→ Lφλ

∈ L(Hβ), λ ∈ G, is
holomorphic.

Proof. We have for all λ ∈ G and all v ∈ X that

|| exp
(

φλ ◦ T−1
v

)

||∞ ≤ eH , (5.4.3)

where T−1
v is the branch of T−1 on B(T (v), δ) mapping T (v) to v, compare

notation in Section 3.1. In virtue of Hartogs Theorem in order to prove our
theorem, we may assume without loss of generality that d = 1, i.e. G ⊂ C.
Now fix λ0 ∈ G and take a radius r > 0 so small that B(λ0, r) ⊂ G. By
our assumptions the function λ 7→ exp

(

φλ ◦ T−1
v (z)) is holomorphic for every

z ∈ B(T (v), δ). Consider its Taylor series expansion

exp
(

φλ ◦ T−1
v (z)

)

=

∞
∑

n=0

av,n(z)(λ− λ0)n, λ ∈ B(λ0, r).

In view of Cauchy’s inequalities and (5.4.3) we get

|av,n(z)| ≤ eHr−n, (5.4.4)

and, for w, z ∈ B(T (v), δ), using also Cauchy’s inequalities,

|av,n(w) − av,n(z)| ≤ r−n sup
λ∈G

| exp
(

φλ ◦ T−1
v (w)

)

− exp
(

φλ ◦ T−1
v (z)

)

|

≤ ĉr−n|w − z|β,
(5.4.5)
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where ĉ is a constant depending only on T and H . Take an arbitrary φ ∈ Hβ

and consider the product av,n(z) · φ(T−1
v (z)). In view of (5.4.4) and (5.4.5), we

obtain

|av,n(w)φ(T−1
v (w)) − av,n(z)φ(T−1

v (z))| ≤
≤ |av,n(w) − av,n(z)| · ||φ||∞ + |av,n(z)| · ||φ||βLβ|w − z|β

≤ r−n(ĉ+ eHLβ)||φ||β |w − z|β

= ĉ1r
−n||φ||β |w − z|β ,

where ĉ1 = ĉ(1+Lβ) and L is a common Lipschitz constant for all branches T−1
v

coming from the expanding property. Combining this and (5.4.4) we conclude
that the formulaNv,nφ(z) = av,n(z)φ(T−1

v (z)) defines a bounded linear operator
Nv,n : Hβ → Hβ;x, where x = T (v), and

||Nv,n||β ≤ (eH + ĉ1)r
−n.

Consequently the function λ 7→ Nv,n(λ − λ0)n, λ ∈ B(λ0, r/2), is analytic and
||Nv,n(λ− λ0)n||β ≤ 2−n(eH + ĉ1). Thus the series

Aλ,v =

∞
∑

n=0

Nv,n(λ − λ0)n, λ ∈ D(λ0, r/2),

converges absolutely uniformly in the Banach space L(Hβ ,Hβ,x), ||Aλ,v||β ≤
2(eH+ĉ1) and the function λ 7→ Aλ,v ∈ L(Hβ,Hβ;x), λ ∈ B(λ0, r/2), is analytic.
Hence, Lλ,x =

∑

v∈f−1(x)Aλ,v ∈ L(Hβ ,Hβ;x),

||Lλ,x||β ≤ 2N(T )(eH + ĉ1),

where N(T ) is the number of preimages of a point in X , and the function
λ 7→ Lλ,x, λ ∈ D(λ0, r/2), is analytic. Since Lλ,x = (Lφλ

)x, invoking Lemma
5.4.1 concludes the proof. ♣

Note that a function from a complex vector space to a complex Banach space
is called holomorphic if its restriction to any complex finite dimensional affine
subspace is holomorphic, see [Dunford & Schwartz 1958, Definition VI.10.5]. So
Theorem 5.4.2 yields the analyticity of

Hβ ∋ φ 7→ Lφ ∈ L(Hβ)

mentioned in the introduction to this Section, complex analyticity and also real
analyticity after restricting the function to the real space Hb.

Remark 5.4.3. In the proof one can omit referring to Lemma 5.4.1 by con-
sidering directly the operators Lφλ

, rather than considering individual branches
T−n
v and the operators Aλ,v first.
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Now consider an expanding conformal repeller (X, f, U), in C, f : U → C

conformal, preserving X , T = f |X , and holomorphic perturbations fλ : U → C,
λ ∈ Λ, where Λ is an open subset of C

d, fλ0 = f for some λ0 ∈ Λ. Let
iλ : X → Xλ be the corresponding holomorphic motion coming from Lemma
5.2.8 and Remark 5.2.9 (d > 1 does not cause problems).

Our goal is to prove that the pressure function

(λ, t) 7→ P(λ, t) = P(fλ,−t log |f ′
λ|) ∈ R for t ∈ R,

, is real-analytic. The idea is to consider potentials φλ,t = −t log |f ′
λ| ◦ iλ :

X → R, (λ, t) ∈ Λ×R, to embed them into a holomorphic family to satisfy the
assumptions of Theorem 5.4.2 and then to use Kato’s theorem for perturbations
of linear operators. Indeed, by Lemma 5.2.8, for every z ∈ X , the function
λ 7→ Ψz(λ) = log |f ′

λ(iλ(z))| − log |f ′(z)| is harmonic on Λ and Ψz(λ0) = 0. Fix
r > 0 so small that B(λ0, 2r) ⊂ Λ. Then

M = sup{|Ψz| : (z, λ) ∈ X ×B(λ0, r)} < +∞.

So, each function Ψz extends holomorphically to λ ∈ BC2d(λ0, r/2), we will use
the same symbol Ψz for this extension, and

M1 = sup{|Ψz(λ)| : (z, λ) ∈ X ×BC2d(λ0, r/2)} < +∞.

Since all the functions iλ, λ ∈ B(λ0, r), are Hölder continuous with a common
Hölder exponent, say β, and common Hölder norm for the exponent β, see
Proposition 5.1.7 or Remark 5.2.10, an easy application of Cauchy inequalities
gives that for all λ ∈ BC2d(λ0, r/2) the function z 7→ Ψz(λ) is Hölder contin-
uous with the exponent β and the corresponding Hölder norms are uniformly
bounded, say by M2. Thus the potentials

φλ,t(z) = −tΨz(λ) + t log |f ′(z)|, (λ, t) ∈ BC2d(λ0, r/2) × U,

for any bounded U ⊂ C, satisfy the assumptions of Theorem 5.4.2 and for
all (λ, t) ∈ B(λ0, r/2) × R, we have φλ,t = −t log |f ′

λ ◦ iλ|. As an immediate
application of this theorem, we get the following.

Lemma 5.4.4. The function

(λ, t) 7→ Lφλ,t
∈ L(Hβ), (λ, t) ∈ BC2d(λ0, r/2) × C,

is holomorphic.

Since for all (λ, t) ∈ B(λ0, r/2)×R, exp(P(λ, t) is a simple isolated eigenvalue
of Lφλ,t

∈ L(Hβ) depending continuously on (λ, t), it follows from Lemma 5.4.4
and Kato’s theorem for perturbations of linear operators that there exists a holo-
morphic function γ : BC2d(λ0, R)×C → C (R ∈ (0, r/2] sufficiently small) such
that γ(λ, t) is an eigenvalue of the operator Lφλ,t

for all (λ, t) ∈ BC2d(λ0, R)×C

and γ(λ, t) = exp(P(λ, t)) for all (λ, t) ∈ B(λ0, R) × R. Consequently, the
function (λ, t) 7→ P(λ, t), (λ, t) ∈ B(λ0, R) × R, is real-analytic, and as real
analyticity is a local property, we finally get the following.

Theorem 5.4.5. The pressure function (λ, t) 7→ P(fλ,−t log |f ′
λ|), t ∈ R, is

real-analytic.
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Exercises

5.1. Let f, g : S1 → S1 be two C1+ε-expanding maps of the circle, 0 < ε ≤ 1.
Prove that if there is a conjugacy h, i.e. a homeomorphism h : S1 → S1

such that g ◦ h = h ◦ f and h has at least one point x of differentiability and
h′(x) 6= 0,±∞, then h ∈ C1+ε. If r = 2, 3, ...,∞, ω (the latter means real-
analytic) and 0 ≤ ε ≤ 1, and if f, g ∈ Cr+ε, then h ∈ Cr+ε.

Hint: The proof can follow the lines of the Cantor repellers case, see Chap-
ter 6, or the proof of Theorem 8.5.5, the second method, in the analytic case.

Bibliographical notes

Lemma 5.1.2 and Proposition 5.1.3 establishing the equivalence of various prop-
erties of being a repeller for an expanding set, correspond to the equivalence
for hyperbolic subsets of properties “local product structure”, being “isolated”
and “unstable set” being union of unstable manifolds of “individual trajecto-
ries”, see [Katok & Hasselblatt 1995, Section 18.4]. For the theory of hyper-
bolic endomorphisms, in particular in the inverse limit (backward trajectories)
language, as in Remark 5.1.4, see [Przytycki 1976] and [Przytycki 1977]. In
[Przytycki 1977] some examples of Axiom A endomorphisms, whose basic sets
are expanding repellers, are discussed. The example 5.1.9 was studied by M.
Denker and S.-M. Heinemann in [Denker & Heinemann 1998]. For Section 5.4
compare [Urbanski & Zinsmeister 2001] or [Mauldin & Urbanski 2003, Section
2.6.]. Theorem 5.4.5 holds in a setting more general than expanding, see Sec-
tion 11.5, [Stratmann & Urbanski 2003] and [Przytycki & Rivera–Letelier 2008].
For Exercise 5.1 and related considerations see in particular [Shub, Sullivan 1985],
[Jiang 1996], [Cui 1996]. See also the recent [Jordan et al.] for the multifractal
analysis of the conjugacy h in the case it is not differentiable, f, g piecewise
expanding, compare Section 8.2.
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Chapter 6

Cantor repellers in the line,

Sullivan’s scaling function,

application in Feigenbaum

universality

After very general previous chapters we want for a while to concentrate on
the real one-dimensional situation, i.e. fractals in the line. In Exercise 5.1 we
discussed expanding maps of the circle. The aim of this Chapter is to study thor-
oughly Cantor sets in the line with expanding maps on them (generalizing but
in some features more difficult than the whole circle case, see Remark 6.1.11).
Starting from Chapter 8 we shall mainly work with the one-dimensional com-
plex case (conformal fractals) the main aim of this book. Some consideration
from this Section will be continued, including the complex case, in Chapter 9.

In Section 6.1 we supply a 1-sided shift space Σd (see Chapter 0 with ambient
real one-dimensional differentiable structures, basically C1+ε, (Hölder continu-
ous differentials). In Section 6.2 we ask when the shift map extends C1+ε to
a neighbourhood of the Cantor set being an embedding of Σd into a real line.
In case it does, we have a C1+ε expanding repeller, see the definition at the
beginning of Chapter 5. There a scaling function appears, which is a complete
geometric invariant for the C1+ε-equivalence (conjugacy). It happens that scal-
ing functions classify also Cr+ε equivalence classes for Cr+ε Cantor expanding
repellers, for all r = 1, 2, . . . ,∞, 0 ≤ ε ≤ 1, r + ε > 1 and for the real-analytic
case. Section 6.3 is devoted to that (for ε > 0, for ε = 0 see Section 6.4).
However scaling functions “see” the smoothness of the Cantor repeller, namely
the smoother the differentiable structure the less scaling functions can occur,
see examples at the end of Section 6.2 and Section 6.4.

In Section 6.5 we define so-called generating families of expanding maps. It
is a bridge towards Section 6.6, where Feigenbaum’s universality, concerning the

197
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geometry of the Cantor set being the closure of the forward trajectory of the
critical point of the quadratic-like map of the interval will be discussed.

While the proofs in Sections 6.1–6.5 are written very detaily, Section 6.6
has a sketchy character. We do not involve much in the theory of iterations
of maps of the interval. We refer the reader to [Collet & Eckmann 1980] and
[de Melo & van Strien 1993].

For the universality see [Sullivan 1991] and [McMullen 1996], where the key
theorem towards this, namely the exponential convergence of renormalizations
has been proved, with the use of complex methods. (For more references see
Notes at the end of this Chapter.)

In section 6.6 we just show how the exponential convergence yields the C1+ε

equivalence of Cantor sets being closures of postcritical sets.

Most of this Chapter is written on the basis of Dennis Sullivan’s paper
[Sullivan 1988], completed by the paper by F. Przytycki and V. Tangerman
[Przytycki & Tangerman 1996] .

6.1 C1+ε-equivalence

For simplicity we shall consider here only the class H of homeomorphic embed-
dings of Σd into unit interval [0, 1] ⊂ R such that the order is preserved, i.e. for
h : Σd → R if α = (α0, α1, . . . ), β = (β0, β1, . . . ) ∈ Σd, αj = βj for all j < n
and αn < βn then h(α) < h(β). In Section 6.5 we need to consider more general
situations but the basic facts stay precisely the same.

Consider an arbitrary h ∈ H. For every j0, j1, . . . , jn ∈ {1, . . . , d}, n >
0 denote by Ij0,...,jn the closed interval with ends h((j0, j1, . . . , jn, 1, 1, 1, . . . ))
and h((j0, j1, . . . , jn, d, d, d, . . . )). The interval [h((1, 1, . . . )), h((d, d, . . . ))] will
be denoted by I. For jn < d denote by Gj0,...,jn the open interval with the
ends h((j0, j1, . . . , jn, d, d, d, . . . )) and h((j0, j1, . . . , jn+1, 1, 1, 1, . . . )), the letters
G stand for gaps here because of the disjointness with h(Σd). Denote En =
⋃

(j0,...,jn) Ij0,...,jn . We see that h(Σd) is a Cantor set
⋂∞
n=0 En.

Definition 6.1.1. Given h ∈ H and w = (j0, j1, . . . , jn) where each jt ∈
{1, . . . , d} we call the sequence of numbers Aj(h,w) :=

|I
w,

j+1
2

|
|Iw| for j odd,

Aj(h,w) :=
|G

w,
j
2
|

|Iw| for j even, j = 1, . . . , 2d− 1, the ratio geometry of w, (| · |
denote lengths here). The ratio geometry is the function w 7→ (Aj(h,w), j =
1, . . . 2d− 1).

Definition 6.1.2. We say h ∈ H has bounded geometry if the ratios Aj(h,w)
are uniformly, for all w, j, bounded away from zero. We denote the space of
h’s from H with the bounded geometry by Hb. We say h ∈ H has exponential
geometry if |Ij0,...,jn | converge to 0 uniformly exponentially fast in n and not
faster. We denote the space of h’s from H with the exponential geometry by
He. Observe that He ⊃ Hb.
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Definition 6.1.3. Given h1, h2 ∈ H we say they have equivalent geometries if
Aj(h1,w)
Aj(h2,w) converge to 1 uniformly in length of w. We say h1, h2 have exponentially

equivalent geometries if the convergence is exponentially fast with the length
of w.

One can easily check that the exponential geometry is the property of the
geometric equivalence classes and that the bounded geometry property is the
property of the exponentially equivalent geometry classes.

Definition 6.1.4. We say that h1, h2 ∈ H are C1+ε-equivalent if there exists
an increasing C1+ε-diffeomorphism φ of a neighbourhood of h1(Σ

d) to a neigh-
bourhood of h2(Σ

d) such that φ|h1(Σd) ◦h1 = h2. We call φ|h1(Σd) the canonical
conjugacy, as it is uniquely determined by h1 and h2. So Cr+ε means that the
canonical conjugacy extends Cr+ε.

Each class of equivalence will be called a C1+ε-structure for Σd. These defi-
nitions are valid also for C1+ε replaced by Cr+ε for every r = 0, 1, . . . ,∞, ω, 0 ≤
ε ≤ 1. For ε = 0 this means the continuity of the r-th derivative, for 0 < ε < 1
its Hölder continuity, for ε = 1 Lipschitz continuity. ω means real-analytic.
(Compare this notation with Exercise 5.1.)

Proposition 6.1.5. Let h1, h2 ∈ H. Then if they are C1-equivalent, they have
equivalent geometries.

We leave a simple proof to the reader. Also the following holds

Theorem 6.1.6. Let h1, h2 ∈ He. Then h1, h2 are C1+ε-equivalent for some
ε > 0 if and only if h1 and h2 have exponentially equivalent geometries.

Proof. We shall use the fact that a real function φ on a bounded interval is
C1+ε-smooth if and only if there exists a constant C > 0 such that for every
x < y < z

∣

∣

∣

∣

φ(y) − φ(x)

y − x
− φ(z) − φ(y)

z − y

∣

∣

∣

∣

< C(z − x)ε (6.1.1)

(this is an easy calculus exercise).
Suppose there exists a diffeomorphism φ as in the definition of the equiva-

lence. As φ is a diffeomorphism we can write (6.1.1) for it in a multiplicative
form and obtain for each w = (j1, j2, . . . , jn) and j = 1, . . . , d and intervals
for h1

∣

∣

∣

∣

|φ(Iwj)|
|Iwj |

/
|φ(Iw)|
|Iw|

− 1

∣

∣

∣

∣

< Const |Iw|ε (6.1.2)

and the analogous inequalities for the gaps. Changing order in this bifraction

we obtain
Aj(h1,w)
Aj(h2,w) converging to 1 exponentially fast with n, the length of w.

We have used here the assumption h1 ∈ He to get |Iw| ≤ exp−δn for some
δ > 0. Thus we proved the Theorem to one side. Using Sullivan’s words we
proved that the ratio geometry is determined exponentially fast in length of w
by the C1+ε-structure.



200 CHAPTER 6. CANTOR REPELLERS IN THE LINE

Now we shall prove the Theorem to the other side. Let us fix first some
notation. For every m ≥ 0 denote by Gm the set of all intervals Ij0,j1,...,jm and
Gj0,j1,...,jm .

We must extend the mapping h2 ◦h−1
1 : h1(Σ

d) → h2(Σ
d) to a mapping φ on

all the gaps Gw for h1. (We could use Whitney Extension Theorem, see Remark
6.1.7, but we will give a direct proof). The extension will be denoted by φ. For

each two points u < v on which φ is already defined we denote φ(v)−φ(u)
v−u by

R(u, v). We shall use also the notation R(J) if u, v are ends of an interval J .
Given Gj0,j1,...,jn with the ends a < b we want to have the derivatives

φ′(a) = lim
m→∞

R(Jm(a)), φ′(b) = lim
m→∞

R(Jm(b)) (6.1.3)

where Jm(a), Jm(b) ∈ Gm,m ≥ n, all Jm(a) have the right end a and all Jm(b)
have the left end b.

It is easy to see that the limits exist, are uniformly bounded and uniformly
bounded away from 0 for all G’s. This follows from the following distortion
estimate (compare Section 5.2):

For every j0, . . . , jm if J ⊂ Ij0,...,jm = I and J ∈ Gk, k > m then

∣

∣

∣

∣

R(J)

R(I)
− 1

∣

∣

∣

∣

≤ Const exp−mδ (6.1.4)

Here δ is the exponent of the assumed convergence in the notion of the exponen-
tial equivalence of geometries. This property can be called bounded distortion
property, compare Section 5.2.

To prove (6.1.4) observe that there is a sequence Ij0,...,jm = Jm ⊃ Jm+1 ⊃
· · · ⊃ Jk = J of intervals such that Jj ∈ Gj and by the assumptions of the
Theorem

1 − Const exp−(j − 1)δ ≤
∣

∣

∣

∣

R(Ij)

R(Ij−1)

∣

∣

∣

∣

≤ 1 + Const exp−(j − 1)δ.

We obtain (6.1.4) by multiplying these inequalities over j = m+ 1, . . . , k.
If x ∈ Ij0,...,jm = I is the end point of any gap, then

∣

∣

∣

∣

φ′(x)

R(I)
− 1

∣

∣

∣

∣

≤ Const exp−mδ (6.1.5)

(In fact x can be any point of h1(Σ
d) in I but there is no need to define here φ′

at these points except the ends of gaps. Compare Remark 5.3.4.)
To get (6.1.5) one should consider an infinite sequence of intervals containing

x and consider the infinite product over j = m+ 1, . . .
Later on we shall use also a constant ε > 0 such that for every s ≥ 0

exp−sδ ≤ Const inf
J∈Gs

|J |ε. (6.1.6)

Such an ε exists because by the exponential geometry assumption infJ∈Gs |J |
cannot converge to 0 faster than exponentially.
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We can go back to our interval (a, b). We extend φ′ linearly to the interval
[a, a+b2 ] and linearly to [a+b2 , b], continuously to [a, b]. Moreover we care about

choosing φ′(a+b2 ) = t such that
∫

[a,b] φ
′(x)dx = φ(b)−φ(a). But our gap Gj0,...,jn

is in the interval Ij0,...,jn−1 so by (6.1.5)

∣

∣

∣

∣

R(a, b)

φ′(a)
− 1

∣

∣

∣

∣

< Const exp−(n− 1)δ

and the same for φ′(b). This and the computation

R(a, b) =

∫

[a,b]
φ′(x)dx

b− a
=

1

2
(b− a)(

φ′(a) + t

2
+
φ′(b) + t

2
)/(b− a)

=
1

4
(φ′(a) + φ′(b) + 2t)

show that
∣

∣

∣

∣

t

φ′(a)
− 1

∣

∣

∣

∣

,

∣

∣

∣

∣

t

φ′(b)
− 1

∣

∣

∣

∣

< Const exp−nδ. (6.1.7)

In particular t > 0, hence φ is increasing.

Now we need to prove the property (6.1.1). It is sufficient to consider points
x, y, z in gaps because h1(Σ

d) is nowhere dense.

We shall construct a finite family A(x, y) of intervals in
⋃∞
m=0 Gm “joining”

the gaps in which x and y lie. Suppose x < y and let n be the largest integer
such that x, y belong to the same element of Gn. If x, y belong to different
elements of G0 we take n = −1.

If x, y belong to a gap Gj0,..,jn then A(x, y) is empty. If they belong to
Ij0,..,jn then they belong to different intervals J(x, n + 1), J(y, n + 1) of Gn+1.
We account to A(x, y) all the intervals in Gn+1 lying between J(x, n + 1) and
J(y, n+ 1) excluding J(x, n+ 1) and J(y, n+ 1) themselves. We shall continue
with J(x, n+ 1), the procedure for J(y, n+ 1) is analogous.

If J(x, n+ 1) is a gap we end the process, nothing new will be accounted to
A(x, y) from this side. In the opposite case we account to A(x, y) all the intervals
of Gn+2 in J(x, n + 1) to the right of x not containing x and denote this one
which contains x by J(x, n+ 2). We continue this procedure by induction until
J(x,m) is for the first time a gap.

Thus the “joining” set A(x, y) has been constructed.

Consider first the case A(x, y) = ∅. It is easy to see that then both x, y
belong to Gj0,...,jn . Suppose x, y ∈ (a, a+b2 ] where a, b are ends of the gap and
t will be the value of φ′ in the middle, as in the notation before. For u ∈ [x, y]
by the linearity of φ′ and using (6.1.7) we obtain

|φ′(u) − φ′(x)| ≤ 2(u− x)

b− a
|t− φ′(a)| ≤ Const

(u− x)

b− a
φ′(a) exp−nδ.
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Next using the fact that φ′(a) is uniformly bounded and by (6.1.6) we get

R(x, y) =

∫

[x,y]

φ′(u)du/(y − x) ≤ φ′(x)(1 + Const
y − x

b− a
(b− a)ε

)

≤ φ′(x)

(

1 + Const(y − x)ε
)

(6.1.8)

and the analogous bound from below. The case x, y are to the right of a+b
2

can be dealt with similarly. We can also write in (6.1.8) φ′(y) instead of φ′(x).
Finally if x < a+b

2 < y we obtain (6.1.8) by summing up the estimates for

(x, a+b2 ] and [a+b2 , y).
Consider the case A(x, y) 6= ∅. Let m ≥ n be the smallest integer such that

there exists Jj0,...,jm ∈ A(x, y) ∩ Gm, (J can be I or G what means it can be a
gap or non-gap).

Denote the right end of the gap containing x by x′ and the left end of the
gap containing y by y′.

We obtain with the use of (6.1.4)

R(x′, y′) =

∑

J∈A(x,y) |φ(J)|
∑

J∈A(x,y) |J |
≤ R(Ij0,...,jm−1)(1+Const exp−(m−1)δ). (6.1.9)

We used the fact that all J ∈ A(x, y) are in Ij0,...,jm−1 . By (6.1.7) we obtain

φ′(x′) ≤ R(Ij0,...,jm−1)(1 + Const exp−mδ).
From these and the analogous inequalities to the other side we obtain finally

∣

∣

∣

∣

R(x′, y′)

φ′(x)
− 1

∣

∣

∣

∣

≤ Const exp−mδ ≤ Const(y′ − x′)ε. (6.1.10)

The similar inequality holds for φ′(y).
We will conclude now. By (6.1.8) and (6.1.10) each two consecutive terms

in the sequence

φ′(x), R(x, x′), φ′(x′), R(x′, y′), φ′(y′), R(y′, y), φ′(y)

have the ratio within the distance from 1 bounded by Const(y − x)ε. So
∣

∣

∣

∣

R(x, y)

φ′(y)
− 1

∣

∣

∣

∣

< Const(y − x)ε (6.1.11)

Recall now that to prove (6.1.1) we picked also a third point: z > y. If y, z
play the role of previous x, y we obtain

∣

∣

∣

∣

R(y, z)

φ′(y)
− 1

∣

∣

∣

∣

< Const(z − y)ε.

So
∣

∣

∣

∣

R(x, y)

R(y, z)
− 1

∣

∣

∣

∣

< Const(z − x)ε.

Using the uniform boundedness of R’s we obtain this in the additive form
i.e. (6.1.1). The Theorem is proved.
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Remark 6.1.7. One can shorten the above proof by referring to Whitney Ex-
tension Theorem (see for example [Stein 1970]).

Indeed, one can define φ′(x) for every x ∈ h1(Σ
d), x =

⋂∞
m=0 Ij0,...,jm , by

the formula (as (6.1.3)) φ′(x) = limR(Ij0,...,jm).
Then the estimate (6.1.8) for all x, y ∈ h1(Σ

d), rewritten as

φ(y) = φ(x) + φ′(x)(y − x) +O(|y − x|1+ε)

which, together with Hölder continuity of φ′ with exponent ε (see (6.1.5) and
(6.1.6)) are precisely the assumptions for the Whitney Theorem, that asserts
that φ has a C1+ε extension.

Remark 6.1.8. It is substantial to assume in Theorem 6.1.6 that the conver-
gence

Aj(h1,w)
Aj(h2,w) → 1 is exponential i.e. the geometries are exponentially equiva-

lent. Otherwise φ′(a) in (6.1.3) may not exist.
To prove the existence of φ′ on h1(Σ

d), the uniform convergence of the
finite (in case they end with expressions involving gaps) or infinite products
∏

n

Ajn+1
(h1,(j0,...,jn))

Ajn+1
(h2,(j0,...,jn)) is sufficient.

Remark 6.1.9. For each h1, h2 ∈ H the order preserving mapping φ : h1(Σ
d) →

h2(Σ
d) is quasisymmetric (see Definition 5.2.6). The equivalence of the geome-

tries is equivalent to the 1-quasisymmetric equivalence, cf. Exercise 6.2.

Example 6.1.10. It can happen that above φ : h1(Σ
d) → h2(Σ

d) is Lipschitz
continuous but all extensions are non-differentiable at every point in h1(Σ

d).
Let hi : Σ3 → R be defined by h1((j0, . . . )) = a =: .a1a2 . . . in the develop-

ment of a in base 6, where
as = 0 if js = 1, as = 2 if js = 2 and as = 5 if js = 3 for h1

and
as = 0 if js = 1, as = 3 if js = 2 and as = 5 if js = 3 for h2.

0 1 2 3 4 5 6

Figure 6.1: “Generators” of two differentiably different Cantor sets

Remark 6.1.11. In the case φ conjugates expanding maps belonging to C1+ε

on the circle, this cannot happen. For example Lipschitz conjugacy has points
of differentiability hence by expanding property of, say analytic, maps involved,
it is analytic (see Chapter 8). For Cantor sets, as above, if they are non-linear
(see Chapter 9 for definition), then φ Lipschitz implies φ analytic. However
for linear sets, as in this example, an additional invariant is needed to describe
classes of C1+ε-equivalence, so-called scaling function, see the next Section 6.2.
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6.2 Scaling function. C1+ε-extension of the shift

map

Until now we have not discussed dynamics. Recall however that we have on Σd

the left side shift map s(j0, j1, . . . ) = (j1, . . . ). We ask for a condition about
the ratio geometry for h ∈ H under which s, more precisely h ◦ s ◦ h−1, extends
C1+ε to a neighbourhood of h(Σd).

Definition 6.2.1. For the ratio geometry of h ∈ H we consider the sequence
of functions to R2d−1

Sn(j−n, . . . , j−1) = (Sn(j−n, . . . , j−1)j , j = 1, . . . , 2d− 1) :=

(Aj(h, (j−n, . . . , j−1)), j = 1, . . . , 2d− 1).

We call this a scaling sequence of functions. The limit

S(. . . , j−2, j−1) = lim
n→∞

Sn(j−n, . . . , j−1)

if it exists, is called scaling function. By the definition

2d−1
∑

j=1

Sn(·)j ≡
2d−1
∑

j=1

S(·)j ≡ 1.

Let us discuss now the domain of Sn, S. These functions are defined on one-
sided sequences of symbols from {1, . . . , d} so formally on Σd. We want to be
more precise however.

Consider the natural extension of Σd i.e. 2-sided shift space Σ̃d = {(. . .-
, j−1, j0, j1, . . . )}. Then S can be considered as a function on Σ̃d but for each
(. . . , j−1, j0, j1, . . . ) depending only on the past (. . . , j−2, j−1). The functions
Sn depend only on finite past.

Definition 6.2.2. The domain of S and Sn is the factor of Σ̃d where we forget
about the present and future, i.e. we forget about the coordinates j0, j1, . . . .
We call this factor dual Cantor set and denote by Σd∗. The range of S and Sn
is the 2d− 2-dimensional simplex Simp2d−2 being the convex hull of the 2d− 1
points (0, . . . , 1, . . . , 0), with 1 at the position j = 1, 2, . . . , 2d− 1.

Thus S is not a function on h(Σd) but if we consider h(Σd) with the shift
map h ◦ s ◦ h−1 then we can see the dual Cantor set, i.e. the domain of S and
Sn, as the set of all infinite choices of consecutive branches of (h ◦ s ◦ h−1)−1 on
h(Σd).

Remark that if instead of (h(Σd), h◦ s◦h−1) we considered an arbitrary, say
distance expanding, repeller we could define backward branches only locally, i.e.
there would be no natural identification of fibres of the past over two different
distant points of the repeller.

Proposition 6.1.5 yields
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Proposition 6.2.3. If h1, h2 ∈ H are C1-equivalent and there exists a scaling
function S for h1, then h2 has also a scaling function, equal to the same S.

In particular this says that C1-equivalence preserves scaling function. Note
that this is not the case for Lipschitz equivalence, see Example 6.1.10.

From Theorem 6.1.6 we easily deduce the following

Theorem 6.2.4. If h ∈ He and h ◦ s ◦ h−1 extends to a C1+ε-mapping sh on
a neighbourhood of h(Σd) then

Sn
Sn+1

→ 1, the convergence is uniformly exponentially fast. (6.2.1)

Conversely, if h ∈ H and (6.2.1) is satisfied then h ∈ He and h ◦ s ◦ h−1

extends to a C1+ε-mapping.

Proof. Consider the sets Σdi = {α ∈ Σd : α0 = i} for i = 1, . . . , d. Each
Σdi can be identified with Σd by Li((α0, α1, . . . )) = (i, α0, α1, . . . ). Of course
hi := h◦Li ∈ H. Denote h◦s◦h−1 : h(Σdi ) → h(Σd) by si. We have si ◦hi = h.

So by Theorem 6.1.6 all si extend C1+ε iff
Aj(h,w)
Aj(hi,w) converge to 1 uniformly

exponentially fast in length of w. These ratios are equal to
Aj(h,w)
Aj(h,iw) i.e. Sn

Sn+1
,

n being the length of w. So we obtain precisely the assertion of our Theorem.
To apply Theorem 6.1.6 we used the observation that (6.2.1) easily implies

h ∈ Hb (by a sort of bounded distortion for iterates of h ◦ s ◦ h−1 property), in
particular h ∈ He, see Proposition 6.2.9. ♣

Example 6.2.5. Note that sh of class C1+ε (even Cω) does not imply h ∈ He.
Indeed, consider h such that sh has a parabolic point, for example sh(x) =
x+ 6x2 for 0 ≤ x ≤ 1/3 and sh(x) = 1 − 3(1 − x) for 2/3 ≤ x ≤ 1.

Remark 6.2.6. The assertions of Theorems 6.1.6 and 6.2.4 stay true if each
Cantor set is constructed with the help of the intervals Ij0,...,jn as before but we
do not assume that the left end of Ij0,...,jn,1 coincides with the left end of Ij0,...,jn
and that the right end of Ij0,...,jn,d coincides with the right end of Ij0,...,jn .

So there might be some “false” gaps in Ij0,...,jn to the left of Ij0,...,jn,1 and to
the right of Ij0,...,jn,d. In the definitions of bounded and exponential geometry we
do not assume anything about these gaps, they may shrink faster than exponen-
tially as n→ ∞. But whereever ratios are involved, i.e. in Aj(h1, w), Aj(h2, w)
in Theorem 6.1.6 or S, Sn in Theorem 6.2.4 we take these gaps into account, so
j = 0, 1, . . . , 2d.

The condition sufficient in Theorem 6.1.6 to C1+ε-equivalence is that
Aj(h1, w) − Aj(h2, w) → 0 exponentially fast.

The condition sufficient in Theorem 6.2.4 to the C1+ε-extentiability of h ◦
s ◦ h−1 is that Sn → S exponentially fast.

To prove these assertions observe that if we extend gaps of the n + 1-th
generation (between Ij0,...,jn,j and Ij0,...,jn,j+1, j = 1, . . . , d− 1) by false gaps of
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higher generations to get real gaps of the resulting Cantor set, then they and
the remaining intervals satisfy the assumptions of Theorems 6.1.6 and 6.2.4.

This remark will be used in the Section 6.4.

Definition 6.2.7. We say that h ∈ H satisfying (6.2.1) has an exponentially
determined geometry. The set of such h’s will be denoted by Hed.

Definition 6.2.8. Let j = (jn)n=...,−2,−1, j
′ = (j′n)n=···−2,−1 ∈ Σd∗. Denote by

j ∩ j′ the sequence (j−N , . . . , j−1) with N = N(j, j′) the largest integer (or ∞)
such that j−n = j′−n for all n ≤ N . For an arbitrary δ > 0 define the metric ρδ
on Σd∗ by

ρδ(j, j
′) = exp−δN(j, j′).

Let us make the following simple observation

Proposition 6.2.9. a) He ⊃ Hb ⊃ Hed.
b) If h ∈ Hed then the scaling function S exists is Hölder continuous with

respect to any metric ρδ, see Definition 6.2.8, and S(·)i are bounded away from
0 and 1.

(Observe however that the converse is false. One can take each Sn constant
hence S constant, but Sn

S converging to 1 slower than exponentially so h /∈ Hed.)
c) If h ∈ Hed then (h(Σd), sh) is a C1+ε-expanding repeller. (We shall use

also the words C1+ε-Cantor repeller in the line.)

Proof. We leave a) and b) to the reader (the second inclusion in a) was already
commented in Proof of Theorem 6.2.4) and prove c). Similarly as in Proof of
Theorem 6.1.6. the property (6.1.5), we obtain the existence of a constant C > 0
such that for x = h((j0, j1, . . . )) ∈ Σd and n ≥ 0

C−1 < |(snh)′(x)|/
|I|

|Ij0,...,jn |
< C.

As h ∈ He, in particular |Ij0,...,jn | → 0 uniformly we obtain |(snh)′(x)| > 1
for all n large enough and all x.

It follows from Theorem 6.1.6 that classes of C1+ε-equivalence in Hed are
parametrized by Hölder continuous functions on Σd∗ (as scaling functions). To
have the one-to-one correspondence we need only to prove the existence theorem:

Theorem 6.2.10. For every Hölder continuous function S : Σd∗ → R
2d−1
+ such

that
2d−1
∑

j=1

S(·)j ≡ 1 (6.2.2)

there exists h ∈ Hed such that S is the scaling function of h.

First let us state the existence lemma:

Lemma 6.2.11. Given numbers Aw,j > 0 for every w = (j0, . . . , jn), n =

0, 1, . . . , j = 1, . . . 2d − 1, such that
∑2d−1

j=1 Aw,j = 1, there exists h ∈ H such
that Aw,j = Aj(h,w) i.e. h has the prescribed ratio geometry.
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Proof of Lemma 6.2.11. One builds a Cantor set by removing gaps of consecutive
generations, from each Iw gaps of lengths Aw,j|Iw |, j even, so that the intervals
not removed have lengths Aw,j , j odd, j = 1, . . . , 2d− 1.

Proof of Theorem 6.2.10. Let Aw,j := S((. . . , 1, 1, w))j . By (6.2.2)
∑2d−1
j=1 Aw,j =

1 so we can apply Lemma 6.2.11. The property (5.4.11), the exponential con-
vergence, follows immediately from the Hölder continuity of S and the fact that
S is bounded away from 0 as positive continuous on the compact space Σd∗.

Summary: C1+ε-structures in Hed are in a one-to-one correspondence with
the Hölder continuous scaling functions on the dual Cantor set.

Until now we were not interested in ε in C1+ε. It occurs however that scaling
functions “see” ε. First we introduce a metric ρS on Σd∗ depending only on a
scaling function S, so that for a constant K > 0, for every j, j′:

1

K
≤ |Ij ∩ j′ |

ρS(j, j′)
≤ K. (6.2.3)

Definition 6.2.12.

ρS(j, j′) = sup
w

n=N(j∩ j′)
∏

t=1

S(wj−nj−n+1...j−t−1)jt

supremum over all w left infinite sequences of symbols in {1, . . . , d}.
The estimate (6.2.3) follows easily from the exponential determination of

geometry, we leave details to the reader.

Theorem 6.2.13. Fix 0 < ǫ ≤ 1. The following are equivalent:
1. There exists h ∈ Hed, a C1+ǫ embedding, i.e. h ◦ s ◦ h−1 extends to sh

being C1+ǫ, with scaling function S.
2. The scaling S is Cǫ on (Σd∗, ρS). (Here C1 means Lipschitz).

Proof. Substituting φ = sh, we can write (6.1.2), for all n > N and all i =
1, 2, . . . , 2d− 1, in the form

|Sn(j−n, . . . , j−1)i − Sn−1(j−n, . . . , j−1)i| ≤ Const |Ij−n,...,j−1 |ε.

Summing up this geometric series for an arbitrary j ∈ Σd∗ over n = N,N +
1, . . . for N = N(j, j′), doing the same for another j′ ∈ Σd∗, and noting that
|SN (j−N , . . . , j−1) = |SN (j′−N , . . . , j−1), yields

|S(j)i − S(j′)i| ≤ Const |Ij∩j′ |ε.

Applying (6.2.3) to the right hand side we see that S is Hölder continuous with
respect to ρS .

For the proof to the other side see Proof of Theorem 6.2.10. The construction
gives the property (5.4.1a) for φ = sh, the extension as in Proof of Theorem
6.1.6. ♣
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Example 6.2.14. For every 0 < ε1 < ε2 ≤ 1 there exists S admitting a C1+ε1

embedding h ∈ Hed, but not C1+ε2 . We find S as follows. For an arbitrary
(small) ν : 0 < ν < (ε1−ε2)/2 we can easily find a function S : Σd∗ → Simp2d−2

which is Cε1+ν but is not Cε2−ν , in the metric ρδ, δ > log d (Definition 6.2.8).

We can find in fact S so that for every j ∈ Σd∗ and i = 1, 3, . . . , 2d − 1
we have | − logS(j)i/δ − 1| < ν/3. (If d ≥ 3 we can even have S(j)i = log δ
constant for i = 1, 3, . . . , 2d− 1, changing only gaps, i even.) Then, for all j, j′

and N = N(j, j′), and a constant K > 0

K−1(exp−Nδ)1−ν/2 ≤ |Ij∩j′ | ≤ K(exp−Nδ)1+ν/3.

Since ρδ(j, j
′) = exp−Nδ we conclude that S is at best (1+ε2−ν)/(1−ν/3) <

ε2-Hölder with respect to ρS . Hence sh cannot be C1+ε2 , by Theorem 6.2.13.
Meanwhile a construction as in Proof of Theorem 6.2.10 gives S being ε1-Hölder,
hence sh is C1+ε1 .

6.3 Higher smoothness

Definition 6.3.1. For every r = 1, 2, . . . ,∞, ω and 0 ≤ ε ≤ 1 we can consider
in He the subset of such h’s that h◦s◦h−1 extends to a neighbourhood of h(Σd)
to a function of class Cr+ε.

By Theorem 6.2.4, for r + ε > 1,

Cr+εH ⊂ Hed.

Theorem 6.3.2 (On Cr+ε-rigidity). . If h1, h2 ∈ Cr+εH, 0 ≤ ε ≤ 1, r + ε >
1, have equivalent geometries then h1, h2 are Cr+ε-equivalent i.e. there exists
a Cr+ε-diffeomorphism φ of a neighbourhood of h1(Σ

d) to a neighbourhood of
h2(Σ

d) such that

φ|h1(Σd) ◦ h1 = h2. (6.3.1)

In other words the canonical conjugacy extends Cr+ε.

We will prove here this Theorem for ε > 0. A different proof in Section 6.4
will contain also the case of ε = 0.

Remark 6.3.3. For h1, h2 in the class in H of functions having a scaling func-
tion, the condition h1, h2 have equivalent geometries means the scaling functions
are the same. In the more narrow class Hed it means the canonical conjugacy φ
extends C1+δ for some δ > 0, see Theorem 6.1.6. The virtue of Theorem 6.3.2
is that the more narrow the class the better φ is forced to be. This is again a
Livshic type theorem.

Before proving Theorem 6.3.2 let us make a general calculation.
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For any sequence of Cr real maps Fj , j = 1, . . . ,m consider the r-th deriva-
tive of the composition (Fm ◦ · · · ◦ F1)

(r), supposed that the maps can be com-
posed, i.e. that the range of each Fj is in the domain of Fj+1. We start with

(Fm ◦ · · · ◦ F1)
′(z) =

m
∏

j=1

F ′
j(zj−1)

where z0 = z and zj = Fj(zj−1).
Differentiating again we see that

(Fm ◦ · · · ◦ F1)
′′(z) =

m
∑

j=1

(

j−1
∏

i=1

(F ′
i (zi−1)

)2(
m
∏

i=j+1

F ′
i (zi−1)

)(

F ′′
j (zj−1)

)

.

By induction we obtain

(Fm ◦ · · · ◦ F1)
(r)(z) =

∑

1≤j1,...,jr−1≤m
W r
j1,...,jr−1

(z),

where
W r
j1,...,jr−1

(z) = Φj1,...,jr−1(z)Pj1,...,jr−1(z),

where for j′1, . . . , j
′
r−1 denoting a permutation of j1, . . . , jr−1 so that j′1 ≤ · · · ≤

j′r−1 we denote

Φj1,...,jr−1(z) :=
(

j′1−1
∏

i=1

(F ′
i (zi−1))

)r(
j′2−1
∏

i=j′1+1

(F ′
i (zi−1))

)r−1
. . .
(

m
∏

i=j′r−1+1

(F ′
i (zi−1))

)

(6.3.2)
and

Pj1,...,jr−1(z) =
r′−1
∏

i=1

Pji(z),

where each Pji is the sum of at most (r − 1)! terms of the form
∏

P

ts=r,max ts≥2 F
(ts)
ji

(zji−1). We replaced above r by r′ ≤ r, since if some js
repeats, we consider it in the product above only ones.

This can be seen by considering for each j1, . . . , jr−1 tree graphs with vertices
at m levels, 0, . . . ,m−1, i.e. derivatives at z0, . . . , zm−1, each vertex (except for
level 0) joined to the previous level vertices by the number of edges equal to the
order of derivative. Φ gathers levels with only first derivatives, P the remaining
ones.

By induction, when we consider first derivative of the product related to
the tree T corresponding to r-th derivative, we obtain a sum of expressions
corresponding to trees, each received from the T by adding a branch from a
vertex in T of a level jr−1, composed of new vertices vi at levels 0 ≤ i < jr−1
and edges ei joining vi to vi+1. Since the number of the vertices in T at each
level, in particular level jr − 1 is at most r, we have at most r graphs which
arise from T by differentiating at the level jr − 1.
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Proof of Theorem 6.3.2. The method, passing to small and next to large scale,
is similar to the method of the second proof of Theorem 8.5.5.

Choose an arbitrary sequence of branches of s−nh1
on a neighbourhood of

h1(Σ
d) and denote them by gn, n = 1, 2, . . . .

We have ψ a diffeomorphism assuring the C1+δ-equivalence, see the Re-
mark 6.3.3 above. (In fact we shall use only C1.) We define on a neighbourhod
of h1(Σ

d)
φn = snh2

◦ ψ ◦ gn
Of course φn = ψ on h1(Σ

d). However sh1 , sh2 are defined only on neigh-
bourhoods Uν = B(hν(Σ

d), ε) of hν(Σ
d), for some ε > 0, ν = 1, 2. As shν

are
expanding we can assume s−1

hν
(Uν) ⊂ Uν so all the maps gn are well defined. We

shall explain now why all the φn above are well defined.
Observe first that due to the assumption that ψ is a C1 diffeomorphism,

(6.3.1) and that h1(Σ
d) has no isolated points, there exists a constant C > 0

such that for every x ∈ h1(Σ
d), j ≥ 0:

C−1 < |(sjh1
)′(x)/|(sjh2

)′(ψ(x))| < C (6.3.3)

So by the bounded distortion property for iterates of shν
(following from

the expanding property and the C1+ε-smoothness, see Lemma 5.2.2), for ev-
ery j = 0, 1, . . . , n, if we know already that sjh2

◦ ψ ◦ gn is defined on B :=

B(h1(Σ
d), η/(2C2 supψ′)), we obtain

sjh2
ψgn(B) ⊂ B(h2(Σ

d), η). (6.3.4)

So sj+1
h2

◦ψ◦gn is defined on B , and so on, up to j = n. (2 in the denominator
of the radius of B is a bound taking care about the distortions, sufficient for
η small enough. Pay attention to the possibility that Ui is not connected, but
this has no influence to the proof.)

We shall find a conjugacy φ from the assertion of Theorem being the limit of
a uniformly convergent subsequence of φn so it will also be ψ on h1(Σ

d) hence
(6.2.2) will hold.

Choose a sequence xn ∈ gn(h1(Σ
d)). Instead of φn consider

φ̃n = snh2
◦ Ln ◦ gn

where Ln(w) = ψ(xn) + ψ′(xn)(w − xn)
Observe first that

distC0(φn, φ̃n) → 0 for n→ ∞ (6.3.5)

Indeed,

φn(z) − φ̃n(z) = snh2
(ψ(gn(z))) − snh2

(Ln(gn(z))).

As |gn(z) − xn| → 0 for n→ ∞, we have by the C1-smoothnes of ψ

ψ(gn(z)) − Ln(gn(z))

gn(z) − xn
→ 0.
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So due to the bounded distortion property for the iterates of sh2 , using also
the property ψ′(x0) 6= 0 we get

snh2
(ψ(gn(z))) − snh2

(Ln(gn(z)))

snh2
(ψ(gn(z))) − snh2

(ψ(xn))
→ 0

hence (6.3.5). We have proved by the way that all φ̃n are well defined on a
neighbourhood of h1(Σ

d), similarly as we have got (6.3.4).
Thus we can consider φ̃n’s all of which are Cr+ε. We need to prove that their

r-th derivatives are uniformly bounded in Cε. Then by Arzela–Ascolli theorem

we can choose a subsequence φ̃
(r)
nk uniformly convergent to a Cε function. (Here

we use ε > 0.) By the Calculus theorem that the limit of derivatives is the
derivative of the limit we will obtain the assertion that a uniformly convergent
subsequence of φ̃n has the limit Cr+εsmooth.

We shall use our calculations of (Fm ◦· · ·◦F1)
(r) preceding Proof of Theorem

6.3.2. We can assume that r ≥ 2, as for r = 1 the Theorem has been already
proven (see Theorem 6.1.6). For m = 2n+ 1 we set as F1, . . . , Fn the branches
of s−1

h1
which composition gives gn. We set Fn+1 = Ln. Finally for j = n +

2, . . . , 2n+ 1 we set Fj = sh2 .
For every sequence j1, . . . , jr−1 we assign the number

T (j1, . . . , jr−1) =
∑

{ji : ji ≤ n} +
∑

{m− ji : ji ≥ n+ 1}.

For any x, z in a neighbourhood of h1(Σ
d) sufficiently close to each other

and α = (j1, . . . , jr−1) we have

|W r
α(x) −W r

α(z)| = |(Φα(x)

Φα(z)
− 1)Pα(x) + (Pα(x) − Pα(z)))Φα(z)|. (6.3.6)

By (6.3.2), organizing the products there in
∏j′1−1
i=1

∏j′2−1
i=1 · · ·∏m

i=1 (after mul-
tiplying by missing terms F ′

j′s
), using bounded distortion of iterates of shnu, ν =

1, 2, we obtain
∣

∣

∣

∣

(

Φα(x)

Φα(z)
− 1

)∣

∣

∣

∣

≤ Const r|x − z|ε.

Observe also that, using |xj − zj | ≤ Const |x− z|,

|Pα(x) − Pα(z)| ≤ Const |x− z|ε.

and Pα(x) is bounded by a constant independent of n (depending only on r).
Finally we have

|Φα(z)| ≤ ConstλT (α) (6.3.7)

where λ is an arbitrary constant such that 1 < λ−1 < inf |s′h1
|, inf |s′h2

|
We have used here (6.3.2). The crucial observation leading from (6.3.2) to

(6.3.7) was the existence of a constant C > 0 such that for every 0 < i ≤ j ≤ n

C−1 < (Fi ◦ · · · ◦ Fj)′(zj−1) · (Fm−i ◦ · · · ◦ Fm−j)
′(zm−j−1) < C



212 CHAPTER 6. CANTOR REPELLERS IN THE LINE

following from (6.3.3). We need to refer also again to the bounded distortion
property for the iterates of shν

as z’s do not need to belong to hν(Σ
d) unlike

x’s in (6.3.3).

Thus by (6.3.6) and the estimates following it we obtain

|(snh2
◦ Ln ◦ gn(x) − snh2

◦ Ln ◦ gn(z))(r)|
≤

∑

j1,...,jr−1

Const |x− z|ελT (j1,...,jr−1)

≤Const |x− z|ε
∞
∑

T=0

2T rλT ≤ Const |x− z|ε

because Card{(j1, . . . , jr−1) : T (j1, . . . , jr−1) ≤ T } ≤ 2T r.

