Koopman Representations for Positive Definite Functions and Van Der Corput Sets

Seminar on Dynamical Systems at IMPAN

Based on https://arxiv.org/abs/2310.19386

Sohail Farhangi Slides available on sohailfarhangi.com

November 13, 2023

Sohail Farhangi

Koopman Representations and vdC-sets

Frame 1

Representations of Positive Definite Sequences

- The Gaussian Measure Space Construction
 Ergodic Representations on Groups
- Special Representations for Abelian Groups
- 4 Van der Corput sets and sets of recurrence in Z
 Nice vdC-sets and set of nice recurrence in Z

Table of Contents

Representations of Positive Definite Sequences

- The Gaussian Measure Space Construction
 Ergodic Representations on Groups
- 3 Special Representations for Abelian Groups
- Van der Corput sets and sets of recurrence in Z
 Nice vdC-sets and set of nice recurrence in Z

Definition

Let *G* be a locally compact second countable (l.c.s.c.) group. A function $f : G \to \mathbb{C}$ is **positive definite** if for any $c_1, \dots, c_n \in \mathbb{C}$ and $g_1, \dots, g_n \in G$, we have $\sum_{i,j=1}^n c_i \overline{c_j} f(g_i^{-1}g_j) \ge 0$. We denote the set of all continuous positive definite functions on *G* by $\mathbf{P}(G)$.

Theorem (Gelfand and Raikov, [Tem92, Theorem 5.B])

If $\phi \in \mathbf{P}(G)$ then there exists a unitary representation U of G in a Hilbert space \mathcal{H} and a cyclic vector $f \in \mathcal{H}$ such that $\phi(g) = \langle U_g f, f \rangle$.

A consequence of the Gaussian Measure Space Construction is that in the preceding theorem, U can be taken to be the Koopman Representation of a measure preserving action of G.

Special Representation of PD Sequences

Theorem (F., 2023)

If G is l.c.s.c. and $\phi \in \mathbf{P}(G)$, then there exists an ergodic m.p.s. $(X, \mathscr{B}, \mu, \{T\}_{g \in G})$ and $f \in L^2(X, \mu)$ such that $\phi(g) = \langle T_g f, f \rangle$. Furthermore, if ϕ is real-valued, then f can also be taken to be real-valued.

If G is abelian and $\phi \in \mathbf{P}(G)$ satisfies $\phi(0) = 1$, then there exists a probability measure ν on \widehat{G} for which $\phi(g) = \hat{\nu}(g)$.

Theorem (F., 2023)

Let G be a countably infinite abelian group and ν a probability measure on \widehat{G} . There exists a m.p.s. $(X, \mathscr{B}, \mu, \{T_g\}_{g \in G})$ and a $f \in L^2(X, \mu)$ satisfying |f| = 1, $\int_X fd\mu = \nu(\{0\})$, and $\hat{\nu}(g) = \langle T_g f, f \rangle$. Furthermore, if ϕ is real-valued, then there exists a real-valued $f' \in L^2(X, \mu)$ satisfying $|f'| \leq \sqrt{2}$, $\int_X f'd\mu = \frac{1}{\sqrt{2}}\nu(\{0\})$, and $\hat{\nu}(g) = \langle T_g f', f' \rangle$.

An Example

A set $E \subseteq [0, 1]$ is symmetric if E = 1 - E, and it is a **Kronecker set** if for any continuous map $\phi : E \to \mathbb{S}^1$, there exists a sequence of integers $(n_s)_{s=1}^{\infty}$ for which

$$\lim_{s \to \infty} \sup_{x \in E} |\phi(x) - \exp(2\pi i n_s x)| = 0.$$
 (1)

[CFS82, Appendix 4] has a construction of a perfect Kronecker set.

Theorem (Foiaș-Strătilă, [FS68], [CFS82, Theorem 14.4.2'])

If $E \subseteq [0,1]$ is a symmetric Kronecker set, ν a continuous measure supported on E, and $(X, \mathscr{B}, \mu, \{T^n\}_{n \in \mathbb{Z}})$ is an ergodic m.p.s. with some $f \in L^2(X, \mu)$ for which $\hat{\nu}(n) = \langle T^n f, f \rangle$, then f has a Gaussian distribution.

It follows that for ν as above, we cannot have the system $(X, \mathscr{B}, \mu, \{T^n\}_{n \in \mathbb{Z}})$ be ergodic and |f| = 1 at the same time.

Questions

Let G be a l.c.s.c. group and $\mathcal{X} := (X, \mathscr{B}, \mu, \{T_g\}_{g \in G})$ a m.p.s.

Question

If $\phi \in \mathbf{P}(G)$ with $\phi(0) = 1$, does there exists a m.p.s. \mathcal{X} and a $f \in L^2(\mathcal{X}, \mu)$ with |f| = 1 for which $\phi(g) = \langle T_g f, f \rangle$?

Question (A)

If $\phi \in \mathbf{P}(G)$ is real-valued and satisfies $\phi \ge 0$, then what special m.p.s. \mathcal{X} and $f \in L^2(X, \mu)$ can we pick so that $\phi(g) = \langle T_g f, f \rangle$?

Question (B)

Can we describe the $\phi \in \mathbf{P}(G)$ for which there exists a m.p.s. \mathcal{X} and a $f \in L^2(X, \mu)$ with $f \ge 0$ such that $\phi(g) = \langle T_g f, f \rangle$?