The proof of Theorem 6.3.2 in the Cr+ε case for every r = 1, 2, . . . ,∞ has
been finished. We need to consider separately the Cω case. The maps shν

extend holomorphically to neighbourhoods of hν(Σ
d) in C, the complex plane

in which the interval I is embedded. Similarly as in the Cr+ε, r = 1, . . . ,∞,
case we see that there are neighbourhoods Uν of hν(Σ

d) in C such that φ̃n are
well defined on U1 and φ̃n(U1) ⊂ U2. By the definition they are holomorphic.
Now we can use Montel’s Theorem. So there exists a subsequence φ̃nj

, nj → ∞
as j → ∞, uniformly convergent on compact subsets of U1 to a holomorphic
map. The proof is done, it happened simpler for r = ω than for n 6= ω. For
similar considerations see also Section 8.5. ♣

Summary. We have the following situation: Just in H the equivalence of
geometries and even the exponential equivalence of geometries do not induce any
reasonable smoothness. In He the exponential equivalence of geometries already
work, it implies C1+ε-equivalence. In Hb even the equivalence of geometries
starts to work—it implies the canonical conjugacy to be 1-quasisymmetric—
this we have not discussed, see Exercise 2. In Hed the equivalence of geome-
tries which means then the same as the exponential equivalence yields C1+ε-
equivalence. Then the higher smoothness of H forces the same smoothness of
the conjugacy.

We will show in Chapter 9 that in Cω in a subclass of non-linear Cantor sets
even a weaker equivalence of geometries, not taking gaps into account, forces
Cω-equivalence (we mentioned this already at the end of Section 6.1).

6.4 Scaling function and smoothness. Cantor

set valued scaling function

The question arises which scaling functions appear in which classes Cr+ε (com-
pare Example 6.2.14). We will give some answer below.

For simplification we assume I = [0, 1].
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Definition 6.4.1. Scaling with values in Cantor sets. Given a scaling function
S on Σd∗ we define a scaling function Ŝ with values in H rather than Simp2d−2.

For each j = (. . . , j−2, j−1) ∈ Σd∗ we define Ŝ(j) ∈ H by induction as follows.

Suppose for every j ∈ Σd∗ and i0, . . . , in the interval I(j)i0,...,in is already
defined. (For empty string we set [0, 1].) Then for every in+1 = 1, 2, . . . , d we
define I(j)i0,...,in,in+1 as the 2in+1 − 1’th interval of the partition of I(j)i0,...,in
determined by the proportions S(j, i0, . . . , in)i, i = 1, 2, . . . , 2d−1. We conclude
with Ŝ(j)(i0, i1, . . . ) =

⋂∞
n=0 I(j)i0,...,in .

Denote the Cantor set Ŝ(j)(Σd) by Can(j).

Theorem 6.4.2. For a scaling function S and r = 1, 2, . . . ,∞, ε : 0 ≤ ε ≤ 1
with r + ε > 1, or r = ω, the following conditions are equivalent

1. There exists a Cr+ε, or Cω (real-analytic) embedding h ∈ Hed with scaling
function S (we assume here that in the definition of Cr+ε, see Definition 6.3.1,
sh maps each component of its domain diffeomorphically onto [0, 1]) .

2. For every j, j′ ∈ Σd∗ there exists a Cr+ε, or Cω respectively, diffeomor-
phism Fj′|j : [0, 1] → [0, 1] mapping Can(j) to Can(j′).

Proof. Let us prove 1. ⇒ 2. For any j ∈ Σd∗ and n ≥ 1 denote j(n) =
(j−n, . . . , j−1). Write

Fj(n) := ((sh)
n|Ij−n,...,j−1

) ◦A−1
j(n),

where Aj(n) is the affine rescaling of Ij−n,...,j−1 to [0, 1]. Given j, j′ ∈ Σd∗ and
n, n′ ≥ 1 define

Fj′(n′)|j(n) := F−1
j′(n′) ◦ Fj(n).

Finally define

Fj′|j := lim
n,n′→∞

Fj′(n′)|j(n).

The convergence, even exponential, easily follows from sh ∈ C1+ε. The fact
that Fj′|j maps Can(j) to Can(j′), follows from definitions.

In the case of Cω there is a neighbourhood U of [0, 1] in the complex plane
so that all (sh)

n|−1
Ij−n,...,j−1

extend holomorphically, injectively, to U . This is

so, since (h(Σd), ŝh), where ŝh is a holomorpic extension of sh, is a conformal
expanding repeller. With the use of Koebe Distortion Lemma, Ch. 5, one con-
cludes that all Fj′(n′)|j(n) have a common domain in C, containing [0, 1], on
which they are uniformly bounded. So, for given j, j′ a subsequence is conver-
gent to a holomorphic function, hence Fj′|j is analytic.

Consider now the Cr+ε case.

Let us prove first the following

Claim 6.4.3. Let F1, F2, . . . be Cr+1 maps of the unit interval [0, 1] for r ≥
1, 0 ≤ ε ≤ 1, r + ε > 1. Assume all Fm are uniform contractions, i.e there
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exist 0 < λ1 ≤ λ2 < 1 such that for every m and every x ∈ [0, 1] it holds
λ1 ≤ |F ′

m(x)| ≤ λ2. then there exists C > 0 such that for all m

||Fm ◦ · · · ◦ F1||Cr+ε ≤ C||Fm ◦ · · · ◦ F1||C1 .

(We set the convention that we omit supremum of the modulus of the functions
in the norms in Cr+ε, we consider only derivatives.)

Proof of the Claim. Consider first ε > 0. We use (6.3.6) and the estimates
which follow it. (6.3.7) is replaced by

|Φα(z)| ≤ Const |(Fm ◦ · · · ◦ F1)
′(z)|λT̂ (α)

2 ,

where for α = (j1, . . . , jr−1) we define T̂ (α) = j1 + .. + jr−1. We conclude for
r ≥ 2 with

|(Fm◦· · ·◦F1)
(r)(x)−(Fm◦· · ·◦F1)

(r)(z)| ≤ Const |x−z|ε|(Fm◦· · ·◦F1)
′(z)|

∑

α

λ
T̂ (α)
2

≤ Const |x−z|ε|(Fm ◦· · ·◦F1)
′(z)|

∞
∑

T=0

T rλT2 ≤ Const |(Fm ◦· · ·◦F1)
′(z)||x−z|ε.

For r = 1 there is no summation over α and the assertion is immediate.
For ε = 0 we get

|(Fm ◦ · · ·◦F1)
(r)(z)| ≤

∑

α

|Φα(z)Pα(z)| ≤ Const
∑

α

|(Fm ◦ · · ·◦F1)
′(z)|λT̂ (α)

2 ≤

Const |(Fm ◦ · · · ◦ F1)
′(z)|.

The Claim is proved. ♣

We apply the Claim to F1, F2, . . . being inverse branches of sh on [0, 1]. Let
λ be supremum of the contraction rate |s′h|−1. Given j ∈ Σd∗ and integers
n,m ≥ 0 we get for z ∈ Ij−n,...j−1

||(smh |Ij−(n+m),...j−1
)−1||Cr+ε ≤ C|((smh |Ij−(n+m),...j−1

)−1)′(z)|.

If we rescale the domain and range to [0, 1] we obtain, using bounded distortion
of smh ,

||Fj(n+m)|j(n)||Cr+ε ≤ C
|Ij−n,...,j−1 |r+ε
|Ij−(n+m),...,j−1 |

|((smh |Ij−(n+m),...j−1
)−1)′(z)| ≤

Const |Ij−n,...j−1 |r+ε−1. (6.4.1)

The right hand side expression in this estimate does not depend on m and tends
(exponentially fast) to 0 as n→ ∞, for r > 1.

Note that
F−1
j(n+m) = Fj(n+m)|j(n) ◦ F−1

j(n), (6.4.2)



6.4. SCALING FUNCTION AND SMOOTHNESS 215

therefore for the sequence F−1
j(n) we verified a condition that reminds Cauchy’s

condition. However to conclude convergence in Cr+ε, we still need to do some
job.

For r = 1 we have uniform exponential convergence of |(F−1
j(n))

′(z)| since

|(Fj(n+m)|j(n))
′| → 1 uniformly exponentially fast as n→ ∞. This holds since

Fj(n)([0, 1]) = [0, 1], by integration of the second derivative, or, in the case of
merely C1+ε, since distortion of Fj(n+m)|j(n) tends exponentially to 1 as n→ ∞.

For r > 1, ε = 0 the derivatives of F−1
j(n) of orders 2, . . . , r tend uniformly to

0 since Fj(n+m)|j(n) tend uniformly to identity in Cr as n → ∞. One can see
this using our formula for composition of two maps, as in (6.4.2), or, simpler,
by substituting Taylor expansion series up to order r of one map in the other.

For ε > 0 the sequence F−1
j(n) has been proved in (6.4.1) to be uniformly

bounded in Cr+ε and every convergent subsequence has the same limit, being
the limit in Cr. Therefore this is a limit in Cr+ε.

If we denote the limit by Gj we conclude that

Fj′|j = Gj′ ◦G−1
j (6.4.3)

defined above is Cr+ε.

The proof of 2. ⇒ 1. The embedding h in Proof of Theorem 6.2.10 is the
right one. Indeed, Ŝ(. . . , 1, 1) coincides with h by construction and sh = sŜ =
F(...,1,1)|(...,1,i) ◦ Ai, where Ai is rescaling to [0, 1] of Ii, i = 1, . . . , d in the ratio

geometry of Ŝ(. . . , 1, 1). ♣

Remark 6.4.4. Theorem 6.4.2 (more precisely smoothness of Gj in (6.4.3)),
yields a new proof of Theorem 6.3.2, in full generality, that is including the case
ε = 0. Indeed one can define φ = Gj(h2)

−1 ◦Gj(h1) for an arbitrary j ∈ Σd∗,
where Gj(hi), i = 1, 2 means Gj for hi.

In the case the ranges of sh1 , sh2 are not the whole [0, 1], we define Gj as limit
of Fj(n+n0)|j(n0) so φ is defined only on some Ij−n0 ,...,j−1 , for n0 large enough

that this F makes sense. Then we define φ on a neighbourhood of h1(Σ
d) as

sn0

h2
◦ φ ◦ (sh1 |Ij−n0

,...,j−1
)−n0 .

Theorem 6.4.5. For every r = 1, 2, . . . and ε : 0 ≤ ε < 1 with r + ε > 1 there
is a scaling function S such that there is h ∈ Hed, a Cr+ε embedding with the
scaling function S, but there is no Cr+ε

′

embedding with ε′ > ε. There is also
S admitting a C∞ embedding but not real-analytic.

This Theorem addresses in particular Example 6.2.14, giving a different ap-
proach.

Proof. Consider d > 1 disjoint closed intervals Ij in [0, 1], with I1 having 0 as
an end point, and f mapping each Ij onto [0, 1], so that f |Ij

is affine for each

j = 2, . . . , d and Cr+ε on I1 but not Cr+ε
′

, say at 0 (or C∞ but not analytic
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at 0). This produces h ∈ Cr+εH. Choose any sequence j ∈ Σd∗ not containing
1’s, say j = (. . . , 2, 2, 2). Then, for the arising scaling function S, we have

Ŝ(j) = h and Ŝ(j1) = A ◦ (f |I1)−1 ◦ h,

where A is the affine rescaling of I1 to [0, 1].
So f |I1 ◦ A−1 : [0, 1] → [0, 1] maps the Cantor set Can(j1) to Can(j). Its

restriction to Can(j1) cannot extend Cr+ε
′

since its derivatives up to order r
are computable already on C and f (r) is not ε′-Hölder, by construction. So
S cannot admit Cr+ε

′

embedding by Theorem 6.4.2. The case of C∞ but not
analytic is dealt with similarly. ♣

6.5 Cantor sets generating families

We shall discuss here a general construction of a C1+ε Cantor repeller in R

which will be used in the next section.

Definition 6.5.1. We call a family of maps F = {fn,j : n = 0, 1, . . . , j =
1, ..., d} of a closed interval I ⊂ R into itself a Cantor set generating family if
the following conditions are satisfied:

All fn,j are C1+ε-smooth and uniformly bounded in the C1+ε-norm, they
preserve an orientation in R. There exist numbers 0 < λ1 < λ2 < 1 such that

for every n, j λ1 < |(fn,j)′| and
|fn,j(I)|

|I| < λ2 (a natural stronger assumption

would be |fn,j)′| < λ2 but we need the weaker one for a later use).

For every n all the intervals fn,j(I) are pairwise disjoint and ordered accord-
ing to j’s and the gaps between them are bounded away from 0.

Given a Cantor set generating family F = {fn,j : n = 0, 1, . . . , j = 1, ..., d}
we write

Ij0,...,jn(F ) := (f0,j0 ◦ · · · ◦ fn,jn)(I)

Then we obtain the announced Cantor set as

C(F ) :=

∞
⋂

n=0

En(F ), where En(F ) =
⋃

(j0,...,jn)

Ij0,...,jn(F )

and the corresponding coding h(F ) defined by

h(F )((j0, j1, . . . )) =
⋂

n→∞
Ij0,...,jn(F ).

It is easy to see that h(F ) has bounded geometry (we leave it as an exercise
to the reader).

Theorem 6.5.2. Let Fν = {fν,n,j : n = 0, 1, . . . , j = 1, ..., d} be two Cantor
set generating families, for ν = 1 and ν = 2. Suppose that for each j = 1, . . . , d

lim
n→∞

distC0(f1,n,j , f2,n,j) = 0.
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and the convergence is exponential.
Then h(F1) and h(F2) are C1+ε-equivalent.

Proof. Observe that the notation is consistent with that at the beginning of
Section 6.1, except the situation is more general, it is like that in Remark 6.2.6.

For every s ≤ t, ν = 1, 2, we denote (fν,(s,js)◦· · ·◦fν,(t,jt))(I) by Iν,(s,js),...,(t,jt).
For every such Iw we denote the left end by lIw and the right end by rIw . Ob-
serve that although we have not assumed |f ′

ν,n,j | < λ2 we can deduce from our
weaker assumptions (using the bounded distortion property for the iterates)
that there exists k ≥ 1 so that for every l ≥ 0 and ji, i = 0, . . . , k − 1 we have
|(fν,l+k−1,jk−1

◦ · · · ◦ fν,l+i,ji ◦ · · · ◦ fν,l,j0)′| < λ2 < 1. In future to simplify our
notation we assume however that k = 1. The general case can be dealt with
for example by considering the new family of k compositions of the maps of the
original family.

For every w = ((s, js), (s+1, js+1), . . . , (t, jt)), w
′ = ((s+1, js+1), . . . , (t, jt))

we have
|lI1,w − lI2,w| ≤ |f1,s,js(lI1,w′) − f1,s,js(lI2,w′)|

+ |f1,s,js(lI2,w′) − f2,s,js(lI2,w′)

≤ |lI1,w′ − lI2,w′ | + Const exp−δs
(6.5.1)

for some δ > 0 lower bound of the exponential convergence in the assumptions
of Theorem.

Thus for every w = ((m, jm), . . . , (n, jn)) we obtain for t = n, by induction
for s = n− 1, n− 2, . . . ,m

|lI1,w) − lI2,w| ≤ Const exp−δm (6.5.2)

For every j = 1, . . . , d we obtain the similar estimate with w replaced by
w, (n+ 1), j). We obtain also the similar inequalities for the right ends.

As a result of all that we obtain
∣

∣

∣

∣

|I1,w,(n+1,j)|
|I1,w|

− |I2,w,(n+1,j)|
|I1,w

|
∣

∣

∣

∣

≤ Constλ
−(n−m)
1 exp−δm

Now iterating by fν,m−1, fν,m−2, . . . , fν,0 for ν = 1, 2 almost does not change
proportions as we are already in a small scale, more precisely we get

∣

∣

∣

∣

Ij0,...,jn,j(F1)

Ij0,...,jn(F1)
− Ij0,...,jn,j(F2)

Ij0,...,jn(F2)

∣

∣

∣

∣

≤ Const
(

(λ
−(n−m)
1 exp−δm) + λ

(n−m)ε
2

)

.

(6.5.3)
The same holds for gaps in numerators including “false” gaps i.e. for j =

0, . . . , d.
Now we pick m = (1 − κ)n where κ is a constant such that 0 < κ < 1 and

κ logλ−1
1 − (1 − κ)δ := ϑ < 0

Then the bound in (6.5.3) replaces by (expϑn) + λ
(εκ)n
2 which converges to

0 exponentially fast for n→ ∞.
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So our Theorem follows from Theorem 6.1.6, more precisely from its variant
described in Remark 6.2.6.

We have also the following

Theorem 6.5.3. Let F = {fn,j : n = 0, 1, . . . , j = 1, ..., d} be a Cantor set
generating family such that for every j

fn,j → f∞,j uniformly as n→ ∞.

Then the shift map on the Cantor set C(F ) extends C1+ε.

Proof. For any Cantor set generating family Φ, every w = (j0, . . . , jn), j ∈
{0, . . . , 2d} we use the notation Aj(Φ, w) similarly as in Definition 6.1.1, i.e. for

j odd Aj(Φ, w) =
Iwj′ (Φ)

Iw(Φ) where j′ = j+1
2 . The similar definition is for j’s even

with gaps in the numerators. Again we are in the situation of Remark 6.2.6
including j = 0, d.

Consider together with F the family F ′ = {f ′
n,j : n = 0, 1, . . . , j = 1, .., d}

where f ′
n,j = fn+1,j. For every w = (j0, . . . , jn), j ∈ {0, . . . , 2d} say j odd and

i ∈ {1, . . . , d} we rewrite for clarity the definitions:

A(F, iw) =
|Iiwj′ (F )|
|Iiw(F )| =

|f0,i ◦ f1,j0 ◦ · · · ◦ fn+1,jn ◦ fn+2,j(I)|
|f0,i ◦ f1,j0 ◦ · · · ◦ fn+1,jn(I)|

Aj(F
′, w) =

|f1,j0 ◦ · · · ◦ fn+1,jn ◦ fn+2,j(I)|
|f1,j0 ◦ · · · ◦ fn+1,jn(I)|

We have
∣

∣

∣

∣

Aj(F, iw)

Aj(F ′, w)
− 1

∣

∣

∣

∣

≤ Const exp−δn

for some constant δ > 0 related to the distortion of f0,i on the interval f1,j0 ◦
· · · ◦ fn+1,jn(I).

So

|Aj(F, iw) −Aj(F
′, w)| ≤ Const exp−δn

But

|Aj(F ′, w) −Aj(F,w)| ≤ Const exp−δn

for some δ′ > 0 because the pair of the families F, F ′ satisfies the assumptions
of Theorem 6.5.2.

Thus |Aj(F, iw) − Aj(F,w)| converge to 0 uniformly exponentially fast in
length of w. So we can apply Theorem 6.2.4, more precisely the variant from
Remark 6.2.6. The Proof of Theorem 6.5.3 is over.
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6.6 Quadratic-like maps of the interval, an ap-

plication to Feigenbaum’s universality

We show here how to apply the material of the previous Section 6.5 to study
“attracting” Cantor sets, being closures of forward orbits of critical points, ap-
pearing for Feigenbaum-like and more general so-called infinitely renormalizable
unimodal maps of the interval. The original map on such a Cantor set is not
expanding at all, but one can view these sets almost as expanding repellers by
constructing for them so-called generating families of expanding maps

We finish this Chapter with a beautiful application: First Feigenbaum’s uni-
versality. It was numerically discovered by M. J. Feigenbaum and independently
by P. Coullet and Ch. Tresser).

Rigorously this universality has been explained “locally” by O. Lanford,
who proved the existence of the renormalization operator fixed point, later on
for large classes of maps by D. Sullivan who applied quasi-conformal maps tech-
niques, and next, more completely, by several other mathematicians, in par-
ticular in fundamental contribution by C. McMullen, [McMullen 1996] We re-
fer the reader to the Sullivan’s breakthrough paper [Sullivan 1991]: “Bounds,
Quadratic Differentials and Renormalization Conjectures”. Fortunately a small
piece of this can be easily explained with the use of the elementary Theorems
6.5.2 and 6.5.3; we shall explain it below.

Let us start with a standard example: the one-parameter family of maps
of the interval I = [0, 1] into itself fλ(x) = λx(1 − x). For 1 < λ < 3 there
are two fixed points in [0, 1] a source at 0 i.e. |f ′

λ(0)| > 1 and a sink xλ,
|f ′
λ(xλ)| < 1, attracting all the points except 0,1 under iterations of fλ. For

λ = 3 this sink changes to a neutral fixed point, namely |f ′
λ(xλ)| = 1, more

precisely f ′
λ(xλ) = −1. For λ growing beyond 3 this point changes to a source

and nearby an attracting periodic orbit of period 2 gets born. f2 maps the
interval I0 = [x′λ, xλ] into itself (x′λ denotes the point symmetric to xλ with
respect to the critical point 1/2).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 6.2: Logistic family
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If λ continues to grow the left point of this period 2 orbit crosses 1/2, the
derivative of f2

λ at this point changes from positive to negative until it reaches
the value −1. The periodic orbit starts to repel and an attracting periodic orbit
of period 4 gets born. For f2 on I0 this means the same bifurcation as before:
a periodic orbit of period 2 gets born. The respective interval containing 1/2
invariant for f4 will be denoted by I2. Etc. Denote the values of λ where
the consecutive orbits of periods 2n get born by λn. For the limit parameter
λ∞ = limn→∞ λn there are periodic orbits of all periods 2n all of them sources,
see the figure below

λ1 λ2 λ∞

Figure 6.3: Bifurcation diagram

In effect, for λ∞ we obtain a Cantor set C(fλ∞
) =

⋂∞
n=1

⋃2n−1
k=0 fkλ∞

(In).
This Cantor set attracts all points except the abovementioned sources. It con-
tains the critical point 1/2 and is precisely the closure of its forward orbit.

Instead of the quadratic polynomials one can consider quite an arbitrary one-
parameter family gλ of C2 maps of the unit interval with one critical point where
the second derivative does not vanish and such that gλ(0) = gλ(1) = 0 so that,
roughly, the parameter raises the graph. Again one obtains period doubling
bifurcations and for the limit parameter λ∞(g) one obtains the same topological
picture as above. We say the map is Feigenbaum-like. The Feigenbaum’s and
Coullet, Tresser’s numerical discovery was that the deeper ratios in the Cantor
set the weaker dependence of the ratios on the family and that the ratios at
the critical point stabilize with the growing magnifications. Moreover the limit
quantities do not depend on g.

Another numerical discovery, not to be discussed here, see for example
[Avila, Lyubich & de Melo 2003] for a rigorous explanation, was that λn/λn+1

has a limit as n → ∞. Moreover this limit does not depend on g. We call it
second Feigenbaum’s universality.
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Let us pass to the description of a general situation:

Definition 6.6.1. For any closed interval [a, b] we call a mapping f : [a, b] →
[a, b] smooth quadratic-like if f(a) = f(b) = a and f can be decomposed into
f = Q ◦h where Q is a quadratic polynomial and h is a smooth diffeomorphism
of I. The word smooth will be applied below for C2. Here we allow a > b, in
such a case the interval [b, a] is under the consideration of course and its right
end rather than the left is a fixed point and the map has minimum at the critical
point. If a = 0, b = 1 we say that f is normalized.

We call f infinitely renormalizable if there exists a decreasing sequence of
intervals In, n = 0, 1, 2, . . . all containing the critical point cf and a sequence of
integers dn ≥ 2 such that for every n all f j(In) have pairwise disjoint interiors
for j = 0, 1, . . . , Dn − 1 where Dn :=

∏

i=0,...,n di and fDn(In) maps In into
itself.

We call the numbers dn and the order in which the intervals f j(In) are placed
in I a combinatorics of f . Finally we say that an infinitely renormalizable f
has bounded combinatorics if all dn are uniformly bounded. We write C(f) =
⋂∞
n=0

⋃Dn−1
k=0 fk(In).

It may happen that the maps fDn on In are not quadratic-like because the
assumption f(a) = f(b) = a is not satisfied.

Consider however an arbitrary f : [a, b] → [a, b] which is smooth quadratic-
like and renormalizable what means that there exists I0 ⊂ [a, b] containing cf
and an integer d > 1 such that all f j(I0) have pairwise disjoint interiors for
j = 0, 1, . . . , d − 1. Then I0 can be extended to an interval I ′0 for which still
all f j(I ′0) have pairwise disjoint interiors fd maps I ′0 into itself and fd on I ′0
is quadratic-like. The proof is not hard, the reader can do it as an exercise or
look into [Collet & Eckmann 1980]. The periodic end of I ′0 is called a restrictive
central point.

We define the rescaling map Rf as such an affine map which transforms I ′0
onto I and

f1 := Rf ◦ fd ◦R−1
f (6.6.1)

is normalized. We call the operator f 7→ f1 the renormalization operator and
denote it by R. (Caution: d, I ′0 and so R have not been uniquely defined but
this will not hurt the correctness of the considerations which follow, in particular
in the infinitely renormalizable case C(f) does not depend on these objects as
the closure of the forward orbit of the critical point, see the remark ending the
Proof of Theorem 6.6.3.)

Now for an arbitrary smooth quadratic-like map f of I = [0, 1] infinitely
renormalizable with a bounded combinatorics, we consider a sequence of maps
fn defined by induction: f0 = f , fn = R(fn−1). The domain I ′0 for the renor-
malization of fn is denoted by In and we have the affine rescaling mapRn := Rfn

from In onto I and fn+1 = R(fn) = Rn ◦ fdn ◦R−1
n .

Now we can formulate the fundamental Sullivan–McMullen’s theorem:

Theorem 6.6.2. Suppose f and g are two C2-quadratic-like maps of I =
[0, 1] both infinitely renormalizable with the same bounded combinatorics. Then



222 CHAPTER 6. CANTOR REPELLERS IN THE LINE

dist(Rfn
, Rgn

) → 0 as n → ∞. Moreover both sequences fn and gn stay uni-
formly bounded as C1+ε-quadratic-like maps (i.e. h’s and h−1’s in the Q ◦ h
decomposition stay uniformly bounded in C1+ε) and

distC0(fn, gn) → 0.

In the case f, g are real-analytic the convergence is exponentially fast, even
in the C0-topology in complex functions on a neighbourhood of I in C.

The intuitive meaning of the above is that the larger magnification of a
neighbourhood of 0 the more the same the respective iterates of f and g look
like. The same geometry of the depths of the Cantor sets would mean that the
similar looks close to zero propagate to the Cantor sets.

Now we can fulfill our promise and relying on the results of this section prove
this propagation property, i.e. relying on Theorem 6.6.2 prove rigorously the
first Feigenbaum universality:

Theorem 6.6.3. Suppose f and g are two C2-quadratic-like maps of I = [0, 1]
both infinitely renormalizable with the same bounded combinatorics. Suppose
also that the convergences in the assertion of Theorem 6.6.2 are exponential.
Then C(f) and C(g) are C1+ε-equivalent Cantor sets.

Proof. Related to f we define a generating family (Definition 6.5.1)
F = {fn,j, n = 0, 1, . . . , j = 1, . . . , dn}. Namely we define

fn,j = f−(dn−j+1)
n ◦R−1

n (6.6.2)

where each f
−(dn−j+1)
n means the branch leading to an interval containing

f j−1(In).
The C1+ε uniform boundedness of fn,j ’s follows immediately from the bound-

edness asserted in Theorem 6.6.2 if we know (see the next paragraph) that all
In’s have lengths bounded away from 0. Indeed if we denote fn = Q ◦ hn we
have

fn,j = h−1
n ◦Q−1 ◦ · · · ◦ h−1

n ◦Q−1 ◦R−1
n

with all h−1
n uniformly bounded in C1+ε and Q−1 as well because their domains

are far from the critical value f(cfn
). Also |(Rn)′|’s are uniformly bounded.

Now fdn
n (In) ⊂ In with In arbitrarily small and dn’s uniformly bounded

together with the asserted in Theorem 6.6.2 uniform boundedness of fn’s would
result in the existence of a periodic sink attracting cf . Indeed, |(fn)′| would be
small on In so as |(fdn−1)′| is bounded on fn(I

n) by a constant not depending
on n. So |(fdn)′| on In would be small hence its graph has a unique intersection
with the diagonal which the sink attracting In.

This is almost the end of the proof because we construct the analogous
generating family G for g and refer to Theorem 6.1.6. The convergence assumed
there, can be proved similarly as we proved the uniform C1+ε-boundedness
above. This concerns also the assumptions involving λ1 and λ2 in the definition
of the generating families. Still however some points should be explained:
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1. For each n the intervals fn,j(I) in Definition 6.5.1 were ordered in R

according the order < in the integers j. Here it is not so. Moreover fn,j here
do not all preserve the orientation in R. Finally dn’s do not be all equal to the
same integer d. Fortunately all done before is correct also in this situation.

2. The intervals fn,j(I) may have common ends here, in particular the
assumption about gaps in the definition of the generating family may happen
not to be satisfied. In that instant we replace I by a slightly smaller interval
and restrict all fn,j ’s to it. We can do it because for each J = fn,j(I) we have
dist(C(f), ends of J) > Const > 0. This is so because for every normalized
renormalizable f if f(cf ) is close to 1 then a very large d is needed in order to
have fd(cf ) ∈ I0 unless sup |f ′| is very large. But all dn are uniformly bounded
in our infinitely renormalizable case and the derivatives |(fn)′| are uniformly
bounded. So for every n, fn(cfn

) is not very close to 1 and f2
n(cfn

) is not very
close to 0 and C(fn) ⊂ [fn(cfn

) f2
n(cfn

)].
We managed to present C(f) and C(g) as subsets of Cantor sets C(F ), C(G)

for generating families. But by the construction every interval Ij0,...,jn(F ) in the
definition of C(F ) contains an interval of the form f j(In), 0 ≤ j < Dn hence
every component of C(F ) contains a component of C(f). So C(f) = C(F )
and similarly C(g) = C(G). Hence C(f) and C(g) are Cantor sets indeed and
everything concerning C(F ), C(G) we proved concerns them as well. Observe by
the way that by the definition every f j(In) contains f j(cf ) hence C(f) can be
defined in the intrinsic way, independently of the choice of In’s, as cl

⋃∞
j=0 f

j(cf ).
The following specification of Theorems 6.6.2 and 6.6.3 holds:

Theorem 6.6.4. Let f be a C2 quadratic-like map of [0, 1] infinitely renormal-
izable with a bounded combinatorics. Suppose it is periodic i.e. that for some
n2 > n1 ≥ 0 fn1 and fn2 have the same combinatorics. Then there exists g a
real-analytic quadratic-like map of [0, 1] such that for t := n2 − n1, Rt(g) = g
and distC0(fn, gn−n1) → 0 as n→ ∞.

If the convergence is exponential then the shift map on C(f tn1
) extends C1+ε.

On the proof. The existence of g is another fundamental result in this the-
ory, which we shall not prove in this book. (The first, computer assisted, proof
was provided by O. Lanford [Lanford 1982] for d = 2, i.e. for the Feigenbaum-
like class.) Then the convergence follows from Theorem 5.4.29. Indeed, from
Rt(g) = g we obtain the convergence of (f tn1

)n,j to g. If the convergences are
exponential (which is the case if f is real-analytic) then the shift map extends
C1+ε due to Theorem 6.5.3. Notice that instead of C(f) we consider C(f tn1

).
This is so because

dn1+t−1
∏

j=dn1

dj =

dn1+2t−1
∏

j=dn1+t

dj = · · · := d

and it makes sense to speak about the shift map on Σd. For f itself if we denote
∏∞
j=0{1, . . . , dj} by Σ(d0, d1, . . . ) we can speak only about the left side shift

map from Σ(d0, d1, . . . ) to Σ(d1, . . . ).
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Observe again that the embedding of Σd into I does not need to preserve
the order but it does not hurt the validity of Theorem 6.5.3.

The set C(f) is presented as the union of D =
∏n1−1
j=0 dj Cantor sets which

are embeddings of Σd, of the form f j(C(f tn1
)), j = 0, . . . , n1−1, each of which has

an exponentially determined geometry and Hölder continuous scaling function.

Remarks 6.6.5. 1. Observe for f being any smooth quadratic-like infinitely
renormalizable map of I and the corresponding generating family F , that as
some fn,j may change the orientation, the corresponding intervals Ij0,...,jn,j(F )
have the order in Ij0,...,jn(F ) the same or opposite to that of Ij(F )’s in I de-
pending as there is even or odd number of ji, i = 0, . . . , n such that fi,ji changes
the orientation.

2. Remind that C(f) has a 1-to-1 coding h : Σ(d0, d1, . . . ) → C(f) defined
by h(j0, j1, . . . ) =

⋂

n→∞ Ij0,...,jn(F ). Let us write here j = 0, . . . , dn− 1 rather
than j = 1, . . . , dn. Then f yields on Σ(d0, d1, . . . ) the map Φ(f)(j0, j1, . . . ) =
(0, 0, . . . , ji + 1, ji+1, . . . ), where i is the first integer such that ji 6= di − 1, or
Φ(f)(j0, j1, . . . ) = (0, 0, 0 . . . ) if for all i we have ji = di − 1. Φ is sometimes
called the adding machine. If all dn = p the map Φ is just the adding of the unity
in the group of p-adic numbers. For dn different we have the group structure on
Σ(d0, d1, . . . ) of the inverse limit of the system · · · → Zd2d1d0 → Zd1d0 → Zd0

and Φ(f) is also adding the unity.

If we denote the shift map from Σ(d0, d1, . . . ) to Σ(d1, . . . ) by s we obtain
the equality

Φ(f1) ◦ s = s ◦ Φ(f)d0

(the indexing in (6.6.2) has been adjusted to assure this). On I0 this corresponds
to (6.6.1).

3. The combinatorics of an infinitely renormalizable f is determined by the
so-called kneading sequence K(f) defined as a sequence of letters L and R,
where n = 1, 2, . . . such that at the n’th place we have L or R depending as
fn(cf ) is left or right of cf in R (we leave it as an exercise to the reader). So
in Theorems 6.6.2–6.6.4 we can write: the same kneading sequences, instead of:
the same combinatorics.

Also the property: renormalizable (and hence: infinitely renormalizable) can
be guessed from the look of the kneading sequence. A renormalization with I0
and fd(I0) ⊂ I0 implies of course that the kneading sequence is of the form
AB1AB2AB3 . . . , where each Bi is L or R and A is a block built from L’s and
R’s of the length d−1. The converse is also true, the proof is related to the proof
of the existence of the restrictive central point. One can do it as an exercise or
to look into [Collet & Eckmann 1980].

4. Let us go back now to the example fλ∞
, or more general gλ∞(g) mentioned

at the beginning of this Section. We have dn = 2 for all n, (Rn change orien-
tation). So we can apply Theorems 6.6.3 and 6.6.4 which explain Feigenbaum’s
and Coullet-Tresser’s discoveries.

Observe that gλ∞(g) is exceptional among smooth quadratic-like infinitely
renormalizable maps. Namely except a sequence of periodic sources every point
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is being attracted to C(f). Topological entropy is equal to 0. For every infinitely
renormalizable map with a different kneading sequence there is an invariant
repelling Cantor set (in fact some of its points can be blown up to intervals).
Topological entropy is positive on it. One says that such a map is already
chaotic, while gλ∞(g) is on the boundary of chaos.

Exercises

6.1. For maps as in Definition 6.6.1, prove the existence of the restrictive central
point.

Hint: Consider the so-called Guckenheimer set,

Gd ={x : distf (f
d(x), cf ) < distf (x, cf ) and

distf (f
j(x), cf ) > distf (x, cf ) for j = 1, . . . , d− 1}

where distf (x, y) = |h(x) − h(y)| in the decomposition f = Q ◦ h.
6.2. Suppose f and g are smooth quadratic-like maps of I = [0, 1] both infinitely
renormalizable with the same bounded combinatorics as in Theorem 6.6.2. Us-
ing the fact that distC0(fn, gn) → 0 asserted there, but not assuming the conver-
gence is exponential prove that the standard conjugacy φ between C(f) andC(g)
is 1-quasisymmetric, more precisely that for every x, y, z ∈ C(f), x > y > z,

|x − y|/|y − z| < Const we have |φ(x)−φ(y)|/|φ(y)−f(z)|
|x−y|/|y−z| → 1 as x − z → 0.

In particular if the scaling function S(f) exists for f then it exists for g and
S(f) = S(g).

Hint: One can modify the Proof of Theorem 6.5.2. Instead of exp−δs in
(6.5.1) one has some an converging to 0 as n→ ∞. Then in (6.5.2) we estimate
by
∑n
s=m as and then consider m = m(n) so that n−m→ ∞ but

∑n
s=m as → 0

as n→ ∞.

6.3. Let f and g be unimodal maps of the interval [0, 1] (f unimodal means
continuous, having unique critical point c, being strictly increasing left to it
and strictly decreasing right to it, f(c) = 1), having no interval J on which all
iterates are monotone. Prove that f and g are topologically conjugate iff they
have the same kneadings sequences (see Remark 6.6.5, item 3.)

6.4. Prove that for f ∈ C3 a unimodal map of the interval with no attracting
(from both or one side) periodic orbit, if Schwarzian derivative S(f) is nega-
tive, then there are no homtervals, i.e. intervals on which all iterates of f are
monotone.

Hint: First prove that there is no homterval whose forward orbit is disjoint
with a neighbourhood of the critical point cf (A. Schwartz’s Lemma; one does
not use S(f) < 0 here, C1+1 is enough).

Next use the property implied by S(f) < 0, that for all n and every interval
J on which (fn)′ is non-zero, (fn)′ is monotone on J .

For details see for example [Collet & Eckmann 1980]
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6.5. Prove the Cr+ε version of the so-called Folklore Theorem, saying that if
0 = a0 < a1 < · · · < an−1 < an = 1 and for each i = 0, . . . , n−1, fi : [ai, ai+1] →
[0, 1] onto, each fi is Cr+ε for r ≥ 2, 0 ≤ ε ≤ 1, r + ε > 2 and |f ′

i | ≥ Const > 1,
then for f defined as fi on each (ai, ai+1), there exists an f invariant probability
µ equivalent to Lebesgue measure, with the density bounded away from 0, of
class Cr−1+ε.

Formulate and prove an analogous version for Cantor sets h(Σd) with “shifts”
h ◦ s ◦ h−1, as in Section 6.2.

Hint: The existence of µ follows from Hölder property of the potential func-
tion φ = − log |f ′|, see Chapter 4. µ is the invariant Gibbs measure. Its den-
sity is limn→∞ Lnφ(11)(x) =

∑

y∈f−n(x) |(fn)′(y)|−1. Each summand considered

along an infinite backward branch, after rescaling, converges in Cr−1+ε, see
Theorem 6.4.2, smoothness of Gj .

A slightly different proof can be found for example in [Boyarsky & Góra 1997].
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Chapter 7

Fractal dimensions

In the first section of this chapter we provide a more complete treatment of
outer measure begun in Chapter 1. The rest of this chapter is devoted to
presentation of basic definitions and facts related to Hausdorff and packing
measures, Hausdorff and packing dimensions of sets and measures and ball (or
box) -counting dimensions.

7.1 Outer measures

In Section 1.1 we have introduced the abstract notion of measure. At the be-
ginning of this section we want to show how to construct measures starting
with functions of sets called outer measures which are required to satisfy much
weaker conditions. Our exposition of this material is brief and the reader should
find its complete treatment in all handbooks of geometric measure theory (see
for example [Rogers 1970], [Falconer 1985], [Falconer 1997], [Mattila 1995] or
[Pesin 1997]). This approach has been already applied in Chapter 1, see Theo-
rem 1.7.2.

Definition 7.1.1. An outer measure on a set X is a function µ defined on all
subsets of X taking values in [0,∞] such that

µ(∅) = 0, (7.1.1)

µ(A) ≤ µ(B) if A ⊂ B (7.1.2)

and

µ
(

∞
⋃

n=1

An

)

≤
∞
∑

n=1

µ(An) (7.1.3)

for any countable family {An : n = 1, 2, . . .} of subsets of X .
A subset A of X is called µ-measurable or simply measurable with respect to

the outer measure µ if and only if

µ(B) ≥ µ(B ∩A) + µ(B \A) (7.1.4)

229
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for all sets B ⊂ X . Check that the opposite inequality follows immediately from
(7.1.3). Check also that if µ(A) = 0 then A is µ-measurable.

Theorem 7.1.2. If µ is an outer measure on X, then the family F of all
µ-measurable sets is a σ-algebra and the restriction of µ to F is a measure.

Proof. Obviously X ∈ F . By symmetry of (7.1.4), A ∈ F if and only if Ac ∈ F .
So, the conditions (1.1.1) and (1.1.2) of the definition of σ-algebra are satisfied.
To check the condition (1.1.3) that F is closed under countable union, suppose
that A1, A2, . . . ∈ F and let B ⊂ X be any set. Applying (7.1.4) in turn to
A1, A2, . . . we get for all k ≥ 1

µ(B) ≥ µ(B ∩A1) + µ(B \A1)

≥ µ(B ∩A1) + µ((B \A1) ∩A2) + µ(B \A1 \A2)

≥ . . .

≥
k
∑

j=1

µ
((

B \
j−1
⋃

i=1

Ai

)

∩Aj
)

+ µ
(

B \
k
⋃

j=1

Aj
)

≥
k
∑

j=1

µ
((

B \
j−1
⋃

i=1

Ai

)

∩Aj
)

+ µ
(

B \
∞
⋃

j=1

Aj
)

and therefore

µ(B) ≥
∞
∑

j=1

µ
((

B \
j−1
⋃

i=1

Ai

)

∩Aj
)

+ µ
(

B \
∞
⋃

j=1

Aj
)

(7.1.5)

Since

B ∩
∞
⋃

j=1

Aj =

∞
⋃

j=1

(

B \
j−1
⋃

i=1

Ai

)

∩Aj

using (7.1.3) we thus get

µ(B) ≥ µ
(

∞
⋃

j=1

(

B \
j−1
⋃

i=1

Ai

)

∩Aj
)

+ µ
(

B \
∞
⋃

j=1

Aj
)

Hence condition (1.1.3) is also satisfied and F is a σ-algebra. To see that µ is a
measure on F i.e. that condition (1.1.4) is satisfied, consider mutually disjoint
sets A1, A2, . . . ∈ F and apply (7.1.5) to B =

⋃∞
j=1 Aj . We get

µ
(

∞
⋃

j=1

Aj

)

≥
∞
∑

j=1

µ(Aj)

Combining this with (7.1.3) we conclude that µ is a measure on F . ♣
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Now, let (X, ρ) be a metric space. An outer measure µ on X is said to be a
metric outer measure if

µ(A ∪B) = µ(A) + µ(B) (7.1.6)

for all positively separated sets A,B ⊂ X that is satisfying the following condi-
tion

ρ(A,B) = inf{ρ(x, y) : x ∈ A, y ∈ B} > 0.

We assume the convention that ρ(A, ∅) = ρ(∅, A) = ∞.
Recall that the Borel σ-algebra on X is the σ-algebra generated by open, or

equivalently closed, sets. We want to show that if µ is a metric outer measure
then the family of all µ-measurable sets contains this σ-algebra. The proof is
based on the following version of .

Lemma 7.1.3. Let µ be a metric outer measure on (X, ρ). Let {An : n =
1, 2, . . .} be an increasing sequence of subsets of X and denote A =

⋃∞
n=1An. If

ρ(An, A \An+1) > 0 for all n ≥ 1, then µ(A) = limn→∞ µ(An).

Proof. By (7.1.2) it is enough to show that

µ(A) ≤ lim
n→∞

µ(An) (7.1.7)

If limn→∞ µ(An) = ∞, there is nothing to prove. So, suppose that

lim
n→∞

µ(An) = sup
n
µ(An) <∞ (7.1.8)

Let B1 = A1 and Bn = An \An−1 for n ≥ 2. If n ≥ m+ 2, then Bm ⊂ Am and
Bn ⊂ A \ An−1 ⊂ A \ Am+1. Thus Bm and Bn are positively separated and
applying (7.1.6) we get for every j ≥ 1

µ
(

j
⋃

i=1

B2i−1

)

=

j
∑

i=1

µ(B2i−1) and µ
(

j
⋃

i=1

B2i

)

=

j
∑

i=1

µ(B2i) (7.1.9)

We have also for every n ≥ 1

µ(A) = µ
(

∞
⋃

k=n

Ak

)

= µ
(

An ∪
∞
⋃

k=n+1

Bk

)

≤ µ(An) +

∞
∑

k=n+1

µ(Bk) ≤ lim
l→∞

µ(Al) +

∞
∑

k=n+1

µ(Bk) (7.1.10)

Since the sets
⋃j
i=1 B2i−1 and

⋃j
i=1 B2i appearing in (7.1.9) are both contained

in A2j , it follows from (7.1.8) and (7.1.9) that the series
∑∞

k=1 µ(Bk) converges.
Therefore (7.1.7) follows immediately from (7.1.10). The proof is finished. ♣

Theorem 7.1.4. If µ is a metric outer measure on (X, ρ) then all Borel subsets
of X are µ-measurable.
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Proof. Since the Borel sets form the least σ-algebra containing all closed subsets
of X , it follows from Theorem 7.1.2 that it is enough to check (7.1.4) for every
non-empty closed set A ⊂ X and every B ⊂ X . For all n ≥ 1 let Bn = {x ∈
B \A : ρ(x,A) ≥ 1/n}. Then ρ(B ∩A,Bn) ≥ 1/n and by (7.1.6)

µ(B ∩A) + µ(Bn) = µ((B ∩A) ∪Bn) ≤ µ(B) (7.1.11)

The sequence {Bn}∞n=1 is increasing and, since A is closed, B \ A =
⋃∞
n=1Bn.

In order to apply Lemma 7.1.3 we shall show that

ρ(Bn, (B \A) \Bn+1) > 0

for all n ≥ 1. And indeed, if x ∈ (B \ A) \ Bn+1, then there exists z ∈ A with
ρ(x, z) < 1/(n+ 1). Thus, if y ∈ Bn, then

ρ(x, y) ≥ ρ(y, z)− ρ(x, z) > 1/n− 1/(n+ 1) =
1

n(n+ 1)

and consequently ρ(Bn, (B \ A) \ Bn+1) > 1/n(n + 1) > 0. Applying now
Lemma 7.1.3 with An = Bn shows that µ(B \ A) = limn→∞ µ(Bn). Thus
(7.1.4) follows from (7.1.11). The proof is finished. ♣

7.2 Hausdorff measures

Let φ : [0,∞) → [0,∞) be a non-decreasing function continuous at 0, positive
on (0,∞) and such that φ(0) = 0. Let (X, ρ) be a metric space. For every δ > 0
define

Λδφ(A) = inf
{

∞
∑

i=1

φ(diam(Ui))
}

(7.2.1)

where the infimum is taken over all countable covers {Ui : i = 1, 2, . . .} of A of
diameter not exceeding δ. Conditions (7.1.1) and (7.1.2) are obviously satisfied
with µ = Λδφ. To check (7.1.3) let {An : n = 1, 2, . . .} be a countable family of
subsets of X . Given ε > 0 for every n ≥ 1 we can find a countable cover {Uni :
i = 1, 2, . . .} of An of diameter not exceeding δ such that

∑∞
i=1 φ(diam(Uni )) ≤

Λδφ(An) + ε/2n. Then the family {Uni : n ≥ 1, i ≥ 1} covers
⋃∞
n=1An and

Λδφ

(

∞
⋃

n=1

An

)

≤
∞
∑

n=1

∞
∑

i=1

φ(diam(Uni )) ≤
∞
∑

n=1

Λδφ(An) + ε

Thus, letting ε→ 0, (7.1.3) follows proving that Λδφ is an outer measure. Define

Λφ(A) = lim
δ→0

Λδφ(A) = sup
δ>0

Λδφ(A) (7.2.2)

The limit exists, but may be infinite, since Λδφ(A) increases as δ decreases. Since

all Λδφ are outer measures, the same argument also shows that Λφ is an outer
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measure. Moreover Λφ turns out to be a metric outer measure, since if A and B
are two positively separated sets in X , then no set of diameter less than ρ(A,B)
can intersect both A and B. Consequently

Λδφ(A ∪B) = Λδφ(A) + Λδφ(B)

for all δ < ρ(A,B) and letting δ → 0 we get the same formula for Λφ which is
just (7.1.6) with µ = Λφ. The metric outer measure Λφ is called the Hausdorff
outer measure associated to the function φ. Its restriction to the σ-algebra of
Λφ-measurable sets, which by Theorem 7.1.4 includes all the Borel sets, is called
the Hausdorff measure associated to the function φ.

As an immediate consequence of the definition of Hausdorff measure and the
properties of the function φ we get the following.

Proposition 7.2.1. The Hausdorff measure Λφ is non-atomic.

Remark 7.2.2. A particular role is played by functions φ of the form t 7→ tα,
t, α > 0 and in this case the corresponding outer measures are denoted by Λδα
and Λα.

Remark 7.2.3. Note that if φ1 is another function but such that φ1 and φ
restricted to an interval [0, ε), ε > 0, are equal, then the outer measures Λφ1

and Λφ are also equal. So, in fact, it is enough to define the function φ only on
an arbitrarily small interval [0, ε).

Remark 7.2.4. Notice that we get the same values for Λδφ(A), and consequently
also for Λφ(A), if the infimum in (7.2.1) is taken only over covers consisting of
sets contained in A. This means that the Hausdorff outer measure Λφ(A) of
A is its intrinsic property, i.e. does not depend on in which space the set A
is contained. If we treated A as the metric space (A, ρ|A) with the metric ρ|A
induced from ρ, we would get the same value for the Hausdorff outer measure.

If we however took the infimum in (7.2.1) only over covers consisting of
balls, we could get different ”Hausdorff measure” which (dependently on φ)
would need not be even equivalent with the Hausdorff measure just defined.
To assure this last property φ is from now on assumed to satisy the following
condition.

There exists a function C : (0,∞) → [1,∞) such that for every a ∈ (0,∞)
and every t > 0 sufficiently small (dependently on a)

C(a)−1φ(t) ≤ φ(at) ≤ C(a)φ(t) (7.2.3)

Since (ar)t = atrt, all functions φ of the form r 7→ rt, considered in Re-
mark 6.2.2, satisfy (7.2.3) with C(a) = at. Check that all functions r 7→
rt exp(c

√

log 1/r log log log 1/r, c ≥ 0 also satisfy (7.2.3) with a suitable func-
tion C.

Definition 7.2.5. A countable collection {(xi, ri) : i = 1, 2, . . .} of pairs
(xi, ri) ∈ X × (0,∞) is said to cover a subset A of X if A ⊂ ⋃∞

i=1 B(xi, ri),
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and is said to be centered at the set A if xi ∈ A for all i = 1, 2, . . .. The radius
of this collection is defined as supi ri and its diameter as the diameter of the
family {B(xi, ri) : i = 1, 2, . . .}.

For every A ⊂ X and every r > 0 let

ΛBrφ (A) = inf
{

∞
∑

i=1

φ(ri)
}

(7.2.4)

where the infimum is taken over all collections {(xi, ri) : i = 1, 2, . . .} centered
at the set A, covering A and of radii not exceeding r. Let

ΛBφ (A) = lim
r→0

ΛBrφ (A) = sup
r>0

ΛBrφ (A) (7.2.5)

The limit exists by the same argument as used for the limit in (7.2.2). We shall
prove the following.

Lemma 7.2.6. For every set A ⊂ X

1 ≤ Λφ(A)

ΛBφ (A)
≤ C(2)

Proof. Since the diameter of any ball does not exceed its double radius, since
the diameter of any collection {(xi, ri) : i = 1, 2, . . .} also does not exceed its
double radius and since the function φ is non-decreasing and satisfies (7.2.3),
we see that for every r > 0 small enough

∞
∑

i=1

φ(diam(B(xi, ri))) ≤
∞
∑

i=1

φ(2ri) ≤ C(2)

∞
∑

i=1

φ(ri)

and therefore Λ2r
φ (A) ≤ C(2)ΛBrφ (A). Thus, letting r → 0,

Λφ(A) ≤ C(2)ΛBφ (A) (7.2.6)

On the other hand, let {Ui : i = 1, 2, . . .} be a countable cover of A consisting
of subsets of A. For every i ≥ 1 choose xi ∈ Ui and put ri = diam(Ui). Then
the collection {(xi, ri) : i = 1, 2, . . .} covers A, is centered at A and

∞
∑

i=1

φ(ri) =

∞
∑

i=1

φ(diam(Ui))

which implies that ΛBδφ (A) ≤ Λδφ(A) for every δ > 0. Thus ΛBφ (A) ≤ Λφ(A)
which combined with (7.2.6) finishes the proof. ♣

Remark 7.2.7. The function of sets ΛBφ need not to be an outer measure since
condition (7.1.2) need not be satisfied. Since we will be never interested in
exact computation of Hausdorff measure, only in establishing its positiveness
or finiteness or in comparing the ratio of its value with some other quantities
up to bounded constants, we will be mostly dealing with ΛBδφ and ΛBφ using

nevertheless always the symbols Λδφ(A) and Λφ(A).
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7.3 Packing measures

Let, as in the previous section, φ : [0,∞) → [0,∞) be a non-decreasing function
such that φ(0) = 0 and let (X, ρ) be a metric space. A collection {(xi, ri) : i =
1, 2, . . .} centered at a set A ⊂ X is said to be a packing of A if and only if for
any pair i 6= j

ρ(xi, xj) ≥ ri + rj

This property is not generally equivalent to requirement that all the balls
B(xi, ri) are mutually disjoint. It is obviously so if X is a Euclidean space.
For every A ⊂ X and every r > 0 let

Π∗r
φ (A) = sup

{

∞
∑

i=1

φ(ri)
}

(7.3.1)

where the supremum is taken over all packings {(xi, ri) : i = 1, 2, . . .} of A of
radius not exceeding r. Let

Π∗
φ(A) = lim

r→0
Π∗r
φ (A) = inf

r>0
Π∗r
φ (A) (7.3.2)

The limit exists since Π∗r
φ (A) decreases as r decreases. In opposite to ΛBφ the

function Π∗
φ satisfies condition (7.1.2), however it also need not to be an outer

measure since this time condition (7.1.3) need not to be satisfied. To obtain an
outer measure we put

Πφ(A) = inf
{

∑

Π∗
φ(Ai)

}

, (7.3.3)

where the supremum is taken over all covers {Ai} of A. The reader will check
easily, with similar arguments as in the case of Hausdorff measures, that Πφ is
already an outer measure and even more, a metric outer measure on X . It will
be called the packing outer measure associated to the function φ. Its restriction
to the σ-algebra of Πφ-measurable sets, which by Theorem 7.1.4 includes all the
Borel sets, will be called packing measure associated to the function φ.

Proposition 7.3.1. For every set A ⊂ X it holds Λφ(A) ≤ C(2)Πφ(A).

Proof. First we shall show that for every set A ⊂ X and every r > 0

Λ2r
φ (A) ≤ C(2)Π∗r

φ (A) (7.3.4)

Indeed, if there is no finite maximal (in the sense of inclusion) packing of the set
A of the form {(xi, r)}, then for every k ≥ 1 there exists a packing {(xi, r) : i =

1, . . . , k} of A and therefore Π∗r
φ (A) ≥∑k

i=1 φ(r) = kφ(r). Since φ(r) > 0, this
implies that Π∗r

φ (A) = ∞ and (7.3.4) holds. Otherwise, let {(xi, r) : i = 1, . . . , l}
be a maximal packing of A. Then the collection {(xi, 2r) : i = 1, . . . , l} covers
A and therefore

Λ2r
φ (A) ≤

l
∑

i=1

φ(2r) ≤ C(2)lφ(r) ≤ C(2)Π∗r
φ (A)
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that is (7.3.4) is satisfied. Thus letting r → 0 we get

Λφ(A) ≤ C(2)Π∗
φ(A) (7.3.5)

So, if {An}n≥1 is a countable cover of A then,

Λφ(A) ≤
∞
∑

n=1

Λφ(Ai) ≤ C(2)
∞
∑

n=1

Π∗
φ(Ai).

Hence, applying (7.3.3), the lemma follows. ♣

7.4 Dimensions

Let, similarly as in the two previous sections, (X, ρ) be a metric space. Recall
(comp. Remark 7.2.2) that Λt, t > 0, is the Hausdorff outer measures on X
associated to the function r 7→ rt and all Λδt are of corresponding meaning. Fix
A ⊂ X . Since for every 0 < δ ≤ 1 the function t 7→ Λδt (A) is non-increasing, so
is the function t→ Λt(A). Furthermore, if s < t, then for every 0 < δ

Λδs(A) ≥ δs−tΛδt (A)

which implies that if Λt(A) is positive, then Λs(A) is infinite. Thus there is a
unique value, HD(A), called the Hausdorff dimension of A such that

Λt(A) =

{

∞ if 0 ≤ t < HD(A)

0 if HD(A) < t <∞ (7.4.1)

Note that similarly as Hausdorff measures (comp. Remark 7.2.4), Hausdorff
dimension is consequently also an intrinsic property of sets and does not de-
pend on their complements. The following is an immediate consequence of the
definitions of Hausdorff dimension and outer Hausdorff measures.

Theorem 7.4.1. The Hausdorff dimension is a monotonic function of sets,
that is if A ⊂ B then HD(A) ≤ HD(B).

We shall prove the following.

Theorem 7.4.2. If {An}n≥1 is a countable family of subsets of X then

HD(∪nAn) = sup
n
{HD(An)}.

Proof. Inequality HD(∪nAn) ≥ supn{HD(An)} is an immediate consequence of
Theorem 7.4.1. Thus, if supn{HD(An)} = ∞ there is nothing to prove. So,
suppose that s = supn{HD(An)} is finite and consider an arbitrary t > s. In
view of (7.4.1), Λt(An) = 0 for every n ≥ 1 and therefore, since Λt is an outer
measure, Λt(∪nAn) = 0. Hence, by (7.4.1) again, HD(∪nAn) ≤ t. The proof is
finished. ♣
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As an immediate consequence of this theorem, Proposition 7.2.1 and formula
(7.4.1) we get the following.

Proposition 7.4.3. The Hausdorff dimension of any countable set is equal to 0.

In exactly the same way as Hausdorff dimension HD one can define packing∗

dimension PD∗ and packing dimension PD using respectively Π∗
t (A) and Πt(A)

instead of Λt(A). The reader can check easily that results analogous to Theo-
rem 7.4.1, Theorem 7.4.2 and Proposition 7.4.3 are also true in these cases. As
an immediate consequence of these definitions and Proposition 7.3.1 we get the
following.

Lemma 7.4.4. HD(A) ≤ PD(A) ≤ PD∗(A) for every set A ⊂ X.

Now we shall define the third basic dimension – ball-counting dimension
frequently also called box-counting dimension, Minkowski dimension or (limit)
capacity. Let A be an arbitrary subset of the metric space (X, ρ). We first need
the following.

Definition 7.4.5. For every r > 0 consider the family of all collections {(xi, ri)}
(see Definition 6.2.5) of radius not exceeding r which cover A and are centered
at A. Put N(A, r) = ∞ if this family is empty. Otherwise define N(A, r) to be
the minimum of all cardinalities of elements of this family. Note that one gets
the same number if one considers the subfamily of collections of radius exactly
r and even only its subfamily of collections of the form {(xi, r)}.

Now the lower ball-counting dimensions and upper ball-counting dimension
of A are defined respectively by

BD(A) = lim inf
r→0

logN(A, r)

− log r
and BD(A) = lim sup

r→0

logN(A, r)

− log r
. (7.4.2)

If BD(A) = BD(A), the common value is called simply ball-counting dimension
and is denoted by BD(A). The reader will easily prove the next theorem which
explains the reason of the name box-counting dimension. The other names will
not be discussed here.

Proposition 7.4.6. Fix n ≥ 1. For every r > 0 let L(r) be any partition (up
to boundaries) of Rn into closed cubes of sides of length r. For any set A ⊂ Rn

let L(A, r) denotes the number of cubes in L(r) which intersect A. Then

BD(A) = lim inf
r→0

logL(A, r)

− log r
and BD(A) = lim sup

r→0

logL(A, r)

− log r

Remark 7.4.7. Ball-counting dimension has properties which distinguish it
qualitatively from Hausdorff and packing dimensions. For instance BD(A) =
BD(A) and BD(A) = BD(A). So, in particular there exist countable sets of
positive ball-counting dimension, for example the set of rational numbers in the
interval [0, 1]. Even more, there exist compact countable sets with this property
like the set {1, 1/2, 1/3, . . . , 0} ⊂ R. On the other hand in many cases (see
Theorem 7.6.7) all these dimensions coincide.
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Now we shall provide other characterizations of ball-counting dimension,
which in particular will be used to prove Lemma 7.4.9 and consequently The-
orem 7.4.10 which establishes most general relations between the dimensions
considered in this section.

Let A ⊂ X . For every r > 0 define P (A, r) to be the supremum of cardinal-
ities of all packings of the set A of the form {(xi, r)}. First we shall prove the
following.

Lemma 7.4.8. For every set A ⊂ Rn and every r > 0

N(A, 2r) ≤ P (A, r) ≤ N(A, r).

Proof. Let us start with the proof of the first inequality. If P (A, r) = ∞, there
is nothing to prove. Otherwise, let {(xi, r) : i = 1, . . . , k} be a packing of A with
k = P (A, r). Then this packing is maximal in the sense of inclusion and therefore
the collection {(xi, 2r) : i = 1, . . . , l} covers A. Thus N(A, 2r) ≤ l = P (A, r).
The first part of Lemma 7.4.8 is proved.

If N(A, r) = ∞, the second part is obvious. Otherwise consider a finite
packing {(xi, r) : i = 1, . . . , k} of A and a finite cover {(yj , r) : j = 1, . . . , l} of
A centered at A. Then for every 1 ≤ i ≤ k there exists 1 ≤ j = j(i) ≤ l such
that xi ∈ B(yj(i), r) and every ball B(yj , r) can contain at most one element of
the set {xi : i = 1, . . . , k}. So, the function i 7→ j(i) is injective and therefore
k ≤ l. The proof is finished. ♣

As an immediate consequence of Lemma 7.4.8 we get the following.

BD(A) = lim inf
r→0

logP (A, r)

− log r
and BD(A) = lim sup

r→0

logP (A, r)

− log r
. (7.4.3)

Now we are in a position to prove the following.

Lemma 7.4.9. For every set A ⊂ X we have PD∗(A) = BD(A).

Proof. Take t < BD(A). In view of (7.4.3) there exists a sequence {rn : n =
1, 2, . . .} of positive reals converging to zero and such that P (A, rn) ≥ r−tn for
every n ≥ 1. Then Π∗rn

t (A) ≥ rtP (A, rn) ≥ 1 and consequently Π∗
t (A) ≥ 1.

Hence t ≤ PD∗(A) and therefore BD(A) ≤ PD∗(A).
In order to prove the converse inequality consider s < t < PD∗(A). Then

Π∗
t (A) = ∞ and therefore for every n ≥ 1 there exists a finite packing {(xn,i, rn,i) :

i = 1, . . . , k(n)} of A of radius not exceeding 2−n and such that

k(n)
∑

i=1

rtn,i > 1 (7.4.4)

Now for every m ≥ n let

ln,m = #{i ∈ {1, . . . , k(n)} : 2−(m+1) < rn,i ≤ 2−m}



7.5. BESICOVITCH COVERING THEOREM. VITALI THEOREM AND DENSITY POINTS 239

Then by (7.4.4)
∞
∑

m=n

ln,m2−mt > 1 (7.4.5)

Suppose that ln,m < 2ms(1 − 2(s−t)) for every m ≥ n. Then

∞
∑

m=n

ln,m2−mt < (1 − 2(s−t))
∞
∑

m=0

2m(s−t) = 1,

what contradicts (7.4.5). Thus for every n ≥ 1 there exists m = m(n) ≥ n such
that

ln,m ≥ 2ms(1 − 2(s−t))

Hence P (A, 2−(m+1)) ≥ 2ms(1 − 2(s−t)), so

logP (A, 2−(m+1))

(m+ 1) log 2
≥ sm log 2 + log(1 − 2s−t)

(m+ 1) log 2

Thus, letting n→ ∞ (then also m = m(n) → ∞) we obtain BD(A) ≥ s. ♣

Combining now Lemma 7.4.4 and Lemma 7.4.9 and checking easily that
HD(A) ≤ BD(A) we obtain the following main general relation connecting all
the dimensions under consideration.

Theorem 7.4.10. For every set A ⊂ X

HD(A) ≤ min{PD(A),BD(A)} ≤ max{PD(A),BD(A)} ≤ BD(A) = PD∗(A).

We finish this section with the following definition.

Definition 7.4.11. Let µ be a Borel measure on (X, ρ). We write

HD⋆(µ) = inf{HD(Y ) : µ(Y ) > 0} and HD⋆(µ) = inf{HD(Y ) : µ(X\Y ) = 0}.

In case HD⋆(µ) = HD⋆(µ), we call it Hausdorff dimension of the measure µ and
write HD(µ).

An analogous definition can be formulated for packing dimension, with nota-
tion PD⋆(µ),PD⋆(µ),PD(µ) and the name packing dimension of the measure µ.

7.5 Besicovitch covering theorem. Vitali theo-

rem and density points

In this section the main result is the Besicovitch covering theorem. Although
this theorem seems to be often omitted in the classical geometric measure theory,
we consider it as one of most powerful geometric tools when dealing with some
aspects of fractal sets. We refer the reader to Section 7.6 to verify our opinion.
We deduce also easily two other fundamental classical theorems: Vitali-type
covering theorem, and density points theorem.
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Theorem 7.5.1 (Besicovitch covering theorem). Let n ≥ 1 be an integer. Then
there exists a constant b(n) > 0 such that the following claim is true.

If A is a bounded subset of R
n then for any function r : A → (0,∞) there

exists {xk : k = 1, 2, . . .} a countable subset of A such that the collection
B(A, r) = {B(xk, r(xk)) : k ≥ 1} covers A and can be decomposed into b(n)
packings of A.

In particular it follows from Theorem 7.5.1 that #{B ∈ B : x ∈ B} ≤
b(n). Exactly the same proof (word by word) goes through if open balls in
Theorem 7.5.1 are replaced by closed ones.

For any x ∈ Rn, any 0 < r ≤ ∞ and any 0 < α < π by Con(x, α, r) we will
denote any solid central cone with vertex x, radius r and angle α, that is for an
arbitrary straight half-line l starting at x Con(x, α, r) = Con(l, x, α, r) := {y ∈
R
n : 0 < |y − x| < r,∠(y − x, l) ≤ α} ∪ {x}.

The proof of Theorem 7.5.1 is based on the following obvious geometric
observation.

Observation 7.5.2. Let n ≥ 1 be an integer. Then there exists α(n) > 0 so
small that the following holds. If x ∈ Rn, 0 < r <∞, if z ∈ B(x, r) \B(x, r/3)
and x ∈ Con(z, α(n),∞) then the set Con(z, α(n),∞) \ B(x, r/3) consists of
two connected components, one of z and one of ”∞”, and that one containing
z is contained in B(x, r).

Proof of Theorem 7.5.1. In the sequel we consider balls in Rn. We will construct
the sequence {xk : k = 1, 2, . . .} inductively. Let

a0 = sup{r(x) : x ∈ A}

If a0 = ∞ then one can find x ∈ A with r(x) so large that B(x, r(x)) ⊃ A and
the proof is finished.

If a0 < ∞ choose x1 ∈ A so that r(x1) > a0/2. Fix k ≥ 1 and assume that
the points x1, x2, . . . , xk have been already chosen. If A ⊂ B(x1, r(x1)) ∪ . . . ∪
B(xk, r(xk)) then the selection process is finished. Otherwise put

ak = sup{r(x) : x ∈ A \
(

B(x1, r(x1)) ∪ . . . ∪B(xk, r(xk))
)

}

and take
xk+1 ∈ A \

(

B(x1, r(x1)) ∪ . . . ∪B(xk, r(xk))
)

(7.5.1)

such that
r(xk+1) > ak/2 (7.5.2)

In order to shorten notation from now on throughout this proof we will write rk
for r(xk). By (7.5.1) we have xl /∈ B(xk, rk) for all pairs k, l with k < l. Hence

‖xk − xl‖ ≥ r(xk) (7.5.3)

It follows from the construction of the sequence (xk) that

rk > ak−1/2 ≥ rl/2 (7.5.4)



7.5. BESICOVITCH COVERING THEOREM. VITALI THEOREM AND DENSITY POINTS 241

and therefore rk/3 + rl/3 < rk/3 + 2rk/3 = rk. Joining this and (7.5.3) we
obtain

B(xk, rk/3) ∩B(xl, rl/3) = ∅ (7.5.5)

for all pairs k, l with k 6= l since then either k < l or l < k.
Now we shall show that the balls {B(xk, rk) : k ≥ 1} cover A. Indeed, if the

selection process stops after finitely many steps this claim is obvious. Otherwise
it follows from (7.5.5) that limk→∞ rk = 0 and if x /∈ ⋃∞

k=1 B(xk, rk) for some
x ∈ A then by construction rk > ak−1/2 ≥ r(x)/2 for every k ≥ 1. The
contradiction obtained proves that

⋃∞
k=1 B(xk, rk) ⊃ A.

The main step of the proof is given by the following.

Claim. For every z ∈ R
n and any cone Con(z, α(n),∞) (α(n) given by Obser-

vation 7.5.2

#{k ≥ 1 : z ∈ B(xk, rk) \B(xk, rk/3) and xk ∈ Con(z, α(n),∞)} ≤ 12n

Denote by Q the set of integers whose cardinality is to be estimated. If Q = ∅,
there is nothing to prove. Otherwise let i = minQ. If k ∈ Q and k 6= i then
k > i and therefore xk /∈ B(xi, ri). In view of this, Observation 7.5.2 applied
with x = xi, r = ri, and the definition of Q, we get ‖z − xk‖ ≥ 2ri/3, whence

rk ≥ ‖z − xk‖ ≥ 2ri/3 (7.5.6)

On the other hand by (7.5.4) we have rk < 2ri and therefore B(xk, rk/3) ⊂
B(z, 4rk/3) ⊂ B(z, 8ri/3). Thus, using (7.5.5), (7.5.6) and the fact that the
n-dimensional volume of balls in Rn is proportional to the nth power of radii we
obtain #Q ≤ (8ri/3)n/(2ri/9)n = 12n. The proof of the claim is finished.

Clearly there exists an integer c(n) ≥ 1 such that for every z ∈ Rn the space
R
n can be covered by at most c(n) cones of the form Con(z, α(n),∞). Therefore

it follows from the claim that for every z ∈ Rn

#{k ≥ 1 : z ∈ B(xk, rk) \B(xk, rk/3)} ≤ c(n)12n

Thus applying (7.5.5)

#{k ≥ 1 : z ∈ B(xk, rk) ≤ 1 + c(n)12n (7.5.7)

Since the ball B(0, 3/2) is compact, it contains a finite subset P such that
⋃

x∈P B(x, 1/2) ⊃ B(0, 3/2). Now for every k ≥ 1 consider the composition of
the map Rn ∋ x 7→ rkx ∈ Rn and the translation determined by the vector from
0 to xk. Call by Pk the image of P under this affine map. Then #Pk = #P ,
Pk ⊂ B(xk, 3rk/2) and

⋃

x∈Pk

B(x, rk/2) ⊃ B(0, 3rk/2) (7.5.8)

Consider now two integers 1 ≤ k < l such that

B(xk, rk) ∩B(xl, rl) 6= ∅ (7.5.9)
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Let y ∈ Rn be the only point lying on the interval joining xl and xk at the
distance rk − rl/2 from xk. As xl /∈ B(xk, rk), by (7.5.9) we have ‖y − xl‖ ≤
rl+rl/2 = 3rl/2 and therefore by (7.5.8) there exists z ∈ Pl such that ‖z−y‖ <
rl/2. Consequently z ∈ B(xk, rl/2 + rk − rl/2) = B(xk, rk). Thus applying
(7.5.7) with z being the elements of Pl, we obtain the following

#{1 ≤ k ≤ l − 1 : B(xk, rk) ∩B(xl, rl) 6= ∅} ≤ #P (1 + c(n)12n) (7.5.10)

for every l ≥ 1.
Putting b(n) = #P (1 + c(n)12n) + 1 this property allows us to decompose

the set N of positive integers into b(n) subsets N1,N2, . . . ,Nb(n) in the following
inductive way. For every k = 1, 2, . . . , b(n) set Nk(b(n)) = {k} and suppose that
for every k = 1, 2, . . . , b(n) and some j ≥ b(n) mutually disjoint families Nk(j)
have been already defined so that

N1(j) ∪ ... ∪ Nb(n)(j) = {1, 2, . . . , j}

Then by (7.5.10) there exists at least one 1 ≤ k ≤ b(n) such that B(xj+1, rj+1)∩
B(xi, ri) = ∅ for every i ∈ Nk(j). We set Nk(j + 1) = Nk(j) ∪ {j + 1} and
Nl(j + 1) = Nl(j) for all l ∈ {1, 2, . . . , b(n)} \ {k}. Putting now for every
k = 1, 2, . . . , b(n)

Nk = Nk(b(n)) ∪ Nk(b(n) + 1) ∪ . . .
we see from the inductive construction that these sets are mutually disjoint,
that they cover N and that for every k = 1, 2, . . . , b(n) the families of balls
{B(xl, rl) : l ∈ Nk} are also mutually disjoint. The proof of the Besicovitch
covering theorem is finished. ♣

We would like to emphasize here once more that the same statement remains
true if open balls are replaced by closed ones. It also remains true if instead of
balls one considers n-dimensional cubes. Then however the proof based on the
same idea, is technically considerably easier.

We can easily deduce from Besicovitch covering theorem some other funda-
mental facts.

Theorem 7.5.3 (Vitali-type covering theorem). Let µ be a probability Borel
measure on R

n, A ⊂ R
n be a Borel set and let B be a family of closed balls such

that each point of A is the centre of arbitrarily small balls of B, that is

inf{r : B(x, r) ∈ B} = 0 for all x ∈ A.

Then there is finite of countable infinite collection B(A) of disjoint balls Bi ∈ B
such that

µ
(

A \
⋃

i

Bi
)

= 0.

Proof. (see [Mattila 1995]) We assume A is bounded, leaving the unbounded
case to the reader. We may assume µ(A) > 0. The measure µ restricted to
a compact ball B(0, R) such that A ⊂ B(0, R/2) is Borel hence regular, see
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comments preceding Theorem 2.1.2. Hence there exists an open set U ⊂ Rn

containing A and such that

µ(U) ≤ (1 + (4b(n))−1)µ(A),

where b(n) is as in Besicovitch covering theorem 7.5.1. By that theorem applied
for closed balls we can decompose B in packings B1, ...,Bb(n) of A contained in
U , i.e. each Bi consists of disjoint balls and

A ⊂
b(n)
⋃

i=1

⋃

Bi ⊂ U.

Then, µ(A) ≤∑b(n)
i=1 µ

(
⋃Bi

)

and consequently there exists an i such that

µ(A) ≤ b(n)µ
(

⋃

Bi
)

.

Further, for some finite subfamily B′
i of Bi,

µ(A) ≤ 2b(n)µ
(

⋃

B′
i

)

.

Letting A1 = A \ (
⋃B′

i

)

we get

µ(A1) ≤ µ
(

U \
⋃

B′
i

)

= µ(U) − µ
(

⋃

B′
i

)

≤
(

1 +
1

4
(b(n))−1 − 1

2
(b(n))−1

)

µ(A) = uµ(A)

with u := 1 − 1
4 (b(n))−1 < 1.

Next, consider A1 in the role of A before. Since A1 ⊂ Rn \
(
⋃B′

i

)

which is
open, we find a packing, playing the role of B′

i contained in it, so disjoint with
B′
i. We get the measure of a non-covered remnant bounded above by u2µ(A).

We can continue, exhausting the whole A except at most a set of measure 0. ♣

Theorem 7.5.4 (On points of density). Let µ be a probability Borel measure
on R

n and A ⊂ R
n be a Borel set. then the limit

lim
r→0

µ(A ∩B(x, r))

µ(B(x, r))

exists and is equal to 1 for µ-almost every x ∈ Rn.

Proof. Suppose the set of points in A where the limit above is not 1 (or does
not exist) has positive measure. Then there exists a < 1 and Borel A′ ⊂ A of
positive measure µ such that for every x ∈ A′ there is a sequence ri ց 0 such
that µ(A′∩B(x, ri))/µ(B(x, ri)) < a. Let B(A′) be the collection of balls whose
existence is asserted in Theorem 7.5.3, contained in an arbitrary open set U
containing A′. Then

µ(A′) =
∑

B∈B(A′)

µ(A′ ∩B) < a
∑

B∈B(A′)

µ(B) ≤ aµ(U).

This gives a contradiction for U sufficiently small. ♣



244 CHAPTER 7. FRACTAL DIMENSIONS

These theorems are introduction to the ”differentiation” theory, compare
Excercise 1.6.

7.6 Frostman-type lemmas

In this section we shall explain how some knowledge about a measure of small
balls versus diameter yields information about dimensions of support of the
measure.

Let a function φ : [0,∞) → [0,∞) satisfy the same conditions as in Sec-
tion 7.2 including (7.2.3) and moreover let φ be continuous. We start with the
following.

Theorem 7.6.1. Let n ≥ 1 be an integer and let b(n) be the constant claimed
in Theorem 7.5.1 (Besicovitch covering theorem). Assume that µ is a Borel
probability measure on Rn and A is a bounded Borel subset of Rn. If there
exists C ∈ (0,∞], (1/∞ = 0), such that

(a) for all (but countably many maybe) x ∈ A

lim sup
r→0

µ(B(x, r))

φ(r)
≥ C

then Λφ(E) ≤ b(n)
C µ(E) for every Borel set E ⊂ A. In particular Λφ(A) <∞.

or
(b) for all x ∈ A

lim sup
r→0

µ(B(x, r))

φ(r)
≤ C <∞

then µ(E) ≤ CΛφ(E) for every Borel set E ⊂ A.

Proof. (a) In view of Proposition 7.2.1 we can assume that E does not intersect
the exceptional countable set. Fix ε > 0 and r > 0. Since µ is a regular measure,
there exists an open set G ⊃ E such that µ(G) ≤ µ(E) + ε. By openness of
G and by assumption (a), for every x ∈ E there exists 0 < r(x) < r such that
B(x, r(x)) ⊂ G and (1/C+ε)µ(B(x, r)) ≥ φ(r). Let {(xk, r(xk)) : k ≥ 1} be the
cover of E obtained by applying Theorem 7.5.1 (Besicovitch covering theorem)
to the set E. Then

Λrφ(E) ≤
∞
∑

k=1

φ(r(xk)) ≤
∞
∑

k=1

(C−1 + ε)µ(B(xk, r(xk)))

≤ b(n)(C−1 + ε)µ(
∞
⋃

k=1

B(xk, r(xk))) ≤ b(n)(C−1 + ε)(µ(E) + ε)

Letting r → 0 we thus obtain Λφ(E) ≤ b(n)(1/C + ε)(µ(E) + ε) and therefore
letting ε→ 0 the part (a) follows (note that the proof is correct with C = ∞!).

(b) Fix an arbitrary s > C. Since for every r > 0 the function x 7→
µ(B(x, r))/φ(r) is measurable and since the supremum of a countable sequence
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of measurable functions is also a measurable function, we conclude that for every
k ≥ 1 the function ψk : A→ R is measurable, where

ψk(x) = sup

{

µ(B(x, r))

φ(r)
: r ∈ Q ∩ (0, 1/k]

}

and Q denotes the set of rational numbers. For every k ≥ 1 let Ak = ψ−1
k ((0, s]).

In view of measurability of the functions ψk all the sets Ak are measurable. Take
an arbitrary r ∈ (0, 1/k]. Then there exists a sequence {rj : j = 1, 2, . . .} of
rational numbers converging to r from above. Since the function φ is continuous
and the function t 7→ µ(B(x, t)) is non-decreasing, we have for every x ∈ Ak

µ(B(x, r))

φ(r)
≤ lim
j→∞

µ(B(x, rj))

φ(rj)
≤ s

So, if F ⊂ Ak is a Borel set and if {(xi, ri) : i = 1, 2, . . .} is a collection centered
at the set F , covering F and of radius not exceeding 0 < r ≤ 1/k, then

∞
∑

i=1

φ(ri) ≥ s−1
∞
∑

i=1

µ(B(xi, ri)) ≥ s−1µ(F )

Hence, Λrφ(F ) ≥ s−1µ(F ) and letting r → 0 we get

Λφ(E) ≥ Λφ(F ) ≥ s−1µ(F )

By the assumption of (b), ∪kAk = A and therefore, putting Bk = Ak \ (A1 ∪
A2 ∪ . . . ∪ Ak−1), k ≥ 1, we see that the family {Bk : k ≥ 1} is a countable
partition of A into Borel sets. Therefore, if E ⊂ A then

Λφ(E) =

∞
∑

k=1

Λφ(E ∩Ak) ≥ s−1
∞
∑

k=1

µ(E ∩Ak) = s−1µ(E)

So, letting sց C finishes the proof. ♣
In an analogous way, using Besicovitch covering theorem, the decomposition

into packings, one can prove the following.

Theorem 7.6.2. Let n ≥ 1 be an integer and let b(n) be the constant claimed
in Theorem 7.5.1 (Besicovitch covering theorem). Assume that µ is a Borel
probability measure on Rn and A is a bounded subset of Rn. If there exists
C ∈ (0,∞], (1/∞ = 0), such that

(a) for all x ∈ A

lim inf
r→0

µ(B(x, r))

φ(r)
≤ C

then µ(E) ≤ b(n)CΠφ(E) for every Borel set E ⊂ A.
or
(b) for all x ∈ A

lim inf
r→0

µ(B(x, r))

φ(r)
≥ C <∞

then Πφ(E) ≤ C−1µ(E) for every Borel set E ⊂ A. In particular Πφ(A) <∞.
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Note that each Borel measure µ defined on a Borel subset B of Rn can be
in a canonical way considered as a measure on Rn by putting µ(A) = µ(A ∩B)
for every Borel set A ⊂ R

n.
As a simple consequence of Theorem 7.6.1 we shall prove

Theorem 7.6.3 (Frostman’s lemma). Suppose that µ is a Borel probability
measure on Rn, n ≥ 1, and A is a bounded Borel subset of Rn.

(a) If µ(A) > 0 and there exists θ1 such that for every x ∈ A

lim inf
r→0

logµ(B(x, r))

log r
≥ θ1

then HD(A) ≥ θ1.
(b) If there exists θ2 such that for every x ∈ A

lim inf
r→0

logµ(B(x, r))

log r
≤ θ2

then HD(A) ≤ θ2.

Proof. (a) Take any 0 < θ < θ1. Then, by the assumption, lim supr→0 µ(B(x, r))/rθ ≤
1. Therefore applying Theorem 7.6.1(b) with φ(t) = tθ, we obtain Λθ(A) ≥
µ(A) > 0. Hence HD(A) ≥ θ by definition (7.4.1) and consequently HD(A) ≥ θ1.

(b) Take now an arbitrary θ > θ2. Then by the assumption lim supr→0 µ(B(x, r))/rθ ≥
1. Therefore applying Theorem 7.6.1(a) with φ(t) = tθ we obtain Λθ(A) < ∞,
whence HD(A) ≤ θ and consequently HD(A) ≤ θ2. The proof is finished. ♣

Similarly one proves a consequence of Theorem 7.6.2.

Theorem 7.6.4. Suppose that µ is a Borel probability measure on Rn, n ≥ 1,
and A is a bounded Borel subset of Rn.

(a) If µ(A) > 0 and there exists θ1 such that for every x ∈ A

lim sup
r→0

logµ(B(x, r))

log r
≥ θ1

then PD(A) ≥ θ1.
(b) If there exists θ2 such that for every x ∈ A

lim sup
r→0

logµ(B(x, r))

log r
≤ θ2

then PD(A) ≤ θ2.

Let µ be a Borel probability measure on a metric space X . For every x ∈
X we define the lower and upper pointwise dimension of µ at x by putting
respectively

dµ(x) = lim inf
r→0

logµ(B(x, r))

log r
and dµ(x) = lim sup

r→0

logµ(B(x, r))

log r
.
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Suppose now that X ⊂ Rd with Euclidean metric. Then the following the-
orem on Hausdorff and packing dimensions of µ, defined in Definition 6.4.10,
follows easily from Theorems 7.6.3 and 7.6.4.

Theorem 7.6.5.

HD⋆(µ) = ess inf dµ, PD⋆(µ) = ess inf dµ and

HD⋆(µ) = ess sup dµ(x), PD⋆(µ) = ess sup dµ(x).

Proof. Recall that the µ-essential infimum ess inf of a measurable function φ
and the µ-essential supremum ess sup are defined by

ess inf(φ) = sup
µ(N)=0

inf
x∈X\N

φ(x) and ess sup(φ) = inf
µ(N)=0

sup
x∈X\N

φ(x).

So, to begin with, for θ1 := ess inf φ we have

µ{x : φ(x) < θ1} = 0 and (∀θ > θ1)µ{x : φ(x) < θ} > 0.

Indeed, if µ{x : φ(x) < θ1} > 0 then there exists θ < θ1 with µ{x : φ(x) ≤ θ} >
0 hence for every N with µ(N) = 0 we have infX\N φ ≤ θ hence ess inf φ ≤ θ,
a contradiction. If there exists θ > θ1 with µ{x : φ(x) < θ} = 0 then for
N = {x : φ(x) < θ} we have infX\N φ ≥ θ hence ess inf φ ≥ θ, a contradiction.

This applied to φ = dµ yields for every A with µ(A) > 0 the existence of
A′ ⊂ A with µ(A′) = µ(A) > 0 such that for every x ∈ A′ dµ(x) ≥ θ1 hence
HD(A) ≥ HD(A′) ≥ θ1 by Theorem 7.6.3(a), hence HD⋆(µ) ≥ θ1.

On the other hand for every θ > θ1 µ{x : dµ(x) < θ} > 0 and by Theo-
rem 7.6.3(b) HD({x : dµ(x) < θ}) ≤ θ, therefore HD⋆(µ) ≤ θ. Letting θ → θ1
we get HD⋆(µ) ≤ θ1. We conclude that HD⋆(µ) = θ1.

Similarly one proceeds to prove HD⋆(µ) = ess sup dµ(x) and to deal with
packing dimension, refering to Theorem 7.6.4. ♣

Then by definition of essinf there exists Y ⊂ X ⊂ Rn be a Borel set such
that µ(Y ) = 1 and for every x ∈ Y dµ(x) ≥ θ1. Hence for every A ⊂ X with
µ(A) > 0, we have µ(A∩Y ) > 0 and for every x ∈ A∩Y , dµ(x) ≥ θ1. So using
Theorem 7.6.3(a) we get HD(A) ≥ HD(A∩ Y ) ≥ θ1. Hence by the definition of
HD⋆ we get HD⋆ ≥ θ1. Other parts of Theorem 7.6.5 follow from the definitions
and Theorems 7.6.4 and 7.6.3(a) similarly. ♣

Definition 7.6.6. Let X be a Borel bounded subset of Rn, n ≥ 1. A Borel
probability measure on X is said to be a geometric measure with an exponent
t ≥ 0 if and only if there exists a constant C ≥ 1 such that

C−1 ≤ µ(B(x, r))

rt
≤ C

for every x ∈ X and every 0 < r ≤ 1.

We shall prove the following.



248 CHAPTER 7. FRACTAL DIMENSIONS

Theorem 7.6.7. If X is a Borel bounded subset of Rn, n ≥ 1, and µ is a
geometric measure on X with an exponent t, then BD(X) exists and

HD(X) = PD(X) = BD(X) = t

Moreover the three measures µ, Λt and Πt on X are equivalent with bounded
Radon–Nikodym derivatives.

Proof. The last part of the theorem follows immediately from Theorem 7.6.1
and Theorem 7.6.2 applied for A = X . Consequently also t = HD(X) = PD(X)
and therefore, in view of Theorem 7.4.10, we only need to show that BD(X) ≤ t.
And indeed, let {(xi, r) : i = 1, . . . , k} be a packing of X . Then

krt ≤ C
k
∑

i=1

µ(B(xi, r)) ≤ C

and therefore k ≤ Cr−t. Thus P (X, r) ≤ Cr−t, whence logP (X, r) ≤ logC −
t log r. Applying now formula (7.4.3) finishes the proof. ♣

In particular it follows from this theorem that every geometric measure ad-
mits exactly one exponent. Lots of examples of geometric measures will be
provided in the next chapters.

Bibliographical notes

The history of notions and development of the geometric measure theory is very
long, rich and complicated and its outline exceeds the scope of this book. We
refer the interested reader to the books [Falconer 1997] and [Mattila 1995] and
other books mentioned in the introduction to this chapter.



Chapter 8

Conformal expanding

repellers

Conformal expanding repellers (abbreviation: CER’s) were defined already in
Chapter 5 and some basic properties of expanding sets and repellers in dimension
1 were discussed in Section 5.2. A more advanced geometric theory in the real
1-dimensional case was done in Chapter 6.

Now we have a new tool: Frostman Lemma and related facts from Chapter
7. Equipped with the theory of Gibbs measures and with the pressure function
we are able to develop a geometric theory of CER’s with Hausdorff measures
and dimension playing the crucial role. We shall present this theory for C1+ε

conformal expanding repellers in Rd. The main case of our interest will be d = 2.
Remind (Section 5.2 that the assumed conformality, forces for d = 2 that f is
holomorphic or anti-holomorphic and for d ≥ 3 that f is locally a Möbius map.
Conformality for d = 1 is meaningless, so we assume C1+ε in order to be able
to rely on the Bounded Distortion for Iteration lemma.

We shall outline a theory of Gibbs measures from the point of view of mul-
tifractal spectra of dimensions (Section 8.2) and pointwise fluctuations due to
the Law of Iterated Logarithm (Section 8.3) .

For d = 2 we shall apply this theory to study the boundary FrΩ of a sim-
ply connected domain Ω, in particular a simply connected immediate basin of
attraction to a sink for a rational mapping of the Riemann sphere.

To simplify our considerations we shall restrict usually to the cases where
the mapping on the boundary is expanding, and sometimes we assume that the
boundary is a Jordan curve, for example for the mapping z 7→ z2 + c for |c|
small.

In Section 8.5 we study harmonic measure on Fr Ω. We adapt the results of
Section 8.3 to study its pointwise fluctuations and we prove that except special
cases these fluctuations take place. We shall derive from this an information
about the fluctuations of the radial growth of the derivative of the Riemann
mapping R from the unit disc D to Ω. In Section 8.6 we discuss integral means

249
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∫

∂D
|R′(rz)|t |dz| as r ր 1. In Section 8.7 we provide other examples of Ω, von

Koch snowflake and Carleson’s (generalized) snowflakes.

8.1 Pressure function and dimension

Let f : X → X be a topologically mixing conformal expanding repeller in Rd.
As before we abbreviate notation of the pressure P(f, φ), to P(φ). We start
with the following technical lemma.

Lemma 8.1.1. Let m be a Gibbs state (not necessarily invariant) on X and
let φ : X → R be a Hölder continuous function. Assume P(φ) = 0. Then there
is a constant E ≥ 1 such that for all r small enough and all x ∈ X there exists
n = n(x, r) such that

logE + Snφ(x)

− logE − log |(fn)′(x)| ≤
logm(B(x, r))

log r
≤ − logE + Snφ(x)

logE − log |(fn)′(x)| . (8.1.1)

Proof. Take an arbitrary x ∈ X . Fix r ∈ (0, C−1ξ) and let n = n(x, r) ≥ 0 be
the largest integer so that

|(fn)′(x)|rC ≤ ξ, (8.1.2)

where C = CMD is the multiplicative distortion constant (corresponding to the
Hölder continuous function log |f ′|), as in the Distortion Lemma for Iteration
(Lemma 5.2.2), see Definition 5.2.1. Then

f−n
x (B(fn(x), ξ)) ⊃ B(x, ξ|(fn)′(x)|−1C−1) ⊃ B(x, r). (8.1.3)

Now take n0 such that λn0−1 ≥ C2. We then obtain

|(fn+n0)′|rC−1 ≥ ξ. (8.1.4)

Hence, again by the Distortion Lemma for Iteration

f−n−n0
x (B(fn+n0(x), ξ)) ⊂ B

(

x, ξ|(fn+n0)′(x)|−1C
)

⊂ B(x, r). (8.1.5)

By the Gibbs property of the measure m, see (4.1.1), for a constant E ≥ 1 (the
constant C in (4.1.1)) we can write

E−1 ≤ expSnφ(x)

m(f−n
x (B(fn(x), ξ)))

and
expSn+n0φ(x)

m(f
−(n+n0)
x (B(fn+n0(x), ξ)))

≤ E.

Using this, (8.1.3), (8.1.5), the inequality Sn+n0φ(x) ≥ Snφ(x) + n0 inf φ, and
finally increasing E so that the new logE is larger than the old logE−n0 inf φ,
we obtain

logE + Snφ(x) ≥ logm(B(x, r)) ≥ − logE + Snφ(x). (8.1.6)

Using now (8.1.2) and (8.1.4), denoting L = sup |f ′|, and applying logarithms,
we obtain

logE + Snφ(x)

log |(fn)′(x)|−1 − n0 logL+ log ξ
≤ logm(B(x, r)

log r
≤ − logE + Snφ(x)

log |(fn)′(x)|−1ξ
.
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Increasing further E so that logE ≥ n0 logL − log ξ, we can rewrite it in the
“symmetric” form of (8.1.1). ♣

When we studied the pressure function φ 7→ P(φ) in Chapters 2 and 4 the
linear functional ψ 7→

∫

ψdµφ appeared. This was the Gateaux differential of
P at φ (Theorem 2.6.5, Proposition 2.6.6 and (4.6.5)). Here the presence of an
ambient smooth structure (1-dimensional or conformal) distingushes ψ’s of the
form −t log |f ′|. We obtain a link between the ergodic theory and the geometry
of the embedding of X into Rd.

Definition 8.1.2. Let µ be an ergodic f -invariant probability measure on X .
Then by Birkhoff’s Ergodic Theorem, for µ-almost every x ∈ X , the limit
limn→∞

1
n log |(fn)′(x)| exists and is equal to

∫

log |f ′|dµ. We call this number
the Lyapunov characteristic exponent of the map f with respect to the measure
µ and we denote it by χµ(f). In our case of expanding maps considered in this
Chapter we obviously have χµ(f) > 0.

This definition does not demand the expanding property. It makes sense for
an arbitrary invariant subset X of Rd or the Riemann sphere C̄, for f conformal
(or differentiable in the real case) defined on a neighbourhood of X . There
is no problem with the integrability because log |f ′| is upper bounded on X .
We do not exclude the possibility that χµ = −∞. The notion of a Lyapunov
characteristic exponent will play a crucial role also in subsequent chapters where
non-expanding invariant sets will be studied.

Theorem 8.1.3 (Volume Lemma, expanding map and Gibbs measure case).
Let m be a Gibbs state for a topologically mixing conformal expanding repeller
X ∈ Rd and a Hölder continuous potential φ : X → R . Then for m-almost
every point x ∈ X there exists the limit

lim
r→0

logm(B(x, r))

log r
.

Moreover, this limit is almost everywhere constant and is equal to hµ(f)/χµ(f),
where µ denotes the only f -invariant probability measure equivalent to m.

Proof. We can assume that P(φ) = 0. We can achieve it by subtracting P(φ)
from φ; the Gibbs measure class will stay the same (see Proposition 4.1.4). In
view of the Birkhoff Ergodic Theorem, for µ-a.e x ∈ X we have

lim
n→∞

1

n
Snφ(x) =

∫

φdµ and lim
n→∞

1

n
log |(fn)′(x)| = χµ(f).

Combining these equalities with (8.2.1), along with the observation that n =
n(x, r) → ∞ as r → 0, and using also the equality hµ(f) +

∫

φdµ = P(φ) = 0,
we conclude that

lim
r→0

logµ(B(x, r))

log r
=

hµ(f)

χµ(f)
.

The proof is finished. ♣
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As an immediate consequence of this lemma and Theorem 7.6.5 we get the
following.

Theorem 8.1.4. If µ is an ergodic Gibbs state for a conformal expanding re-
peller X ∈ Rd and a Hölder continuous potential φ on X, then there exist
Hausdorff and packing dimensions of µ and

HD(µ) = PD(µ) = hµ(f)/χµ(f). (8.1.7)

Using the above technique we can find a formula for the Hausdorff dimension
and other dimensions of the whole set X . This is the solution of the non-linear
problem, corresponding to the formula for Hausdorff dimension of the linear
Cantor sets, discussed in the introduction.

Definition 8.1.5 (Geometric pressure). Let f : X → X be a topologically
mixing conformal expanding repeller in Rd. We call the pressure function

P(t) := P(−t log |f ′|)

a geometric pressure function.

As f is Lipschitz continuous (or as f is forward expanding), the function
P(t) is finite (see comments at the beginning of Section 2.6). As |f ′| ≥ λ > 1, it
follows directly from the definition that P(t) is strictly decreasing from +∞ to
−∞. In particular there exists exactly one parameter t0 such that P(t0) = 0.

P(t)

t0

Figure 8.1: Geometric pressure function

We prove first the following.

Theorem 8.1.6 (Existence of geometric measures). Let t0 be defined by P(t0) =
0. Write φ for −t0 log |f ′| restricted to X. Then each Gibbs state m correspond-
ing to the function φ is a geometric measure with the exponent t0. In particular

limr→0
logm(B(x,r))

log r = t0 for every x ∈ X.
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Proof. We put in (8.1.1) φ = −t0 log |f ′|. Then using (8.1.2) (8.1.4) and
sup |f ′| ≤ L to replace |(fn)′(x)|−1 by r we obtain

logE + t0 log r

− logE + log r
≤ logm(B(x, r))

log r
≤ − logE + t0 log r

logE + log r

with a corrected constant E. Hence

logE + t0 log r

log r
≤ logm(B(x, r))

log r
≤ − logE + t0 log r

log r
(8.1.8)

for further corrected E. In consequence

t0 ≤ log
(

m(B(x, r))/E
)

log r
and

log
(

Em(B(x, r))
)

log r
≤ t0,

hence
m(B(x, r))/E ≤ rt0 and Em(B(x, r)) ≥ rt0 .

(In the denominators we passed in Proof of Lemma 8.1.1 from r to |(fn)′(x)|−1

and here we passed back, so at this point the proof could be shortened. Namely
we could deduce (8.1.8) directly from (8.1.6). However we needed to pass from
|(fn)′(x)|−1 to r also in numerators and this point could not be simplified). ♣

As an immediate consequence of this theorem and Theorem 7.6.7 we get the
following.

Corollary 8.1.7. The Hausdorff dimension of X is equal to t0. Moreover it is
equal to the packing and Minkowski dimensions. All Gibbs states corresponding
to the potential φ = −t0 log |f ′|, as well as t0-dimensional Hausdorff and packing
measures are mutually equivalent with bounded Radon–Nikodym derivatives.

Remarks and Summary

The straight line tangent to the graph of P(t) at each t ∈ R is the graph of
the affine function

Lt(s) := hµt
(f) + sχµt

(f),

where µt is the invariant Gibbs measure for the potential −t log |f ′|. Indeed,
by the Variational Principle (Theorem 2.4.1) Lt(t) = P(t) and Lt(s) ≤ P(t) for
all s ∈ R, compare Section 2.6. The points where the graph of Lt intersects
the domain and range axes are respectively HD(µt), by req(7.1.6a) and Theo-
rem 4.6.5, and hµt

(f). The derivative is equal to −χµt
(f). Corollary 8.1.7 says

in particular that HD(µt0) = HD(X).
For example at Figure 8.1 tangent through the point of intersection of the

graph of P(t) with the range axis intersects the domain axis at the Hausdorff
dimension of the measure with maximal entropy.

Similarly as in Theorem 8.1.6 one can prove that for every x ∈ X and t ∈ R

we have for all r small
µt(B(x, r)) ∼ rtε−P(t),
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where ∼ means the mutual ratios are bounded. Compare (4.1.1). This justifies
the name: geometric pressure. This topic will be further developped in the next
section on the multifractal spectra. In Section 11.5 we shall introduce geometric
pressure in the case Julia set contains critical points.

More on Volume Lemma.

We end this section with a version of the Volume Lemma for a Borel prob-
ability invariant measure on the expanding repeller (X, f). In Chapter 10 we
shall prove this without the expanding assumption assuming only positivity of
Lyapunov exponent (though assuming also ergodicity) and the proof will be
difficult. So we prove first a simpler version, which will be needed already in
the next section. We start with a simple fact following from Lebesgue differ-
entiation theorem, see e.g.[Lojasiewicz 1988, Th.7.1.4], [Mattila 1995], compare
also Exercise 1.6(b). We provide a proof since it is very much in the spirit of
Chapter 7.

Lemma 8.1.8. Every non-decreasing function k : I → R defined on a bounded
closed interval I ⊂ R is Lipschitz continuous at Lebesgue almost every point in
I. In other words, for every ε > 0 there exist L > 0 and a set A ⊂ I such that
|I \ A| < ε, where | · | is the Lebesque measure in R, and at each r ∈ A the
function k is Lipschitz continuous with the Lipschitz constant L.

Proof. Suppose on the contrary, that

B = {x ∈ I : sup{y ∈ I : x 6= y,
|k(x) − k(y)|

|x− y| } = ∞}

has positive Lebesgue measure. Write I = [a, b]. We can assume, by taking a
subset, that B is compact and contains neither a nor b. For every x ∈ B choose
x′ ∈ I, x′ 6= x such that

|k(x) − k(x′)|
|x− x′| > 2

k(b) − k(a)

|B| . (8.1.9)

Replace each pair x, x′ by y, y′ with (y, y′) ⊃ [x, x′], and y, y′ so close to x, x′

that (8.1.9) still holds for y, y′ instead of x, x′. In case when x or x′ equals a or
b we do not make the replacement.) We shall use for y, y′ the old notation x, x′

assuming x < x′.
Now from the family of intervals (x, x′) choose a finite family I covering our

compact set B. From this family it is possible to choose a subfamily of intervals
whose union still covers B and which consists of two subfamilies I1 and I2 of
pairwise disjoint intervals. Indeed. Start with I1 = (x1, x

′
1) ∈ I with minimal

possible x = x1 and maximal in I in the sense of inclusion. Having found
I1 = (x1, x

′
1), . . . , In = (xn, x

′
n) we choose In+1 as follows. Consider In+1 :=

{(x, x′) ∈ I : x ∈ ⋃i=1,...,n Ii, x
′ > supi=1,...,n x

′
i}. If In+1 is non-empty, we

set (xn+1, x
′
n+1) so that x′n+1 = max{x′ : (x, x′) ∈ In+1}. If In+1 = ∅, we
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set (xn+1, x
′
n+1) so that xn+1 is minimal possible to the right of max{x′i : i =

1, . . . , n} or equal to it, and maximal in I.
In this construction the intervals (xn, x

′
n) with even n are pairwise disjoint,

since each (xn+2, x
′
n+2) has not been a member of In+1. The same is true for

odd n’s. We define Ii for i = 1, 2 as the family of (xn, x
′
n) for even, respectively

odd, n.
In view of the pairwise disjointness of the intervals of the families I1 and

I2, monotonicity of k and (8.1.9), we get that

k(b) − k(a) ≥
∑

n∈I1

k(x′n) − k(xn) > 2
k(b) − k(a)

|B|
∑

n∈I1

(x′n − xn)

and the similar inequality for n ∈ I2. Hence, taking into account that I1 ∪ I2

covers B, we get

2(k(b)−k(a)) > 2
k(b) − k(a)

|B|
∑

n∈I1∪I2

(x′n−xn) ≥ 2
k(b) − k(a)

|B| |B| = 2(k(b)−k(a)),

which is a contradiction. ♣

Corollary 8.1.9. For every Borel probability measure ν on a compact metric
space (X, ρ) and for every r > 0 there exists a finite partition P = {Pt, t =
1, . . . ,M} of X into Borel sets of positive measure ν and with diam(Pt) < r for
all t, and there exists C > 0 such that for every a > 0

ν(∂P,a) ≤ Ca, (8.1.10)

where ∂P,a :=
⋂

t

(

⋃

s6=tB(Ps, a)
)

.

Proof. Let {x1, . . . , xN} be a finite r/4-net in X . Fix ε ∈ (0, r/4N). For each
function t 7→ ki(t) := ν(B(xi, t)), t ∈ I = [r/4, r/2], apply Lemma 8.1.8 and find
appropriate Li and Ai, for all i = 1, . . . , N . Let L = max{Li, i = 1, . . . , N} and
let A =

⋂

i=1,...,N Ai. The set A has positive Lebesgue measure by the choice
of ε. So, we can choose its point r0 different from r/4 and r/2. Therefore,
for all a < a0 := min{r0 − r/4, r/2 − r0} and for all i ∈ {1, 2, . . . , n}, we have
ν(B(xi, r0 + a) \B(xi, r0 − a)) ≤ 2La. Hence, putting

∆(a) =
⋃

i

(

B(xi, r0 + a) \B(xi, r0 − a)
)

,

we get ν(∆(a)) ≤ 2LNa. Define P = {⋂Ni=1B
κ(i)(xi, r0)} as a family over

all functions κ : {1, . . . , N} → {+,−}, where B+(xi, r0) := B(xi, r0) and
B−(xi, r0) := X \ B(xi, r0), except κ yielding sets of measure 0, in particu-
lar except empty intersections. After removing from X of a set of measure
0, the partition P covers X . Since r0 ≥ r/4, the balls B(xi, r0) cover X .
Hence, for each non-empty Pt ∈ P at least one value of κ is equal to +. Hence
diam(Pt) ≤ 2r0 < r.
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Note now that ∂P,a ⊂ ∆(a). Indeed, let x ∈ ∂P,a. Since P covers X
there exists t0 such that x ∈ Pt0 so x /∈ Pt for all t 6= t0. However, since x ∈
⋃

t6=t0 B(Pt, a), there exists t1 6= t0 such that dist(x, Pt1) < a. Let B = B(xi, r0)

be such that Pt0 ⊂ B+ and Pt1 ⊂ B−, or vice versa. In the case when x ∈ Pt0 ⊂
B+, by the triangle inequality ρ(x, xi) > r0 − a and since ρ(x, xi) < r0, we get
x ∈ ∆(a). In the case x ∈ Pt0 ⊂ B− we have x ∈ B(xi, r0+a)\B(xi, r0) ⊂ ∆(a).

We conclude that ν(∂P,a) ≤ ν(∆(a)) ≤ 2LNa for all a < a0. For a ≥ a0 it
suffices to take C ≥ 1/a0. So the corollary is proved, with C = max{2LN, 1/a0}.

♣

Remark. If X is embedded for example in a compact manifold Y , then we
can view ν as a measure on Y , we find a partition P of Y and then ∂P,a =
B(
⋃

t=1,,,.M ∂Pt, a), provided M ≥ 2. This justifies the notation ∂P,a.

Corollary 8.1.10. Let ν be a Borel probability measure on a compact metric
space (X, ρ) and let f : X → X be an endomorphism measurable with respect to
the Borel σ-algebra on X and preserving measure ν. Then for every r > 0 there
exists a finite partition P = {Pt, t = 1, . . . ,M} of X into Borel sets of positive
measure ν and with diam(Pt) < r such that for every δ > 0 and ν-a.e. x ∈ X
there exists n0 = n0(x) such that for every n ≥ n0

B(fn(x), exp(−nδ)) ⊂ P(fn(x)) (8.1.11)

Proof. Let P be the partition from Corollary 8.1.9. Fix an arbitrary δ > 0.
Then by Corollary 8.1.9

∞
∑

n=0

ν(∂P,exp(−nδ))) ≤
∞
∑

n=0

C exp(−nδ) <∞.

Hence by the f -invariance of ν, we obtain

∞
∑

n=0

ν(f−n(∂P,exp(−nδ))) <∞.

Applying now the Borel-Cantelli lemma for the family {f−n(∂P,exp(−nδ))}∞n=1

we conclude that for ν-a.e x ∈ X there exists n0 = n0(x) such that for every
n ≥ n0 we have x /∈ f−n(∂P,exp(−nδ)), so fn(x) /∈ ∂P,exp(−nδ). Hence, by
the definition of ∂P,exp(−nδ), if fn(x) ∈ Pt for some Pt ∈ P , then fn(x) /∈
⋃

s6=tB
(

Ps, exp(−nδ)
)

. Thus

B(fn(x), exp−nδ) ⊂ P.

We are done. ♣

Theorem 8.1.11 (Volume Lemma, expanding map and an arbitrary measure
case). Let ν be an f -invariant Borel probability measure on a topologically exact
conformal expanding repeller (X, f), where X ⊂ Rd. Then

HD⋆(ν) ≤
hν(f)

χν(f)
≤ HD⋆(ν). (8.1.12)
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If in addition ν is ergodic, then for ν-a.e. x ∈ X

lim
r→0

log ν(B(x, r))

log r
=

hν(f)

χν(f)
= HD(ν). (8.1.13)

Proof. Fix the partition P coming from Corollary 8.1.9 with r = min{ξ, η},
where η > was defined in (3.0.1). Then, as we saw in Chapter 4

Pn+1(x) ⊂ f−n
x (B(fn(x), ξ)). (8.1.14)

for every x ∈ X and all n ≥. We shall work now to get a sort of opposite inclu-
sion. Consider an arbitrary δ > 0 and x so that (8.1.11) from Corollary 8.1.10 is
satisfied for all n ≥ n0(x). For every 0 ≤ i ≤ n define k(i) = [i δ

log λ + log ξ
log λ ] + 1,

λ > 1 being the expanding constant for f : X → X (see (3.0.1)). Hence
exp(−iδ) ≥ ξλ−k and therefore f−k

fi(x)(B(f i+k(x), ξ)) ⊂ B(f i(x), exp−iδ). So,

using (8.1.11) for i in place of n, we get

f−(i+k)
x (B(f i+k(x), ξ)) ⊂ f−i

x (P(f i(x))

for all i ≥ n0(x). From this estimate for all n0 ≤ i ≤ n, we conclude that

f−(n+k(n))
x (B(fn+k(n)(x), ξ) ⊂ Pn+1

n0
(x).

Notice that for ν-a.e. x there is a > 0 such that B(x, a) ⊂ Pn0(x), by the
definition of ∂P,· . Therefore for all n large enough

f−(n+k(n))
x (B(fn+k(n)(x), ξ)) ⊂ Pn(x). (8.1.15)

It follows from (8.1.15) and (8.1.14) with n+ k(n) in place of n, that

lim
n→∞

− 1

n
log ν(Pn(x)) ≤ lim inf

n→∞

− log ν
(

f
−(n+k(n))
x (B(fn+k(n)(x), ξ))

)

n

≤ lim sup
n→∞

− log ν(f
−(n+k(n))
x (B(fn+k(n)(x), ξ)))

n

≤ lim
n→∞

− 1

n
log ν(Pn(x))(Pn+k(n)+1)(x).

The limits on the most left and most right-hand sides of these inequalities exist
for ν-a.e. x by the Shennon–McMillan–Breiman Theorem (Theorem 1.5.4), see
also (1.5.2), and their ratio is equal to limn→∞

n
n+k(n) = 1+ δ

log λ . Letting δ → 0

we obtain the existence of the limit and the equality

hν(f,P , x) := lim
n→∞

− 1

n
log ν(Pn(x)) = lim

n→∞
− log ν(f−n

x (B(fn(x), ξ)))

n
.

(8.1.16)
In view of Birkhoff’s Ergodic Theorem, the limit

χν(f, x) := lim
n→∞

1

n
log |(fn)′(x)|, (8.1.17)
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exists for ν-a.e. x ∈ X . Dividing side by side (8.1.16) by (8.1.17) and using
(8.1.2)-(8.1.5), we get

lim
r→0

log ν(B(x, r))

log r
=

hν(f,P , x)
χν(f, x)

.

Since by the Shennon–McMillan–Breiman Theorem (formula (1.5.3)) and Birkhoff’s
Ergodic Theorem,

∫

hν(f,P , x) dν(x)
∫

χν(f, x) dν
=

hν(f,P)

χν(f)
=

hν(f)

χν(f)
.

The latter equality holds since f is expansive and diam(P) is less than the
expansivness constant of f , which exceeds η.

There thus exists a positive measure set where hν(f,P,x)
χν(f,x) ≤ hν(f)

χν(f) and a

positive measure set where the opposite inequality holds. Therefore

lim
r→0

log ν(B(x, r))

log r
≤ hν(f)

χν(f)

and the opposite inequality also holds on a positive measure set. In view of
definitions of HD⋆ and HD⋆ (Definition 7.4.11) and by Theorem 7.6.5, this
finishes the proof of the inequalities (8.1.12) in our Theorem. In the ergodic
case hν(f,P , x) = hν(f) and χν(f, x) = χν(f) for ν-a.e. x ∈ X . So (8.1.13)
holds. ♣

8.2 Multifractal analysis of Gibbs state

In the previous section we linked to a (Gibbs) measure only one dimension
number, HD(m). Here one of our aims is to introduce 1-parameter families
of dimensions, so-called spectra of dimensions. In these definitions we do not
need the mapping f . Let ν be a Borel probability measure on a metric space
X . Recall from Section 7.6 that given x ∈ X we defined the lower and upper
pointwise dimension of ν at x by putting respectively

dν(x) = lim inf
r→0

log ν(B(x, r))

log r
and dν(x) = lim sup

r→0

log ν(B(x, r))

log r
.

If dν(x) = dν(x), we call the common value the pointwise dimension of ν at x
and we denote it by dν(x). The function dν is called the pointwise dimension
of the measure ν, cf. Chapter 7. For any α ≤ 0 ≤ ∞ write

Xν(α) = {x ∈ X : dν(x) = α}.

The domain of dν namely the set
⋃

αXν(α) is called a regular part of X and its

complement X̂ a singular part. The decomposition of the set X as

X =
⋃

0≤α≤∞
Xν(α) ∪ X̂.
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is called the multifractal decomposition with respect to the pointwise dimension.
Define the Fν(α)-spectrum for pointwise dimensions (another name: dimen-

sion spectrum for pointwise dimensions, a function related to Hausdorff dimen-
sion by

Fν(a) = HD(Xν(α)),

where we define the domain of Fν as {α : Xν(α) 6= ∅}.
Note that by Theorem 8.1.6 if (X, f) is a topologically exact expanding

conformal repeller and ν = µ−HD(X) log |f ′| then all Xν(α) are empty except
Xν(HD(X)). In particular the domain of Fν is in this case just one point
HD(X).

Let for every real q 6= 1

Rq(ν) :=
1

q − 1
lim
r→0

log
∑N

i=1 ν(Bi)
q

log r
,

whereN = N(r) is the total number of boxesBi of the formBi = {(x1, . . . , xd) ∈
Rd : rkj ≤ xj ≤ r(kj + 1), j = 1, . . . , d} for integers kj = kj(i) such that
ν(Bi) > 0. This function is called Rényi spectrum for dimensions, provided the
limit exists. It is easy to check (Exercise 8.1) that it is equal to the Hentschel-
Procaccia spectrum (abbr. HP − spectrum).

HPq(ν) :=
1

q − 1
lim
r→0

log infGr

∑

B(xi,r)∈Gr
ν(B(xi, r))

q

log r
,

where infimum is taken over all Gr being finite or countable coverings of the
(topological) support of ν by balls of radius r centered at xi ∈ X , or

HPq(ν) :=
1

q − 1
lim
r→0

log
∫

X ν(B(x, r))q−1dν(x)

log r

provided the limits exist. For q = 1 we define the information dimension I(ν)
as follows. Set

Hν(r) = inf
Fr

(

−
∑

B∈Fr

ν(B) log ν(B)
)

,

where infimum is taken over all partitions Fr of a set of full measure ν into
Borel sets B of diameter at most r. We define

I(ν) = lim
r→0

Hν(r)

− log r

provided the limit exists. A complement to Theorem 7.6.5 is that

HD⋆(ν) ≤ I(ν) ≤ PD⋆(ν). (8.2.1)

For the proof see Exercise 8.5. Note that for Rényi and HP dimensions it
does not make any difference whether we consider coverings of the topological
support (the smallest closed set of full measure) of a measure or any set of full
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measure, since all balls have the same radius r, so we can always choose locally
finite (number independent of r) subcovering. These are “box type” dimension
quantities.

A priori there is no reason for the function Fν(α) to behave nicely. If ν is an
f -invariant ergodic measure for (X, f), a topologically exact conformal expand-
ing repeller, then at least we know that for α0 = HD(ν), we have dν(x) = α0

for ν-a.e. x (by the Volume Lemma: Theorem 8.1.3 and Theorem 8.1.4 for a
Gibbs measure ν of a Hölder continuous function and by Theorem 8.1.11 in the
general case). So, in particular we know at least that the domain of Fα(ν) is
nonempty. However for α 6= α0 we have then ν(Xν(α)) = 0 so Xν(α) are not
visible for the measure ν. Whereas the function HPq(ν) can be determined by
statistical properties of ν-typical (a.e.) trajectory, the function Fν(α) seems
intractable. However if ν = µφ is an invariant Gibbs measure for a Hölder
continuous function (potential) φ, then miraculously the above spectra of di-
mensions happen to be real-analytic functions and −Fµφ

(−p) and HPq(µφ) are
mutual Legendre transforms. Compare this with the pair of Legendre–Fenchel
transforms: pressure and -entropy, Remark 2.6.3. Thus fix an invariant Gibbs
measure µφ corresponding to a Hölder continuous potential φ. We can assume
without loosing generality that

P(φ) = 0.

Indeed, starting from an arbitrary φ, we can achieve this without changing µφ
by subtracting from φ its topological pressure (as at the beginning of the proof
of Theorem 8.1.3). Having fixed φ, in order to simplify notation, we denote
Xµφ

(α) by Xα and Fµφ
by F . We define a two-parameter family of auxiliary

functions φq,t : X → R for q, t ∈ R, by setting

φq,t = −t log |f ′| + qφ.

Lemma 8.2.1. For every q ∈ R there exists a unique t = T (q) such that
P(φq,t) = 0.

Proof. This lemma follows from the fact the function t 7→ P(φq,t) is decreasing
from ∞ to −∞ for every q (see comments preceding Theorem 8.1.6 and at the
beginning of Section 2.6) and the Darboux theorem. ♣

We deal with invariant Gibbs measures µφq,T (q)
which we denote for abbre-

viation by µq and with the measure µφ so we need to know a relation between
them. This is explained in the following.

Lemma 8.2.2. For every q ∈ R there exists C > 0 such that for all x ∈ X and
r > 0

C−1 ≤ µq(B(x, r))

rT (q)µφ(B(x, r))q
≤ C. (8.2.2)
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Proof. Let n = n(x, r) be defined as in Lemma 8.1.1. Then, by (8.1.6), (8.1.2)
and (8.1.4), the ratios

µφ(B(x, r))

expSnφ(x)
,

µq(B(x, r))

|(fn)′(x)|−T (q) exp qSnφ(x)
,

r

|(fn)′(x)|−1

are bounded from below and above by positive constants independent of x, r.
This yields the estimates (8.2.2) ♣

Let us prove the following.

Lemma 8.2.3. For any f -invariant ergodic probability measure τ on X and
for τ-a.e. x ∈ X we have

dµφ
(x) =

∫

φdτ

−
∫

log |f ′|dτ .

Proof. Using formula (8.1.1) in Lemma 8.1.1 and Birkhoff ’s Ergodic Theorem,
we get

dµφ
(x) = lim

n→∞
Snφ(x)

log |(fn)′(x)|−1
=

limn→∞
1
nSnφ(x)

limn→∞
1
n log |(fn)′(x)|−1

=

∫

φdτ

−
∫

log |f ′|dτ .

♣

One can conclude from this, that the singular part X̂ of X has zero measure
for every f -invariant τ . Yet the set X̂ is usually big, see Exercise 8.4.

On the Legendre transform. Let k = k(q) : I → R ∪ {−∞,∞} be a
continuous convex function on I = [α1(k), α2(k)] where −∞ ≤ α1(k) ≤ α2(k) ≤
∞, excluded the case I is only −∞ or only ∞. I.e. I is either a point in R

or a closed interval or a closed semi-line jointly with −∞ or with ∞, or else
R ∪ {−∞,∞}). We assume also that k on (α1, α2) is finite.

The Legendre transform of k is the function g of a new variable p defined by

g(p) = sup
q∈I

{pq − k(q)}.

Its domain is defined as the closure in R∪ {−∞,∞} of the set of points p in R,
where g(p) is finite, and g is extended to the boundary by the continuity.

It can be easily proved (Exercise 8.2) that the domain of g is also either
a point, or a closed interval or a semi-line or R (with ±∞). More precisely
the domain is [α1(g), α2(g)], where α1(g) = −∞ if α1(k) is finite, or α1(g) =
limx→ −∞ k′(x) if α1(k) = −∞. The derivative means here a one side derivative,
it does not matter left or right.

Similarly one describes α2(g) replacing −∞ by ∞.
It is also easy to show that g is a continuous convex function (on its domain)

and that the Legendre transform is involutive. We then say that the functions
k and g form a Legendre transform pair.



262 CHAPTER 8. CONFORMAL EXPANDING REPELLERS

Proposition 8.2.4. If two convex functions k and g form a Legendre transform
pair then g(k′(q)) = qk′(q) − k(q), where k′(q) is any number between the left
and right hand side derivative of k at q, defined as −∞,∞ at q = α1(k), α2(k)
respectively, if α1(k), α2(k) are finite. The formula holds also at αi(g) if the
arising 0 · ∞ and ∞−∞ are defined appropriately.

Note that if k is C2 with k′′ > 0, therefore strictly convex, then also g′′ > 0
at all points k′(q) for α1(k) < q < α2(k), therefore g is strictly convex on
[k′(α1(k)), k

′(α2(k))]. Outside this interval g is affine in its domain. If the
domain of k is one point then g is affine on R and vice versa.

We are now in position to formulate our main theorem in this section gath-
ering in particular some facts already proven.

Theorem 8.2.5. (a) The pointwise dimension dµφ
(x) exists for µφ-almost

every x ∈ X and

dµφ
(x) =

∫

φdµφ

−
∫

log |f ′|dµφ
= HD(µφ) = PD(µφ).

(b) The function q 7→ T (q) for q ∈ R, is real analytic, T (0) = HD(X), T (1) =
0,

T ′(q) =

∫

φdµq
∫

log |f ′|dµq
< 0

and T ′′(q) ≥ 0.

(c) For all q ∈ R we have µq(X−T ′(q)) = 1, where µq is the invariant Gibbs
measure for the potential φq,T (q), and HD(µq) = HD(X−T ′(q)).

(d) For every q ∈ R, F (−T ′(q)) = T (q) − qT ′(q), i.e. p 7→ −F (−p) is
Legendre transform of T (q). In particular F is continuous at −T ′(±∞)
the boundary points of its domain, as the Legendre transform is, and for
α /∈ [−T ′(∞),−T ′(−∞)] the sets Xµφ

(α) are empty, so these α’s do not
lie in the domain of F (see the definition), as they do not belong to the
domain of the Legendre transform.

(This emptyness property is called completeness of the F -spectrum.)

If the measures µφ and µ−HD(X) log |f ′| (the latter discussed in Theorem
8.1.6 and Corollary 8.1.7) do not coincide, then T ′′ > 0 and F ′′ < 0,
i.e. the functions T and F are respectively strictly convex on R, and
strictly concave on [−T ′(∞),−T ′(−∞)] which is a bounded interval in
R+ = {α ∈ R : α > 0}. If µφ = µ−HD(X) log |f ′| then T is affine and the
domain of F is one point −T ′.

(e) For every q 6= 1 the HP and Rényi spectra exist (i.e. limits in the defi-

nitions exist) and T (q)
1−q = HPq(µφ) = Rq(µφ). For q = 1 the information

dimension I(µφ) exists and

lim
q→1,q 6=1

T (q)

1 − q
= −T ′(1) = HD(µφ) = PD(µφ) = I(µφ).
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For outlines of the graphs of T and F see Figures 8.2 and 8.3 below. See
also Exercise 8.3. Compare [Pesin 1997, Figures 219a,b].

q

T (q)

HD(X)

−T ′(1) = HD(µϕ)

1

Figure 8.2: Graph of T

α

F (α)

−T ′(−∞)

HD(X)

−T ′(0)−T ′(1)

HD(µϕ)

−T ′(∞)

Figure 8.3: Graph of F

Proof. 1. Since P(φ) = 0, the part (a) is an immediate consequence of The-
orem 8.1.3 and its second and third equalities follow from Theorem 8.1.4. The
first equality is also a special case of Lemma 8.2.3 with τ = µφ.

2. We shall prove some statements of the part (b). The function φq,t =
−t log |f ′|+qφ, from C

2 to Cθ(X), where θ is a Hölder exponent of the function
φ, is affine. Since by [Ruelle 1978, Corollary 7.10], or our Section 5.4, the
topological pressure function P : Cθ → R is real analytic, then the composition
which we denote P(q, t) is real analytic. Hence the real analyticity of T (q)
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follows immediately from the Implicit Function Theorem once we verify the
non-degeneracy assumption. In fact C2-smoothness of P(q, t) is sufficient to
proceed further (here only C1), which has been proved in Theorem 4.7.4.

Indeed, due to Theorem 4.6.5 for every (q0, t0) ∈ R2

∂ P(q, t))

∂t
|(q0,t0) = −

∫

X

log |f ′|dµq0,t0 < 0, (8.2.3)

where µq0,t0 is the invariant Gibbs state for the function φq0,t0 . Differentiating
with respect to q the equality P(q, t) = 0 we obtain

0 =
∂ P(q, t)

∂t
|(q,T (q)) · T ′(q) +

∂ P(q, t))

∂q
|(q,T (q)) (8.2.4)

hence we obtain the standard formula

T ′(q) = −∂ P(q, t))

∂q
|(q,T (q))

/∂ P(q, t)

∂t
|(q,T (q)),

Again using (4.6.5) and P(φq,T (q)) = 0, we obtain

T ′(q) =

∫

φdµq
∫

log |f ′|dµq
≤ − hµq

(f)
∫

log |f ′|dµq
< 0, (8.2.5)

the latter true since the entropy of any invariant Gibbs measure for Hölder
function is positive, see for example Theorem 4.2.12.

The equality T (0) = HD(X) is just Corollary 8.1.7. T (1) = 0 follows from
the equality P(φ) = 0.

3. The inequality T ′′(q) ≥ 0 follows from the convexity of P(q, t), see Theo-
rem 2.6.2. Indeed the assumption that the part of R3 above the graph of P(q, t)
is convex implies that its intersection with the plane (q, t) is also convex. Since
∂ P(q,t))

∂t |(q0,t0) < 0, this is the part of the plane above the graph of T . Hence T
is a convex function.

We avoided in the above consideration an explicit computation of T ′′. How-
ever to discuss strict convexity (a part of (d)) it is necessary to compute it.

Differentiating (8.2.4) with respect to q we obtain the standard formula

T ′′(q) =
T ′(q)2 ∂

2 P(q,t)
∂t2 + 2T ′(q)∂

2 P(q,t)
∂q∂t + ∂2 P(q,t)

∂q2

−∂ P(q,t)
∂t

(8.2.6)

with the derivatives of P taken at (q, T (q)). The numerator is equal to

(

T ′(q)
∂

∂t
+

∂

∂q

)2

P(q, t) = σ2
µq

(−T ′(q) log |f ′| + φ)

by Theorem 4.7.4, since this is the second order derivative of P : C(X) → R in
the direction of the function −T ′(q) log |f ′| + φ.

The inequality σ2 ≥ 0, true by definition, implies T ′′ ≥ 0 since the denomi-
nator in (8.2.6) is positive by (8.2.3).
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By Theorem 1.11.3 σ2
µq

(−T ′(q) log |f ′| + φ) = 0 if and only if the function
−T ′(q) log |f ′|+φ is cohomologous to a constant, say to a. It follows then from
the equality in (8.2.5) that a =

∫

a dµq =
∫

(−T ′(q) log |f ′|+ φ)dµq = 0. There-
fore T ′(q) log |f ′| is cohomologous to φ and, as P(φ) = 0, also P(T ′(q) log |f ′|) =
0. Thus, by Theorem 8.1.6 and Corollary 8.1.7, T ′(q) = −HD(X) and conse-
quently φ is cohomologous to the function −HD(X) log |f ′|. This implies that
µφ = µ−HD(X) log |f ′|, the latter being the equilibrium (invariant Gibbs) state
of the potential −HD(X) log |f ′|. Therefore, in view of our formula for T ′′, if
µφ 6= µ−HD(X) log |f ′|, then T ′′(q) > 0 for all q ∈ R.

4. We prove (c). By Lemma 8.2.3 applied to τ = µq, there exists a set

X̃q ⊂ X , of full measure µq, such that for every x ∈ X̃q there exists

dµφ
(x) = lim

r→0

logµφ(B(x, r))

log r
=

∫

φdµq
−
∫

log |f ′|dµq
= −T ′(q).

the latter proved in (b). Hence X̃q ⊂ X−T ′(q). Therefore µq(X−T ′(q)) = 1.
By Lemma 8.2.2 for every B = B(x, r)

| logµq(B) − T (q) log r − q logµφ(B)| < C

for some constant C ∈ R. Hence
∣

∣

∣

∣

logµq(B)

log r
− T (q) − q

log µφ(B)

log r

∣

∣

∣

∣

→ 0 (8.2.7)

as r → 0.
Using (8.2.7), observe that for every x ∈ X−T ′(q), in particular for every

x ∈ X̃q,

lim
r→0

logµq(B)

log r
= T (q) + q lim

r→0

logµφ(B)

log r
= T (q) − qT ′(q).

Although X̃q can be much smaller than X−T ′(q), miraculously their Hausdorff

dimensions coincide. Indeed the measure µq restricted to either X̃q or to X−T ′(q)

satisfies the assumptions of Theorem 7.6.3 with θ1 = θ2 = T (q)−qT ′(q). There-
fore

HD(X̃q) = HD(X−T ′(q)) = T (q) − qT ′(q) (8.2.8)

and consequently
F (−T ′(q)) = T (q) − qT ′(q).

Remarks. a) If we consider sets larger than Xν(α) replacing in the definition
the pointwise dimension dν by the lower pointwise dimension dν we obtain the
same Hausdorff dimension spectra, again by Theorem 7.6.3. This means that
the Fν(α) spectrum is the same, in particular it is given by the same Legendre
transform formula in the case ν = µφ. There is no singular part.

b) Notice that (8.2.8) means that HD(X−T ′(q)) is the value where the straight
line tangent to the graph of T at (q, T (q)) intersects the range axis.
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c) Notice that we used f -invariance of µφ only in estimating HD(X−T ′(q))
from below (we used Birkhoff’s Ergodic Theorem). In the estimate from above
we used only (4.1.1). In more general setting it is sufficient that this measure is
conformal. See Chapter 11 and [Gelfert, Przytycki & Rams 2009].

In the next steps of the proof the following will be useful.

Claim (Variational Principle for T ). For any f -invariant ergodic probability
measure τ on X , consider the following linear equation of variables q, t

∫

φq,tdτ + hτ (f) = 0

that is

t = tτ (q) =
hτ (f)

∫

log |f ′|dτ + q

∫

φdτ
∫

log |f ′|dτ . (8.2.9)

Then for every q ∈ R

T (q) = sup
τ
{tτ (q)} = tµq

(q),

where the supremum is taken over all f -invariant ergodic probability measures
τ on X .

Proof of the Claim. Since
∫

φq,tdτ + hτ (f) ≤ P(φq,t) and since ∂ P(q,t)
∂t < 0

(compare the proof of convexity of T ), we obtain

tτ (q) ≤ T (q).

On the other hand by (8.2.9), and using P(φq,T (q) = 0, we obtain

tµq
(q) =

hµq
(f) + q

∫

φdµq
∫

log |f ′|dµq
=
T (q)

∫

log |f ′|dµq
∫

log |f ′|dµq
= T (q).

The Claim is proved. ♣

5. We continue Proof of Theorem 8.2.5. We shall prove the missing parts of
(d). We have already proved that

F (−T ′(q)) = HD(X−T ′(q)) = HD(µq) = T (q) − qT ′(q).

Note that [−T ′(∞),−T ′(−∞)] ⊂ R+ ∪ {0,∞} since T ′(q) < 0 for all q. Note
finally that

−T ′(−∞) = lim
q→−∞

−
∫

φdµq
∫

log |f ′|dµq
≤ sup(−φ)

inf log |f ′| <∞

and

−T ′(∞) = lim
q→∞

−
∫

φdµq
∫

log |f ′|dµq
.



8.2. MULTIFRACTAL ANALYSIS OF GIBBS STATE 267

The expressions under lim are positive, (see (8.2.5)). It is enough now to prove
that they are bounded away from 0 as q → ∞. To this end choose q0 such that
T (q0) < 0. By our Claim (Variational Principle for T ) tµq

(q0) ≤ T (q0). Since
tµq

(0) ≥ 0, we get

−q0
∫

φdµq
∫

log |f ′|dµq
= tµq

(0) − tµq
(q0) ≥ |T (q0)|.

Hence
−

R

φdµq
R

log |f ′|dµq
≥ |T (q0)|/q0 > 0 for all q.

6. To end the proof of (d) we need to prove the formula for F at −T ′(±∞)
(in case T is not affine) and to prove that for α /∈ [−T ′(∞),−T ′(−∞)] the sets
Xµφ

(α) are empty. First note the following.
6a. For any f -invariant ergodic probability measure τ on X , there exists

q ∈ R ∪ {±∞} such that

∫

φdτ
∫

log |f ′|dτ =

∫

φdµq
∫

log |f ′|dµq
. (8.2.10)

(limq→±∞ in the ±∞ case).
Indeed, by the Claim the graphs of the functions tτ (q) and T (q) do not

intersect transversally (they can be only tangent) and hence the first graph
which is a straight line, is parallel to a tangent to the graph of T at a point
(q0, T (q0), or one of its asymptotes, at −∞ or +∞. Now (8.2.10) follows from
the same formula (8.2.9) for τ = µq0 , since the graph of tµq0

is tangent to the
graph of T just at (q0, T (q0)). (Note that the latter sentence proves the formula

T ′(q) =
R

φdµq
R

log |f ′|dµq
in a different way than in 2. , namely via the Variational

Principle for T .).
6b. Proof that Xα = ∅ for α /∈ [−T ′(∞),−T ′(−∞)]. Suppose there exists

x ∈ X with α := dµφ
(x) /∈ [−T ′(∞),−T ′(−∞)]. Consider any sequence of

integers nk → ∞ and real numbers b1, b2 such that

lim
k→∞

1

nk
Snφ(x) = b1, lim

k→∞

1

nk
(− log |(fn)′(x)|) = b2

and b1/b2 = α. Let τ be any weak∗-limit of the sequence of measures

τnk
:=

1

nk

nk−1
∑

j=0

δfj(x),

where δfj(x) is the Dirac measure supported at f j(x), compare Remark 2.1.15.
Then

∫

φdτ = b1 and
∫

(− log |f ′|)dτ = b2.
Due to Choquet Theorem (Section 2.1) (or due to the Decomposition into

Ergodic Components Theorem, Theorem 1.8.11) we can assume that τ is er-
godic. Indeed, τ is an “average” of ergodic measures. So among all ergodic

measure ν involved in the average, there is ν1 such that
R

φdν1
R

− log |f ′|dν1 ≤ α and
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ν2 such that
R

φdν2
R

− log |f ′|dν2 ≥ α. If α < −T ′(∞) we consider ν1 as an ergodic

τ , if α > −T ′(−∞) we consider ν2. For the ergodic τ found in this way,
the limit α can be different than for the original τ , but it will not belong to
[−T ′(∞),−T ′(−∞)] and we shall use the same symbol α to denote it. By
Birkhoff’s Ergodic Theorem applied to the functions φ and log |f ′|, for τ -a.e. x

we have limn→∞
Sn(φ)(x)

− log |(fn)′(x)| = α. Hence, applying Lemma 8.2.3, we get

α = dµφ
(x) =

∫

φdτ

−
∫

log |f ′|dτ .

Finally notice that by (8.2.10) there exists q ∈ R such that α =
R

φdµq

−
R

log |f ′|dµq
,

whence α ∈ [−T ′(∞),−T ′(−∞)]. This contradiction finishes the proof. ♣
Remark. We have proved in fact that for all x ∈ X any limit number of the
quotients log µφ(B(x, r)/ log r as r → 0 lies in [−T ′(∞),−T ′(−∞)], the fact
stronger than dµφ

(x) ∈ [−T ′(∞),−T ′(−∞)] for all x in the regular part of X .

6c. On F (−T ′(±∞)). Consider any τ being a weak*-limit of a subsequence
of µq as q tends to, say, ∞. We shall try to proceed with τ similarly as we did
with µq, though we shall meet some difficulties. We do not know whether τ is
ergodic (and choosing an ergodic one from the ergodic decomposition we may
loose the convergence µq → τ). Nevertheless using Birkhoff Ergodic Theorem
and proceeding as in the proof of Lemma 8.2.3, we get

∫

limn→∞
1
nSnφ(x) dτ(x)

−
∫

limn→∞
1
n log |(fn)′(x)| dτ(x) =

∫

φdτ

−
∫

log |f ′| dτ = lim
q→∞

∫

φdµq

−
∫

log |f ′|dµq
= lim

q→∞
(−T ′(q)) = −T ′(∞)

with the convergence over a subsequence of q’s. Since we know already that

dµφ
(x) =

limn→∞
1
nSnφ(x)

− limn→∞
1
n log |(fn)′(x)| ≥ −T ′(∞),

we obtain for every x in a set X̃τ of full measure τ that the limit dτ (x) =
−T ′(∞). We conclude with X̃τ ⊂ X−T ′(∞).

Now we use the Volume Lemma for the measure τ . There is no reason for
it to be Gibbs, neither ergodic, so we need to refer to the version of Volume
Lemma coming from Theorem 8.1.11. We obtain

HD(X−T ′(∞)) ≥ HD⋆(τ) ≥ hτ (f)
∫

log |f ′| dτ ≥ lim inf
q→∞

hµq
(f)

χµq
(f)

= lim
q→∞

T (q) − qT ′(q) = F (−T ′(∞)).

We have used here the upper semicontinuity of the entropy function ν → hν(f)
at τ due to the expanding property (see Theorem 2.5.6).
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It is only left to estimate HD(X−T ′(∞)) from above. As for µq, we have for
every q and x ∈ X−T ′(∞) (see (8.2.7)) that

lim
r→0

logµq(B)

log r
= T (q) + q lim

r→0

logµφ(B)

log r
= T (q) − qT ′(∞) ≤ T (q) − qT ′(q),

Hence HD(X−T ′(∞)) ≤ T (q)−qT ′(q). Letting q → ∞ we obtain HD(X−T ′(∞)) ≤
F (−T ′(∞)).

7. HP and Rényi spectra. Recall that topological supports of µφ and µq
are equal to X , since these measures as Gibbs states for Hölder functions, do
not vanish on open subsets of X due to Proposition 4.2.10. For every Gr a finite
or countable covering X by balls of radius r of multiplicity at most C we have

1 ≤
∑

B∈Gr

µq(B) ≤ C.

Hence, by Lemma 8.2.2

C−1 ≤ rT (q)
∑

B∈Gr

µφ(B)q ≤ C

with an appropriate another constant C. Taking logarithms and, for q 6= 1,
dividing by (1 − q) log r yields (e) for q 6= 1.

8. Information dimension. For q = 1 we have limq→1,q 6=1
T (q)
1−q = −T ′(1)

by the definition of derivative. It is equal to HD(µφ) = PD(µφ) by (a) and (b)
and equal to I(µφ) by Exercise 8.5 ♣

8.3 Fluctuations for Gibbs measures

In Section 8.2, given an invariant Gibbs measure µφ we studied a fine struc-
ture of X , a stratification into sets of zero measure (except the stratum of
typical points), treatable with the help of Gibbs measures of other functions.
Here we shall continue the study of typical (µφ-a.e.) points. We shall replace
Birkhoff’s Ergodic Theorem by a more refined one: Law of Iterate Logarithm
(Section 1.11), Volume Lemma in a form more refined than Theorem 8.1.11 and
Frostman Lemma in the form of Theorem 7.6.1 – theorem 7.6.2.

For any two measures µ, ν on a σ-algebra (X,F), not necessarily finite, we
use the notation µ ≪ ν for µ absolutely continuous with respect to ν, the
same as in Section 1.1, and µ ⊥ ν for µ is singular with respect to ν, that
is if there exist measurable disjoint sets X1, X2 ⊂ X of full measure, that is
µ(X \X1) = ν(X \X2) = 0, generalizing the notation for finite measures, see
Section 1.2. We write µ ≍ ν if the measures are equivalent, that is if µ≪ ν and
ν ≪ µ.

The symbol logk means the iteration of the log function k times. As in
Chapter 7 Λα means the Hausdorff measure with the gauge function α, Λκ
abbreviates Λtκ and HD means Hausdorff dimension.
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Theorem 8.3.1. Let f : X → X be a topologically exact conformal expanding
repeller. Let φ : X → R be a Hölder continuous function and let µφ be its
invariant Gibbs measure. Denote κ = HD(µφ).

Then either

(a) the following conditions, equivalent to each other, hold

(a1) φ is cohomologous to −κ log |f ′| up to an additive constant, i.e. φ+
κ log |f ′| is cohomologous to a constant in Hölder functions; then
this constant must be equal to the pressure P(f, φ) so we can say that
ψ := φ + κ log |f ′| − P(f, φ) is a coboundary (see Definition 1.11.2
and Remark 3.4.6),

(a2) µφ ≍ Λκ on X,

(a3) κ = HD(X)

or

(b) ψ = φ+ κ log |f ′| is not cohomologous to a constant, µφ ⊥ Λκ, and more-

over, there exists c0 > 0, (c0 =
√

2σ2
µφ

(ψ)/χµφ
(f)), such that with the

gauge function αc(r) = rκ exp(c
√

log 1/r log3 1/r):

(b1) µφ ⊥ Λαc
for all 0 < c < c0, and

(b2) µφ ≪ Λαc
for all c > c0.

Remark. Also µφ ⊥ Λαc0
holds, see Exercise 8.8.

Proof. Note first that by Theorem 8.1.4

∫

ψ dµφ =

∫

φdµφ + HD(µφ)χµφ
− P(φ) =

∫

φdµφ + hµφ
(f) − P(φ) = 0,

(8.3.1)
since µφ is an equilibrium state. If φ+κ log |f ′| is cohomologous to a constant a,
then for a Hölder function u we have

∫

(φ+κ log |f ′|−a)dµφ =
∫

(u◦f−u)dµφ = 0
hence a = P(φ). Therefore indeed ψ is a coboundary.

By Proposition 4.1.4 the property (a1) is equivalent to µφ = µ−κ log |f ′| (the
potentials cohomologous up to an additive constant have the same invariant
Gibbs measures, and vice versa). Finally, since two cohomologous continuous
functions have the same pressure (by definition), P (−κ log |f ′|) = P (φ−P (φ)) =
0, so, by Corollary 8.1.7, κ = HD(X) and µφ = µ−κ log |f ′| ≍ Λκ. We have proved
that (a1) implies (a2) and (a3).

(a2) implies that Λκ is nonzero finite on X , hence HD(X) = κ i.e. (a3). Fi-
nally (a3), i.e. κ = HD(µφ) = HD(X) implies hµφ

(f)−κχµφ
(f) = 0 by Theorem

8.1.4 and P (−κ log |f ′|) = 0 by Corollary 8.1.7. Hence µφ is an invariant equi-
librium state for −κ log |f ′|. By the uniqueness of equilibrium measure (Chapter
4), µφ = µ−κ log |f ′|, hence (a1). (This implication can be called uniqueness of
the measure maximizing Hausdorff dimension.
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Let us discuss now the part (b). Suppose that ψ is not cohomologous to a
constant. In this case σ2

µφ
(ψ) > 0, see Theorem 1.11.3. We can assume that

P (φ) = 0 because subtracting the constant P (φ) from the original φ does not
change the Gibbs measure.

Let us invoke (8.1.6) and the conclusion from (8.1.2) and (8.1.4), namely

K−1 expSnφ(x) ≤ µ(B(x, r)) ≤ K expSnφ(x) (8.3.2)

and
K−1|(fn)′(x)|−1 ≤ r ≤ K|(fn)′(x)|−1 (8.3.3)

for a constant K ≥ 1 not depending on x and r > 0 and for n = n(x, r) defined
by (8.1.2).

Note that for F (t) :=
√

t log2 t, for every s0 ≥ 0 there exists t0 such that for
all s : −s0 ≤ s ≤ s0, s 6= 0 and t ≥ t0 we have |(F (t + s) − F (t))/s| < 1. This
follows from Lagrange Theorem and dF/dt→ 0 as t→ ∞, easy to calculate.

Substituting t = log |(fn)′(x)| and denoting
√

log(|(fn)′(x)|) log3(|(fn)′(x)|)
by gn(x), we get for r > 0 small enough

µφ(B(x, r))

rκ exp(c
√

log 1/r log3 1/r)
≤ K exp(Snφ(x)

(K|(fn)′(x)|)−κ exp(cF (log |(fn)′(x)| − logK))

=
Q exp(Snφ(x)

|(fn)′(x)|−κ exp(cgn(x))

for Q := Kκ+1+c exp c, and similarly

µφ(B(x, r))

rκ exp(c
√

log 1/r log3 1/r)
≥ Q−1 exp(Snφ(x)

|(fn)′(x)|−κ exp(cgn(x))
.

We rewrite these inequalities in the form

− logQ + gn(x)

(

Snφ(x) + κ log |(fn)′(x)|
gn(x)

− c

)

≤ log

(

µφ(B(x, r))

rκ exp(c
√

log 1/r log3 1/r)

)

≤ logQ+ gn(x)

(

Snφ(x) + κ log |(fn)′(x)|
gn(x)

− c

)

. (8.3.4)

We have Snφ + κ log |(fn)′| = Snψ, so we need to evaluate the following
upper limit.

lim sup
n→∞

Snψ(x)
√

log |(fn)′(x)| log3 |(fn)′(x)|
By the Law of Iterated Logarithm, see (1.11.3) and Theorems 4.7.1 and 1.11.1,
for µφ-a.e. x ∈ X , and writing σ2 = σ2

µφ
, we have

lim sup
n→∞

Snψ(x)
√

n log2(n)
=

√
2σ2. (8.3.5)



272 CHAPTER 8. CONFORMAL EXPANDING REPELLERS

Applying Birkhoff Ergodic Theorem to the function log |f ′|, for µφ-a.e. x ∈ X ,
denoting cn = log |(fn)′(x)| = Sn log |f ′|(x) we obtain

lim
n→∞

√

cn log2 cn
√

n log2 n
=

√
χµ lim

n→∞

√

log2 cn
√

log2 n
=

√
χµφ

. (8.3.6)

Here limn→∞

√
log2 cn√
log2 n

= 1, since

log2 cn
log2 n

− 1 =
log(log(cn)/ log(n))

log2 n
→ 0

true, since the numerator is bounded, in fact it tends to 0. Indeed, the assump-
tion that cn/n → χµ, in particular that cn/n is bounded and bounded away
from 0, implies log(cn)/ log(n) → 1 hence its logarithm tends to 0.

Combining (8.3.5) with (8.3.6) we obtain for µφ-a.e. x the following formula

lim sup
n→∞

Snψ(x)
√

log |(fn)′(x)| log3 |(fn)′(x)|
=

√

2σ2

χµφ

= c0. (8.3.7)

Therefore, due to gn → ∞ as n → ∞, for c < c0, both, the left and the right
hand side expressions in (8.3.4) tend to ∞. Hence the middle expression in
(8.3.4) also tends to ∞. Analogously for c > c0 these expressions tend to −∞.
Applying exp we get rid of log and obtain

lim sup
r→0

µφ(B(x, r))

rκ exp(c
√

log 1/r log3 1/r)
=







∞ if c <
√

2σ2

χµφ

0 if c >
√

2σ2

χµφ

(8.3.8)

Therefore, by Theorem 7.6.1, µφ ⊥ Λαc
for all c <

√

2σ2

χµφ

and µφ ≪ Λgc
for all

c >
√

2σ2

χµφ

. The proof is finished. ♣

Note that this proof is done without the use of Markov partitions, unlike in
[PUZ], though it is virtually the same.

The last display, (8.3.8), is known as a LIL Refined Volume Lemma, here
in the expanding map, Gibbs measure case, compare Theorem 8.1.3.

Above, (8.3.8) has been obtained from (8.3.7) via (8.3.4). Instead, using
(8.3.2), (8.3.3) one can obtain from (8.3.7) the following, equivalent to (8.3.8)

Lemma 8.3.2 (LIL Refined Volume Lemma). For µφ-a.e. x

lim sup
r→0

log(µφ(B(x, r))/rκ)
√

log 1/r log3 1/r
=

√

2σ2

χµφ

= c0.
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8.4 Boundary behaviour of the Riemann map

In this and the next section we shall apply the results of Section 8.3 to the confor-
mal expanding repeller (X, f) for X at least two-points set, being the boundary
FrΩ of a connected simply-connected open domain Ω in the Riemann sphere C.
A model example is Ω the immediate basin of attraction to an attracting fixed
point for a rational mapping, in particular basin of attraction to ∞ for a polyno-
mial with X = J(f), the Julia set. We will assume the expanding property only
for technical reasons (and the nature of Chapter 8); for a more general case see
[Przytycki 1986] and [Przytycki, Urbański & Zdunik 1989], [Przytycki, Urbański & Zdunik 1991].
In this section we shall consider a large class of invariant measures. In the next
section we shall apply the results to harmonic measure. We shall interpret the
results in the terms of the radial growth of |R′(tζ)| for R : D → Ω a Riemann
map, i.e. a holomorphic bijection from the unit disc D to Ω , for a.e. ζ ∈ ∂D

and tր 1.
We start with general useful facts. Let Ω be an arbitrary open connected

simply-connected domain in C. Denote by R : D → Ω a Riemann mapping, as
above,

Lemma 8.4.1. For any sequence xn ∈ D , xn → ∂D iff R(xn) → Fr Ω.

Proof. If a subsequence of R(xn) does not converge to FrΩ then we find its con-
vergent subsequence R(xni

) → y ∈ D. So xni
→ R−1(y) ∈ D which contradicts

xn → ∂D. The converse implication can be proved similarly. ♣

Let now U be a neighbourhood of Fr Ω in C and f : Ω ∩ U → Ω be a
continuous map, which extends continuously on cl(Ω ∩ U), mapping Fr Ω in
FrΩ. Define g : R−1(Ω ∩ U) → D by g = R−1 ◦ f ◦R.

Lemma 8.4.2. For any sequence xn ∈ R−1(Ω∩U), xn → ∂D iff g(xn) → ∂D.

Proof. The implication to the right follows from Lemma 8.4.1 and the continuity
of f at Fr Ω. Conversely, if g(xn) → ∂D, then by Lemma 8.4.1 R(g(xn)) =
f(R(xn)) → FrΩ. Hence R(xn) → FrΩ, otherwise a subsequence of R(xn)
converges to x ∈ Ω and f(x) ∈ Fr Ω which contradicts f(Ω ∩ U) ⊂ Ω. Hence,
again by Lemma 8.4.1, xn → ∂D. ♣

Proposition 8.4.3 (on desingularization). Suppose f as above extends holo-
morphically to U , a neighbourhood of FrΩ. Then g = R−1◦f ◦R on R−1(Ω∩U)
extends holomorphically to g1 on a neighbourhood of ∂D, satisfying I ◦ g1(z) =
g1 ◦ I for the inversion I(z) = z̄−1. This g1 has no critical points in ∂D.

Proof. Let W1 = {z : r1 < |z| < 1} for r1 < 1 large enough that clW1 ⊂
R−1(Ω ∩ U) and W1 contains no critical points for g. It is possible since f
has only a finite number of critical points in every compact subset of U hence
in a neighbourhood of Fr Ω, hence g has a finite number of critical points in
a neighbourhood of ∂D in D. Let W2 = {z : r2 < |z| < 1} for r2 < 1 large
enough that if z ∈ W2 ∩ g(x), then x ∈ W1. Consider V a component of
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g−1(W2). By the above definitions g is a covering map on V . V contains a
neighbourhood of ∂D since by Lemma 8.4.2 V contains points arbitrarily close
to ∂D and if x1 ∈ V and x2 ∈ g−1(W2) with x1, x2 close enough to ∂D then an
arc δ joining x1 to x2 (an interval in polar coordinates) is also close enough to
∂D that g(δ) ⊂W2. Hence x2 ∈ V . Let d be the degree of g on V . Then there

exists a lift g̃ : V → W3 := {z : r
1/d
2 < |z| < 1}, namely a univalent holomorpic

mapping such that (g̃(x))d = g.
The mapping g̃ extends continuously from V to g̃1 on V ∪∂D by Carathéodory’s

theorem (see for example [Collingwood & Lohwater 1966, Chap. 3.2]). Formally
this theorem says that a holomorphic bijection between two Jordan domains ex-
tends to a homeomorphism between the closures. However the proof for annuli
(W3 and V ) is the same. We use the fact that ∂D are the corresponding com-
ponents of the boundaries. (One can also intersect V with small discs B with
origins in ∂D, consider g|B∩V on the topological discs B ∩ V and get the con-
tinuity of the extensions to ∂D directly from Carathéodory’s theorem.) Finally
define the extension of g to V ∪∂D by g1(x) = (g̃1)

d. It extends holomorphically
to a neighbourhood of ∂D by Schwarz reflection principle. g′1(z) 6= 0 for z ∈ ∂D

since g1(V ) ⊂ D and g1(V
∗) ⊂ C \ clD, where V ∗ is the image of V by the

inversion I. ♣

Remark 8.4.4. We can consider g1 on a neighbourhood of ∂D as stretching the
possibly wild set Fr Ω lifting (a part of) f and extending to g1 not having critical
points. The lemma on desinularization applies to all periodic simply connected
Fatou domains for rational mappings, in particular to Siegel discs and basins of
attraction to periodic orbits. In the latter case the following applies.

Proposition 8.4.5. Let f : U → C be a holomorphic mapping preserving FrΩ
and mapping U ∩ Ω in Ω as before. Assume also that

⋂

n≥0

f−n(U ∩ cl Ω) = Fr Ω. (8.4.1)

Then the extension g1 of g = R−1 ◦ f ◦ R provided by Proposition 8.4.3 is
expanding on ∂D, moreover (∂D, g1) is a conformal expanding repeller.

Proof. By (8.4.1) for every x ∈ U ∩ Ω there exists n > 0 such that fn(x) /∈ U .
Hence, due to Lemma 8.4.1, there exists r1 < 1 such that W1 = {z : r1 ≤ |z| <
1} ⊂ R−1(U ∩Ω) and for every z ∈W1 there exists n > 0 for which gn(z) /∈W1.

Next observe that by Lemma 8.4.2 there exists r2 : r1 < r2 < 1 such that if
|g(z)| > r2 then |z| > r1. Moreover there exists r3 < 1 such that if r3 < |z| < 1
then for all n ≥ 0 |g−n(z)| < r2. By g−n(z) we understand here any point
in this set. Indeed, suppose there exist sequences rn ր 1 rn < |zn| < 1 and
mn > 0 such that r1 ≤ |g−mn(zn)| ≤ r2 and r2 < |g−m(zn)| for all 0 ≤ m < mn.
Then for z0 a limit point of the sequence g−mn(zn) we have |gm(z)| ≥ r1 for all
m ≥ 0 which contradicts the first paragraph of the proof.

Moreover, for every 0 < r < 1 there exists n(r) > 0 such that if r3 <
|z| < 1 and n ≥ n(r) then |g−n(z)| ≥ r. Otherwise a limit point z0 =
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limmn→∞ g−mn(zn) for r3 < |zn| would satisfy gm(z0) ≤ r2 for all m ≥ 0 a
contradiction. By the symmetry given by I the same holds for 1 < |z| < r−1

3 .
Hence

⋂

n≥0 g
−n({z : r3 < |z| < r−1

3 }) = ∂D, i.e. ∂D is a repeller for g, see Ch.4
S.1.

Let zn be a g1-trajectory in ∂D, g(zn) = zn−1, n = 0,−1, . . . . Then for all
n ≥ 0 there exist univalent branches g−n1 on B(z0, r3) mapping z0 to z−n and
such that g−n1 (B(z0, r3)) ⊂ {z : r2 < |z| < r−1

2 }. Moreover g−n1 (B(z0, r3)) →
∂D. Fixed z0 consider all branches Gz0,ν,n of g−n1 on B(z0, r3) indexed by ν and
n. This family is normal and limit functions have values in ∂D. Since ∂D has
empty interior, all the limit functions are constant. Hence there exists n(z0) such
that for all n ≥ n(z0) and Gν,n for all z ∈ B(z0, r3/2) we have |G′

z0ν,n(z)| < 1.
If we take a finite family of points z0 such that the discs B(z0, r3/2) cover ∂D,
then for all Gz0,ν,n with n ≥ max{n(z0)} and z ∈ B(z0, r3/2) |G′

z0ν,n(z)| < 1.
Hence for all z ∈ ∂D and n ≥ max{n(z0)} |(gn)′(z)| > 1 which is the expanding
property. ♣

Now we pass to the main topic of this Section, the boundary behaviour of
R. We shall denote g1, the extension of g, just by g.

Definition 8.4.6. We say that for z ∈ ∂D, x→ z non-tangentially if x ∈ D , x
converges to z and there exists 0 < α < π/2 such that for x close enough to z ,
x belongs to the so-called Stoltz angle

Sα(z) = z · (1 + {x ∈ C \ {0} : π − α ≤ Arg(x) ≤ π + α}).

We say that x → z radially if x = tz for t ր 1. For any φ a real or complex
valued function on D it is said that φ has a nontangential or radial limit at
z ∈ ∂D if φ(x) has a limit for x→ z nontangentially or radially respectively.

Theorem 8.4.7. Assume that (X, f) is a conformal expanding repeller for X =
FrΩ ⊂ C̄ for a domain Ω ⊂ C. Let R : D → Ω be a Riemann mapping. Then

lim sup
|x|→1

log |R′(x)|
− log(1 − |x|) < 1.

(This is better than generally true non-sharp inequality, following from Re-
mark 5.2.5 ). In particular R extends to a Hölder continuous function on clD.
Denote the extension by the same symbol R. Let g be as before and let its exten-
sion (in Proposition 8.4.3) be also denoted by g. Then the equality f ◦R = R◦g
extends to clD.

If µ is a g-invariant ergodic probability measure on ∂D, then the non-tangential
limit

lim
x→z

log |R′(x)|
− log(1 − |x|)

exists for µ-almost every point z ∈ ∂D and is constant almost everywhere. De-
note this constant by χµ(R). Then

χµ(R) = 1 − χµ◦R−1(f)

χµ(g)
, (8.4.2)
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where the measure µ ◦ R−1 = R∗(µ) is well defined (and Borel) due to the
continuity of R on ∂D.

Proof. Fix δ > 0 such that for every z ∈ ∂D there exists a backward branch g−nz
of g−n on B(gn(z), δ) mapping gn(z) to z. Such δ exists since g is expanding,
by Proposition 8.4.5, compare the Proof of Proposition 8.4.3.

By the expanding property of g or by Koebe Distortion Lemma we can
assume that the distortion for all g−nz is bounded onB(gn(z), δ) by a constantK.

For x ∈ Sα(z) and |x − z| < δ/2 denote by n = n(x, z, δ) the least non-
negative integer such that |gn+1(x)− gn+1(z)| ≥ δ/2. Such n exists if δ is small
enough, again since g is expanding. We get for α as in Definition 8.4.6,

1 − |gn(x)|
|gn(z) − gn(x)| ≥

1

π
(
π

2
− α)K−1. (8.4.3)

Otherwise there exists w ∈ ∂D such that |w − gn(x)| < |gn(z)− gn(x)|αK−1 <
δ/2. Then w ∈ B(gn(z), δ) so w is in the domain of g−nz and we obtain 1 −
|x| ≤ |g−nz (w) − x| < |z − x|α, a contradiction. We used here the fact that
g−nz (gn(x)) = x, true since |gj(z) − gj(x)| < δ/2 for all j = 0, 1, . . . , n and g is
expanding (two different preimages of a point are far from one another).

From the above bound of distortion it follows also that

K−1 ≤ |(gn)′(x)|
|(gn)′(z)| ≤ K, (8.4.4)

and, writing ||g′|| = sup1−δ/2≤|x|≤1 |g′(x)|,

(K||g′||)−1δ/2 ≤ |z − x| · |(gn)′(x)| ≤ Kδ/2. (8.4.5)

By fn ◦ R = R ◦ gn we have R′(x) = ((fn)′(R(x)))−1R′(gn(x))(gn)′(x). Due
to (8.4.3), 1 − |gn(x)| ≥ δ/2 ||g′||−1αK−1, hence there exists a constant C > 0
such that for all z ∈ ∂D and x, n as above

C−1 ≤ |R′(gn(x))| ≤ C.

We conclude with
|R′(x)| ≤ λ−nf C||g′||n,

where λf is the expanding constant for f . Hence, with the use of (8.4.5) to the
denominator, we obtain

lim sup
|x|→1

log |R′(x)|
− log 1 − |x| ≤ lim sup

x→z

−n logλf + log |(gn)′(z)|
log |(gn)′(z)| ≤ 1 − logλf

||g′|| < 1.

If we consider x1, x2 ∈ D close to each other and also close to ∂D, we find y ∈ D

and z1, z2 ∈ ∂D such that |y| ≤ min{|x1|, |x2|}, |xi − y| ≤ 2|x1 − x2| for i = 1, 2
and the intervals joining xi to y are in the Stoltz angles Sπ/4(zi). By integration
of |R′| along these intervals one obtains Hölder continuity of R on D with an

arbitrary exponents smaller than a := 1 − log λf

||g′|| (a more careful consideration
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yields the exponent a) and a definite Hölder norm, thus Hölder extending to
clD.

Now we pass to χµ(R). Since the Riemann map extends to R : clD1 →
FrΩ uniformly continuous, R(gn(x)) lies close to R(gn(z)). Let f−n

R(z) be a

holomorphic inverse branch of fn defined on some small neighbourhood of
R(gn(z)), containing R(gn(x)) and sending R(gn(z)) = fn(R(z)) to R(z). Then
f−n
R(z)(R(gn(x)) = x and applying Koebe’s Distortion Theorem or bounded dis-

tortion for iterates, we obtain

K̂−1 ≤ |(fn)′(R(x))|
|(fn)′(R(z))| ≤ K̂, (8.4.6)

for some constant K̂ independent of z, x and n.
By Birkhoff’s Ergodic Theorem there exists a Borel set Y ∈ ∂D such that

µ(Y ) = 1 and

lim
k→∞

1

k
log |(gk)′(z)| = χµ(g) and lim

n→∞
1

k
log |(fk)′(R(z))| = χµ◦R−1 (f).

for all z ∈ Y .
We conclude that for all z ∈ Y and x ∈ Sα(z),

lim
x→z

− log |R′(x)|
log(1 − |x|) = lim

x→z

log |(fn)′(R(z))|−1 + log |(gn)′(x)|
log(1 − |x|) = 1 − χµ◦R−1 (f)

χµ(g)
.

♣

8.5 Harmonic measure; “fractal vs.analytic” di-

chotomy

We continue to study Fr Ω ⊂ C the boundary of a simply connected domain
Ω ⊂ C̄ and the boundary behaviour of a Riemann map R : D → Ω, in presence
of a map f as in the previous section, with the use of harmonic measure. Though
most of the theory holds under the weak assumption that f is boundary repelling
to the side of Ω, as in Proposition 8.4.5. We call such domain an RB-domain.
We assume in most of this Section, for simplicity, a stronger property that f is
expanding on Fr Ω, and sometimes that Ω is a Jordan domain, that is Fr Ω is a
Jordan curve.

Harmonic measure ω(x,A) = ωΩ(x,A) for x ∈ Ω and A ⊂ Fr Ω Borel
sets, is a harmonic function with respect to x and a Borel probability mea-
sure with respect to A, such that for every continuous φ : ∂Ω → R the function
φ̃(x) :=

∫

φ(z) dω(x, z) is a harmonic extension of φ to Ω, continuous on cl Ω. Its
existence is called solution of Dirichlet problem. For simply connected Ω with
non-one point boundary it always exists. If R(0) = x0 then ω(x0, ·) = R∗(l),
where l is the normalized length measure on ∂D . Of course R∗(l) makes sense
if R is continuous on cl D. However it makes sense also in general, if we consider
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the extension of R by the radial limit, which exists l-a.e. by Fatou Theorem,
[Pommerenke 1992], [Collingwood & Lohwater 1966].

Since all the Riemann maps differ by compositions with homographies (Möbius
maps) preserving the unit circle, all the harmonic measures ω(x, ·) for x ∈ Ω
are equivalent and corresponding Radon-Nikodym derivatives are bounded away
from zero and infinity. If we are interested only in this equivalence class we write
ω without specifying the point x, and call it a harmonic measure, or harmonic
measure equivalence class on FrΩ viewed from Ω.

Harmonic measure ω(x, ·) can be defined as the probability distribution of
the first hit of Fr Ω by the Brownian motion starting from x. This is a very
intuitive and inspiring point of view.

For more information about harmonic measures in C we refer the reader for
example to [Pommerenke 1992] or [Tsuji 1959].

In the presence of f boundary repelling to the side of Ω the lift g defined in
Proposition 8.4.3, extended to ∂D, is expanding by Proposition 8.4.5, hence by
Chapter 4 there exists a g-invariant measure µ equivalent to l which is a Gibbs
measure for the potential − log |g′| (with real-analytic density, see Ch.5.2). So
the equivalence class ω contains an f -invariant measure, that is R∗(µ), allowing
to apply ergodic theory.

If Ω is a simply connected basin of attraction to ∞ for a polynomial f of
degree d ≥ 2, then ω = ω(∞, ·) is a measure of maximal entropy, log d, see
xcit[Brolin]. This measure is often called balanced measure.

A major theorem is Makarov’s theorem [Makarov 1985] that HD(ω) = 1.
This is a general result true for any simply connected domain Ω as above with
no dynamics involved. We shall provide here a simple proof in the dynamical
context, in presence of expanding f for Jordan FrΩ.

We start with a general simple observation

Lemma 8.5.1. If for l-a.e. z ∈ ∂D there exists a radial limit χ(R)(z) :=

limx→z
− log |R′(x)|
log(1−|x|) , then

∫

χ(R)(z) dl = 0.

(In fact the assumption on the existence of the limit for l-a.e. z, equal to 0,
is always true by Makarov’s theory.)

Proof. We have

∫

χ(R) dl =

∫

lim
r→1

log |R′(rz)|
− log(1 − r)

dl(z)

= lim
r→1

1

− log(1 − r)

∫

log |R′(rz)| dl(z) = 0.

We could change above the order of integral and limit, due to the bounds −2 ≤
log |R′(rz)|
− log(1−r) ≤ 2 for all r sufficiently close to 1, following from Koebe Distortion

Lemma, see Section 5.2. The latter expression is equal to 0 since log |R′(rz)| is
a harmonic function so the integral is equal to log |R′(0)| which does not depend
of r. ♣
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Corollary 8.5.2. Suppose that f is a holomorphic mapping preserving Fr Ω
repelling to the side of Ω. Then for µ the g-invariant measure equivalent to the
length measure l

χR∗(µ)(f) = χµ(g) > 0 (8.5.1)

hR∗(µ)(f) = hµ(g) (8.5.2)

and HD(ω) = 1, for ω, the harmonic measure on Fr Ω viewed from Ω.

Proof. We prove this Corollary only in the case (Fr Ω, f) is an expanding con-
formal repeller and Ω is Jordan domain. Then, as we already mentioned in the
introduction to this Section, R∗(µ) is a probability f -invariant measure in the
class of harmonic measure ω.

In view of Theorem 8.4.7 χ(R) exists and is constant l-a.e. equal to χµ(R),
hence by Lemma 8.5.1 it is equal to 0. Hence by (8.4.2) we get (8.5.1). The
property (7.5.2) is immediate in the Jordan case since R is a homeomorphism
from ∂D to FrΩ by Carathéodory’s theorem, conjugating g with f .

Hence
hR∗(µ)(f)

χR∗(µ)
=

hµ(g)

χµ(g)
.

Since HD(µ) = 1, an immediate application of Theorem 8.1.11 for f and g
(Volume Lemma) finishes the proof. ♣

From now on we assume that Ω is Jordan and f expanding. Then the f -
invariant measure R∗(µ), the R∗-image of the Gibbs g-invariant measure µ, is
itself a Gibbs measure, see below, and we can apply the results of Section 8.3,
namely Theorem 8.3.1.

Theorem 8.5.3. The harmonic measure class ω on Fr Ω contains an f -invariant
Gibbs measure for the map f : Fr Ω → Fr Ω and the Hölder continuous potential
− log |g′| ◦R−1. The pressure satisfies P (f,− log |g′| ◦R−1) = 0.

Proof. Recall that Jacobian Jl(g) of g : ∂D → ∂D with respect to the length
measure l is equal to |g′|, hence l is a Gibbs measure for φ = − log |g′| containing
in its class a g-invariant Gibbs measure µ. The pressure satisfies P = P (g, φ) = 0
by direct checking of the condition (4.1.1) or since Jl(g) = eφ−P = |g′|e−P .

Since R is a topological conjugacy between g : ∂D → ∂D and f : Fr Ω → Fr Ω,
we automatically get the Gibbs property (4.1.1) for the measure R∗(l) in the
class of harmonic measure ω, for f and φ ◦ R−1. We get also P (f, φ ◦ R−1) =
P (g, φ) = 0. We obtain Gibbs f -invariant measure R∗(µ) in the class of ω for
the potential function φ ◦R−1 which is Hölder since R−1 is Hölder.

(Note that in Theorem 8.4.7 we proved that R is Hölder, not knowing a priori
that R extends continuously to ∂D. Here we assume that FrΩ is Jordan, so R
extends to a homeomorphism by Carathéodory’s theorem, hence R−1 makes
sense. Therefore the proof that R−1 is Hölder is straightforward: go from small
scale to large scale by fn, then back on the R−1 image by g−n, the appropriate
branch, and use bounded distortion for iterates, Ch.5.2.) ♣
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Theorem 8.5.4. Let f : Fr Ω → Fr Ω be a conformal expanding repeller, where
Ω is a Jordan domain. Then either

(a) ω ≍ Λ1 on ∂Ω, which is equivalent to the property that the functions log |g′|
and log |f ′ ◦R| are cohomologous, and else equivalent to HD(∂Ω) = 1, or

(b) ω ⊥ Λ1, which implies the existence of c0 > 0 such that with the gauge
function αc(t) = t exp(c

√

log(1/t) log3(1/t)),

ω ⊥ Λαc
for all 0 ≤ c < c0

and

ω ≪ Λαc
for all c > c0.

Proof. The property that log |g′| and log |f ′ ◦R| are cohomologous implies that
the functions − log |g′ ◦ R−1| and − log |f ′| are cohomologous (with respect to
the map f : ∂Ω → ∂Ω). By Theorem 8.5.3 ω contains in its equivalence class an
invariant Gibbs state of the potential − log |g′ ◦ R−1|. By Corollary 8.5.2 κ =
HD(ω) = 1. Since P(f,− log |f ′|) = P(f,− log |g′ ◦ R−1|) = P(g,− log |g′|) = 0,
it follows from Corollary 8.1.7 that the cohomology is equivalent to HD(Fr Ω) =
1, and to the property that ω is equivalent to the 1-dimensional Hausdorff
measure on FrΩ. So, the part (a) of Theorem 8.5.4 is proved.

Suppose now that log |g′| and log |f ′ ◦ R| are not cohomologous. Then
− log |g′ ◦ R−1| and − log |f ′| are not cohomologous. Let µ be the invariant
Gibbs state of − log |g′ ◦ R−1| in the class of ω. By κ = 1 we get the part (b)
immediately from Theorem 8.3.1(b) for X = FrΩ. ♣

Now we shall take a closer look at the case a), of rectifiable Jordan curve
Fr Ω. In particular we shall conclude that this curve must be real-analytic.

Theorem 8.5.5. If f : Fr Ω → FrΩ is a conformal expanding repeller, Ω is a
Jordan domain and HD(Fr Ω) = 1 (or any other condition in the case (a) in
Theorem 8.5.4, then FrΩ is a real-analytic curve.

If we assume additionally that f extends holomorphically onto C, i.e. f is a
rational function, and Ω is completely invariant, namely f−1(Ω) = Ω, then R
is a homography, Fr Ω is a geometric circle and f is a finite Blaschke product
in appropriate holomorphic coordinates on C, i.e.

f(z) = θ

d
∏

i=1

z − ai
1 − āiz

with d the degree of f , |θ| = 1 and |ai| < 1.
Finally, if f is a polynomial and Ω completely invariant, then in appropriate

coordinates f(z) = zd.

For a stronger version, where Ω is only assumed to be forward invariant
rather than completely invariant, and for a counterexample, see Exercise 8.12.



8.5. HARMONIC MEASURE 281

Proof. The condition (a2) in Theorem 8.5.4 means that R : ∂D → FrΩ trans-
ports the length measure on ∂D to the measure equivalent to the Hausdorff
measure Λ1 on Fr Ω.

The idea now is to look at FrΩ from outside. We denote D1 = D, R1 =:
D → Ω and denote S1 = ∂D. Consider a Riemann map R2 : D2 := {z :
|z| > 1} → C \ cl Ω = Ω∗. By Carathéodory’s Theorem R2 (analogously to
R1) extends to a homeomorphism from clD2 to clΩ∗. Denote the extensiond
to cl Di by the same symbols Ri.

The map g1 extending R−1
1 ◦f ◦R1 (see Proposition 8.4.3), as being expand-

ing, is a local homeomorphism on a neighbourhood of S1 in clD1. Since Ω is a
Jordan domain, R1 is a homeomorphism between closures, clD1 to cl Ω. So f is
a local homeomorphism an open neighborhood U of FrΩ in cl FrΩ. In conclu-
sion, since f has no critical points in Fr Ω, there exists an open neighborhood
U of FrΩ such that f is defined on U ∩ Ω∗ and maps it into Ω∗.

Indeed, if Ω∗ ∋ zn → z ∈ Fr Ω and cl Ω ∋ f(zn) → f(z), then, since f is
a local homeomorphism on a neighbourhood of Fr Ω in cl Ω, see the paragraph
above, there exists cl Ω ∋ wn → z such that f(wn) → f(z). This contradicts the
assumption that f has no critical points in Fr Ω, i.e. f is a local homeomorphism
in a neighbourhood of FrΩ in C.

Therefore, analogously to g1, we can define g2 = R−1
2 ◦ f ◦ R2, the lift of f

via the Riemann map R2 on the set D2 intersected with a sufficiently thin open
annulus surrounding S1, and consider the extensions of R2 and g2 to the closure
clD2,, see Figure reffig:egg.

h

R2

R1

Figure 8.4: Broken egg argument

Set

h = R−1
2 ◦R1|S1 : S1 → S1.

Composing, if necessary, R2 with a rotation we may assume that h(1) = 1. Our
first objective is to demonstrate that h is real-analytic.

Indeed, let µi = uil be gi-invariant Gibbs measures for potentials − log |g′i|,
i.e. gi-invariant measures equivalent to length measure l, for i = 1, 2 respectively.
In view of Section 5.2, the densities u1 and u2 are both real-analytic.

Now we refer to F. and M. Riesz theorem (or Riesz-Privalov, see for exam-
ple [Pommerenke 1992, Ch.6.3]), which says that Fr Ω rectifiable Jordan curve
implies that the map R2 : ∂D → Fr Ω transports the length measure on S1 to
the measure equivalent to Λ1 on Fr Ω. (Recall that we stated the similar fact on
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R1 at the beginning of the proof, which followed directly from the assumptions,
without referring to Riesz theorem.) We conclude that h∗(µ1) is equivalent to
µ2. Since h establishes conjugacy between g1 and g2 the measure h∗(µ1) is
g2-invariant.

Now comes the main point. The measures µ2 and h(µ1) are ergodic, hence
equal, by Theorem 1.2.6, i.e.

h(µ1) = µ2.

Therefore, writing a(t) = 1
2π log h(e2πit), a : [0, 1] → [0, 1] , denoting b1(t) =

∫ t

0
u1(e

2πit) dt and b2(t) =
∫ t

0
u2(e

2πit) dt, noting that by h(1) = 1 we have
a(0) = 0, we get for all t : 0 ≤ t ≤ 1

b1(t) = b2(a(t)).

The functions bi are real-analytic and invertible since ui are positive. Therefore
we can write inverse functions and conclude that a = b−1

2 ◦ b1 is real-analytic.
Hence h is real analytic.

The function h extends to holomorphic function on a neighbourhood of S1

and we can replace R2 by R3 = R2 ◦ h in a neighbourhood of S1 in D2. By
definition R1 considered on clD1 and R3 outside D1 coincide on S1. So by
Peinleve’s Lemma they glue together to a holomorphic mapping R on a neigh-
bourhood of S1. So R(S1) is a real-analytic curve and the proof of the first part
is finished.

Suppose now that f extends to a rational function on C and Ω is completely
invariant. Then also Ω∗ is completely invariant and both domains are basins of
attraction to sinks, p1 ∈ Ω and p2 ∈ C \ cl Ω respectively (use Brouwer theorem
and Schwarz lemma). Let Ri defined above satisfy R1(0) = p1 and R2(∞) = p2.
The maps gi = R−1

i ◦ f ◦ Ri preserving Di and S1 must be Blaschke products.
Indeed. Let a1, . . . , ad be the zeros of g1 in D1 with counted multiplicities.
Their number is d since d is the degree of f and R1(ai) are f -preimages of p.

Denote B1(z) =
∏d
i=1

z−ai

1−āiz
. Each factor z−ai

1−āiz
is a homography preserving S1,

so their product also preserves S1.
For B1 as above g1/B1 is holomorphic on D1, has no zeros there, and its

continuous extension to S1 (see Section 8.4) preserves S1 Hence by Maximum
Principle applied to g1/B1 and B1/g1 the function g1/B1 is a constant λ1. So
g1 = λ1B for |λ1| = 1. In fact, as one of the zeros of B is 0, as 0 = R−1

1 (p1) is
a fixed point for g1, we can write

g1(z) = λ1z

d
∏

i=2

z − ai
1 − āiz

.

Similarly we prove that

g2(z) = λ2z

d
∏

i=2

z − a′i
1 − ā′iz

.

for 1/ā′i the poles of g2 in D2.



8.5. HARMONIC MEASURE 283

Note that each Blaschke product B, for which 0 is a fixed point, preserves the
length measure l on ∂D. Indeed, let φ be an arbitrary real continuous function
on ∂D and φ̃ its harmonic extension to D. Then

∫

φdl = φ̃(0) = φ̃(B(0)) =

∫

φ ◦B dl, (8.5.3)

since φ̃ ◦B is harmonic as a composition of a holomorphic mapping with a har-
monic function. We conclude that both g1 and g2 preserve the length measure l.
Hence h = id and R1 = R2 on S1 glue together to a homography R on C , g1 and
g2 extend each other holomorphically to g := g1 = g2 on C, and f = R◦g ◦R−1.

Finally, if f is a polynomial, then ∞ is a pole of multiplicity d, hence g(z) =
zd. ♣

Example 8.5.6. In Section 5.1, Example 5.1.10, we provided an example of
an expanding repeller, being an invariant Jordan curve for fc(z) = zd + c for
d = 2 and c ≈ 0. Similarly, for any d ≥ 2 there exists an invariant Jordan curve
Jc, being Julia set for fc, cutting the Riemann sphere C̄ into two components,
Ω and Ω∗ which are basins of attraction to a fixed point pc near 0 and to the
fixed point at ∞. The existence of the expanding repeller Jc, follows from
Proposition 5.1.7. The rest of the scenario is an easy exercise. We can conclude
from Theorem 8.5.5 that c 6= 0 implies HD(Jc) > 1.

Now we present another proof of Theorem 2, avoiding Riesz Theorem, so
more applicable in other situations, see for example Exercise 8.14.

Proof of Theorem 8.5.5, a second method. It is comfortable to use now the half-
plane rather than disc, so we consider a univalent conformal map R : {z ∈ C :
ℑz > 0} → Ω extending to a homeomorphism R : cl{ℑz ≥ 0} ∪∞ → clΩ.

By our the assumptionsR is absolutely continuous on the real axis R. Denote
the restriction of R to this axis by Ψ. Then Ψ(x) is differentiable a.e. and it is
equal to the integral of its derivative, see [Pommerenke 1992, Ch.6.3].

Therefore Ψ′ 6= 0 on a set of positive Lebesgue measure in R. By Egorov’s

theorem Ψ(x+h)−Ψ(x)
h − Ψ′(x) → 0 uniformly for |h| → 0, h 6= 0 except for a set

of an arbitrarily small measure (for a finite measure equivalent to Lebesgue).
To be concrete: there exists c > 0 and a sequence of numbers εn ց 0 such that
the following set has positive Lebesgue measure

Q = {x ∈ R : c ≤ |Ψ′(x)| ≤ 1/c, |Ψ(x+ h)−Ψ(x)−Ψ′(x)h| ≤ |h|/n if |h| ≤ εn}.

Let µ denote, as before, the probability g-invariant measure on R equivalent
to Lebesgue (remember that we have replaced the unit disc by the upper half-
plane, we use however the same notation R, g and µ). We will prove that R
extends to a holomorphic map on a neighbourhood in C of any point in R, i.e.
it is real-analytic on R, by using the formula

R = fn ◦R ◦ g−n.
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The point is to choose the right backward branches g−n so that R in the mid-
dle in the above identity is almost affine. We shall use the natural exten-
sion (R̃, µ̃, g̃), see Section 1.7, where R̃ can be understood as the space of g-
trajectories and π = π0 maps R̃ to R and is defined by π(xn, n = . . . ,−1, 0, 1, . . . ) =
x0. (We shall use this method more extensively in Chapter 10.)

Since g is ergodic, g̃−1 is ergodic , see Section 1.2 and Exercise 1.14, and
in conclusion there exists x0 ∈ R and a sequence Gj of backward branches
of g−nj defined on an interval I with x0 in the middle, r := |I|/2, such that
xj := Gj(x0) ∈ Q for all j = 1, 2, . . . . Define affine maps

Aj(y) := Ψ′(xj)(y − xj) + Ψ(xj) (8.5.4)

from R to C.
First we show that we have uniform convergence on I as j → ∞

Ψj := fnj ◦Aj ◦Gj → Ψ. (8.5.5)

Fixed Gj and x ∈ I denote y := gj(x0) and y+ h := Gj(x). If λ
−nj
g diams(I) <

εn for λg the expanding constant for g, where diams denotes the diameter in
the spherical metric, then by the definition of the set Q we obtain, taking into
account that Ψ(y) = Aj(y),

∣

∣

∣

∣

Ψ(y + h) − Ψ(y)

Aj(y + h) − Ψ(y)
− 1

∣

∣

∣

∣

≤ (1/nj)|h|
|Ψ′(y)h| ≤ 1/nj

c
. (8.5.6)

Then by bounded distortion for iterates of f , Lemma 5.2.2, we obtain for a
constant C ≥ 1 depending on f

∣

∣

∣

∣

fnj Ψ(y + h) − fnj Ψ(y)

fnjAj(y + h) − fnjΨ(y)
− 1

∣

∣

∣

∣

≤ eCr/njc. (8.5.7)

To use Lemma 5.2.2 we need to check its assumptions (we consider x = Ψ(y), y1 =
Ψ(y+h), y2 = Aj(y+h) in the notation of Lemma 5.2.2), namely to check that
for all k = 0, 1, . . . , nj

|fkΨ(y + h) − fkΨ(y)| < r and |fkAj(y + h) − fkΨ(y)| < r (8.5.8)

The first estimate follows immediately from the expanding property of f , namely

the estimate |fkΨ(y + h) − fkΨ(y)| ≤ λ
nj−k
f diamΨ(I) < r, where λf is the

expanding constant for f .
The second estimate can be proved by induction, jointly with (8.5.7) for

all fk, k = 0, 1, . . . , nj in place of fnj in (8.5.7). For each k0, having assumed
(8.5.8) for all k ≤ k0, we obtain (8.5.7) for fk0 in place of fnj , by Lemma 5.2.2.
In particular the bound is by 1 − λ−1

f if nj is large enough.

Hence in the fraction, writing k = k0, we get in the denominator |fkAj(y +

h)−fkΨ(y)| ≤ diamΨ(I), since the numerator is bounded by λ
−(nj−k)
f diamΨ(I) ≤

λ−1
f diamΨ(I). Hence |fk+1Aj(y + h) − fk+1Ψ(y)| < K diamΨ(I) = r
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Note that in the course of induction we verify that the consecutive points
fkAj(y + h) as being close to Fr Ω belong to the domain of f .

Now we calculate using fnj ◦ Ψ ◦Gj = Ψ for all j and (8.5.7) that

|Ψj(x) − Ψ(x)| = |Ψj(x) − Ψj(x0) − (Ψ(x) − Ψ(x0))|

=

∣

∣

∣

∣

fnj Ψ(y + h) − fnj Ψ(y)

fnjAj(y + h) − Ψ(x0)
− 1

∣

∣

∣

∣

· |fnjAj(y + h) − Ψ(x0)|

≤ eCr/njc)|fnjAj(y + h) − Ψ(x0)|.

which tends to 0 for j → ∞.
Now consider Ψj as defined on a complex neighbourhood of I. To this aim

consider Aj as affine maps of C, given by the same formula (8.5.4) as before. By
(8.5.8) considered for complex x and consequently complex h the maps Ψj are
well defined and uniformly bounded. Thus, we can apply Montel theorem and
choose a convergent subsequence from Ψj . The limit must be a holomorphic
extension of Ψ by uniqueness because it is equal to Ψ on I.

Finally Ψ extends holomorphically to a neighbourhood of every z ∈ R ∪∞
since by the topological exactness of g there exists x ∈ I and an integer n ≥ 0
such that gn(x) = z. So, on a neighbourhood of z we define the extension Ψ =
fn ◦Ψ◦g−nx where Ψ in the middle has been already defined in a neighbourhood
of I. ♣

Now we shall prove the following corresponding fact on the radial behaviour
of Riemann mapping .

Theorem 8.5.7. Let f : Fr Ω → Fr Ω be a conformal expanding repeller with
Ω a Jordan domain. Depending on whether c(ω) = 0 or c(ω) 6= 0, either ∂Ω is
real-analytic and the Riemann map R : D1 → Ω and its derivative R′ extend
holomorphically beyond ∂D1 or for almost every z ∈ ∂D1

lim sup
r→1

|R′(rz)| exp c
√

log(1/1 − r) log3(1/1 − r) =

{

∞ if c ≤ c(ω)

0 if c > c(ω)
(8.5.9)

and

lim sup
r→1

(

|R′(rz)| exp c
√

log(1/1 − r) log3(1/1 − r))−1 =

{

∞ if c ≤ c(ω)

0 if c > c(ω)

(8.5.10)
Moreover the radial limsup can be replaced by the nontangential one.

Proof. Let n > 0 be the least integer for which gn(rz) ∈ B(0, r0) for some fixed
r0 < 1. We have R′(rz) = ((fn)′(R(rz)))−1 · R′(gn(rz)) · (gn)′(rz). Hence, for
some constant K > 0 independent of r and z

K−1 ≤ |R′(rz)|
|((fn)′(R(rz)))−1| · |R′(gn(rz))| ≤ K.
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By the bounded distortion theorem the rz in the denominator can be replaced
z and n depends on r as described by (8.1.2) with r replaced by 1 − r. Now
we proceed as in the proof of Theorem 8.3.1 replacing deviations of Sn(φ) −
P (φ)n + κ log |(fn)′(x)| by the deviations of log |(gn)′(x)| − log |(fn)′(x)|. The
proof is finished. ♣

8.6 Pressure versus integral means of the Rie-

mann map

In this section we establish a close relation between integral means of derivatives
of the Riemann map to a domain Ω and topological pressure of the function
−t log |f ′| for a mapping f on the boundary of Ω. This links holomorphic
dynamics with analysis, as in the notion of β below f is not involved. Given
t ∈ R define

β(t) = lim sup
r→1

log
∫

∂D
|R′(rz)|tdl(z)

− log(1 − r)
, (8.6.1)

the integral with respect to the length measure. We shall prove the following.

Theorem 8.6.1. Assume that (Fr Ω, f) is a conformal expanding repeller (as
in Theorem 8.4.7). If the lifted (desingularized) map g : ∂D → ∂D is of the
form z 7→ zd, d ≥ 2, then

β(t) = t− 1 +
P(f,−t log |f ′|)

log d
. (8.6.2)

In particular in (8.6.1) limsup can be replaced by lim.

Proof. Fix 0 < r < 1. Fix n = n(r) to be the first integer for which |gn(rz)| < r0
for z ∈ ∂D, where r0 < 1 is a constant such that f is defined on a neighbourhood
of clR({r0 ≤ |w| ≤ 1}). Note that n is independent of z and that there exists
a constant A ≥ 1 such that A−1 ≤ |R′(w)| ≤ A for all w ∈ B(0, r0).

Then, for all z ∈ ∂D

|R′(rz)|t = |R′(gn(rz))|t (|gn)′(rz)|t
|(fn)′(R(rz))|t .

Divide ∂D into dn arcs Ij , j = 0, . . . , dn − 1 with the end points zj := e(2πi)j/d
n

and zj+1. Note that {zj := j = 0, . . . , dn − 1} = g−n({1}).
By Hölder continuity of the continuous extension of R to cl D, see Theo-

rem 8.4.7, f ′ ◦R is Hölder continuous on clD. Hence there is a constant K > 0
such that the ratio |(fn)′(R(w1))/(f

n)′(R(w2))| is bounded by K for all n all j
and w1, w2 ∈ rIj , see Chapter 3. Hence

∫

Ij

|(fn)′(R(rz))|−tdl(z) ≍ (2πrd−n|(fn)′(R(rzj))|−t|,

where ≍ means the equality up to a bounded factor.
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By our definition of n, rd0 ≤ rd
n ≤ r0; hence d log(r0) ≤ dn log r ≤ log(r0).

Since there exists a constant B ≥ 1 such that B−1(1 − r) ≤ − log r ≤ B(1 − r)
for all r sufficiently close to 1, we get B−1 log 1/r0 ≤ dn(1 − r) ≤ Bd log 1/r0.
Therefore − logB+log log 1/r0 ≤ n log d+log(1−r) ≤ logB+log log 1/r0+log d.
Hence n log d−C ≤ − log(1− r) ≤ n log d+C for some constant C. Thus, using
|gn)′(rz)| = dn|rz|dn−1 ≍ dn,

lim
r→1

log
∫

∂D
|R′(rz)|tdl(z)

− log(1 − r)
= lim
n→∞

1

n log d
log
(

dn−1
∑

j=0

2πrd−ndnt|(fn)′(R(rzj))|−t
)

= −1 + t+
∑

lim
n→∞

1

n log d
log
∑

j

|fn)′(R(rzj))|−t

= t− 1 +
P(g,−t log |f ′| ◦R)

log d
= t− 1 +

P(f,−t log |f ′|)
log d

.

Above, to get pressures, we use the equalities

|(fn)′(R(rzj))|−t = expSn(− log |f ′| ◦R)(rzj),

where Sn(φ) =
∑n−1
k=0 φ ◦ gk with φ = −t log |f ′| ◦R, and apply the definition of

pressure Px(T, φ) provided in Proposition 3.4.3 To get P(g,−t log |f ′| ◦ R) we
replace n-th preimages rzj of the point gn(rzj) (not depending on j) by preim-
ages of gn(zj) = 1, therefore computing P1(g, φ). As φ is Hölder continuous we
can apply Lemma 3.4.2, so the latter pressure is indeed P(g, φ).

Replace now 1 by an arbitrary r0 : 0 < r0 < 1 close to 1 so that φ is
defined on its all gn-preimages, n = 0, 1, .... Then P1(g, φ) = Pr0(g, φ), the
latter defined by the same formula as in Proposition 3.4.3 (though r0 /∈ ∂D, our
repeller for g), since R hence φ are Hölder continuous.

To get P(f,−t log |f ′|) we replace preimages of r0 by preimages of R(r0) us-
ing the fact that R is injective on D. We obtain Pr0(g, φ) = PR(r0)(f,−t log |f ′|)
and the latter expression can be replaced by PR(1)(f,−t log |f ′|). This is equal
to P(f,−t log |f ′|) due to the Hölder continuity of −t log |f ′|. Topological tran-
sitivity of f on Fr Ω assumed in Proposition 3.4.3 used here follows from the
topological transitivity of g on ∂D.

Finally limsup can be replaced by lim in β(t) since lim in Px(T, φ) exists in
Proposition 3.4.3. The proof is finished. ♣

Remark 8.6.2. The equality (8.2.7) holds even if we do not assume that f is
expanding on Fr Ω; it is sufficient to assume boundary repelling to the side of
Ω, as in Proposition 8.4.5. To this aim we need to define pressure appropriately.
The above proof works for Px(f,−t log |f ′|) for an arbitrary x ∈ Ω close to Fr Ω,
see also [Binder, Makarov & Smirnov 2003], Lemma 2.

This pressure does not depend on x ∈ Ω by Koebe Distortion Lemma for
iteration of branches of f−1 in Ω, see Section 5.2. This notion makes sense and
is independent of x also for x ∈ FrΩ for “most” x, see [Przytycki 1999] for the
case Ω is a basin of infinity for a polynomial. Compare Section 11.5.
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Remark 8.6.3. If f is of degree d on Ω simply connected and f expanding on
Fr Ω then

F (α) := inf
t∈R

(

t+
αP (t)

log d

)

(8.6.3)

for P (t) := P (f,−t log |f ′|) is the spectrum of dimensions of measure with
maximal entropy Fµmax(α), see the beginning of Section 8.2 and Exercise 8.6.

If f is a polynomial and Ω basin of ∞ then measure with maximal entropy
is the harmonic measure ω (from ∞, see [Brolin 1965]) hence (8.6.3) is the for-
mula for the spectrum of dimensions of harmonic measure related to Hausdorff
dimension.

One can ask under what conditions the same formula holds for a simply
connected Ω in absence of f , where in place of P (t)/ log d one puts β(t)− t+ 1,
cf. (8.6.1).

Remark 8.6.4. The following conjecture is of interest. For B(t) := supβ(t),
the supremum being taken over all simply connected domains with non one
point boundary, and for Bpoly(t) := supΩ β(t) supremum taken over Ω being
simply connected basins of attraction to ∞ for polynomials

B(t) = Bpoly(t).

It is known, that Bt = Bsnowflake(t), where Bsnowflake(t) is defined as the supβ(t)
with supremum taken over Ω being complements of Carleson’s snowflakes, see
next section, Section 8.7.

Remark 8.6.5. The following is called Brennan conjecture: BBSC(−2) = 1
(BSC means supremum over bounded simply connected domains).

This has been verified for Ω simply connected basins of ∞ for quadratic
polynomials in [Barański, Volberg, & Zdunik 1998], the variant saying that

∫ ∫

D

|R′|−2+ε |dz|2 <∞

A stronger conjecture is that

B(t) = |t|2/4 for |t| ≤ 2 |t| − 1 for |t| ≥ 2.

8.7 Geometric examples. Snowflake and Car-

leson’s domains

This last section of this chapter is devoted to apply the results of previous
sections to geometric examples like von Koch snowflake and Carleson’s example.
Following the idea of the proof of Theorems 8.3.1, 8.5.4, 8.5.5 and coping with
additional technicalities, see [Przytycki, Urbański & Zdunik 1991, Theorem C,
Section 6], one can prove the following.
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Theorem 8.7.1. Let Ω be a simply connected domain in C with the boundary
FrΩ = ∂Ω being a Jordan curve. Let ∂j, j = 1, 2 . . . , k be a finite family of
compact arcs in ∂Ω with pairwise disjoint interiors. Denote

⋃

∂j by ∂ (we do
not assume that this curve is connected). Assume that there exists a family of
conformal maps fj, j = 1, . . . , k, (which may reverse the orientation on C) on
neighbourhoods Uj of ∂j. For every j assume that fj(Ω ∩ Uj) ⊂ Ω, |f ′

j | > 1 on
Uj and

fj(∂Ω ∩ Uj) ⊂ ∂Ω. (8.7.1)

Assume also the Markov partition property: for every j = 1, . . . k, fj(∂j) =
⋃

s∈Ij
∂s for some subset Ij ⊂ {1, 2, . . . , k}. Consider the k× k matrix A = Ajk

where Ajk = 1 if k ∈ Ij and Ajk = 0 if k /∈ Ij. Assume that A is aperiodic,
i.e. there exists n such that all the entries of An are positive. (cf. Section 3.3).
Then there exists a transition parameter c(ω, ∂) ≥ 0 such that for the harmonic
measure ω on ∂Ω viewed from Ω, restricted to ∂ the claims of Theorem 8.5.4
and Theorem 8.5.5 (the analyticity of ∂ in the case c(ω, ∂) = 0), hold for ∂.

Here (8.7.1) is a crucial assumption allowing to prove Theorem 8.7.1. To have
it satisfied one needs sometimes to construct a sophisticated Markov partition of
∂Ω rather than a natural one, see the boundary of the snowflake domain below,
Figure 8.5 and Chapter 0. See the discussion in [Makarov 1986].

Example 8.7.2 (the snowflake). To every side of an equilateral triangle, in the
middle we glue from outside a three times smaller triangle. To every side of the
resulting polygon we glue again an equilateral triangle three times smaller, and
so on infinitely many times. The triangles do not overlap in this construction
and the boundary of the resulting domain Ω is a Jordan curve. This Ω is called
von Koch snowflake. It was first described by Helge von Koch in 1904.

A9

A2

A7 A5

A6

A11 A1
.

A3.

..

.

A10
. .

A8 A4
.

.

.

A0.

.

Figure 8.5: Snowflake



290 CHAPTER 8. CONFORMAL EXPANDING REPELLERS

Denote the curve in ∂Ω joining a point x ∈ ∂Ω to y ∈ ∂Ω in the clockwise
direction just by xy. For every ∂i := AiAi+1(mod12) ⊂ ∂Ω, i = 0, 1, . . . , 11, we
consider its covering by the curves 12, 23, 34, 45, 56 in Ω, see Figure 8.6. This
covering together with the affine maps

12, 34 → 16 ( preserving orientation on ∂Ω)

23 → 61 ( reversing orientation )

56 → 36 ( preserving orientation )

45 → 63 ( reversing orientation )

gives a Markov partition of ∂i satisfying the assumptions of Theorem 8.7.1.

.

.

.

.

.

.

Ai

Ai+1

1

2

6

4
5

3

Figure 8.6: A fragment of the snowflake

Since ∂Ω (and every its subcurve) is definitely not real-analytic (HD(∂Ω) =
log 4/ log 3), the assertion of Theorem 8.7.1 is valid with c(ω, ∂i) > 0. We may
denote c(ω, ∂i) by c(ω) since it is independent of ∂i by symmetry.

Example 8.7.3 (Carleson’s domain). We recall Carleson’s construction from
[Carleson 1985]. We fix a broken line γ with the first and last segment lying in
the same straight line in R2, with no other segments intersecting the segment
1, d− 1, see Figure 8.7).

Then we take a regular polygon Ω1 with vertices T0, T1, . . . , Tn and glue
to every side of it, from outside, the rescaled, not mirror reflected, curve γ
so that the ends of the glued curve coincide with the ends of the side. The
resulting curve bounds a second polygon Ω2. Denote its vertices by A0, A1, . . .
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. .

.

.

d− 2

0 1 dd− 1
. .

2

Figure 8.7: Construction of Carleson’s domain

(Figure 8.8). Then we glue again the rescaled γ to all sides of Ω2 and obtain a
third order polygon Ω3 with vertices B0, B1, . . .. Then we build Ω4 with vertices
C0, C1, . . .Ω

5 with D0, D1, . . . etc.

C2

Ti
A0 = B0

B1

A1 = Bd

B2d−1

Ad−1 = Bd2−d

A2

B2d+1
C̃2

Ti+1

Ad = Bd

Bd2−1

Figure 8.8: Carleson’s domain

Assume that there is no self-intersecting of the curves ∂Ωn in this con-
struction. Moreover assume that in the limit we obtain a Jordan curve L =
L(Ω1, γ) = ∂Ω. The natural Markov partition of each curve TiTi+1in L into
curves AjAj+1 with f(AjAj+1) = TiTi+1, considered by Carleson does not sat-
isfy the property (8.7.1) so we cannot succeed with it. Instead we proceed as
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follows: Define in an affine fashion

f(Bd(j−1)+1Bdj−1) = A1Ad−1

for every j = 1, 2 . . . , d. Divide now every arc Bdj−1Aj for j = 1, 2 . . . , d and
AjBdj+1, j = 1, 2 . . . , d into curves with ends in the vertices of the polygon

Ω4 : Cj ∈ Bdj−1Aj , C̃
j ∈ AjBdj+1 respectively, the closest to Aj(6= Aj). Let

for j = 1, 2, . . . , d− 1,

f(CjAj) = Bdj−1Aj , f(Bdj−1C
j) = Ad−1Bd2−1,

f(AjC̃
j) = AjBdj+1, f(C̃jBdj+1) = B1A1.

This gives a Markov partition of B1Bd2−1 with aperiodic transition matrix,
see the discussion after Definition 3.3.3 and Theorem 3.5.7. We can consider
instead of the broken line γ in the construction of Ω, the line γ(2), consisting of
d2 segments, which arises by glueing to every side of γ a rescaled γ. Consecutive
gluing of the rescaled γ(2) to the polygon Ω1 gives consecutively Ω3,Ω5 etc. The
same construction as above gives a Markov partition of D1Dd4−1 in TiTi+1. By
continuing this procedure we approximate TiTi+1, so from Theorem 8.7.1 and
from the symmetry we deduce that there exists a transition parameter c(ω)
such that the assertion of Theorem 8.5.4(b) is satisfied. Observe that Carleson’s
assumption that the broken line 1, 2, . . . , d−1 does not intersect 1, d− 1 has not
been needed in these considerations. Also the assumption that Ω1 is a regular
polygon can be omitted; one can prove that c(ω) does not depend on TiTi+1 by
considering a Markov partition with aperiodic transition matrix, which involves
all the sides of Ω1 simultaneously.

Exercises

Multifractal analysis

8.1. Prove the equalities of Rényi and Hentschel-Procaccia spectra.

8.2. Prove Proposition 8.2.4 about Legendre transform pairs and remarks pre-
ceding and following it.

8.3. Prove for α = −T ′(1) that F (α) = α and F ′(α) = 1 and F ′(−T ′(±∞)) =
±∞ (see Figure 8.3).

8.4. Prove that if φ is not cohomologous to −HD(X) log |f ′| then the singular
part X̂ of X is nonempty. Moreover HD(X̂) = HD(X).

Hint: Using the Shadowing Lemma from Chapter 3, find trajectories that
have blocks close to blocks of trajectories typical for µ−HD(X) log |f ′| of length
N interchanging with blocks close to blocks typical for µφ of length εN , for N
arbitrarily large and ε > 0 arbitrarily small.
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8.5. Define the lower and upper information dimension I(ν) and I(ν) replacing
in the definition of I(ν) the limit limr by the lower and upper limits respectively.
Prove that HD⋆(ν) ≤ I(ν) ≤ I(ν) ≤ PD⋆(ν), see (8.2.1).

Sketch of the proof. For an arbitrary ε > 0 there exist C > 0 and A ⊂ X , with
ν(X\A) ≤ ε such that for all r small enough there exists a partition Fr of A, sat-
isfyingHν(r)+ε ≥ −∑B∈Fr

ν(B) log ν(B) ≥∑B∈Fr
ν(B)HD⋆(ν) log 1

C diamB ≥
HD⋆(ν)(1 − ε) log 1

Cr .
On the other hand for the partition Br of X into intersections with boxes

(cubes) of sides of length r (compare Proposition 7.4.6 and the partition involved
in the definition of Rényi dimension, but consider here disjoint cubes, that is
open from one side), we have

I(ν) = lim sup
r→0

Hν(r)

− log r
≤ lim sup

r→0

−∑B∈Br
ν(B) log ν(B)

− log r

≤ lim sup
r→0

∫

log ν(Br(x)) dν(x)

log r
≤
∫

(

lim sup
r→0

log ν(Br(x))

log r

)

dν(x) ≤ PD⋆(ν),

where Br(x) denotes the cube of side r containing x.
Prove that it has been eligible here to use cubes instead of balls standing

in the definition of dν(x). For this aim prove that for ν-a.e. x ∈ X , we have

lim log ν(Br(x))
log ν(B(x,r)) = 1. Use Borel-Cantelli lemma.

Prove that we could use Fatou’s lemma (changing the order of limsup and
integral) indeed, due to the existence of a ν-integrable function which bounds
from above all the functions log ν(B(x, r))/ log r (or log ν(Br(x))/ log r). Use
again Borel-Cantelli lemma, for, say, r = 2−k.

8.6. Let µ = µφ be a measure of maximal entropy on a topologically exact
conformal expanding repeller X such that every point x ∈ X has exactly d
preimages (so φ = − log d). Prove (deduce from Theorem 8.2.5) that F (α) =

inft∈R

(

t+ αP(t)
log d

)

, more concretely F (α) = T + αP(T )
log d , where α = − log d

P ′(T ) .

8.7. Let φi : X → R be Hölder continuous functions for i = 1, . . . , k and µφi

their Gibbs measures. Define Xα1,...,αk
= {x ∈ X : dµi

(x) = αi for all i =
1, . . . , k}. Define φq1,...,qk,t = −t log |f ′| +∑i qiφi and T (q1, . . . , qk) as the only
zero of the function t 7→ P(φq1,...,qk,t). Prove the same properties of T as in
Theorem 8.2.5, in particular that

HD(Xα1,...,αk
) = inf

(q1,...,qk)∈Rk

∑

i

qiαi + T (q1, . . . , qk)

wherever the infimum is finite.

Fluctuations for Gibbs measures

8.8. Prove µφ ⊥ Λαc0
in the case b) of Theorem 8.3.1.

Hint. Use a function more refined than
√

2σ2n log logn, see the Kol-
mogorov test after Theorem 1.11.1. Use LIL (upper bound) for Sn(log |φ′|−χµφ

)
(Birkhoff Ergodic theorem as used above is not suficient). for details see [PUZ].
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8.9. Prove a Theorem analogous to Theorem 8.3.1, comparing µφ with packing
measures. In particular prove that, for ψ not a coboundary, for the gauge

function αc(r) = rκ exp(−c
√

log 1/r log3 1/r) and c0 =
√

2σ2
µφ

(ψ)/χµφ
(f) it

holds µφ ≪ Παc
for all 0 < c < c0, and µφ ⊥ Παc

for all c > c0.

Harmonic measure

8.10. Prove (8.5.2), namely hR∗(µ)(f) = hµ(g) in the case f is expanding but
not assuming that Ω is Jordan. To this end prove that R is finite-to-one on ∂D.

8.11. Prove that if Ω is a Jordan domain with boundary preserved by a con-
formal expanding map f defined on its neighbourhood, and harmonic measures
ωΩ and ω

C\cl Ω on Fr Ω (i.e harmonic measures on FrΩ viewed from inside and

outside) are equivalent, then they are equivalent to the Hausdorff measure Λ1

(hence FrΩ is real analytic).

Remark. A part of this theorem holds without assuming the existence of
f , see [Bishop et al. 1989]. It has an important intuitive meaning. Harmonic
measure is supported on a set exposed to the side from which it is defined,
easily accessible by Brownian motion. These sets in Fr Ω viewed from inside
and outside are very different except Fr Ω is rectifiable.

8.12. Prove that if (Fr Ω, f) is an expanding conformal repeller for a rational
function f , FrΩ is an analytic Jordan curve and Ω is a basin of attraction to a
sink, then Fr Ω is a geometric circle. (The assumption Ω is a basin of attraction
is weaker than the assumption that Ω is completely invariant in Theorem 8.5.5.)

Hint: Due to the analyticity of Fr Ω a Riemann map R : D → Ω extends
holomorphically to a neighbourhood U of cl D.Consider g a Blaschke product
extending R−1fR defined on D. We can assume g has a sink at ∞. Extend next
R to C holomorphically by fn ◦R ◦ g−n, with branches g−n and n large enough
that g−n(z) ∈ U . Check that the extension does not depend on the choice of
the branches g−n. If g is not of the form g(z) = Azd then the above formula
defines R on C. If g(z) = Azd prove separately that R does no have an essential
singularity at ∞. Finally prove that the extended R is invertible. For details
see [Brolin 1965, Lemma 9.1].

If we do not assume anything about f -invariance of Ω or Ω∗ then Jordan FrΩ
need not be a geometric circle. Consider for example the mapping F (x, y) =
(4x, 4y) on the 2-torus R2/Z2 and its factor, so called Lattés map, f := PFP−1

on the Riemann sphere, where P is Weierstrass elliptic function. Then P ({y =
1/4 + Z}) is an f -invariant expanding repelling Jordan curve, but it is not a
geometric circle (we owe this example to A. Eremenko).

8.13. Prove that if for two conformal expanding repellers (J1, f1) and (J2, f2) in
C being Jordan curves, the multipliers at all periodic orbits in J corresponding
by a conjugating homeomorphism h, coincide, i.e. for each periodic point q ∈ J1

of period n we have |(fn1 )′(q)| = |(fn2 )′(h(q))|, then the conjugacy extends to a
conformal map to neighbourhoods.

8.14. Let A : Rd/Zd → Rd/Zd be a hyperbolic toral automorphism given by
an integer matrix of determinant 1. Let Φ(x1, . . . , xd) = (ε2πix1 , . . . , ε2πixd)
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maps this torus to the torus T d = {|z1| = · · · = |zd| = 1} ⊂ Cd. It extends
to Cd/Zd. Define B = ΦAΦ−1. Let f be a holomorphic perturbation of B on
a neighbourhood of T d. Prove that close to T d there is a topological torus S
invariant for f such that A on T d and f on S are topologically conjugate by
a homeomorphism h close to identity. Prove that if for each A-periodic orbit
p,A(p), . . . , An−1(p) of period n absolute values of eigenvalues of differentials
DAn(p) and of Dfn(h(p)) coincide (one says that Lyapunov spectra of periodic
orbits coincide), then h extends to a holomorphic mapping on a neighbourhood
of T d.
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Chapter 9

Sullivan’s classification of

conformal expanding

repellers

This chapter relies on ideas of the proof of the rigidity theorem drafted by
D. Sullivan in Proceedings of Berkeley’s ICM in 1986, see [Sullivan 1986]. In
Chapter 6, Example 6.1.10 shows that two expanding repellers can be Lipschitz
conjugate, but not analytically (even not differentially) conjugate.

So in Chapter 6 we provided an additional invariant, the scaling function for
an expanding repeller in the line, taking in account “gaps”, and proved that it
already determined the C1+ε-structure.

In this chapter we distinguish, following Sullivan, a class of conformal ex-
panding repellers, abbr. CER’s, called non-linear, and prove that the class of
equivalence of the geometric measure, in particular the class of Lipschitz conju-
gacy, determines the conformal structure.

This is amazing: a holomorphic structure preserved by a map is determined
by a measure.

9.1 Equivalent notions of linearity

Definition 9.1.1. Consider a CER (X, f) for compact X ⊂ C. Denote by
Jf the Jacobian of f with respect to the Gibbs measure µX equivalent to a
geometric measure mX on X . We call (X, f) linear if one of the following
conditions holds:

a) The Jacobian Jf , is locally constant.
b) The function HD(X) log |f ′| is cohomologous to a locally constant function

on X .

c) The conformal structure on X admits a conformal affine refinement so
that f is affine (i.e., see Sec. 4.3, there exists an atlas {ϕt} that is a family

297
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of conformal injections φt : Ut → C where
⋃

t Ut ⊃ X such that all the maps
φtφ

−1
s and φtfφ

−1
s are affine). We call (X, f) non-linear if it is not linear.

Recall that as the conformal map f may change the orientation of C on some
components of its domain we can write |f ′| but not f ′ unless f is holomorphic.

Proposition 9.1.2. The conditions a), b) and c) are equivalent.

Before we shall prove this proposition we distinguish among CER’s real-
analytic repellers:

Definition 9.1.3. We call (X, f) real-analytic if X is contained in the union of
a finite family of real analytic open arcs and closed curves.

Lemma 9.1.4. If there exists a connected open domain U in C intersecting
X for a CER (X, f) and if there exists a real analytic function k on it equal
identically 0 on U ∩X but not on U then (X, f) is real-analytic.

Proof. Pick an arbitrary x ∈ U ∩X . Then in a neighbourhood V of x the set
E = {k = 0} is a finite union of pairwise disjoint real- analytic curves and of
the point x. This follows from the existence of a finite decomposition of the
germ of E at x into irreducible germs and the form of each such germ, see for
example Proposition 5.8. in the Malgrange book [Malgrange 1967]. As the sets
fn(X ∩ V ), n ≥ 0 cover X , X is compact and f is open on X we conclude
that X is contained in a finite union of real-analytic curves γj and a finite set
of points A such that the closures of γj can intersect only in A.

Suppose that there exists a point x ∈ X such that X is not contained in
any real-analytic curve in every neighbourhood of x. Then the same is true
for every point z ∈ X ∩ f−n{x}, n ≥ 0, hence for an infinite number of points
(because pre-images of x are dense in X by the topological exactness of f , see
Chapter 3). But we proved above that the number of such points is finite so we
arived at a contradiction. We conclude that X is contained in a 1-dimensional
real-analytic submanifold of C. ♣

Proof of Proposition 9.1.2.
a)⇒ b). Let u be the eigenfunction Lu = u for the transfer operator L = Lφ

for the function φ = −κ log |f ′|, where κ = HD(X), as in Sec. 3.3. Here the
eigenvalue λ = expP (f, φ) is equal to 1, see Sec. 7.2.

For an arbitrary z ∈ X we have in its neighbourhood in X

Const = log Jf = κ log |f ′(x)| + log u(f(x)) − log u(x) (9.1.1)

b)⇒ c). The function u extends to a real-analytic function uC in a neigh-
bourhood of X , see Sec. 4.4, so the function log Jf extends to a real-analytic
function log JfC by the right hand side equality in the formula (9.1.1), for uC

instead of u. We have two cases: either log JfC is not locally constant on every
neighbourhood of X and then by Lemma 9.1.4 (X, f) is real-analytic or log JfC

is locally constant. Let us consider first the latter case.
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Fix z ∈ X . Choose an arbitrary sequence of points zn ∈ X , n ≥ 0 such that
f(zn) = zn−1 and choose branches f−n

ν mapping z to zn. Due to the expanding
property of f they are all well defined on a common domain around z. For every
x close to z denote xn = f−n

ν (x). We have dist(xn, zn) → 0 so by (9.1.1) for
log JfC

∞
∑

n=1

κ(log |f ′(xn)| − log |f ′(zn)|)

= log uC(x) − log uC(z) + lim
n→∞

(log uC(zn) − log uC(xn))

= log uC(x) − log uC(z).

(9.1.2)

We conclude that log uC(x) is a harmonic function in a neighbourhood of z
in C as the limit of a convergent series of harmonic functions; we use the fact
that the compositions of harmonic functions with the conformal maps f−n

ν are
harmonic. Close to z we take a so-called harmonic conjugate function h so that
log u(x) + ih(x) is holomorphic.

Write Fz = exp(log u+ ih) and denote by F̃z a primitive function for Fz in
a neighbourhood of z. This is a chart because Fz(z) 6= 0. The atlas given by
the charts F̃z is affine (conformal) by the construction. We have due to (9.1.1)
for the extended u

|(F̃f(z) ◦ f ◦ F̃−1
z )′(Fz(x))| = uC(f(x))|f ′(x)|/uC(x) = Const

so the differential of f is locally constant in our atlas.
In the case (X, f) is real-analytic we consider just the charts φt being prim-

itive functions of u on real-analytic curves containing X into R with unique
complex extensions to neighbourhoods of these curves into a neighbourhood of
R in C. The equality log JfC = Const holds on these curves so the derivatives
of φtfφ

−1
s are locally constant.

c)⇒ a). Denote the maps φtfφ
−1
s by f̃t,s. In a neighbourhood (in X) of an

arbitrary z ∈ X we have

u(x) = lim
n→∞

Ln(1)(x) = lim
n→∞

∑

y∈f−n(x)

|(fn)′(y)|−κ

= lim
n→∞

|φ′(x)|κ
∑

y

|φ′(y)|−κ|f̃ ′(y)|−nκ

= Const lim
n→∞

|φ′(x)|κ
∑

y

f̃ ′(y)|−nκ = |φ′(x)|κ Const

(9.1.3)

To simplify the notation we omitted the indices at φ and f̃ here, of course
they depend on z and y’s more precisely on the branches of f−n on our neigh-
bourhood of z mapping z to y’s . Const also depends on z. We could omit the
functions φ′(y) in the last line of (9.1.3) because the diameters of the domains
of φ′(y) which were involved converged to 0 when n→ ∞ due to the expanding
property of f , so these functions were almost constant.
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Hence due to (9.1.3) in a neighbourhood of every x ∈ X we get

Jf(x) = Const u(f(x))|f ′(x)|κ/u(x) = Const |f̃ ′(x)|κ = Const ♣

Remark 9.1.5. In the b)⇒c) part of the proof of Proposition 9.1.2 as −κ log |f ′|
is harmonic we do not need to refer to Sec. 4.4 for the real-analyticity of u .
The formula (9.1.2) gives a harmonic extension of u to a neighbourhood of an
arbitrary z ∈ X , depending on the choice of the sequence (zn). If two extensions
u1, u2 do not coincide on a neighbourhood of z then in a neighbourhood of z,
X ⊂ {u1 − u2 = 0} .

If the equation (9.1.1) does not extend to a neighbourhood of z then again
X ⊂ {v = Const} for a harmonic function v extending the right hand side of
(9.1.1).

In each of the both cases (X, f) happens to be real-analytic and to prove it
we do not need to refer to Malgrange’s book as in the proof of Lemma 9.1.4.
Indeed, for any non-constant harmonic function k on a neighbourhood of x ∈ X
such that X ⊂ {k = 0} we consider a holomorphic function F such that k = ℜF
and F (x) = 0. Then E = {k = 0} = {ℜF = 0}. If F has a d-multiple zero at x
then it is a standard fact that E is a union of d analytic curves intersecting at
x within the angle π

d .

We end this Section with giving one more condition implying the linearity.

Lemma 9.1.6. Suppose for a CER (X, f) that there exists a Hölder continuous
line field in the tangent bundle on a neighbourhood of X invariant under the
differential of f . In other words there exists a complex valued nowhere zero
Hölder continuous function α such that for every x in a neighbourhood of X

Argα(x) + Arg f ′(x) = Argα(f(x)) + ε(x)π (9.1.4)

where ε(x) is a locally constant function equal 0 or 1. This is in the case f
preserves the orientation at x, if it reverses the orientation we replace in (9.2.1)
Arg f ′ by −Arg f̄ ′.

Then (X, f) is linear.

Proof. As in Proof of Proposition 9.1.2, the calculation (9.1.2), if f is holomor-
phic we have for x in a neighbourhood of z ∈ X in C

Argα(z) − Argα(x) =

∞
∑

n=1

(Arg(f ′(zn)) − Arg(f ′(xn))),

if we allow f to reverse the orientation then we replace Arg f ′ by −Arg f̄ ′ in the
above formula for such n that f changes the orientation in a neighbourhood of
xn. So Argα(x) is a harmonic function. Close to z we find a conjugate harmonic
function h so we get a family of holomorphic functions Fz = exp(−h + iArgα
which primitive functions give an atlas we have looked for.
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Remark 9.1.7. The condition for (X, f) in Lemma 9.1.6 is stronger than the
linearity property. Indeed we can define f on the union of the discs D1 = {|z| <
1} and D2 = {|z − 3| < 1} by f(z) = 5 exp 2πϑi on D1 where ϑ is irrational,
and f(z) = 5(z − 3) on D2. This is an example of an iterated function system
from Sec. 4.5. We get a CER (X, f) where X =

⋂∞
n=0 f

−n({|z| < 5}). It is
linear because it satisfies the condition c). Meanwhile 0 ∈ X, f(0) = 0 and
f ′(0) = 5 exp2πϑi, so the equation (9.1.4) has no solution at x = 0 even for any
iterate of f .

Remark 9.1.8. If we assume in place of (9.1.4) that Arg f ′(x)−Argα(f(x))−
Argα(x) is locally constant, then we get the condition equivalent to the linearity.

9.2 Rigidity of nonlinear CER’s

In this section we shall prove the main theorem of Chapter 9:

Theorem 9.2.1. Let (X, f), ((Y, g) be two non-linear conformal expanding re-
pellers in C. Let h be an invertible mapping from X onto Y preserving Borel
σ-algebras and conjugating f to g, h◦f = g◦h. Suppose that one of the following
assumption is satisfied:

1. h and h−1 are Lipschitz continuous.

2. h and h−1 are continuous and preserve so-called Lyapunov spectra, namely
for every periodic x ∈ X and integer n such that fn(x) = x we have |(fn)′(x)| =
|(gn)′(h(x))|.

3. h∗ maps a geometric measure mX on X to a measure equivalent to a
geometric measure mY on Y .

Then h extends from X (or from a set of full measure mX in the case 3.)
to a conformal homeomorphism on a neighbourhood of X.

We start the proof with a discussion of the assumptions. The equivalence of
the conditions 1. and 2. has been proved in Sec. 4.3. The condition 1. implies
3. by the definition of geometric measures 5.6.5. One of the steps of the proof
of Theorem will assert that 3. implies 1. under the non-linearity assumption.
Without this assumption the assertion may happen false. A positive result is
that if h is continuous then for a constant C > 0 and every x1, x2 ∈ X

C <
|h(x1) − h(x2)|HD(Y )

|x1 − x2|HD(X)
< C−1.

(We leave the proof to the reader.)

It may happen that HD(X) 6= HD(Y ) for example if X is a 1/3 – Cantor
set and for g we remove each time half of the interval from the middle.

A basic observation to prove Theorem 9.2.1 is that

Jg ◦ h = Jf and moreover Jgj ◦ h = Jf j (9.2.1)
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for every integer j > 0. This follows from gj ◦ h = h ◦ f j and Jh ≡ 1. We recall
that we consider Jacobians with respect to the Gibbs measures equivalent to
geometric measures.

Observe finally that (X, f) linear implies (Y, g) linear. Indeed, if (X, f)
is linear then Jf hence Jg admit only a finite number of values in view of
Jg ◦ h = Jf . As Jg is continuous this implies that Jg is locally constant i.e.
(Y, g) is linear.

Lemma 9.2.2. If a CER (X, f) is non-linear then there exists x ∈ X such that
gradJfC(x) 6= 0.

Proof. If gradJfC ≡ 0 on X then as JfC is real- analytic we have either
gradJfC ≡ 0 on a neighbourhood of X in C or by Lemma 9.1.4 (X, f) is
real-analytic and gradJfC ≡ 0 on real- analytic curves containing X . In both
cases by integration we obtain Jf locally constant on X what contradicts the
non-linearity assumption.

Now we shall prove Theorem in the simplest case to show the reader the
main idea working later also in the general case.

Proposition 9.2.3. The assertion of Theorem 9.2.1 holds if we suppose addi-
tionally that (X, f) and Y, g) are real-analytic and the conjugacy h is continuous.

Proof. Let M,N be real analytic manifolds containingX,Y respectively. By the
non-linearity of X and Lemma 9.2.2 there exists x ∈ X and its neighbourhood U
in M such that F := JfC|U : U → R has a real-analytic inverse F−1 : F (U) →
U . Then in view of (9.2.1) h−1 = F−1 ◦ JgC on h(U ∩X) so h−1 on h(U ∩X)
extends to a real analytic map on a neighbourhood of h(U ∩X) in N .

Now we use the assumption that h−1 is continuous so h(U ∩X) contains an
open set v in Y . There exists a positive integer n such that gn(V ) = Y hence
for every y ∈ Y there exists a neighbourhood W of y in N such that a branch
g−nν of g−n mapping y and even W ∩ Y into V is well defined. So we have
h−1 = fn ◦ h−1 ◦ g−nν extended on W to a real-analytic map. This gives a real-
analytic extension of h−1 on a neighbourhood of Y because two such extensions
must coincide on the intersections of their domains by the real-analyticity and
the fact that Y has no isolated points.

Similarly using the non-linearity of (Y, g) and the continuity of h we prove
that h extends analytically. By the analyticity and again lack of isolated points
in X and Y the extentions are inverse to each other, so h extends even to a
biholomorphic map.

Now we pass to the general case.

Lemma 9.2.4. Suppose that there exists x ∈ X such that gradJfC(x) 6= 0
in the case X is real-analytic, or there exists an integer k ≥ 1 such that
det(gradJfC, grad(JfC ◦ fk)) 6= 0 in the other case.

(In other words we suppose that JfC, respect. (JfC, JfC ◦ fk), give a coor-
dinate system on a real, respect. complex neighbourhood of x.)

Suppose the analogous property for (Y, g).
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Let h : X → Y satisfy the property 3. assumed in Theorem 9.2.1. Then h
extends from a set of full geometric measure in X to a bi-Lipschitz homeomor-
phism of X onto Y conjugating f with g.

Proof. We can suppose that HD(X) ≥ HD(Y ), recall that HD denotes Hausdorff
dimension. Pick x with the property assumed in the Lemma. Let U be its
neighbourhood in M ( as in Proof of Proposition 9.2.3) or in C if (X, f) is not
real-analytic, so that F := (JfC, JfC ◦ fk) is an embedding on U . Let y ∈ Y
be a density point of the set h(U ∩ X) with respect to the Gibbs measure µY
equivalent to the geometric measure mY . (Recall that we have proved that
almost every point is a density point for an arbitrary Borel probability measure
on a Euclidean space in Chapter 7, Theorem 7.5.4, relying on Besicovitch’s
Theorem.) So if we denote (JgC, JgC ◦gk) in a neighbourhood (real or complex)
of y by G, we have for every δ > 0 such ε0 = ε0(δ) > 0 that for every 0 < ε < ε0
:

µY (B(y, ε) ∩ h(U ∩X))

µY (B(y, ε))
> 1 − δ

and
h−1 = F−1 ◦G on h(U ∩X).

(Observe that the last equality may happen false outside h(U ∩X) even very
close to y because h−1 may map such points to (JfC, JfC ◦ fk)−1 ◦ G with a
branch of (JfC, JfC ◦ fk)−1 different from F−1.)

Now for every ε > 0 small enough there exists an integer n such that
diam gnB(y, ε) is greater than a positive constant , gn|B(y,ε) is injective and the
distortion of gn on B(y, ε) is bounded by a constant C, both constants depend-
ing only on (Y, g). Then if ε < ε0(δ) we obtain for Yδ := gn(h(U ∩X)∩B(y, ε)),

µY (gn(B(y, ε)) \ Yδ)
µY (gn(B(y, ε)))

< C
µY (B(y, ε) \ h(U ∩X))

µY (B(y, ε))
< Cδ.

So
µY (Yδ)

µY (gn(B(y, ε)))
> 1 − Cδ. (9.2.2)

We have

|(fn)′(h−1(y))|HD(X) ≤ ConstJf(h−1(y))

= ConstJg(y) ≤ Const |(fn)′(y)|HD(Y ).

As we assumed HD(X) ≥ HD(Y ) we obtain

|(fn)′(h−1(y))| ≤ Const |(fn)′(y)|HD(Y )/HD(X) ≤ Const |(fn)′(y)| (9.2.3)

Then due to the bounded distortion property for iteration of f and g we
obtain that h−1 = fnh−1g−1 is Lipschitz on Yδ with Lipschitz constant inde-
pendent of δ, more precisely bounded by Const sup ‖D(F−1 ◦G‖, where F−1 ◦G
is considered on a real (complex) neighbourhood of y and Const is that from
(9.2.3).
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There exists an integer K > 0 such that for every n, gKgnB(y, ε(n)) covers
Y . Because Jg is bounded, separated from 0, this gives h−1 on gK(Yδ) Lipschitz
with a Lipschitz constant independent from δ and µ(gK(Yδ)) > 1− Const δ for
δ arbitrarily small. We conclude that h−1 is Lipschitz on a set of full measure
µY so it has a Lipschitz extension to Y .

We conclude also that HD(X) = HD(Y ). Otherwise diamh−1(Yδ) → 0, so
because suppµX = X we would get diamX = 0. So we can interchange above
the roles of (X, f) and (Y, g) and prove that h is Lipschitz.

The next step will assert that for non-linear repellers the assumptions of
Lemma 9.2.4 about the existence of coordinate systems are satisfied.

Lemma 9.2.5. If (X,f) is a non-linear CER then there exists x ∈ X such
that either gradJfC(x) 6= 0 in the case X is real-analytic, or there exists an
integer k ≥ 1 such that det(gradJfC, grad(JfC ◦ fk)) 6= 0 in the case (X,f) is
not real-analytic.

Proof. We know already from Lemma 9.2.2 that there exists x̂ ∈ X such that
gradJfC(z) 6= 0 so we may restrict our considerations to the case (X, f) is not
real-analytic.

Suppose Lemma is false. Then for all k > 0 the functions

Φk := det(gradJfC, grad(JfC ◦ fk))

are identically equal to 0 on X . Let W be a neighbourhood of x̂ in C where
gradJfC 6= 0.

Let us consider on W the line field V orthogonal to gradJfC. Due to the
topological exactness of f on X for every x ∈ X there exists y ∈ W ∩ X and
n ≥ 0 such that fn(y) = x.

Thus define at x
Vx := Dfn(Vy) (9.2.4)

We shall prove now that if x = fk(y) = f l(z) for some y, z ∈W ∩X, k, l ≥ 0,
then

Dfk(Vy) = Df l(Vz). (9.2.5)

If (9.2.5) is false, then close to x there exist x′ ∈ X and m ≥ 0 such that
fm(x′) ∈W (we again refer to the topological exactness of f) and Dfk(Vy′) 6=
Df l(Vz′), where fk(y′) = f l(z′) = x′, y′ ∈ X is close to y and z′ ∈ X is close
to z. We obtain Dfk+m(Vy′) 6= Df l+m(Vz′) so either Dfk+m(Vy′) 6= Vfm(x′) or

Df l+m(Vz′) 6= Vfm(x′). Consider the first case (the second is of course similar).

We obtain that Jf and Jf ◦ fk+m give a coordinate system in a neighbourhood
of y′ i.e. Φk+m(y′) 6= 0 contrary to the supposition.

Thus the formula (9.2.4) defines a line field at all points of X which is
Df -invariant. Observe however that the same formula defines a real-analytic
extension of the line field to a neighbourhood of x in C because V is real-
analytic on a neighbourhood of y ∈ W and f is analytic. Each two such germs
of extensions related to two different pre-images of x must coincide because they
coincide on X , otherwise (X, f) would be real-analytic. Now we can choose a
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finite cover Bj = B(xj , δj) of a neighbourhood of X with discs, xj ∈ X so that
for the respective Fj -branches of f−nj leading xj into W , we have Fj(3Bj) ⊂W
where 3Bj := B(xj , 3δj). Hence the formula (9.2.4) defines V on 3Bj. So if
Bi ∩Bj 6= ∅, then we have 3Bi ⊂ Bj or vice versa. So 3Bi ∩ 3Bj ∩X 6= 0 hence
the extensions of V on 3Bi and on 3Bj, in particular on Bi and on Bj , coincide
on the intersection. This is so because they coincide on the intersection with X
and (X, f is not real-analytic.

(We made the trick with 3δ because it can happen that Bi ∩ Bj 6= ∅ but
Bi ∩Bj ∩X = ∅.)

Thus V extends real-analytically to a neighbourhood of X . This field is Df -
invariant on a neighbourhood of X because we can define it in a neighbourhood
of x ∈ X and f(x) by (9.2.4) taking the same y ∈ W ∩ X where fn(y) = x,
fn+1(y) = f(x). So by Lemma 9.1.6 (X, f) is linear what contradicts the
assumption that (X, f) is non-linear.

Corollary 9.2.6. If for (X, f), (Y, g) the assumptions of Theorem 9.2.1 are
satisfied and if (Y, g) is real-analytic then (X, f) is real-analytic too.

Proof. Due to Lemma 9.2.5 the assumptions of Lemma 9.2.4 are satisfied. So
h−1 = F−1 ◦ G on a neighbourhood of y ∈ Y by the continuity of h−1, (see
the notation in Proof of Lemma 9.2.4). Denote a real-analytic manifold Y
is contained in by N . Then JgC 6= Const on any neighbourhood of y in N .
Otherwise h−1 would be constant, but y is not isolated in Y so h−1 would not
be injective.

Remind that we can consider F−1 ◦ G as a real analytic extension of h−1

to a neighbourhood V of y in N . So the differential of F−1G is 0 at most at
isolated points, so different from 0 at a point y′ ∈ V ∩ Y . We conclude due
to the continuity of h that in a neighbourhood of h−1(y′), X is contained in a
real-analytic curve. So (X, f) is a real-analytic repeller.

Now we shall collect together what we have done and make a decisive step
in proving Theorem 9.2.1, namely we shall prove that the conjugacy extends to
a real-analytic diffeomorphism.

Proof of Theorem 9.2.1. If both (X, f) and (Y, g) are real-analytic then the
conjugacy extends real-analytically to a real-analytic manifold so complex an-
alytically to its neighbourhood by Proposition 9.2.3. Its assumptions hold by
Lemmas 9.2.4 and 9.2.2. If both (X, f) and (Y, g) are not real-analytic (a mixed
situation is excluded by Corollary 9.2.6), then by Lemma 9.2.4 which assump-
tions hold due to Lemma 9.2.5 we can assume the conjugacy h is a homeomor-
phism of X onto Y . But h−1 extends to a neighbourhood of y ∈ Y in C to a
real-analytic map. We use here again the notation of Lemma 9.2.4 and proceed
precisely like in Proposition 9.2.3, Lemma 9.2.4 and Corollary 9.2.6 by writing
h−1 = F−1 ◦G. This gives a real-analytic extension of h−1 to a neighbourhood
of an arbitrary y ∈ Y by the formula fn ◦ h−1 ◦ g−1

ν precisely as in Proof of
Proposition 9.2.3.

For two different branches F1, F2 of g−n1 , g−n2 respectively, mapping y into
the domain of F−1 ◦ G germs of the extensions must coincide because they
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coincide on the intersection with Y , see Lemma 9.1.4.
Now we build a real-analytic extension of h−1 to a neighbourhood of Y

similarly as we extended V in Proof of Lemma 9.2.5, again using the assumption
(Y, g) is not real-analytic. Similarly we extend h.

Denote the extensions by h̃, ˜h−1. We have ˜h−1 ◦ h̃ and h̃ ◦ ˜h−1 equal to the
identity on X,Y respectively. The these compositions extend to the identities to
neighbourhoods, otherwise (X, f) or (Y, g) would be real-analytic. We conclude
that h̃ is a real-analytic diffeomorphism. Finally observe that gh̃ = h̃f on a
neighbourhood of X because this equality holds on X itself and our functions
are real-analytic, otherwise (X, f) would be real-analytic.

The only thing we should still prove is the following

Lemma 9.2.7. If (X, f) is a non-linear CER, not real-analytic , and there is
a real-analytic diffeomorphism h on a neighbourhood of X to a neighbourhood
of Y for another CER (Y, g) such that h(X) = Y and h conjugates f with g in
a neighbourhood of X then h is conformal.

Proof. Suppose for the simplification that f, g and h preserve the orientation of
C, we will comment the general case at the end.

For any orientation preserving diffeomorphism Φ of a domain in C into C

denote the complex dilatation function by ωΦ . We recall that ωΦ := dΦ
dz̄ /

dΦ
dz .

(The reader not familiar with the complex dilatation and its properties is advised
to read the first 10 pages of the classical Ahlfors book [Ahlfors].) The geometric
meaning of the argument of ωΦ(z) may be explained by the equality 1

2ωΦ = α
where α corresponds to the the direction in which the differential DΦ at z
attains its maximum. In another words it is the direction of the smaller axis of
the ellipse in the tangent space at z which is mapped by DΦ to the unit circle.
Of course this makes sense if ω(z) 6= 0. Observe finally that ω(z) = 0 iff dΦ

dz̄ = 0.
Let go back now to our concrete maps.

If dh
dz̄ ≡ 0 on X then as dh

dz̄ is a real-analytic function we have dh
dz̄ ≡ 0 on a

neighbourhood of X , otherwise (X, f) would be real-analytic. But this means
that h is holomorphic what proves our Lemma. It rests to prove that the case
dh
dz̄ 6≡ 0 on X is impossible.

Observe that if dh
dz̄ (x) = 0 then dh

dz̄ (f(x)) = 0 because h = ghf−1
ν on a

neighbourhood of f(x) for the branch f−1
ν of f−1 mapping f(x) to x and because

g and f−1
ν are conformal. So if there exists x ∈ X such that dh

dz̄ (x) 6= 0 then
this holds also for all x’s from a neighbourhood and as a consequence of the
topological exactness of f for all x in a neighbourhood of X . Thus we have a
complex-valued function ωh nowhere zero on a neighbourhood of X .

Recall now that for any two orientation preserving diffeomorphisms Φ and
Ψ, if Ψ is holomorphic then

ωΨ◦Φ = ωΦ

and if Φ is conformal then

ωΨ ◦ Φ =

(

Φ′

|Φ′|

)2

ωΨ◦Φ = ωΦ
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Applying it to the equation h ◦ f = g ◦ h we obtain

ωh ◦ f =

(

f ′

|f ′|

)2

ωh◦f =

(

f ′

|f ′|

)2

ωg◦h =

(

f ′

|f ′|

)2

ωh.

Thus α(x) := 1
2ωh(x) satisfies the equation (9.1.4) and by Lemma 9.1.6

(X, f) happens linear what contradicts our assumption that it is non- linear.
In the case a diffeomorphism reverses the orientation we write everywhere

above ωΦ̄ instead of ωΦ and if Φ is conformal reversing orientation we write Φ̄′

instead of Φ′. Additionally some omegas should be conjugated in the formulas
above. We also arrive at (9.1.4). (In this situation the complex notation is
not comfortable. Everything becomes trivial if we act with differentials on line
fields. We leave writing this down to the reader.)

Example 9.2.8. If fc(z) = z2 + c for c ∈ M0, see Example 5.1.9 and Exam-
ple 8.5.6 (for zd+ c), then Julia set J(fc) = Xfc

is a Jordan curve and (Xfc
, fc)

is non-linear, except for c = 0.
Indeed, if it is linear then by Definition 9.1.1 a), the function −HD(Xfc

) log |f ′|
is cohomologous to constant on Xfc

because this set is connected. Hence, by
Theorem 8.5.5, fc(z) = z2, i.e. c = 0.

In fact (J(f), f |J(f)) is non-linear for every rational maps f without critical
points in its Julia set J(f), in particular f expanding on J(f), except for f(z) =
zd, |d| ≥ 2. This follows from [Zdunik 1990], compare [Przytycki & Urbański 1999,
Section 3].

Example 9.2.9. Let X be a Cantor set in the line R which is image by h of Σd

as in Section 6.1, i.e. h ∈ H. Consider the map h ◦ s ◦ h−1, where s is the shift
to the left on Σd. Suppose that this map extends to sh which is locally affine,
that is the scaling function stabilizes, Sn/Sn+1 ≡ 1 for all n large enough, cf.
Theorem 6.2.4. Then the repeller (X, sh) is linear, by Definition 9.1.1 c).

Remark 9.2.10. In presence of critical points in J(f) for f non-exceptional
(that is, with parabolic orbifold) J(f) contains non-linear invariant expanding
repellers for f . See [Przytycki & Urbański 1999, Section 3], [Zdunik 1990] and
[Prado 1997].

Bibliographical notes

As we already mentioned this chapter relies on ideas by Dennis Sullivan, see
[Sullivan 1986]. Written in 1991, it was followed by many papers applying its
ideas, see for example [Przytycki & Urbański 1999], [Mauldin, Przytycki & Urbanski 2001],
[Urbanski 2001] in Rd, d ≥ 3. See also [Mauldin & Urbanski 2003, section 7.3].
In the recent years this rigidity has been intensively applied in the studies of
the iterations of entire and meromorphic maps.
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Chapter 10

Holomorphic maps with

invariant probability

measures of positive

Lyapunov exponent

10.1 Ruelle’s inequality

Let X be a compact subset of the closed complex plane C and let A(X) denote
the set of all continuous maps f : X → X that can be analytically extended to an
open neighbourhood U(f) of X . In this section we only work with the standard
spherical metric on C, normalized so that the area of C is 1. In particular all
the derivatives are computed with respect to this metric.

Let us recall and extend Definition 8.1.2. Let µ be an f -invariant Borel
probability measure on X . Since |f ′| is bounded, the integral

∫

log |f ′| dµ is
well-defined and moreover

∫

log |f ′| dµ < +∞. The number

χµ = χµ(f) =

∫

log |f ′| dµ

is called the Lyapunov characteristic exponent of µ and f . Note that
∫

log |f ′|dµ =
−∞ is not excluded. In fact it is possible, for example ifX = {0} and f(z) = z2.

On the other hand for every rational function f : C → C and every f -
invariant µ supported on the Julia set J(f), see Chapter 0, Example 0.6, it
holds χµ ≥ 0. For the proof see [Przytycki 1993].

Often we assume χµ > 0 and then call µ a hyperbolic measure (following
[Katok & Hasselblatt 1995]).

By Birkhoff Ergodic Theorem (Th. 1.2.5) the Lyapunov characteristic expo-
nent

χµ(x) = lim
n→∞

1

n
log |(fn)′(x)|

309
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exists for a.e. x and
∫

χµ(x) dµ(x) = χµ. (In fact one allows log |f ′| with integral
−∞ here, so one need extend slightly Th. 1.2.5. This is not difficult.)

The section is devoted to prove the following.

Theorem 10.1.1 (Ruelle’s inequality). If f ∈ A(X), then hµ(f) ≤ 2
∫

max{0, χµ(x)} dµ.
For ergodic µ this yields hµ(f) ≤ 2 max{0, χµ}.

Proof. Consider a sequence of positive numbers ak ց 0, and Pk, k = 1, 2, . . .
an increasing sequence of partitions of the sphere C consisting of elements of
diameters ≤ ak and of (spherical) areas ≥ 1

4a
2
k. Check that such partitions exist.

For every g ∈ A(X), x ∈ X and k ≥ 1 let

N(g, x, k) = #{P ∈ Pk : g(Pk(x) ∩ U(g)) ∩ P 6= ∅}
Our first aim is to show that for every k > k(g) large enough

N(g, x, k) ≤ 4π(|g′(x)| + 2)2 (10.1.1)

Indeed, fix x ∈ X and consider k so large that Pk(x) ⊂ U(g) and a Lipschitz
constant of g|Pk(x) does not exceed |g′(x)|+1. Thus the set g(Pk(x)) is contained
in the ball B(g(x), (|g′(x)| + 1)ak). Therefore if g(Pk(x)) ∩ P 6= ∅, then

P ⊂ B(g(x), (|g′(x)| + 1)ak + ak) = B(g(x), (|g′(x)| + 2)ak)

Hence N(g, x, k) ≤ π(|g′(x)| + 2)2a2
k/

1
4a

2
k = 4π(|g′(x)| + 2)2 and (10.1.1) is

proved.
Let N(g, x) = supk>k(g) N(g, x, k). In view of (10.1.1) we get

N(g, x) ≤ 4π(|g′(x)| + 2)2 (10.1.2)

Now note that for every finite partition A one has

h(g,A) = lim
n→∞

1

n+ 1
H(An)

= lim
n→∞

1

n+ 1

(

H(g−n(A)|An−1) + · · · + H(g−1(A)|A) + H(A)
)

≤ lim
n→∞

1

n

(

H(g−n(A)|g−(n−1)(A)) + · · · + H(g−1(A)|A)
)

= H(g−1(A)|A). (10.1.3)

(Compare this computation with the one done in Theorem 1.4.5 or in Proof of
Theorem 1.5.4, which would result with h(g,A) ≤ H(A|g−1(A)).) Going back
to our situation, since

HµPk(x)
(g−1(Pk)|Pk(x)) ≤ log #{P ∈ Pk : g−1(P )∩Pk(x) 6= ∅} = logN(g, x, k)

and by Theorem 1.8.7a, we obtain

hµ(g) ≤ lim sup
k→∞

Hµ(g
−1(Pk)|Pk) = lim sup

k→∞

∫

HµPk(x)
(g−1(Pk)|Pk(x)) dµ(x)

≤ lim sup
k→∞

∫

logN(g, x, k) dµ(x) ≤
∫

logN(g, x) dµ(x).
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Applying this inequality to g = fn (n ≥ 1 an integer) and employing (9.1.2) we
get

hµ(f) =
1

n
hµ(f

n) ≤ 1

n

∫

logN(fn, x) dµ(x) =

∫

1

n
logN(fn, x) dµ(x)

≤
∫

1

n
log 4π(|(fn)′(x)| + 2)2 dµ(x)

Since 0 ≤ 1
n log(|(fn)′(x)|+2)2 ≤ 2(log

(

supX |f ′|)+1) and limn→∞
1
n log(|(fn)′(x)|+

2) = max{0, χµ(x)} for µ-a.e x ∈ X , it follows from the Dominated Convergence
Theorem (Section 1.1) that

hµ(f) ≤ lim
n→∞

∫

1

n
log(|(fn)′(x)| + 2)2 dµ(x) =

∫

max{0, 2χµ(x)} dµ.

The proof is completed. ♣

10.2 Pesin’s theory

In this section we work in the same setting and we follow the same notation as
in Section 10.1.

Lemma 10.2.1. If µ is a Borel finite measure on Rn, n ≥ 1, a is an arbitrary
point of Rn and the function z 7→ log |z−a| is µ-integrable, then for every C > 0
and every 0 < t < 1,

∑

n≥1

µ(B(a, Ctn)) <∞.

Proof. Since µ is finite and since given t < s < 1 there exists q ≥ 1 such that
Ctn ≤ sn for all n ≥ q, without loosing generality we may assume that C = 1.
Recall that given b ∈ Rn, and two numbers 0 ≤ r < R, R(b, r, R) = {z ∈ C :
r ≤ |z − b| < R}. Since − log(tn) ≤ − log |z − a| for every z ∈ B(a, tn) we get
the following.

∑

n≥1

µ(B(a, tn)) =
∑

n≥1

nµ(R(a, tn+1, tn)) =
−1

log t

∑

n≥1

− log(tn)µ(R(a, tn+1, tn))

≤ −1

log t

∫

B(a,t)

− log |z − a| dµ(z) < +∞

The proof is finished. ♣

Lemma 10.2.2. If µ is a Borel finite measure on C, n ≥ 1, and log |f ′| is µ
integrable, then the function z 7→ log |z−c| ∈ L1(µ) for every critical point c of f .
If additionally µ is f -invariant, then also the function z 7→ log |z−f(c)| ∈ L1(µ).
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Proof. That log |z−c| ∈ L1(µ) follows from the fact that near c we have C−1|z−
q|q−1 ≤ |f ′(z)| ≤ C|z−c|q−1, where q ≥ 2 is the order of the critical point c and
C ≥ 1 is a universal constant, and since out of any neighbourhood of the set of
critical points of f , |f ′(z)| is uniformly bounded away from zero and infinity. In
order to prove the second part of the lemma, consider a ray R emanating from
f(c) such that µ(R) = 0 and a disk B(f(c), r) such that f−1

c : B(f(c), r)\R → C,
an inverse branch of f sending f(c) to c, is well-defined. Let D = B(f(c), r)\R.
We may additionally require r > 0 to be so small that |z−f(c)| ≍ |f−1

c (z)− c|q.
It suffices to show that the integral

∫

D
log |z− f(c)| dµ(z) is finite. And indeed,

by f -invariance of µ we have

∫

D

log |z − f(c)| dµ(z) =

∫

X

1D(z) log |z − f(c)| dµ(z)

≍
∫

X

1D(z) log |f−1
c (z) − c|q dµ(z)

=

∫

X

(1D ◦ f)(z) log |z − c|q dµ(z)

=

∫

X

1f−1(D) log |z − c|q dµ(z)

Notice here that the function 1D(z) log |f−1
c (z)− c|q is well-defined on X indeed

and that unlike most of our comparability signs, the sign in the formula above
means an additive comparability. The finiteness of the last integral follows from
the first part of this lemma. ♣

Theorem 10.2.3. Let (Z,F , ν) be a measure space with an ergodic measure
preserving automorphism T : Z → Z. Let f : X → X be a continuous map
from a compact set X ⊂ C onto itself having a holomorphic extention onto
a neighbourhood of X (f ∈ A(X)). Suppose that µ is an f -invariant ergodic
measure on X with positive Lyapunov exponent. Suppose also that h : Z → X is
a measurable mapping such that ν ◦ h−1 = µ and h ◦ T = f ◦ h ν-a.e.. Then for
ν-a.e. z ∈ Z there exists r(z) > 0 such that the function z 7→ r(z) is measurable
and the following is satisfied:

For every n ≥ 1 there exists f−n
xn

: B(x, r(z)) → C, an inverse branch of
fn sending x = h(z) to xn = h(T−n(z)). In addition, for an arbitrary χ,
−χµ(f) < χ < 0, (not depending on z) and a constant K(z)

|(f−n
xn

)′(y)| < K(z) eχn and
|(f−n

xn
)′(w)|

|(f−n
xn )′(y)| ≤ K

for all y, w ∈ B(x, r(z)). K is here the Koebe constant corresponding to the
scale 1/2.

Proof. Suppose first that µ
(
⋃

n≥1 f
n(Crit(f))

)

> 0. Since µ is ergodic this
implies that µ must be concentrated on a periodic orbit of an element w ∈
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⋃

n≥1 f
n(Crit(f)). This means that w = f q(c) = f q+k(c) for some q, k ≥ 1 and

c ∈ Crit(f), and

µ({f q(c), f q+1(c), . . . , f q+k−1(c)}) = 1.

Since
∫

log |f ′| dµ > 0, |(fk)′(f q(c))| > 1. Thus the theorem is obviously true
for the set h−1({f q(c), f q+1(c), . . . , f q+k−1(c)}) of ν measure 1.

So, suppose that µ
(
⋃

n≥1 f
n(Crit(f))

)

= 0. Set R = min{1, dist(X,C \
U(f))} and fix λ ∈ (e

1
4χ, 1). Consider z ∈ Z such that x = h(z) /∈ ⋃n≥1 f

n(Crit(f)),

lim
n→∞

1

n
log |(fn)′(h(T−n(z))| = χµ(f),

and xn = h(T−n(z)) ∈ B(f(Crit(f)), Rλn) only for finitely many n’s. We
shall first demonstrate that the set of points satisfying these properties is of
full measure ν. Indeed, the first requirement is satisfied by our hypothesis, the
second is due to Birkhoff’s ergodic theorem. In order to prove that the set of
points satisfying the third condition has ν measure 1 notice that

∑

n≥1

ν
(

T n(h−1(B(f(Crit(f)), Rλn)))
)

=
∑

n≥1

ν
(

h−1(B(f(Crit(f)), Rλn))
)

=
∑

n≥1

µ(B(f(Crit(f)), Rλn)) <∞,

where the last inequality we wrote due to Lemma 10.2.2 and Lemma 10.2.1. The
application of the Borel–Cantelli lemma finishes now the demonstration. Fix
now an integer n1 = n1(z) so large that xn = h(T−n(z)) /∈ B(f(Crit(f)), Rλn)
for all n ≥ n1. Notice that because of our choices there exists n2 ≥ n1 such
that |(fn)′(xn)|−1/4 < λn for all n ≥ n2. Finally set S =

∑

n≥1 |(fn)′(xn)|−1/4,

bn = 1
2S

−1|(fn+1)′(xn+1)|
−1
4 , and

Π = Π∞
n=1(1 − bn)

−1

which converges since the series
∑

n≥1 bn converges. Choose now r = r(z) so

small that 16r(z)ΠKS3 ≤ R, all the inverse branches f−n
xn

: B(x0,Πr(z)) →
C are well-defined for all n = 1, 2, . . . , n2 and diam

(

f−n2
xn2

(B
(

x0, rΠk≥n2 (1 −
bk)

−1)
)

≤ λn2R. We shall show by induction that for every n ≥ n2 there exists

an analytic inverse branch f−n
xn

: B
(

x0, rΠk≥n(1 − bk)
−1
)

→ C, sending x0 to
xn and such that

diam
(

f−n
xn

(B
(

x0, rΠk≥n(1 − bk)
−1)
)

≤ λnR.

Indeed, for n = n2 this immediately follows from our requirements imposed
on r(z). So, suppose that the claim is true for some n ≥ n2. Since xn =
f−n
xn

(x0) /∈ B(Crit(f), Rλn) and since λnR ≤ R, there exists an inverse branch
f−1
xn+1

: B(xn, λ
nR) → C sending xn to xn+1. Since diam

(

f−n
xn

(B
(

(x0, rΠk≥n(1−
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bk)
−1)
)

≤ λnR, the composition f−1
xn+1

◦f−n
xn
B
(

x0, rΠk≥n(1−bk)−1) → C is well-

defined and forms the inverse branch of fn+1 that sends x0 to xn+1. By the
Koebe distortion theorem we now estimate

diam
(

f−(n+1)
xn+1

(B
(

x0, rΠk≥n+1(1 − bk)
−1))

)

≤ 2rΠk≥n+1(1 − bk)
−1|(fn+1)′(xn+1)|−1Kb−3

n

≤ 16rΠKS3|(fn+1)′(xn+1)|−1|(fn+1)′(xn+1)|
3
4

= 16rΠKS3|(fn+1)′(xn+1)|−
1
4

≤ Rλn+1,

where the last inequality sign we wrote due to our choice of r and the number n2.
Putting r(z) = r/2 the second part of this theorem follows now as a combined
application of the equality limn→∞

1
n log |(fn)′(xn)| = χµ(f) and the Koebe

distortion theorem. ♣

As an immediate consequence of Theorem 10.2.3 we get the following.

Corollary 10.2.4. Assume the same notation and asumptions as in Theo-
rem 10.2.3. Fix ε > 0. Then there exist a set Z(ε) ⊂ Z, the numbers
r(ε) ∈ (0, 1) and K(ε) ≥ 1 such that µ(Z(ε)) > 1 − ε, r(z) ≥ r(ε) for all
z ∈ Z(ε) and with xn = h(T−n(z))

K(ε)−1 exp(−(χµ + ε)n) ≤ |(f−n
xn

)′(y)|

≤ K(ε) exp(−(χµ − ε)n) and
|(f−n

xn
)′(w)|

|(f−n
xn )′(y)| ≤ K

for all n ≥ 1, all z ∈ Z(ε) and all y, w ∈ B(x0, r(ε)). K is here the Koebe
constant corresponding to the scale 1/2.

Remark 10.2.5. In our future applications the system (Z, f, ν) will be usually
given by the natural extension of the holomorphic system (f, µ).

10.3 Mañé’s partition

In this section, basically following Mañé’s book [Mañé 1987], we construct so
called Mañé’s partition which will play an important role in the proof of a part
of the Volume Lemma given in the next section. We begin with the following
elementary fact.

Lemma 10.3.1. If xn ∈ (0, 1) for every n ≥ 1 and
∑∞

n=1 nxn < ∞, then
∑∞

n=1 −xn log xn <∞.

Proof. Let S = {n : − logxn ≥ n}. Then

∞
∑

n=1

−xn log xn =
∑

n/∈S
−xn log xn +

∑

n∈S
−xn log xn ≤

∞
∑

n=1

nxn +
∑

n∈S
−xn log xn
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Since n ∈ S means that xn ≤ e−n and since log t ≤ 2
√
t for all t ≥ 1, we have

∑

n∈S
xn log

1

xn
≤ 2

∞
∑

n=1

xn

√

1

xn
≤ 2

∞
∑

n=1

e−
1
2n <∞

The proof is finished. ♣

The next lemma is the main and simultaneously the last result of this section.

Lemma 10.3.2. If µ is a Borel probability measure concentrated on a bounded
subset M of a Euclidean space and ρ : M → (0, 1] is a measurable function such
that log ρ is integrable with respect to µ, then there exists a countable measurable
partition, called Mañé’s partition, P of M such that Hµ(P) <∞ and

diam(P(x)) ≤ ρ(x)

for µ-almost every x ∈M .

Proof. Let q be the dimension of the Euclidean space containing M . Since M
is bounded, there exists a constant C > 0 such that for every 0 < r < 1 there
exists a partition Pr of M of diameter ≤ r and which consists of at most Cr−q

elements. For every n ≥ 0 put Un = {x ∈ M : e−(n+1) < ρ(x) ≤ e−n}. Since
log ρ is a non-positive integrable function, we have

∞
∑

n=1

−nµ(Un) ≥
∞
∑

n=1

∫

Un

log ρ dµ =

∫

M

log ρ dµ > −∞

so that ∞
∑

n=1

nµ(Un) < +∞. (10.3.1)

Define now P as the partition whose atoms are of the form Q∩Un, where n ≥ 0
and Q ∈ Prn

, rn = e−(n+1). Then

Hµ(P) =

∞
∑

n=0

(

−
∑

Un⊃P∈P
µ(P ) logµ(P )

)

.

But for every n ≥ 0

−
∑

Un⊃P∈P
µ(P ) log µ(P ) = µ(Un)

∑

P

− µ(P )

µ(Un)
log
( µ(P )

µ(Un)

)

− µ(Un)
∑

P

µ(P )

µ(Un)
log(µ(Un))

≤ µ(Un)(logC − q log rn) − µ(Un) logµ(Un)

≤ µ(Un) logC + q(n+ 1)µ(Un) − µ(Un) log µ(Un).

Thus, summing over all n ≥ 0, we obtain

Hµ(P) ≤ logC + q + q

∞
∑

n=0

nµ(Un) +

∞
∑

n=0

−µ(Un) log µ(Un).
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Therefore looking at (10.3.1) and Lemma 9.3.1 we conclude that Hµ(P) is finite.
Also, if x ∈ Un, then the atom P(x) is contained in some atom of ¶rn

and
therefore

diam(P(x)) ≤ rn = e−(n+1) < ρ(x).

Now the remark that the union of all the sets Un is of measure 1 completes the
proof. ♣

10.4 Volume lemma and the formula HD(µ) =
hµ(f)/χµ(f)

In this section we keep the notation of Sections 10.1 and 10.2 and our main
purpose is to prove the following two results which generalize the respective
results in Chapter 8.

Theorem 10.4.1. If f ∈ A(X) and µ is an ergodic f -invariant measure with
positive Lyapunov exponent (i.e. hyperbolic), then HD(µ) = hµ(f)/χµ(f).

Theorem 10.4.2 (Volume Lemma). With the assumptions of Theorem 10.4.1

lim
r→0

log(µ(B(x, r)))

log r
=

hµ(f)

χµ(f)

for µ-a.e. x ∈ X.

In view of theorem 7.6.5, Theorem 10.4.1 follows from Theorem 10.4.2 and
we only need to prove the latter one. Let us prove first

lim inf
r→0

log(µ(B(x, r)))

log r
≥ hµ(f)

χµ(f)
(10.4.1)

for µ-a.e. x ∈ X . By Corollary 8.1.10 there exists a finite partition P such that
for an arbitrary ε > 0 and every x in a set Xo of full measure µ there exists
n(x) ≥ 0 such that for all n ≥ n(x).

B(fn(x), e−εn) ⊂ P(fn(x)). (10.4.2)

Let us work from now on in the natural extension (X̃, f̃ , µ̃). Let X̃(ε) and
r(ε) be given by Corollary 10.2.4, i.e. X̃(ε) = Z(ε). In view of Birkhoff’s
Ergodic Theorem there exists a measurable set F̃ (ε) ⊂ X̃(ε) such that µ̃(F̃ (ε)) =
µ̃(X̃(ε)) and

lim
n→∞

1

n

n−1
∑

j=1

χX̃(ε) ◦ f̃n(x̃) = µ̃(X̃(ε))

for every x̃ ∈ F̃ (ε). Let F (ε) = π(F̃ (ε)). Then µ(F (ε)) = µ̃(π−1(F (ε)) ≥
µ̃(F̃ (ε)) = µ̃(X̃(ε)) converges to 1 if ε ց 0. Consider now x ∈ F (ε) ∩ Xo and
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take x̃ ∈ F̃ (ε) such that x = π(x̃). Then by the above there exists an increasing
sequence {nk = nk(x) : k ≥ 1} such that f̃nk(x̃) ∈ X̃(ε) and

nk+1 − nk
nk

≤ ε (10.4.3)

for every k ≥ 1. Moreover, we can assume that n1 ≥ n(x). Consider now an
integer n ≥ n1 and the ball B

(

x,Cr(ε) exp(−(χµ + (2 + log ‖f ′‖)ε)n)
)

, where
0 < C < (Kr(ε))−1 is a constant (possibly depending on x) so small that

f q
(

B(x,Cr(ε) exp−(χµ + (2 + log ‖f ′‖)ε)n)
)

⊂ P (f q(x)) (10.4.4)

for every q ≤ n1 and K(ε) ≥ 1 is the constant appearing in Corollary 10.2.4.
Take now any q, n1 ≤ q ≤ n, and associate k such that nk ≤ q ≤ nk+1.
Since f̃nk(x̃) ∈ X̃(ε) and since π(f̃nk(x̃)) = fnk(x), Corollary 10.2.4 produces
a holomorphic inverse branch f−nk

x : B(fnk(x), r(ε)) → C of fnk such that
f−nk
x (fnk(x)) = x and

f−nk
x

(

B(fnk(x), r(ε))
)

⊃ B
(

x,K(ε)r(ε)−1 exp(−(χµ + ε)nk)
)

.

Since B(x,Cr(ε) exp−(χµ + (2 + log ‖f ′‖)ε)n) ⊂ B
(

x,K(ε)−1r(ε) exp−(χµ +

ε)nk)
)

, it follows from Corollary 10.2.4 that

fnk
(

B(x,Cr(ε) exp − (χµ + (2 + log ‖f ′‖)ε)n)
)

⊂
⊂ B

(

fnk(x), CKr(ε)e−χµ(n−nk) exp(ε(nk − (2 + log ‖f ′‖)n))
)

.

Since n ≥ nk and since by (10.4.3) q − nk ≤ εnk, we therefore obtain

f q
(

B(x,Cr(ε) exp−(χµ + (2 + log ‖f ′‖)ε)n)
)

⊂
⊂ B(f q(x), CK(ε)r(ε)e−χµ(n−nk) exp(ε(nk − (2 + log ‖f ′‖)n)) exp((q − nk) log ‖f ′‖)
⊂ B(f q(x), CK(ε)r(ε) exp

(

ε(nk log ‖f ′‖ + nk − 2n− n log ‖f ′‖)
)

⊂ B(f q(x), CK(ε)r(ε)e−εn) ⊂ B(f q(x), e−εq).

Combining this, (10.4.2), and (10.4.4), we get

B
(

x,Cr(ε) exp−(χµ + (2 + log ‖f ′‖)ε)n)
)

⊂
n
∨

j=0

f−j(P)(x).

Therefore, applying Theorem 1.5.5 (the Shannon–McMillan–Breiman Theorem),
we have

lim inf
n→∞

− 1

n
logµ

(

B(x,Cr(ε) exp−(χµ+(2+log ‖f ′‖)ε)n)
)

≥ hµ(f,P) ≥ hµ(f)−ε

It means that denoting the number Cr(ε) exp−(χµ + (2 + log ‖f ′‖)ε)n) by rn,
we have

lim inf
n→∞

logµ(B(x, rn)

log rn
≥ hµ(f) − ε

χµ(f) + (2 + log ‖f ′‖)ε
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Now, since {rn} is a geometric sequence and since ε > 0 can be taken arbitrarily
small, we conclude that for µ-a.e. x ∈ X

lim inf
n→∞

logµ(B(x, r)

log r
≥ hµ(f)

χµ(f)

This completes the proof of (10.4.1). ♣

Remark. Since here X ⊂ C, we could have considered a partition P of a
neighbourhood of X in C where ∂P,a would have a more standard sense, see
Remark after Corollary 8.1.9.

Now let us prove that

lim sup
r→0

log(µ(B(x, r)))

log r
≤ hµ(f)/χµ(f) (10.4.5)

for µ-a.e. x ∈ X .
In order to prove this formula we again work in the natural extension (X̃, f̃ , µ̃)

and we apply Pesin theory. In particular the sets X̃(ε), F̃ (ε) ⊂ X̃(ε) and the
radius r(ε), produced in Corollary 10.2.4 have the same meaning as in the proof
of (10.4.1). To begin with notice that there exist two numbers R > 0 and
0 < Q < min{1, r(ε)/2} such that the following two conditions are satisfied.

If z /∈ B(Crit(f), R), then f |B(z,Q) is injective. (10.4.6)

If z ∈ B(Crit(f), R), then f |B(z,Qdist(z,Crit(f))) is injective. (10.4.7)

Observe also that if z is sufficiently close to a critical point c, then f ′(z)
is of order (z − c)q−1, where q ≥ 2 is the order of critical point c. In partic-
ular the quotient of f ′(z) and (z − c)q−1 remains bounded away from 0 and
∞ and therefore there exists a constant number B > 1 such that |f ′(z)| ≤
B dist(z,Crit(f)). So, in view of Lemma 10.2.2, the logarithm of the function
ρ(z) = Qmin{1, dist(z,Crit(f)) is integrable and consequently Lemma 10.3.2
applies. Let P be the Mañé’s partition produced by this lemma. ThenB(x, ρ(x)) ⊃
P(x) for µ-a.e. x ∈ X , say for a subset Xρ of X of measure 1. Consequently

Bn(x, ρ) =

n−1
⋂

j=0

f−j(B(f j(x), ρ(f j(x)))
)

⊃ Pn0 (x) (10.4.8)

for every n ≥ 1 and every x ∈ Xρ. By our choice of Q and the definition of ρ, the
function f is injective on all balls B(f j(x), ρ(f j(x))), j ≥ 0, and therefore fk is
injective on the set Bn(x, ρ) for every 0 ≤ k ≤ n − 1. Now, let x ∈ F (ε) ∩ Xρ

and let k be the greatest subscript such that q = nk(x) ≤ n − 1. Denote by
f−q
x the unique holomorphic inverse branch of f q produced by Corollary 10.2.4

which sends f q(x) to x. Clearly Bn(x, ρ) ⊂ f−q(B(f q(x), ρ(f q(x)))) and since
f q is injective on Bn(x, ρ) we even have

Bn(x, ρ) ⊂ f−q
x (B(f q(x), ρ(f q(x)))).
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By Corollary 10.2.4 diam
(

f−q
x (B(f q(x), ρ(f q(x))))

)

≤ K exp(−q(χµ−ε)). Since
by (10.4.3), n ≤ q(1 + ε) we finally deduce that

Bn(x, ρ) ⊂ B

(

x,K exp

(

−nχµ − ε

1 + ε

))

.

Thus, in view of (10.4.8)

B

(

x,K exp

(

−nχµ − ε

1 + ε

))

⊃ Pn0 (x).

Therefore, denoting by rn the radius of the ball above, it follows from Shanon-
McMillan-Breiman theorem that for µ-a.e x ∈ X

lim sup
n→∞

− 1

n
logµ(B(x, rn) ≤ hµ(f,P) ≤ hµ(f).

So

lim sup
n→∞

logµ(B(x, rn)

log rn
≤ hµ(f)

χµ(f) − ε
(1 + ε).

Now, since {rn} is a geometric sequence and since ε can be taken arbitrarily
small, we conclude that for µ-a.e. x ∈ X

lim sup
n→∞

logµ(B(x, r)

log r
≤ hµ(f)

χµ(f)
.

This completes the proof of (10.4.5) and because of (10.4.1) also the proof of
Theorem 10.4.2. ♣

10.5 Pressure-like definition of the functional hµ +
∫

φ dµ

In this section we prepare some general tools used in the next section to ap-
proximate topological pressure on hyperbolic sets. No smoothness is assumed
here, we work in purely metric setting only. Our exposition is similar to that
contained in Chapter 2.

Let T : X → X be a continuous map of a compact metric space (X, ρ) and
let µ be a Borel probability measure on X . Given ε > 0 and 0 ≤ δ ≤ 1 a set
E ⊂ X is said to be µ− (n, ε, δ)-spanning if

µ
(

⋃

x∈E
Bn(x, ε)

)

≥ 1 − δ.

Let φ : X → R be a continuous function. We define

Qµ(T, φ, n, ε, δ) = inf
E

{

∑

x∈E
expSnφ(x)

}

where the infimum is taken over all µ − (n, ε, δ)-spanning sets E. The main
result of this section is the following.
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Theorem 10.5.1. For every 0 < δ < 1 and every ergodic measure µ

hµ(T ) +

∫

φdµ = lim
ε→0

lim inf
n→∞

1

n
logQµ(T, φ, n, ε, δ)

= lim
ε→0

lim sup
n→∞

1

n
logQµ(T, φ, n, ε, δ)

Proof. Denote the the number following the first equality sign by Pµ(T, φ, δ) and

the number following the second equality sign by Pµ(T, φ, δ). First, following
essentially the proof of the Part I of Theorem 2.4.1, we shall show that

Pµ(T, φ, δ) ≥ hµ(T ) +

∫

φdµ (10.5.1)

Indeed, similarly as in that proof consider a finite partition U = {A1, . . . , As}
of X into Borel sets and compact sets Bi ⊂ Ai, i = 1, 2, . . . , As}, such that for
the partition V = {B1, . . . , Bs, X \ (B1 ∪ . . . ∪Bs)} we have Hµ(U|V) ≤ 1. For
every θ > 0 and q ≥ 1, set

Xq =

{

x ∈ X : − 1

n
logµ

(

Vn(x)
)

≥ hµ(T,V) − θ for all n ≥ q

1

n
Snφ(x) ≥

∫

φdµ− θ for all n ≥ q

}

Fix now 0 ≤ δ < 1. It follows from Shannon–McMillan–Breiman theorem and
Birkhoff’s ergodic theorem that for q large enough µ(Xq) > δ. Take 0 < ε <
1
2 min{ρ(Bi, Bj) : 1 ≤ i < j ≤ s} > 0 so small that

|φ(x) − φ(y)| < θ

if ρ(x, y) ≤ ε. Since for every x ∈ X the set Bn(x, ε) ∩Xq can be covered by at
most 2n elements of Vn,

µ(Bn(x, ε) ∩Xq) ≤ exp
(

n(log 2 − hµ(T,V) + θ)
)

.

Now let E be a µ − (n, ε, δ)-spanning set for n ≥ q, and consider the set E′ =
{x ∈ E : Bn(x, ε) ∩ Xq 6= ∅}. Take any point y(x) ∈ Bn(x, ε) ∩ Xq. Then by
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the choice of ε, Snφ(x) − Snφ(y) > −nθ. Therefore we have

∑

x∈E
expSnφ(x) exp

(

−n
(

hµ(T,V) +

∫

φdµ− 3θ − log 2

))

≥

≥
∑

x∈E′

expSnφ(x) exp

(

−n
(

hµ(T,V) +

∫

φdµ− 3θ − log 2

))

=
∑

x∈E′

exp
(

Snφ(x) − n

∫

φdµ
)

exp

(

−n(hµ(T,V) − 3θ − log 2)

)

=
∑

x∈E′

exp

(

Snφ(x) − Snφ(y) + Snφ(y) − n

∫

φdµ

)

exp
(

−n
(

hµ(T,V) − 3θ − log 2
))

≥
∑

x∈E′

exp(−nθ) exp(−nθ) exp(2nθ) exp
(

−n(hµ(T,V) − θ − log 2)
)

=
∑

x∈E′

exp
(

n(log 2 − hµ(T,V) + θ)
)

≥
∑

x∈E′

µ(Bn(x, ε) ∩Xq) ≥ µ(Xq) − δ > 0

which implies that

Qµ(T, φ, n, ε, δ) ≥ hµ(T,V) +

∫

φdµ− 3θ − log 2.

Since θ > 0 is an arbitrary number and since hµ(T,U) ≤ hµ(T,V)+Hµ(U|V) ≤
hµ(T,V) + 1, letting ε→ 0, we get

Pµ(T, φ, δ) ≥ hµ(T,U) − 1 +

∫

φdµ− log 2

Therefore, by the definition of entropy of an automorphism, Pµ(T, φ, δ) ≥
hµ(T )+

∫

φdµ− log 2−1. Using now the standard trick, actually always applied
in the setting we are whose point is to replace T by its arbitrary iterates T k and
φ by Skφ, we obtain kPµ(T, φ, δ) ≥ k hµ(T ) + k

∫

φdµ− log 2 − 1. So, dividing
this inequality by k, and letting k → ∞, we finally obtain

Pµ(T, φ, δ) ≥ hµ(T ) +

∫

φdµ

Now let us prove that

Pµ(T, φ, δ) ≤ hµ(T ) +

∫

φdµ (10.5.2)

where Pµ(T, φ, δ) denotes limsup appearing in the statement of Theorem 10.5.1.
Indeed, fix 0 < δ < 1, then ε > 0 and θ > 0. Let P be a finite partition of X of



322 CHAPTER 10. HOLOMORPHIC MAPS, HYPERBOLIC MEASURES

diameter ≤ ε. By Shannon-McMillan-Breiman theorem and Birkhoff’s ergodic
theorem there exists a Borel set Z ⊂ X such that µ(Z) > 1 − δ and

1

n
Snφ(x) ≤

∫

φdµ+ θ − 1

n
logµ(Pn(x)) ≤ hµ(T ) + θ (10.5.3)

for every n large enough and all x ∈ Z. From each element of Pn having non-
empty intersection with Z choose one point obtaining, say, a set {x1, x2, . . . , xq}.
ThenBn(xj , ε) ⊃ Pn(xj) for every j = 1, 2, . . . , q and therefore the set {x1, x2, . . . , xq}
is µ−(n, ε, δ)-spanning. By the second part of (9.5.3) we have q ≤ exp(n(hµ(T )+
θ)). Using also the first part of (9.5.3), we get

q
∑

j=1

expSnφ(xj) ≤ exp(n(hµ(T ) + θ +

∫

φdµ+ θ))

Therefore Qµ(T, φ, n, ε, δ) ≤ exp(n(hµ(T ) + θ +
∫

φdµ + θ)) and letting conse-
qutively n→ ∞ and ε→ 0, we obtain Pµ(T, φ, δ) ≤ hµ(T ) +

∫

φdµ+ 2θ. Since
θ is an arbitrary positive number, (10.5.2) is proved. This and (10.5.1) complete
the proof of Theorem 10.5.1. ♣

10.6 Katok’s theory—hyperbolic sets, periodic

points, and pressure

In this section we again come back to the setting of Section 9.1. So, let X
be a compact subset of the closed complex plane C and let f : X → X be a
continuous map that can be analytically extended to an open neighbourhood
U = U(f) of X .

Let µ be an f -invariant ergodic measure on X with positive Lyapunov expo-
nent and let φ : U → R be a real continuous function. Our first aim is to show
that the number hµ(f) +

∫

φdµ can be approximated by the topological pres-
sures of φ on hyperbolic subsets of U and then as a straightforward consequence
we will obtain the same approximation for the topological pressure P(f, φ).

Theorem 10.6.1. If µ is an f -invariant ergodic measure on X with positive
Lyapunov exponent χµ and if φ : U → R is a real-valued continuous function,
then there exists a sequence Xk, k = 1, 2, . . ., of compact f - invariant subsets
of U , (topologically) Cantor sets, such that for every k the restriction f |Xk

is a
conformal expanding repeller,

lim inf
k→∞

P(f |Xk
, φ) ≥ hµ(f) +

∫

φdµ (10.6.1)

and if µk is any ergodic f -invariant measure on Xk, then the sequence µk,
k = 1, 2, . . ., converges to µ in the weak-*-topology on U . Moreover χµk

(f |Xk
) =

∫

log |f ′| dµk →
∫

log |f ′| dµ = χµ(f). If X is repelling then one finds Xk ⊂ X.

In particular µk can be supported by individual periodic orbits in Xk. For
more properties of Xk see the Remarks after the proof.
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Proof. Since P(f |Xk
, φ + c) = P(f |Xk

, φ) + c and since hµ(f) +
∫

(φ + c) dµ =
hµ(f)+

∫

φdµ+ c, adding a constant if necessary, we can assume that φ is pos-
itive, that is that inf φ > 0. As in Section 9.2 we work in the natural extension
(X̃, f̃ , µ̃). Given δ > 0 let X̃(δ) and r(δ) be produced by Corollary 10.2.4. The
set π(X̃(δ)) is assumed to be compact. This corollary implies the existence of
a constant χ′ > 0 (possibly with a smaller radius r(δ)) such that

diam
(

f−n
xn

(B(π(x̃), r(δ))
)

≤ e−nχ
′

(10.6.2)

for all x̃ ∈ X̃(δ) and n ≥ 0. Fix a countable basis {ψj}∞j=1 of the Banach space

C(U) of all continuous real-valued functions on U . Fix θ > 0 and an integer
s ≥ 1. In view of Theorem 10.5.1 and continuity of functions φ and ψi there
exists ε > 0 so small that

lim inf
n→∞

1

n
logQµ(T, φ, n, ε, δ) − (hµ(f) +

∫

φdµ) > −θ, (10.6.3)

if |x− y| < ε, then

|φ(x) − φ(y)| < θ (10.6.4)

and

|ψi(x) − ψi(y)| <
1

2
θ (10.6.5)

for all i = 1, 2, . . . , s.
Set β = r(δ)/2 and fix a finite β/2-spanning set of π(X̃(δ)), say {x1, . . . , xt}.

That is B(x1, β/2) ∪ . . . ∪ B(xt, β/2) ⊃ π(X̃(δ/2)). Let U be a finite partition
of X with diameter < β/2 and let n1 be sufficiently large that

exp(−n1χ
′) < min{β/3,K−1}. (10.6.6)

Given n ≥ 1 define

X̃n,s = {x̃ ∈ X̃(δ) : f̃ q(x̃) ∈ X̃(δ) π(f̃ q(x̃)) ∈ U(π(x̃))

for some q ∈ [n+ 1, (1 + θ)n]
∣

∣

∣

∣

1

k
Sk(ψi)(π(x̃)) −

∫

ψi dµ

∣

∣

∣

∣

<
1

2
θ

for every k ≥ n and all i = 1, 2, . . . , s}.

By Birkhoff’s ergodic theorem limn→∞ µ(X̃n,s) = µ(X̃(δ)) > 1 − δ. Therefore

there exists n ≥ n1 so large that µ(X̃n,s) > 1 − δ. Let Xn,s = π((X̃n,s)). Then
µ(Xn,s) > 1 − δ and let En ⊂ Xn,s be a maximal (n, ε)-separated subset of
Xn,s. Then En is a spanning set of Xn,s and therefore it follows from (10.6.3)
that for all n large enough

1

n
log

∑

x∈En

expSnφ(x) − (hµ(f) +

∫

φdµ) > −θ.
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Equivalently

∑

x∈En

exp(Snφ(x)) > exp(n(hµ(f) +

∫

φdµ− θ)).

For every q ∈ [n+ 1, (1 + θ)n] let

Vq = {x ∈ En : f q(x) ∈ U(x)}

and let m = m(n) be a value of q that maximizes
∑

x∈Vq
exp(Snφ(x)). Since

⋃(1+θ)n
q=n+1 Vq = En, we thus obtain

∑

x∈Vm

expSnφ(x) ≥ (nθ)−1

(1+θ)n
∑

q=n+1

∑

x∈Vq

expSnφ(x)

≥ (nθ)−1
∑

x∈En

exp(Snφ(x)) ≥ exp(n(hµ(f) +

∫

φdµ− 2θ)).

Consider now the sets Vm ∩ B(xj , β/2), 1 ≤ j ≤ t and choose the value i =
i(m) of j that maximizes

∑

x∈Vm∩B(xj ,β/2)
exp(Snφ(x)). Thus, writing Dm for

Vm ∩B(xi(m), β/2) we have Vm =
⋃t
j=1 Vm ∩B(xi, β/2) and

∑

x∈Dm

expSnφ(x) ≥ 1

t
exp(n(hµ(f) +

∫

φdµ− 2θ)).

Since φ is positive, this implies that

∑

x∈Dm

expSmφ(x) ≥ 1

t
exp(n(hµ(f) +

∫

φdµ− 2θ)). (10.6.7)

Now, if x ∈ Dm, then |fm(x) − xi| ≤ |fm(x) − x| + |x − xi| < β/2 + β/2 = β
and therefore

fm(x) ∈ B(xi, β) ⊂ B(fm(x), 2β).

Thus, by (10.6.2) and as m ≥ n ≥ n1, we have diam
(

fx−m(B(fm(x), 2β)
)

≤
exp(−mχ′) < β/3, where x̃ ∈ π−1(x) ∩ X̃n,s. Therefore

f−m
x (B(xi, β)) ⊂ B

(

xi,
β

2
+
β

3

)

= B

(

xi,
5

6
β

)

In particular

f−m
x (B(xi, β)) ⊂ B(xi, β) (10.6.8)

Consider now two distinct points y1, y2 ∈ Dm. Then f−m
y2 (B(xi, β))∩f−m

y1 (B(xi, β)) =
∅ and decreasing β a little bit, if necessary, we may assume that

f−m
y2 (B(xi, β)) ∩ f−m

y1 (B(xi, β)) = ∅.
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Let

ξ = min
{

β,min
{

dist
(

f−m
y2 (B(xi, β)), f−m

y1 (B(xi, β)
)

: y1, y2 ∈ Dm, y1 6= y2

}}

.

Define now inductively the sequence of sets {X(j)}∞j=0 contained in U(f) by
setting

X(0) = (B(xi, β) and X(j+1) =
⋃

x∈Dm

f−m
x (X(j))

By (10.6.8),{X(j)}∞j=0, is a descending sequence of non-empty compact sets, and
therefore the intersection

X∗ = X∗(θ, s) =

∞
⋂

j=0

X(j)

is also a non-empty compact set. Moreover, by the construction fm(X∗) = X∗,
fm|X∗ is topologically conjugate to the full one-sided shift generated by an
alphabet consisting of #Dm elements and it immediately follows from Corol-
lary 10.2.4 that fm|X∗ is an expanding map. Since fm|X∗ is an open map, by
Lemma 5.1.2 the triple (fm, X∗, Um) is a conformal expanding repeller with a
sufficiently small neighborhood Um of X∗. Thus (f,X(θ, s),Ws), is a conformal
expanding set, where

X(θ, s) =
m−1
⋃

l=0

f l(X∗) and Ws =
m−1
⋃

l=0

f l(Um).

It can be extended to a conformal expanding repeller X̂(θ, s) in Ws, by Propo-
sition 3.5.6.

Fix now an integer j ≥ 1. For any j-tuple (z0, z1, . . . , zj−1), zl ∈ Dm choose
exactly one point y from the set f−m

zj−1
◦f−m

zj−2
◦. . .◦f−m

z0 (X∗) and denote the made

up set by Aj . Since by (10.6.4) and (10.6.6) Sjmφ(y) ≥ ∑j−1
l=0 Smφ(zl) − jmθ

we see that
∑

y∈Aj

expSjmφ(y) ≥
(

∑

x∈Dm

expSmφ(x)
)j

exp(−jmθ)

and
1

j
log

∑

y∈Aj

expSjmφ(y) ≥ log
∑

x∈Dm

expSmφ(x) −mθ

In view of the definition of ξ, the set Aj is (j, ξ)-separated for fm and ξ is an
expansive constant for fm. Hence, letting j → ∞ we obtain

P(fm|X∗ , Smφ) ≥ log
∑

x∈Dm

expSmφ(x) −mθ

≥ n
(

hµ(f) +

∫

φdµ− 2θ
)

− log t−mθ
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where the last inequality was written in view of (10.6.7). Since n + 1 ≤ m ≤
n(1 + θ) and since inf φ > 0 (and consequently hµ(f) +

∫

φdµ > 0), we get

P(f |X̂(θ,s), φ) ≥ P(f |X(θ,s), φ) =
1

m
P(fm|X(θ,s), Smφ) ≥ 1

m
P(fm|X∗ , Smφ)

≥ 1

1 + θ

(

hµ(f) +

∫

φdµ− 2θ

)

− log t

m
− θ.

Supposing now that n (and consequently also m) was chosen sufficiently large
we get

P(f |X(θ,s), φ) ≥ 1

1 + θ
(hµ(f) +

∫

φdµ) − 4θ.

If now ν is any ergodic f -invariant measure on X̂(θ, s), then it follows from
the definition of the set X̃n,s, the construction of the set X(θ, s) and since

X̂(θ, s) is arbitrarily close to it, and else by the Birkhoff ergodic theorem, that
|
∫

ψi dν −
∫

ψi dµ| < θ for every i = 1, 2, . . . , s. A similar estimate for log |f ′|
follows from the definition of X̃(δ) and Corollary 10.2.4. Therefore for example
the sets Xk = X̂(1/k, k), satisfy the assertions of Theorem 10.6.1.

Finally if the set X is repelling, that is if
⋂

n≥0 f
−n(U) = X , then the sets

Xk are all contained in X . ♣

Remark 10.6.2. In fact the sets Xk in Theorem 10.6.1 can be found indepen-
dent of φ.

Indeed. Set just φ ≡ 0. Find Xk for this function. We get

lim sup
k→∞

htop(f |Xk) ≥ hµ(f).

Let µk be a measure of maximal entropy on Xk, for k = 1, 2, ..., i.e. hµk
(f) =

htop(f |Xk
). Consider an arbitrary continuous function φ : U → R. Then µk →

µ weakly* hence
∫

φ dµk →
∫

φ dµ. Hence with the use of the Variational
Principle

lim inf
k→∞

P(f |Xk
, φ) ≥ lim inf

k→∞

(

hµk
(f) +

∫

φ dµk
)

≥ hµ(f) +

∫

φdµ.

Notice also that though for the maximal measures µk we have

lim inf
k→∞

hµk
(f) ≥ hµ(f),

this need not be true for all sequences µk.

It is possible to find the sets Xk with f topologically mixing on them, com-
mon for (finite) families of measures µ, thus common for families of φ in Corol-
lary 10.6.4, by building “bridges”. For details see [Gelfert, Przytycki & Rams 2009]
(basing on [Prado 1997]).
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Remark 10.6.3. One can find (correct) Xk above so that each fXk
is topolog-

ically transitive, and even topologically mixing.
This follows from the general Theorem 3.3.8 on the existence of Spectral

Decomposition. It implies that for each k there exists Ωk ⊂ Xk such that f |Ωk

is open, see Lemma 3.3.10, topologically transitive and satisfying htop(f |Ωk
) =

htop(f |Xk
), see Exercise 3.4. Hence, using µk measures of maximal entropy on

Ωk, we obtain (10.6.1) as in Remark 10.6.2.
In fact one can prove that (f,Xk) found in the proof of Theorem 10.6.1 are

already topologically transitive. Indeed. (fn, X∗(θ, s) are topologically mixing
since by construction they are topologically conjugate with one-sided shifts.
Hence each (f,X(θ, s)) is topologically transitive. So the transition matrix
A = (ai,j), considered in the proof of Proposition 3.5.6, defined by ai,j = 1 if
there exists gi,j : Uj → Ui, a branch of f−1 with nonempty g(Uj) ∩ X , and 0
otherwise, is irreducible. This follows from the existence of a trajectory dense
in X . The same matrix A is the transition matric of a topological Markov chain
ΣA topologically conjugate to the resulting (f,Xk).

This (f,Xk) extends to a topologically mixing Cantor expanding repeller by
adding a “bridge” of length mutually prime with respect to m. We leave this to
the reader as an exercise.

Corollary 10.6.4. If P(f, φ) > supφ, then there exists a sequence Xk, k =
1, 2, . . ., of compact f -invariant subsets of an arbitrarily small neighbourhood of
X such that for every k, (Xk, f |Xk

is a Cantor conformal expanding repeller
satisfying

lim inf
k→∞

P(f |Xk
, φ) ≥ P(f, φ). (10.6.9)

If X is repelling then one finds Xk ⊂ X and

lim
k→∞

P(f |Xk
, φ) = P(f, φ).

Proof. By the Variational Principle P(f, φ) = limk→∞(hνk
(f) +

∫

φdνk) for
a sequence of Borel probability measures νk on X . Due to P(f, φ) > supφ
we have hνk

(f) > 0 for k large enough. Hence, due to Ruelle’s inequality,
Theorem 10.1.1, χνk

> 0. Now we apply Theorem 10.6.1 and for each k large
enough find Xk satisfying the assertion of the theorem for µ = νk such that

P(f |Xk
, φ) ≥ hνk

(f) +

∫

φdνk − 1/k.

Any limit for k → ∞ satisfies (10.6.9). In the case X is repelling the estimate
from the other side follows immediately from Xk ⊂ X .

Our last immediate conclusion concerns periodic points.

Corollary 10.6.5. If f : X → X is repelling and htop(f) > 0, then f has
infinitely many periodic points. Moreover the number of periodic points of period
n grows exponentially fast with n.
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Exercises

10.1. Prove the following general version of Theorem 10.1.1 (Ruelle’s inequal-
ity): Let X be a compact f -invariant subset of a smooth Riemannian manifold
for a C1 mapping f : U → M , defined on a neighbourhood U of X . Let µ be
an f -invariant Borel probability measure X . Then

hµ(f) ≤
∫

X

max{0, χ+
µ (x)} dµ(x),

where χ+
µ (x) = limn→∞

1
n log ‖(Dfn)∧‖. Here Dfn is the differential and

(Dfn)∧ is the exterior power, the linear operator between the exterior alge-
bras generated by the tangent spaces at x and fn(x). The norm is induced
by the Riemann metric. Saying directly ‖(Dfn)∧‖ is supremum of the vol-
umes of Dfn-images of unit cubes in k-dimensional subspaces of TxM with
k = 0, 1, . . . ,dimM .

Bibliographical notes

Theorem 10.1.1 and the Exercise following it rely on [Ruelle 1978a].
The content of Sections 10.2, 10.5 and 10.6 corresponds to facts from Pesin’s

and Katok’s theories for diffeomorphisms [Katok & Hasselblatt 1995] Supple-
ment 5. For Theorem 10.2.3 see for example [Przytycki, Urbański & Zdunik 1989].
Mañé’s partition for diffeomorphisms was discussed in [Mañé 1987]. References
to volume lemma are for example [Mañé 1988], [Przytycki 1985], [Ledrappier 1984].

The problem of constructing Xk ⊂ X in the case (X, f) is not a repeller, in
Theorem 10.6.1, was recently dealt with in [Przytycki 2005]

The theorem in Exercise 10.1 is due to Ruelle, see [Ruelle 1978a]. Compare
Theorem 10.1.1.



Chapter 11

Conformal measures

11.1 General notion of conformal measures

Let T : X → X be a continuous map of a compact metric space (X, ρ) and let
g : X → R be a non–negative measurable function. A Borel probability measure
m on X is said to be g–conformal for T : X → X if

m(T (A)) =

∫

A

g dm (11.1.1)

for any Borel set A ⊂ X such that T |A is injective and T (A) is Borel measurable.
Sets with this property will be called special sets.

If g > 0, then T is backward quasi-invariant (non-singular) with respect to
the g–conformal measure m, see Chapter 4, Section 4.2.

Consider now an arbitrary Borel probability measure m on X , backward
quasi-invariant for T . Assume that T is uniformly bounded–to–one, or countable–
to–one, i.e. X =

⋃

Xj , where Xj are measurable, pairwise disjoint, and for each
j the map T |Xj

→ T (Xj) is a measurable isomorphism, as in Section 4.2. De-
note ĝ := d(m ◦ (T |Xj

)−1)/dm.
Consider, as in Section 4.2, the operator Lm : L1(m) → L1

m defined in the
present notation and the notation of (4.2.8) by

Lm(u)(x) = Llog ĝ(x) =
∑

T (y)=x

u(y)ĝ(y),

So, for all u ∈ L1(m),
∫

L∗
m(11)u dm =

∫

11Lm(u) dm =

∫

u dm,

see (4.2.4). We conclude that, by Proposition 4.2.1, if m is a g–conformal
measure and g > 0 then ĝ = 1/g and

L∗
− log g(11) = L∗

m(11) = 11. (11.1.2)

329
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Conversely, if m is backward quasi-invariant, ĝ > 0 and (11.1.2) holds, then for
g = 1/ĝ the measure m is g–conformal.

Notice that even if T is continuous, Lm need not map C(X) into C(X),
unlike for T open, continuous. However, if we assume Lm : C(X) → C(X) and
T being uniformly bounded–to–one, then L∗

m : C∗(X) → C∗(X). Then, under
the above constrains concerning positivity, we conclude with

Proposition 11.1.1. A probability measure m is g–conformal if and only if

L∗
− log g(m) = m.

Now, since we can have troubles with the operator L∗ for T not open, we
shall provide another general method of constructing conformal measures, called
Patterson–Sullivan method. The construction will make use of the following
simple fact. For a sequence {an : n ≥ 1} of reals the number

c = lim sup
n→∞

an
n

(11.1.3)

will be called the transition parameter of {an : n ≥ 1}. It is uniquely determined
by the property that

∑

n≥1

exp(an − ns)

converges for s > c and diverges for s < c. For s = c the sum may converge or
diverge. By a simple argument one obtains the following.

Lemma 11.1.2. There exits a sequence {bn : n ≥ 1} of positive reals such that

∞
∑

n=1

bn exp(an − ns)

{

<∞ s > c

= ∞ s ≤ c

and limn→∞
bn

bn+1
= 1.

Proof. If
∑

exp(an − nc) = ∞, put bn = 1 for every n ≥ 1. If
∑

exp(an −
nc) < ∞, choose a sequence {nk : k ≥ 1} of positive integers such that
limk→∞ nkn

−1
k+1 = 0 and εk := ank

n−1
k − c→ 0. Setting

bn = exp

(

n

(

nk − n

nk − nk−1
εk−1 +

n− nk−1

nk − nk−1
εk
))

for nk−1 ≤ n < nk,

it is easy to check that the lemma follows. ♣

Getting back to dynamics let {En}∞n=1 be a sequence of finite subsets of X
such that

T−1(En) ⊂ En+1 for every n ≥ 1 (11.1.4)

Let φ : XR be an arbitrary measurable function of bounded absolute value.
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Functions of the form −φ+Const will play the role of “potential” functions;
exp(−φ+ Const) corresponds to the Jacobian g discussed above.

Let

an = log
(

∑

x∈En

exp(Snφ(x))
)

where Snφ =
∑

0≤k<n φ ◦ T k. Denote by c the transition parameter of this
sequence. Choose a sequence {bn : n ≥ 1} of positive reals as in lemma 10.1.2
for the sequence {an : n ≥ 1}. For s > c define

Ms =

∞
∑

n=1

bn exp(an − ns) (11.1.5)

and the normalized measure

ms =
1

Ms

∞
∑

n=1

∑

x∈En

bn exp(Snφ(x) − ns)δx, (11.1.6)

where δx denotes the unit mass at the point x ∈ X . Let A be a special set.
Using (11.1.4) and (11.1.6) it follows that

ms(T (A)) =
1

Ms

∞
∑

n=1

∑

x∈En∩T (A)

bn exp(Snφ(x) − ns)

=
1

Ms

∞
∑

n=1

∑

x∈A∩T−1En

bn exp(Snφ(T (x)) − ns)

=
1

Ms

∞
∑

n=1

∑

x∈A∩En+1

bn exp[Sn+1φ(x) − (n+ 1)s] exp(s− φ(x))

− 1

Ms

∞
∑

n=1

∑

x∈A∩(En+1\T−1En)

bn exp(Snφ(T (x)) − ns). (11.1.7)

Set

∆A(s) =

∣

∣

∣

∣

1

Ms

∞
∑

n=1

∑

x∈A∩En+1

bn exp[Sn+1φ(x)−(n+1)s] exp(s−φ(x))−
∫

A

exp(c−φ) dms

∣

∣

∣

∣
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and observe that

∆A(s) =
1

Ms

∣

∣

∣

∞
∑

n=1

∑

x∈A∩En+1

exp[Sn+1φ(x) − (n+ 1)s] exp(−φ(x))
[

bne
s − bn+1e

c
]

− b1
∑

x∈A∩E1

ec−s
∣

∣

∣

≤ 1

Ms

∞
∑

n=1

∑

x∈A∩En+1

∣

∣

∣

∣

bn
bn+1

− ec−s
∣

∣

∣

∣

bn+1 exp(s− φ(x)) exp[Sn+1φ(x) − (n+ 1)s]

+
1

Ms
b1 exp(c− s) ♯(A ∩ E1)

≤ 1

Ms

∞
∑

n=1

∑

x∈En+1

∣

∣

∣

∣

bn
bn+1

− ec−s
∣

∣

∣

∣

bn+1 exp(s− φ(x)) exp[Sn+1φ(x) − (n+ 1)s]

+
1

Ms
b1 exp(c− s) ♯E1.

By lemma 10.1.2 we have limn→∞ bn+1/bn = 1 and lims↓cMs = ∞. Therefore

lim
s↓c

∆A(s) = 0 (11.1.8)

uniformly for all special sets A.
Any weak accumulation point, when s ց c, of the measures {ms : s > c}

defined by (11.1.6) will be called a limit measure (associated to the function φ
and the sequence {En : n ≥ 1}).

In order to find conformal measures among the limit measures, it is necessary
to examine (11.1.7) in greater detail. To begin with, for a Borel set D ⊂ X ,
consider the following condition

lim
s↓c

1

Ms

∞
∑

n=1

∑

x∈D∩(En+1\T−1En)

bn exp[Snφ(T (x)) − ns] = 0. (11.1.9)

We will need the following definitions.
A point x ∈ X is said to be singular for T if at least one of the following two

conditions is satisfied:

There is no open neighbourhood U of x such that T |U is injective.
(11.1.10)

∀ε>0∃0<r<ε such that T (B(x, r)) is not an open subset of X. (11.1.11)

The set of all singular points is denoted by Sing(T ), the set of all points
satisfying condition (11.1.10) is denoted by and the set of all points satisfying
condition (11.1.11) is denoted by X0(T ).

It is easy to give examples where X0(T ) ∩ Crit(T ) 6= ∅. If T : X → X is an
open map, no point satisfies condition (11.1.11) that is X0(T ) = ∅.
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Lemma 11.1.3. Let m be a Borel probability measure on X and let Γ be a com-
pact set containing Sing(T ). If (11.1.1) for g integrable holds for every special
set A whose closure is disjoint from Γ and such that m(∂A) = m(∂T (A)) = 0,
then (11.1.1) continues to hold for every special set A disjoint from Γ.

Proof. Let A be a special set disjoint from Γ. Fix ε > 0. Since on the com-
plement of Γ the map T is open, for each point x ∈ A there exists an open
neighbourhood U(x) of x such that T |U(x) is a homeomorphism, m(∂U(x)) =

m(∂T (U(x))) = 0, U(x) ∩ Γ = ∅ and such that

∫

∪U(x)\A
g dm < ε

Choose a countable family {Uk} from {U(x)} which covers A and define recur-
sively A1 = U1 and An = Un \

⋃

k<n Uk. By the assumption of the lemma, each
set Ak satisfies (10.1.1) and hence

m(T (A)) = m
(

∞
⋃

k=1

T (A ∩Ak)
)

≤
∞
∑

k=1

m(T (Ak))

=

∞
∑

k=1

∫

Ak

g dm =

∫

A

g dm+

∞
∑

k=1

∫

Ak\A
g dm

≤
∫

A

g dm+ ε.

If ε→ 0, it follows that

m(T (B)) ≤
∫

B

g dm

for any special set B disjoint from Γ. Using this fact, the lower bound for
m(T (A)) is obtained from the following estimate, if ε→ 0:

m(T (A)) = m
(

∞
⋃

k=1

T (A ∩Ak)
)

=

∞
∑

k=1

m(T (A ∩Ak))

=

∞
∑

k=1

(m(T (Ak)) −m(T (Ak \A))) ≥
∞
∑

k=1

∫

Ak

g dm−
∫

Ak\A
g dm

=

∫

∪k≥1Ak

g dm−
∫

∪k≥1Ak\A
g dm ≥

∫

A

g dm− ε.

This proves the lemma. ♣

Lemma 11.1.4. Let φ : X → R be a function of bounded absolute value and
m be a limit measure as above, and let Γ be a compact set containing Sing(T ).
Assume that every special set D ⊂ X with m(∂D) = m(∂T (D)) = 0 and D̄∩Γ =
∅ satisfies condition (11.1.9). Then m(T (A)) =

∫

A exp(c − φ) dm for every
special set A disjoint from Γ.
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Proof. Let D ⊂ X be a special set such that D̄ ∩ Γ = ∅ and m(∂D) =
m(∂T (D)) = 0. It follows immediately from (11.1.7)–(11.1.9) that m(T (D)) =
∫

D exp(c− φ) dm. Applying now Lemma 11.1.3 completes the proof. ♣

Lemma 11.1.5. Let m be a limit measure. If condition (11.1.9) is satisfied for
D = X, then m(T (A)) ≥

∫

A
exp(c− f) dm for every special set A disjoint from

Crit(T ).

Proof. Suppose first that A is compact and m(∂A) = 0. From (10.1.7), (11.1.8)
and the assumption one obtains

lim
s∈J

|ms(T (A)) −
∫

A

exp(c− φ) dms| = 0

where J denotes the subsequence along which ms converges to m. Since T (A)
is compact, this implies

m(T (A)) ≥ lim inf
s∈J

ms(T (A)) = lim
s∈J

∫

A

exp(c− φ) dms =

∫

A

exp(c− φ) dm

Now, drop the assumptionm(∂A) = 0 but keepA compact and assume addition-
ally that for some ε > 0 the ball B(A, ε) is also special. Choose a descending
sequence An of compact subsets of B(A, ε) whose intersection equals A and
m(∂An) = 0 for every n ≥ 0. By what has been already proved

m(T (A)) = lim
n→∞

m(T (An)) ≥
∫

An

exp(c− φ) dm =

∫

A

exp(c− φ) dml

The next step is to prove the lemma for A, an arbitrary open special set disjoint
from Crit(T ) by partitioning it by countably many compact sets. Then one
approximates from above special sets of sufficiently small diameters by special
open sets and the last step is to partition an arbitrary special set disjoint from
Crit(T ) by sets of so small diameters that the lemma holds. ♣

Lemma 11.1.6. Let Γ be a compact subset of X containing Sing(T ). Suppose
that for every integer n ≥ 1 there are a continuous function gn : X → X and a
measure mn on X satisfying (11.1.1) for g = gn and for every special set A ⊂ X
with

A ∩ Γ = ∅ (a)

and satisfying

mn(B) ≥
∫

B

gn dmn

for any special set B ⊂ X such that B ∩ Crit(T ) = ∅. Suppose, moreover, that
the sequence {gn}∞n=1 converges uniformly to a continuous function g : X → R.
Then for any weak accumulation point m of the sequence {mn}∞n=1 we have

m(T (A)) =

∫

A

g dm (b)
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for all special sets A ⊂ X such that A ∩ Γ = ∅ and

m(T (B)) ≥
∫

B

g dm (c)

for all special sets B ⊂ X such that B ∩ Crit(T ) = ∅.
Moreover, if (a) is replaced by

A ∩ (Γ \ (Crit(T ) \X0(T ))) = ∅, (a′)

then for any x ∈ Crit(T ) \X0(T )

m({T (x)}) ≤ g(x)m({x}) ≤ q(x)m({T (x)}) (d)

where q(x) denotes the maximal number of preimages of single points under the
transformation T restricted to a sufficiently small neighbourhood of x.

The proof of property (b) is a simplification of the proof of Lemma 11.1.4
and the proof of property (c) is a simplification of the proof of Lemma 11.1.5.
The proof of (d) uses the same technics and is left for the reader.

11.2 Sullivan’s conformal measures and dynam-

ical dimension, I

Let, as in Chapter 10, X denote a compact subset of the extended complex
plane C and let f ∈ A(X) which means that f : X → X is a continuous map
that can be analytically extended to an open neighbourhood U(f) of X .

Let t ≥ 0. Any |f ′|t–conformal measure for f : X → X is called a Sullivan’s
t–conformal measure or even shorter a t–conformal measure. Rewriting the
definition (11.1.1) it means that

m(f(A)) =

∫

A

|f ′|t dm (11.2.1)

for every special set A ⊂ X . An obvious but important property of conformal
measures is formulated in the following

Lemma 11.2.1. If f : X → X is topologically exact, then every Sullivan’s
conformal measure is positive on nonempty open sets of X.

In particular it follows from this lemma that if f is topologically exact, then
for every r > 0

M(r) = inf{m(B(x, r)) : x ∈ X} > 0 (11.2.2)

Denote by δ(f) the infinium over all exponents t ≥ 0 for which a t–conformal
measure for f : X → X exists. Call δ(f) conformal dimension of X .

Our aim in the two subsequent sections is to show the existence of conformal
measures and moreover to establish more explicit dynamical characterization of
the number δ(f). As a matter of fact we are going to prove that under some
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additional assumptions δ(f) coincides with the dynamical dimension DD(X) of
X and the hyperbolic dimension HyD(X) of X which are defined as follows.

DD(X) = sup{HD(µ) : µ ∈M+
e (f)}

HyD(X) = sup{HD(Y ) : f |Y is a conformal expanding repeller}

In HyD one can even restrict to Y being topological Cantor sets.

In this section we shall prove the following two results.

Lemma 11.2.2. If f : X → X is topologically exact, then DD(X) ≤ δ(f).

Proof. Our main idea “to get to a large scale” is the same as in [Denker & Urbański 1991b].
However to carry it out we use Pesin theory described in Sec. 9.2 instead of
Mañé’s partition, applied in [Denker & Urbański 1991b]. So, let µ ∈ M+

e (f)
and let m be a t–conformal measure. We again work in the natural extension
(X̃, f̃ , µ̃). Fix ε > 0 and let X̃(ε) and r(ε) be given by Corollary 10.2.4. In
view of the Birkhoff ergodic theorem there exist a measurable set F̃ (ε) ⊂ X̃(ε)
such that µ̃(F̃ (ε)) = µ̃(X̃(ε)) and an increasing sequence {nk = nk(x̃) : k ≥ 1}
such that f̃nk(x̃) ∈ X̃(ε) for every k ≥ 1. Let F (ε) = π(F̃ (ε)). Then µ(F (ε)) =
µ̃(π−1(F (ε)) ≥ µ̃(F̃ (ε)) ≥ 1 − ε. Consider now x ∈ F (ε) and take x̃ ∈ F̃ (ε)
such that x = π(x̃). Since f̃nk(x̃) ∈ X̃(ε) and since π(f̃nk(x̃) = fnk(x), Corol-
lary 10.2.4 produces a holomorphic inverse branch f−nk

x : B(fnk(x), r(ε)) → C

of fnk such that f−nk
x fnk(x) = x and

f−nk
x

(

B(fnk(x), r(ε))
)

⊂ B
(

x,K|(fnk)′(x)|−1r(ε)
)

Set rk(x) = K|(fnk)′(x)|−1r(ε). Then by Corollary 10.2.4 and t– conformality
of m

m(B(x, rk(x))) ≥ K−t|(fnk)′(x)|−tm
(

B(fnk(x), r(ε))
)

≥M(r(ε))−1K−2tr(ε)−trk(x)
t

Therefore, it follows from Theorem 7.5.1 (Besicovitch covering theorem) that
Λt(F (ε)) ≤M(r(ε))K2tr(ε)tb(2) <∞. Hence HD(F (ε)) ≤ t. Since µ

(
⋃∞
n=1 F (1/n)

)

=
1, it implies that HD(µ) ≤ t. This finishes the proof. ♣

Theorem 11.2.3. If f : X → X is topologically exact and X is a repelling set
for f , then HyD(X) = DD(X).

Proof. In order to see that HyD(X) ≤ DD(X) notice only that in view of
Theorems 4.3.2, 8.1.6 and Corollary 8.1.7 there exists µ ∈ M+

e (f |Y ) ⊂ M+
e (f)

such that HD(µ) = HD(Y ) . In order to prove that DD(X) ≤ HyD(X) we will
use Katok’s theory from Section 10.6 applied to µ, an arbitrary ergodic invariant
measure of positive entropy. First, for every integer n ≥ 0 define on X a new
continuous function

φn = max{−n, log |f ′|}.
Then φn ≥ log |f ′| and φn ց log |f ′| pointwise on X . Since in addition φn ≤
log ||f ′||∞, it follows from the Lebesgue monotone convergence theorem that
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limn→∞
∫

φn dµ = χµ(f) =
∫

log |f ′| dµ > 0. Fix ε > 0. Then for all n
sufficiently large, say n ≥ n0,

∫

φndµ ≤ χµ/(1 − ε) which implies that

hµ(f) = HD(µ)χµ ≥ (1 − ε)HD(µ)

∫

φn dµ. (11.2.3)

Fix such n ≥ n0. Let Xk ⊂ X , k ≥ 0, be the sequence of conformal expand-
ing repellers produced in Theorem 10.6.1 for the measure µ and the function
−HD(µ)φn and let µk be an equilibrium state of the map f |Xk

and the potential
−HD(µ)φn restricted to Xk. It follows from the second part of Theorem 10.6.1
that limk→∞

∫

φn dµk =
∫

φn dµ > 0. Thus by Theorem 10.6.1 and (11.2.3)

lim inf
k→∞

(

hµk
−HD(µ)

∫

φn dµk
)

= lim inf
k→∞

P
(

f |Xk
,−HD(µ)φn

)

≥ hµ(f) − HD(µ)

∫

φn dµ

≥ −εHD(µ)

∫

φn dµ

Hence, for all k large enough

hµk
≥ HD(µ)

∫

φn dµk − 2εHD(µ)

∫

φn dµ

≥ HD(µ)

∫

φn dµk − 3εHD(µ)

∫

φn dµk

= (1 − 3ε)HD(µ)

∫

φn dµk ≥ (1 − 3ε)HD(µ)

∫

log |f ′| dµk.

Thus

HD(Xk) ≥ HD(µk) =
hµk

(f)

χµk

≥ (1 − 3ε)HD(µ).

So, letting ε→ 0 finishes the proof. ♣

11.3 Sullivan’s conformal measures and dynam-

ical dimension, II

In this section f : C → C is assumed to be a rational map of degree ≥ 2 and
X is its Julia set J(f). Nevertheless it is worth to mention that some results
proved here continue to hold under weaker assumption that f |X is open or X
is a perfect locally maximal set for f . By Crit(f) we denote here the set of all
critical points contained in the Julia set J(f).

Lemma 11.3.1. If z ∈ J(f) and {fn(z) : n ≥ 0}∩Crit(f) = ∅, then the series
∑∞
n=1 |(fn)′(z)|

1
3 diverges.
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Proof. By the assumption there exists ε > 0 such that for every n ≥ 0 the map
f restricted to the ball B(fn(z), ε) is injective. Since f is uniformly continuous
there exists 0 < α < 1 such that for every x ∈ C

f(B(x, αε)) ⊂ B(f(x), ε). (11.3.1)

Suppose that the series
∑∞

n=1 |(fn)′(z)|
1
3 converges. Then there exists n0 ≥ 1

such that supn≥n0
(2|(fn)′(z)|) 1

3 < 1. Choose 0 < ε1 = ε2 = . . . = εno
< αε so

small that for every n = 1, 2, . . . , n0

fn restricted to the ball B(z, εn) is injective. (11.3.2)

and
fn(B(z, εn)) ⊂ B(fn(z), ε) (11.3.3)

For every n ≥ n0 define εn+1 inductively by

εn+1 = (1 − (2|(fn)′(z)|) 1
3 )εn. (11.3.4)

Then 0 < εn < αε for every n ≥ 1. Assume that (11.3.2) and (11.3.3) are
satisfied for some n ≥ n0. Then by the Koebe Distortion Lemma 5.2.4 and
(11.3.4) the set fn(B(z, εn+1)) is contained in the ball centered at fn(z) and of
radius

εn+1|(fn)′(z)|
2

(1 − εn+1/εn)3
=

2εn+1|(fn)′(z)|
2|(fn)′(z)| = εn+1 < αε.

Therefore, since f is injective on B(fn(z), ε), formula (11.3.2) is satisfied for
n+ 1 and using also (11.3.1) we get

fn+1(B(z, εn+1)) = f
(

fn(B(z, εn+1))
)

⊂ f(B(fn(z), αε)) ⊂ B(fn+1(z), ε).

Thus (11.3.3) is satisfied for n+ 1.

Let εn ց ε0. Since the series
∑∞

n=1 |(fn)′(z)|
1
3 converges, it follows from

(10.3.4) that ε0 > 0. Clearly (11.3.2) and (11.3.3) remain true with εn replaced
by ε0. It follows that the family {fn|B(z, 12 ε0)

}∞n=1 is normal and consequently

z /∈ J(f). This contradiction finishes the proof. ♣

As an immediate consequence of this lemma and of Birkhoff’s Ergodic The-
orem we get the following.

Corollary 11.3.2. If µ be an ergodic f–invariant measure for which there exists
a compact set Y ⊂ J(f) such that µ(Y ) = 1 and Y ∩ Crit(f) = ∅, then χµ ≥ 0.

In fact the assumption Y ∩ Crit(f) = ∅ is not needed, see [Przytycki 1993].
Compare Theorem 11.3.10.

Let now Ω be a finite subset of
⋃∞
n=1 f

n(Crit(f)) such that

Ω ∩ {fn(c) : n = 1, 2 . . .} 6= ∅ for every c ∈ Crit(f) (11.3.5)
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and
Ω ∩ Crit(f) = ∅. (11.3.6)

Sets satisfying these conditions exist since no critical point of f lying in J(f)
can be periodic. Now let V ⊂ J(f) be an open neighbourhood of Ω and define
K(V ) to be the set of those points of J(f) whose forward trajectory avoids V .
Equivalently this means that

K(V ) = {z ∈ J(f) : fn(z) /∈ V for every n ≥ 0} =

∞
⋂

n=0

f−n(J(f) \ V )

Hence K(V ) is a compact subset of J(f) and f(K(V )) ⊂ K(V ). Conse-
quently we can consider dynamical system f |K(V ) : K(V ) → K(V ). Note that
f(K(V )) = K(V ) does not hold for all sets V and that usually f−1(K(V )) 6⊂
K(V ). Simple considerations based on (10.3.5) and the definition of sets K(V )
give the following.

Lemma 11.3.3. Crit(f |K(V )) ⊂ Crit(f) ∩K(V ) = ∅, K(V )0(f) = Sing(f) ⊂
∂V , and −t log |f ′| is a well–defined continuous function on K(V ).

Fix now z ∈ K(V ) and set En = f |−nK(V )(z), n ≥ 0. Then En+1 = f |−1
K(V )(En)

and therefore the sequence {En} satisfies (10.1.9) with D = K(V ). Take t ≥ 0
and let c(t, V ) be the transition parameter associated to this sequence and the
function −t log |f ′|. Put P(t, V ) = P(f |K(V ),−t log |f ′|). We shall prove the
following.

Lemma 11.3.4. c(t, V ) ≤ P(t, V ).

Proof. Since K(V ) is a compact set disjoint from Crit(f), the map f |K(V ) is
locally 1-to-1 which means that there exists δ > 0 such that f |K(V ) restricted
to any set with diameter ≤ δ is 1-to-1. Consequently, all the sets En are (n, ε)-
separated for ε < δ. Hence, the required inequality c(t, V ) ≤ P(t, V ) follows
immediately from Theorem 2.3.2. ♣

The standard straightforward arguments showing continuity of topological
pressure prove also the following.

Lemma 11.3.5. The function t 7→ c(t, V ) is continuous.

Set
s(V ) = inf{t ≥ 0 : c(t, V ) ≤ 0} < +∞

We shall prove the following.

Lemma 11.3.6. s(V ) ≤ DD(J(f)).

Proof. Suppose that DD(J(f)) < s(V ) and take 0 ≤ DD(J(f)) < t < s(V ).
From this choice and by Lemma 11.3.4 we have 0 < c(t, V ) ≤ P(t, V ) and by
the Variational Principle, Theorem 2.4.1, there exists µ ∈ Me(fK(V )) ⊂ Me(f)
such that P(t, V ) ≤ hµ(f) − tχµ(f) + c(t, V )/2. Therefore, by Corollary 11.3.2
and Lemma 11.3.3 we get hµ(f) ≥ c(t, V )/2 > 0 and applying additionally
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Theorem 10.1.1 (Ruelle’s inequality), χµ(f) > 0. Hence, it follows from Theo-
rem 10.4.1 that

t ≤ HD(µ) − 1

2

c(t, V )

χµ
< HD(µ) ≤ DD(J(f))

This contradiction finishes the proof. ♣

Let m be a limit measure on K(V ) associated to the sequence En and the
function −s(V ) log |f ′|. Since c(0, V ) ≥ 0 and s(V ) < ∞, it follows from
Lemma 11.3.5 that c(s(V ), V ) = 0. Therefore, applying Lemma 11.1.4 and
Lemma 11.1.5 with Γ = ∂V we see that m(f(A)) ≥

∫

A |f ′|s(V ) dm for any spe-

cial set A ⊂ K(V ) and m(f(A)) =
∫

A
|f ′|s(V ) dm for any special set A ⊂ K(V )

such that A ∩ ∂V = ∅. Treating now m as a measure on J(T ) and using
straightforward measure–theoretic arguments we deduce from this that

m(f(A)) ≥
∫

A

|f ′|s(V ) dm (11.3.7)

for any special set A ⊂ J(f) and

m(f(A)) =

∫

A

|f ′|s(V ) dm (11.3.8)

for any special set A ⊂ J(f) such that A ∩ V̄ = ∅. Now we are in position to
prove the following.

Lemma 11.3.7. For every Ω there exist 0 ≤ s(Ω) ≤ DD(J(f)) and a Borel
probability measure m on J(f) such that

m(f(A)) ≥
∫

A

|f ′|s(Ω) dm

for any special set A ⊂ J(f) and

m(f(A)) =

∫

A

|f ′|s(Ω) dm

for any special set A ⊂ J(f) disjoint from Ω.

Proof. For every n ≥ 1 let Vn = B(Ω, 1
n ) and let mn be the measure on J(f)

satisfying (11.3.7) and (11.3.8) for the neighbourhood Vn. Using Lemma 11.1.6
we shall show that any weak–* limit m of the sequence of measures {mn}∞n=1

satisfies the requirements of Lemma 11.3.7. Indeed, first observe that the se-
quence {s(Vn)}∞n=1 is nondecreasing and denote its limit by s(Ω). Therefore the
sequence of continuous functions gn = |f ′|s(Vn), n = 1, 2, . . ., defined on J(f)
converges uniformly to the continuous function g = |f ′|s(Ω). Let A be a special
subset of J(f) such that

A ∩ (Sing(f) ∪ Ω) = ∅. (11.3.9)
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Then one can find a compact set Γ ⊂ J(f) disjoint from A and such that
Int(Γ) ⊃ Sing(f) ∪ Ω. So, using also Lemma 11.3.3, we see that for any n
sufficiently large, say n ≥ q,

Vn ⊂ Γ and Vn ∩ Crit(f) = ∅. (11.3.10)

Therefore, by (11.3.7) and (11.3.8), we conclude that Lemma 11.1.6 applies
to the sequence of measures {mn}∞n=q and the sequence of functions {gn}∞n=q.
Hence, the first property required in our lemma is satisfied for any special subset
of J(f) disjoint from Crit(f) and since A∩Γ = ∅, the second property is satisfied
for the set A. So, since any special subset of J(f) disjoint from Sing(f) ∪
Ω can be expressed as a disjoint union of special sets satisfying (11.3.9), an
easy computation shows that the second property is satisfied for all special sets
disjoint from Sing(f) ∪ Ω. Therefore, in order to finish the proof, it is enough
to show that the second requirement of the lemma is satisfied for every point
of the set Sing(f). First note that by (11.3.10) and (11.3.8), formula (a’) in
Lemma 11.1.6 is satisfied for every n ≥ q and every x ∈ Crit(f) \ J(f)0(f).
As f : J(f) → J(f) is an open map, the set J(f)0(f) is empty and Sing(f) =
Crit(f). Consequently formula (d) of Lemma 10.1.6 is satisfied for any critical
point c ∈ J(f) of f . Since g(c) = |f ′(c)|s(Ω) = 0, this formula implies that
m(f()) ≤ 0. Thusm({f(c)}) = 0 = |f ′(c)|s(Ω)m({c}). The proof is finished. ♣
Lemma 11.3.8. Let m be a the me the measure constructed in Lemma 11.3.7. If
for some z ∈ J(f) the series S(t, z) =

∑∞
n=1 |(fn)′(z)|t diverges then m({z}) =

0 or a positive iteration of z is a parabolic point of f . Moreover, if z itself is
periodic then m({f(z)}) = |f ′(z)|tm({z}).
Proof. Suppose that m({z}) > 0. Assume first that the point z is not eventually
periodic. Then by the definition of a conformal measure on the complement of
some finite set we get 1 ≥ m({fn(z) : n ≥ 1}) ≥ m({z})∑∞

n=1 |(fn)′(z)|t = ∞,
which is a contradiction. Hence z is eventually periodic and therefore there
exist positive integers k and q such that fk(f q(z)) = f q(z). Since f q(z) ∈ J(f)
and since the family of of all iterates of f on a sufficiently small neighbourhood
of an attractive periodic point is normal, this implies that |(fk)′(f q(z))| ≥ 1.
If |(fk)′(f q(z))| = λ > 1 then, again by the definition of a conformal measure
on the complement of some finite set, m({f q(z)}) > 0 and m({fkn(f q(z))}) ≥
λntm({f q(z)}). Thusm({fkn(f q(z))}) converges to ∞, which is a contradiction.
Therefore |(fk)′(f q(z))| = 1 which finishes the proof of the first assertion of the
lemma. In order to prove the second assertion assume that q = 1. Then, using
the definition of conformal measures on the complement of some finite set again,
we get m({f(z)}) ≥ m({z})|f ′(z)|t and on the other hand

m({z}) = m({fk−1(f(z))}) ≥ m({f(z)})|(fk−1)′(f(z))|t = m({f(z)})|f ′(z)|−t.
Therefore m({f(z)}) = m({z})|f ′(z)|t. The proof is finished. ♣
Corollary 11.3.9. If for every x ∈ Crit(f) one can find y(x) ∈ {fn(x) : n ≥ 0}
such that the series S(t, y(x)) diverges for every 0 ≤ t ≤ DD(J(f)), then there
exists an s-conformal measure for f : J(f) → J(f) with 0 ≤ s ≤ DD(J(f)).
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Proof. Let m be a the me the measure constructed in Lemma 11.3.7. Since
S(t, y(x)) diverges for every 0 ≤ t ≤ DD(J(f)), we see that y(x) /∈ Crit(f).
If for some x ∈ Crit(f), y(x) is a non-periodic point eventually falling into a
parabolic point, then let z(x) be this parabolic point; otherwise put z(x) = y(x).
The set Ω = {z(x) : x ∈ Crit(f)} meets the conditions (11.3.5), (11.3.6) and

is contained in
⋃∞
n=1 f

n(Crit(f)). Since for every t ≥ 0 and z ∈ J(f) the
divergence of the series S(t, z) implies the divergence of the series S(t, f(z)), it
follows immediately from Lemma 11.3.7 and Lemma 11.3.8 that the measure m
is s-conformal. ♣

Fortunately the assumptions on the existence of y(x) with the divergence of
(t, y(x)) hold. They follow from the following fact, for which we refer the reader
to [Przytycki 1993] and omit the proof here.

Theorem 11.3.10. For every f -invariant probability measure µ on J(f),
∫

log |f ′| dµ ≥
0, in particular log |f ′| is µ-integrable. For µ ergodic this reads that the Lya-
punov characteristic exponent is non-negative, χµ(f) ≥ 0. For µ a.e. y

lim sup
n→∞

|(fn)′(y)| ≥ 1.

Now we are in position to finish the proof the following main result of this
section.

Theorem 11.3.11. HyD(J(f)) = DD(J(f)) = δ(f) and there exists a δ(f)–
conformal measure for f : J(f) → J(f).

Proof. For every x ∈ Crit(f) the set {fn(x) : n ≥ 0} is closed and forward
invariant under f . Therefore, in view of Theorem 2.1.8 (Bogolubov-Krylov
theorem) there exists µ ∈ Me(f) supported on {fn(x) : n ≥ 0}. By Theo-
rem 11.3.10 there exists at least one point y(x) ∈ {fn(x) : n ≥ 0} such that
lim supn→∞ |(fn)′(y(x))| ≥ 1 and consequently the series S(t, y(x)) diverges
for every t ≥ 0. So, in view of Corollary 11.3.9 there exists an s-conformal
measure for f : J(f) → J(f) with 0 ≤ s ≤ DD(J(f)). Combining this with
Lemma 11.2.2 and Theorem 11.2.3 complete the proof. ♣

11.4 Pesin’s formula

Theorem 11.4.1 (Pesin’s formula). Assume that X is a compact subset of the
closed complex plane C and that f ∈ A(X). If m is a t- conformal measure for
f and µ ∈M+

e (f) is absolutely continuous with respect to m, then HD(µ) = t =
δ(f).

Proof. In view of Lemma 11.2.2 we only need to prove that t ≤ HD(µ) and
in order to do this we essentially combine the arguments from the proof of
Lemma 11.2.2 and from the proof of formula (10.4.1). So, we work in the
natural extension (X̃, f̃ , µ̃). Fix 0 < ε < χµ/3 and let X̃(ε) and r(ε) be given
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by Corollary 10.2.4. In view of the Birkhoff ergodic theorem there exists a
measurable set F̃ (ε) ⊂ X̃(ε) such that µ̃(F̃ (ε)) ≥ 1 − 2ε and

lim
n→∞

1

n

n−1
∑

j=1

χX̃(ε) ◦ f̃n(x̃) = µ̃(X̃(ε))

for every x̃ ∈ F̃ (ε). Let F (ε) = π(F̃ (ε)). Then µ(F (ε)) = µ̃(π−1(F (ε)) ≥
µ̃(F̃ (ε)) ≥ 1 − 2ε. Consider now x ∈ F (ε) ∩ Xo and take x̃ ∈ F̃ (ε) such that
x = π(x̃). Then by the above there exists an increasing sequence {nk = nk(x) :
k ≥ 1} such that f̃nk(x̃) ∈ X̃(ε) and

nk+1 − nk
nk

≤ ε (11.4.1)

for every k ≥ 1. Moreover Corollary 10.2.4 produces holomorphic inverse
branches f−nk

x : B(fnk(x), r(ε)) → C of fnk such that f−nk
x fnk(x) = x and

f−nk
x

(

B(fnk(x), r(ε))
)

⊂ B
(

x,K|(fnk)′(x)|−1r(ε)
)

Set rk = rk(x) = K−1|(fnk)′(x)|−1r(ε). By Corollary 10.2.4 rk ≤ K−2 exp
(

−(χµ−
ε)nk

)

r(ε). So, using Corollary 10.2.4 again and (11.4.1) we can estimate

rk = rk+1|(fnk+1−nk)′(fnk(x))| ≤ rk+1K exp
(

χµ + ε)(nk+1 − nk)
)

≤ rk+1K exp
(

χµ + ε)nk+1ε
)

≤ Krk+1 exp
(

χµ − ε)2nk+1ε
)

≤ rk+1K(K−2r(ε)r−1
k+1)

2ε = K1−4εr(ε)2εr1−2ε
k+1

Take now any 0 < r ≤ r1 and find k ≥ 1 such that rk+1 < r ≤ rk. Then using
this estimate, t-conformality of m, and invoking Corollary 10.2.4 once more we
get

m(B(x, r)) ≤ m(B(x, rk)) ≤ Kt|(fnk)′(x)|−tm(B(x, r(ε)))

≤ K2tr(ε)−trtk

≤ K(3−4ε)tr(ε)2εtr(1−2ε)t

So, by Theorem 7.5.1 (Besicovitch covering theorem) Λ(1−2ε)t(X) ≥ Λ(1−2ε)t(F (ε)) >
0, whence HD(X) ≥ (1 − 2ε)t. Letting ε→ 0 completes the proof. ♣

Remark 11.4.2. For m being the Riemann measure on C, which is 2-conformal
by definition, HD(m) = 2 is obvious, even without assuming the existence of µ.

Of course there exist 2-conformal measures for which no µ ∈ M+
e (f) with

µ ≪ m exists. Take for example f(z) = z2 + 1/4. It has a parabolic fixed
point z = 1/2, as f ′(1/2) = 1. Put m(1/2) = 1 and for each n ≥ 0 and w ∈
f−n(1/2) put m(w) = |(fn)′(w)|−t. For t ≥ 2 the series Σ :=

∑

n,w |(fn)′(w)|−t
converges (Exercise, use Koebe Distortion Theorem). Normalize m by dividing
by Σ. Check that there is no µ ∈ M+

e with µ ≪ m. In this example, for
t = δ(f), the measure µ exists. However it is also not always the case. Consider
f(z) = z2 − 3/4 and m built as above starting from the fixed point −1/2. See
[Aaronson, Denker & Urbański 1993]
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Other, very nice examples can be found in [Avila & Lyubich 2008].
For an arbitrary 2-conformal m the equality hµ(f)/χµ(f) = HD(µ) = 2, i.e.

hµ(f) = 2χµ(f) is nontrivial. For m Riemann measure, the first equality is
nontrivial. In higher dimension its analog is usually called Pesin’s formula, see
[Mañé 1987]. It corresponds to Rohlin’s equality in Theorem 1.9.7.

The following theorem converse to Theorem 11.4.1, holds. We formulate it
for f a rational function on C and X its Julia set. We shall not prove it here.
We refer to [Ledrappier 1984] and recent [Dobbs 2008].

Theorem 11.4.3. If m is a t-conformal measure supported on J(f) for f : C →
C a rational function of degree at least 2 on the Riemann sphere, and µ is an
f -invariant ergodic probability measure on J(f) of positive Lyapunov exponent
such that HD(µ) ≥ t, then µ ≪ m. Moreover the density dµ/dm is bounded
away from 0. In particular µ is unique satisfying these properties.

.

11.5 More about geometric pressure and dimen-

sions

Here we provide a simple proof of HyD(J(f)) = δ(f), see Theorem 11.3.11
omitting the construction via the sets K(V ) and omitting Pesin’s theory.

Let f : C → C be a rational mapping of degree d ≥ 2 on the Riemann
sphere C. Here we denote by Crit = Crit(f) the set of all critical points in C,
that is f ′(x) = 0 for x ∈ Crit(f). The symbol J = J(f) stands as before for
the Julia set of f . Absolute values of derivatives and distances are considered
with respect to the standard Riemann sphere metric. We consider pressures
below for all t > 0. All the pressures will occur to coincide giving rise to a
generalization of the geometric pressure P(t) introduced in Section 8.1 in the
uniformly expanding case.

Definition 11.5.1 (Tree pressure). For every z ∈ C define

Ptree(z, t) := lim sup
n→∞

1

n
log

∑

fn(x)=z

|(fn)′(x)|−t.

Definition 11.5.2 (Hyperbolic pressure).

Phyp(t) := sup
X

P(f |X ,−t log |f ′|),

where the supremum is taken over all compact f -invariant (that is f(X) ⊂ X)
Cantor repelling hyperbolic (expanding) subsets of J . The property of X being
a Cantor set can be skipped giving the same definition, compare Theorem 10.6.1.



11.5. MORE ABOUT GEOMETRIC PRESSURE AND DIMENSIONS 345

P(f |X ,−t log |f ′|) denotes the standard topological pressure for the contin-
uous mapping f |X : X → X and continuous real-valued potential function
−t log |f ′| on X , as in the previous sections.

Note that these definitions imply that Phyp(t) is a continuous monotone
decreasing function of t.

One can restrict in the definition of the hyperbolic pressure the supremum
to be over Cantor repelling hyperbolic sets X such that f |X is topologically
transitive, see Remark 10.6.3.

Definition 11.5.3 (Conformal pressure). Set PConf(t) := logλ(t), where

λ(t) = inf{λ > 0 : there is µ, a λ|f ′|t− conformal probability measure on J(f)}.

We know that the set of λ’s above is non-empty from Section 11.3. However
we want this section to be independent. So the existence of λ(t) will be proved
later on again, more directly.

In the sequel we shall call any λ|f ′|t-conformal probability measure on J(f)
a (λ, t)-conformal measure for f and a (1, t)-conformal measure by a t-conformal
measure for f .

Proposition 11.5.4. For each t > 0 the number PConf(t) is attained, that is
there exists a (λ, t)-conformal measure with log λ = PConf(t).

This Proposition follows from the following (compare the proof of Lemma 11.3.7).

Lemma 11.5.5. If µn is a sequence of (λn, t)-conformal measures for f on
J(f) for an arbitrary t > 0, weakly* convergent to a measure µ and λn → λ
then µ is a (λ, t)-conformal measure.

Proof. Let E ⊂ J be a Borel set on which f is injective. Then E can be
decomposed into a countable union of critical points and sets Ei pairwise disjoint
and such that f is injective on a neighbourhood V of clEi. For every ε there exist
compact setK and open U such thatK ⊂ Ei ⊂ U ⊂ V and µ(U)−µ(K) < ε and
µ(f(U))−µ(f(K)) < ε. Consider an arbitrary continuous function χ : J → [0, 1]
so that χ is 1 on K and 0 on J \ U . Then there exists s : 0 < s < 1 such that
for A = χ−1([s, 1]), µ(∂f(A)) = 0. Then the weak* convergence of µn implies
µn(f(A)) → µ(f(A)), as n → ∞, see Theorem 2.1.4. Moreover this weak*
convergence and λn → λ imply

∫

χλn|f ′|tdµn →
∫

χλ|f ′|tdµ. Therefore from
µn(f(A)) =

∫

A
λn|f ′|tdµn, letting ε→ 0, we obtain µ(f(Ei)) =

∫

Ei
λ|f ′|tdµ.

If E = {c} where c ∈ Crit(f) ∩ J(f) then for every r > 0 small enough
and for all n, we have µn(f(B(c, r))) ≤ 2(supk λk)(2r)

t and since the bound
is independent of n we get µ(f(c)) = 0, hence µ(f(c)) =

∫

c
|f ′|tdµ, as f ′(c) =

0. ♣

Remark 11.5.6. For a continuous map T : X → X of a compact metric
space X , for an integrable function g : X → R, and for an arbitrary ε ≥ 0, a
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probability measure m on X is said to be ε-g-conformal if for every special set
A ⊂ X we have

|m(T (A)) −
∫

A

g dm| ≤ ε.

Compare (11.1.1). Then, in Lemma 11.5.5, it is sufficient to assume that µn is
a sequence of εn-λn|f ′|t-conformal measures, with εn → 0.

Definition 11.5.7. We call z ∈ C safe if

(1) z /∈ ⋃∞
j=1 f

j(Crit(f)) and

(2) lim infn→∞
1
n log dist(z, fn(Crit(f))) = 0.

Remark 11.5.8. For every safe z ∈ C and every t > 0 the pressure Ptree(z, t)
is finite. Indeed, if z /∈ B(fn(Crit), ελ−n) for all n = 1, 2, ... and some ε >
0 and λ > 1, then for each x ∈ f−n(z) the mapping fn is univalent on
Compx f

−nB(fn(Crit), ε2λ
−n) with distortion bounded by a constant C > 0,

see Koebe Distortion Lemma 5.2.3. Recall that Compx denotes the component
containing x. Hence

|(fn)′(x)| ≥ C−1
ε
2λ

−n

diamCompx f
−nB(z, ε2λ

−n ≥ C−1 ε

2
λ−n.

Summing up over x and letting λ→ 1 and n→ ∞ we obtain

Ptree(z, t) ≤ log deg f. (11.5.1)

Definition 11.5.9. We call a point z ∈ C expanding (or hyperbolic) if there
exist ∆ > 0 and λ = λz > 1 such that for all n large enough fn is univalent
on Compz f

−n(B(fn(z),∆)) and |(fn)′(z)| ≥ λn.

Proposition 11.5.10. The set S of expanding safe points in J is nonempty.
Moreover HD(S) ≥ HyD(J).

Proof. The set NS of non-safe points is of zero Hausdorff dimension. This fol-
lows from NS ⊂ ⋃∞

j=1 f
j(Crit(f)) ∪⋃ξ<1

⋂∞
n=1

⋃∞
j=n B(f j(Crit(f)), ξj), finite-

ness of Crit(f) and from
∑

n(ξ
n)t <∞ for every 0 < ξ < 1 and t > 0. Therefore

the existence of expanding safe points in J follows from the existence of hyper-
bolic sets X ⊂ J with HD(X) > 0. Note that every point in a hyperbolic set X
is expanding. ♣

Theorem 11.5.11. For all t > 0, all expanding safe z ∈ J and all w ∈ C

Ptree(z, t) ≤ Phyp(t) ≤ PConf(t) ≤ Ptree(w, t).

We will provide a proof later on. Now let us state corollaries.
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Corollary 11.5.12. For all t > 0 Phyp(t) = PConf(t) and HyD(J) = δ(f)

Proof. The first equality follows from Theorem 11.5.11 and existence of expand-
ing safe points in J . The second from the fact that both quantities are first zeros
of Phyp(t) and PConf(t). We shall prove the latter, including the existence of a
finite zero.

First notice that Phyp(t) is monotone decreasing, which follows immediately
from the monotone decreasing of P(X, t) := P(f |X ,−t log |f ′|) for every expand-
ing repeller X ⊂ J , see for example the discussion after Theorem 8.1.4 and Def-
inition 11.5.2. Continuity follows from the equicontinuity of the family P(X, t)
following, using the definition of pressure, from its uniform Lipschitz continuity
with the Lipschitz constant sup log |f ′|. (In fact by Variational Principle the
Lipschitz constant of all P(X, t) is bounded by supµ χµ(f), the supremum over
all probability f -invariant measures on J .) If t0 is the first zero of Phyp(t) (we
have not excluded yet the case Phyp(t) > 0 for all t; in such a case write t0 = ∞)
and t0(X) is zero of P(X, t), then P(X, t) → Phyp(t) for all t implies t0(X) → t0.
Since t0(X) = HD(X) ≤ 2, see Corollary 8.1.7, t0 is finite.

Observe finally that δ(f) is also the first zero t0 of PConf(t) (which we know
already to be equal to Phyp(t)). It cannot be larger, because there exists a
t0-conformal measure, due to Proposition 11.5.4. It cannot be smaller since
PConf(t) > 0 for t < t0. ♣

We obtain also a simple proof of the following

Corollary 11.5.13. Ptree(z, t) does not depend on z for z ∈ J repelling safe.

Proof of Theorem 11.5.11. 1. We prove first that Ptree(z, t) ≤ Phyp(t). Fix
repelling safe z = z0 ∈ J and λ = λz0 > 1 according to Definition 11.5.9. Since
z0 is repelling, we have for δ = ∆/2, l = 2αn and all n large enough

W := Compz0 f
−lB(f l(z0), 2δ) ⊂ B(z, ελ−αn),

and f l is univalent on W . Since z0 is safe we have

B(z0, λ
−αn) ∩

2n
⋃

j=1

f j(Crit(f)) = ∅

for arbitrary constants ε, α > 0.
By the Koebe Distortion Lemma for ε small enough, for every 1 ≤ j ≤ 2n

and zj ∈ f−j(z0) we have

Compzj
f−jB(z0, ελ

−αn) ⊂ B(zj , δ).

Letm = m(δ) be be such that fm(B(y, δ/2)) ⊃ J for every y ∈ J . Then, putting
y = f l(z0), for every zn ∈ f−n(z0) we find z′n ∈ f−m(zn) ∩ fm(B(y, δ/2)).
Hence the component Wzn

of f−m(Compzn
f−n(B(z0, ελ

−αn)) containing z′n is
contained in ⊂ B(y, 3

2δ)) and fm+n is univalent on Wzn
(provided m ≤ n).
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Therefore fm+n+l is univalent from W ′
zn

:= Comp(f−(m+n+l)(B(y, 2δ)) ⊂
Wzn

onto B(y, 2δ). The mapping

F = fm+n+l :
⋃

zn∈f−n(z0)

W ′
zn

→ B(y, 2δ)

has no critical points, hence Z :=
⋂∞
k=0 F

−k(B(y, 2δ)) is a repelling expanding
F -invariant Cantor subset of J .

We obtain for a constant C > 0 resulting from distortion and L = sup |f ′|,

P(F |Z ,−t log |F ′|) ≥ log
(

C
∑

zn∈f−n(z0)

|(fm+n+l)′(z′n)|−t
)

≥ log
(

C
∑

zn∈f−n(z0)

|(fn)′(zn)|−tL−t(m+l)
)

. (11.5.2)

Hence on the expanding f -invariant set Z ′ :=
⋃m+n+l−1
j=0 f j(Z) we obtain

P (f |Z′ ,−t log |f ′|) ≥ 1

m+ n+ l
P (F,−t log |F ′|)

≥ 1

m+ n+ l

(

logC − t(m+ l) logL+ log
∑

zn∈f−n(z0)

|(fn)′(zn)|−t
)

.

Passing with n to ∞ and next letting αց 0 we obtain

P (f |Z′ ,−t log |f ′|) ≥ Ptree(z0, t).

Finally one can find an f -invariant repelling expanding Cantor set Z ′′ con-
taining Z ′, contained in J as in the Proof of Theorem 10.6.1, relying on Propo-
sition 3.5.6. The latter inequality for Z ′′ in place of Z ′ is of course satisfied.

Notice that we proved by the way that P (z0, t) <∞ for z0 safe and repelling.
This is however weaker than (11.5.1), proved for all z safe.

2. Phyp(t) ≤ PConf(t). Let µ be an arbitrary (λ, t)-conformal measure on
J . From the topological exactness of f on J , see [Carleson & Gamelin 1993], we
get

∫

U λ
N |(fN )′|tdµ ≥ 1. Hence µ(U) > 0 (compare Lemma 11.2.1).

Let X be an arbitrary f -invariant non-empty isolated hyperbolic subset of
J . Then, for U small enough, (∃C)(∀x0 ∈ X)(∀n ≥ 0)(∀x ∈ X ∩ f−n(x0)) fn

maps Ux = Compx f
−n(U) onto U univalently with distortion bounded by C.

So, for every n,

µ(U) ·
∑

x∈f−n(x0)∩X
λ−n|(fn)′(x)|−t ≤ C

∑

x∈f−n(x0)∩X
µ(Ux) ≤ C.

Hence

P (f |X ,− logλ− t log |f ′|) ≤ 0 hence P (f |X ,−t log |f ′|) ≤ logλ.
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3. Now we prove PConf(t) ≤ Ptree(w, t) and in particular that the definition
of PConf(t) makes sense. The proof is via Patterson–Sullivan construction, as
started in Section 10.5.1, but it is much simpler and direct, omitting approxima-
tion via K(V )’s in the following sections. We can assume that Ptree(w, t) <∞,
otherwise there is nothing to prove.

Let us assume first that w is such that for any sequence wn ∈ f−n(w) we
have wn → J . This means that w is neither in an attracting periodic orbit, nor
in a Siegel disc, nor in a Herman ring, see [Carleson & Gamelin 1993]. Assume
also that w is not periodic. Let Ptree(w, t) = λ. Then for all λ′ > λ

∑

x∈f−n(w)

(λ′)−n|(fn)′(x)|−t → 0

exponentially fast, as n → ∞. We find a sequence of numbers φn > 0 such
that limn→∞ φn/φn+1 → 1 and for An :=

∑

x∈f−n(w) λ
−n|(fn)′(x)|−t the series

∑

n φnAn is divergent, compare Lemma 11.1.2. For every λ′ > λ consider the
measure

µλ′ =

∞
∑

n=0

∑

x∈f−n(w)

Dx · φn · (λ′)−n|(fn)′(x)|−t/Σλ′ ,

where Dx is the Dirac delta measure at x and Σλ′ is the sum over all x of
the weights at Dx, so that µλ′(J) = 1. Notice that m′

λ is (1/Σλ′)-(λ′|f ′|t)-
conformal.

Indeed, the only point where this purely atomic measure is not conformal, is
w. But f(w) does not belong to

⋃

n≥0 f
−n({w}) since w is not periodic, hence

µλ′({f(w)}) = 0.
Finally we find a (λ, t)-conformal measure µ as a weak* limit of a convergent

subsequence of µλ′ as λ′ ց λ, see Lemma 11.5.5 and Remark 11.5.6.
If w is in an attracting periodic orbit which is one of at most two exceptional

fixed points (∞ for polynomials, 0 or ∞ for z 7→ zk, in adequate coordinates)
then it is a critical value, so Ptree(w, t) = ∞. If w is in a non-exceptional
periodic orbit or in a Siegel disc or Herman ring S, take w′ ∈ f−1(w) not in the
periodic orbit of w, neither in the periodic orbit of S in the latter cases. Then
for w′ we have the first case, hence PConf(f) ≤ Ptree(w

′, t) ≤ Ptree(w, t). The
latter inequality follows from

Ptree(w
′, t) = lim sup

n→∞

1

n− 1

∑

x∈f−(n−1)(w′)

|(f−(n−1))′(x)|−t ≤

≤ lim sup
n→∞

1

n

∑

x∈f−(n−1)(w′)

|(fn)′(x)|−t sup
z∈C

|f ′|t ≤ Ptree(w, t).

♣

Remark 11.5.14. There is a direct simple proof of Ptree(z, t) ≤ PConf(t) for
µ-a.e. z, using Borel–Cantelli Lemma, see [Przytycki 1999, Theorem 2.4].
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Remark 11.5.15. In [Przytycki 1999, Th.3.4] a stronger fact than Corollary
2 has been proved, also by elementary means, namely that Ptree(z, t) does not
depend on z ∈ C except zero Hausdorff dimension set of z’s.

To complete this section it is worthy to mention one more definition of pres-
sure, called hyperbolic variational pressure see [Przytycki 1999] and [Przytycki, Rivera–Letelier & Smirnov

Definition 11.5.16.

Pvarhyp(t) = sup{hµ(f) − tχµ(f)},

the supremum taken over all f -invariant probability ergodic measures on J with
positive Lyapunov exponent (i.e. hyperbolic measures).

The inequalities Phyp(t) ≥ Pvarhyp(t) ≥ Phyp(t) hold by Theorem 10.6.1 and
the Variational Principle, Theorem 2.4.1, respectively.

Remark 11.5.17. In conclusion we can denote all the pressures above by P(t)
as anticipated at the beginning of this section and call it geometric pressure.

A remarkable dichotomy holds for rational maps: Either P(t) is strictly
decreasing to −∞ as t ր ∞, or P(t) ≡ 0 for all t ≥ t0 = HyD(J). The first
happens precisely for so-called Topological Collet–Eckmann maps, abbr. TCE-
maps . Here is one of characterization of this class, which explains another
name: non-uniformly hyperbolic A rational map fC → C is TCE if and only if

inf
µ
χµ(f) > 0,

the infimum taken over all probability f -invariant measures on J . For details
of this theory see [Przytycki, Rivera–Letelier & Smirnov 2003].

Bibliographical notes

Section 11.1 roughly follows [Denker & Urbański 1991a]. However here the set
Sing need not be finite; this is the version introduced and used in [Denker & Urbański 1991b].
Sections 11.2 and 11.3 follow [Denker & Urbański 1991b], with some simplifica-
tions. For example the proof of Lemma 11.2.2 is much simpler.

The construction of conformal measures was first sketched in [Sullivan 1983]
and followed an analogous notion and construction by S.J. Patterson on the
limit sets of a Kleinian group.

The content of Section 11.5 has been extracted from [Przytycki, Rivera–Letelier & Smirnov 2004],
see [Przytycki 2005K].
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[Mañé 1988] R. Mañé: The Hausdorff dimension of invariant probabilities of
rational maps. Dynamical systems, Valparaiso 1986, 86-117, Lecture Notes
in Math., 1331, Springer, Berlin, 1988.
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iterations of rational functions, Trans. Amer. Math. Soc. , 351.5 (1999),
2081–2099.
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Akadémiai Kiadó, Budapest 1982.

[Slodkowski 1991] Z. Slodkowski: Holomorphic motions and polynomial hulls.
Proc. Amer. Math. Soc. 111 (1991), 347–355.

[Smale 1967] S. Smale: Differentiable Dynamical Systems. Bulletin of the Amer-
ican Mathematical Society 73 (1967), 747–817.

[Smania 2005] D. Smania: ”On the hyperbolicity of the period-doubling fixed
point”, Trans. AMS 358.4 (2005), 1827–1846.

[Steinmetz 1993] N. Steinmetz: Rational Iteration, Complex Dynamics, Dy-
namical Systems, Walter de Gruyter, Berlin 1993.

[Stein 1970] Elias M. Stein: ”Singular Integrals and Differentiability Properties
of Functions, Princeton, 1970.

[Stratmann & Urbanski 2003] B. Stratmann, M. Urbanski: Real analytic-
ity of topological pressure for parabolically semihyperbolic generalized
polynomial-like maps. Indagat. Math. 1.14 (2003), 119–134.

[Stroock 1993] D. W. Stroock: Probability Theory, an Analytic View. Cam-
bridge University Press, 1993.

[Sullivan 1982] D. Sullivan: Seminar on conformal and hyperbolic geometry.
Notes by M. Baker and J. Seade, Preprint IHES, 1982.

[Sullivan 1983] D. Sullivan: ”Conformal dynamical systems”. Geometric Dy-
namics, Lecture Notes in Math., Vol. 1007, Springer-Verlag, 1983, pp.
725-752.

[Sullivan 1986] D. Sullivan: ”Quasiconformal homeomorphisms in dynamics,
topology, and geometry”, in: Proceedings of the International Congress of
Mathematicians, Berkeley 1986, Amer. Math. Soc., 1986, 1216-1228.

[Sullivan 1988] D. Sullivan: ”Differentiable structures on fractal-like sets deter-
mined by intrinsic scaling functions on dual Cantor sets”, The Mathe-
matical Heritage of Hermann Weyl, AMS Proc. Symp. Pure Math. Vol.
48.

[Sullivan 1991] D. Sullivan: ”Bounds, quadratic differentials and renormaliza-
tion conjectures”, Mathematics into the Twenty-First Century, Amer.
Math. Soc. Centennial Publication, vol.2, Amer. Math. Soc., Providence,
RI, 1991. 417-466.



Bibliography 363

[Tsuji 1959] M. Tsuji: Potential Theory in Modern Function Theory. Maruzen
Co., Tokyo, 1959.

[Urbanski 2001] M. Urbanski: Rigidity of multi-dimensional conformal iterated
function systems. Nonlinearity, 14 (2001), 1593–1610.

[Urbanski & Zinsmeister 2001] M. Urbanski, M. Zinsmeister: Geometry of hy-
perbolic Julia-Lavaurs sets, Indagationes Math. 12 (2001) 273 – 292.

[Walters 1976] P. Walters: A variational principle for the pressure of continuous
transformations, Amer. J. Math. 17 (1976), 937–971.

[Walters 1978] P. Walters: Invariant measures and equilibrium states for some
mappings which expand distances. Trans. Amer. Math. Soc. 236 (1978),
121 – 153.

[Walters 1982] P. Walters: An Itroduction to Ergodic Theory. Springer-Verlag,
New York, 1982.

[Walters 1992] P. Walters: Differentiability Properties of the Pressure of a Con-
tinuous Transformation on a Compact Metric Space. J. London Math. Soc.
(2) 46 (1992), 471–481.

[Young 1999] L.-S. Young: Reccurence times and rates of mixing. Israel J.
Math. 110 (1999), 153–188.

[Zdunik 1990] A. Zdunik: Parabolic orbifolds and the dimension of the maximal
measure for rational maps. Invent. Math. 99 (1990), 627–649.

[Zdunik 1991] A. Zdunik: Harmonic measure versus Hausdorff measures on re-
pellers for holomorphic maps. Trans. Amer. Math. Soc. 326 (1991), 633–
652.

[Zinsmeister 1996] M. Zinsmeister: Formalisme thermodynamique et
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Hölder continuous, 122
Hahn–Banach theorem, 98

geometric form, 103
Hahn–Jordan decomposition, 76
harmonic conjugate function, 299
Hausdorff dimension, 236

of measure, 239
Hausdorff measure associated to a func-

tion, 233
Hausdorff outer measure associated to

a function, 233
Hb, 198
He, 198
Hed, 206
Cr+εH, 208
Hentschel-Procaccia spectrum, 259

holomorphic motion, 185
homography, 19
homterval, 225
HP-spectrum, 259
hyperbolic

measure, 309
non-uniformly, 350
point, 346

information dimension, 259
information function, 35

conditional, 55
inverse limit, 49
Ionescu Tulcea, Marinescu theorem, 163
Iterated Function Systems, 9

Jacobian, 59, 148
strong, 59, 148
weak, 59, 148

join, 34
joining, 34
Julia set, 7, 17

K-automorphism, 62
Kato’s theorem for perturbations of lin-

ear operators, 194
kneading sequence, 224
Koebe Distortion Lemma, 184
Krein–Milman theorem, 80
K(V ), 339

Λα, 233
Λφ, 232
ΛBφ , 234
Lasota–Yorke theorem, 175
Law of Iterated Logarithm, 64
Lm, 145
L∗
φ, 147

Lφ, 147

L̂, 155
Lker,φ, 158
Lφ, 152
L0, 152
LCTVS, 79
Lebesgue differentiation theorem, 70
Lebesgue space, 46



INDEX 367

Legendre transform, 261
Legendre transform pair, 261
Legendre–Fenchel transform, 98
LF-transform, 98
LIL, 64
LIL Refined Volume Lemma, 272
limit capacity, 237
line field, 300
Lipschitz continuous, 122
logistic family, 219
Lyapunov characteristic exponent, 251,

309
Lyapunov spectrum of periodic orbits,

295, 301
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carpet, 19
gasket, 19

σ-additive, 25
σ-algebra, 25

generated, 25
σ(F0), 25
signed measure, 76
Sing(T ), 332
singular measures, 33
singular part of space for pointwise di-

mension of a measure, 258
Slodkowski’s theorem, 186
Smale’s Axiom A, 137
Smale’s horseshoe, 20

special sets, 329
Spectral Decomposition, 118
Spectral Decomposition Theorem

of Smale, 137
stochastic kernel, 174
Stoltz angle, 275
structural stability, 137
Sullivan’s t–conformal measure, 335

Tail(A), 62
Tchebyshev polynomial, 23
topological Collet–Eckmann maps, 350
topology

weak, 78
weak∗, 77

total variation norm, 76
transfer operator, 10, 145, 147
transformation

ergodic, 29
measurable, 28
measure preserving, 28

transversal homoclinic point, 21
tree pressure, 344

unique ergodicity, 71

Variational Principle, 89
Finite, 7

Vitali-type covering theorem, 242
Volume Lemma, 251, 256, 316

LIL Refined, 272
von Koch snowflake, 289

wandering, 117
weakly Bernoulli, 67
Whitney Extension Theorem, 203

X0(T ), 332