Table of Contents

Representations of Positive Definite Sequences

- 2 The Gaussian Measure Space Construction
 Ergodic Representations on Groups
- 3 Special Representations for Abelian Groups
- Van der Corput sets and sets of recurrence in Z
 Nice vdC-sets and set of nice recurrence in Z

The Gaussian Measure Space Construction (GMSC)

If *G* is a l.c.s.c. group and $\phi \in \mathbf{P}$ takes values in $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, then let $X = \mathbb{K}^G$, let \mathscr{B} denote the product σ -algebra, and let $T_g(x_n)_{n \in G} = (x_{ng})_{n \in G}$. There exists a *T*-invariant probability measure $\mu = \mu_{\phi}$ on (X, \mathscr{B}) and $\pi_e \in L^2_{\mathbb{K}}(X, \mu)$ for which $\phi(g) = \langle \pi_g, \pi_e \rangle = \langle T_g \pi_e, \pi_e \rangle$, where $\pi_g : X \to \mathbb{K}$ is the projection onto the *g*th coordinate. In this construction, π_e , and hence all π_g , will have a Gaussian distribution, and $(X, \mathscr{B}, \mu, \{T_g\}_{g \in G})$ is a **Gaussian dynamical system**.

Theorem ([Gla03, Theorem 3.59])

Let $\mathcal{X} := (X, \mathcal{B}, \mu, \{T_g\}_{g \in G})$ be a Gaussian dynamical system. The following conditions are equivalent:

- **()** The system \mathcal{X} is ergodic.
- The system X is weakly mixing.
- The system \mathcal{X} is weakly mixing on the first chaos, which is the smallest T-invariant subspace of $L^2(X, \mu)$ containing π_e .

If $G = \mathbb{Z}$ and $\phi \in \mathbf{P}(\mathbb{Z})$ is given by $\phi(n) = e^{2\pi i n \sqrt{2}}$, then the GMSC gives us a m.p.s. $\mathcal{X} := (X, \mathcal{B}, \mu, \{T^n\}_{n \in \mathbb{Z}})$ and a $f \in L^2(X, \mu)$ for which $\langle T^n f, f \rangle = e^{2\pi i n \sqrt{2}}$. Since f is an eigenvector of T for the eigenvalue $e^{2\pi i \sqrt{2}}$, we see that \mathcal{X} is not weakly mixing, so it will not be ergodic either.

Theorem (Tucker-Drob, 2023)

Let $\phi \in \mathbf{P}(G)$ take values in \mathbb{K} . Suppose that there exists a unitary representation U of G on \mathcal{H} that decomposes into a direct sum of finite dimensional representations, and there exists $f \in \mathcal{H}$ for which $\phi(g) = \langle U_g f, f \rangle$. There exists an ergodic m.p.s. $(K, \mathscr{B}, \lambda_K, \{T_g\}_{g \in G})$ and $F \in L^2_{\mathbb{K}}(K, \mu_K)$ for which $\phi(g) = \langle T_g F, F \rangle$.

Proof Sketch: In this case we see that $K := \overline{U(G)}$ is a compact group, and that $\phi : G \to \mathbb{K}$ uniquely extends to some $\tilde{\phi} \in \mathbf{P}(K)$ taking values in \mathbb{K} . Since K is compact and $\tilde{\phi}$ is continuous, we see that $\tilde{\phi} \in L^2(K, \lambda_K)$. Letting L denote the left regular representation of K, it is a classical result that there exists some $F \in L^2(K, \lambda_K)$ for which $\tilde{\phi}(k) = \langle L_k F, F \rangle$, so it suffices to restrict L to a representation of G.

Theorem (F., 2023)

If G is l.c.s.c. and $\phi \in \mathbf{P}(G)$, then there exists an ergodic m.p.s. $(X, \mathscr{B}, \mu, \{T\}_{g \in G})$ and $f \in L^2(X, \mu)$ such that $\phi(g) = \langle T_g f, f \rangle$. Furthermore, if ϕ is real-valued, then f can also be taken to be real-valued.

Proof Sketch: Let U be a representation of G on \mathcal{H} and f' is cyclic vector for which $\phi(g) = \langle U_g f', f' \rangle$. Let $\mathcal{H} = \mathcal{H}_w \oplus \mathcal{H}_c$, with the restriction of U to \mathcal{H}_w being weakly mixing, and the restriction to \mathcal{H}_c being a group rotation. Let $f' = f'_w + f'_c$ with $f'_w \in \mathcal{H}_w$ and $f'_c \in \mathcal{H}_c$. Using the GMSC and the ergodic representation on groups, we get for $k \in \{w, c\}$ a weakly mixing for w and ergodic for c m.p.s. $\mathcal{X}_k := (X_k, \mathcal{B}_k, \mu_k, \{T_{k,g}\}_{g \in G})$ and some $f_k \in L^2(X_w, \mu_w)$ for which $\langle U_g f'_k, f'_k \rangle = \langle T_{k,g} f_k, f_k \rangle$. We now take $\mathcal{X} = \mathcal{X}_w \times \mathcal{X}_c$, and $f \in L^2(X, \mu)$ given by $f(x, y) = f_w(x) + f_c(y)$.

Table of Contents

Representations of Positive Definite Sequences

- The Gaussian Measure Space Construction
 Ergodic Representations on Groups
- Special Representations for Abelian Groups
- Van der Corput sets and sets of recurrence in Z
 Nice vdC-sets and set of nice recurrence in Z

Theorem (Ruzsa, 1984)

If ν is a probability measure on \mathbb{T} , then there exists a sequence of complex numbers $(c_n)_{n=1}^{\infty}$ of modulus 1 for which

$$\hat{\nu}(h) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} c_{n+h} \overline{c_n} \text{ and } \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} c_n = \nu(\{0\}).$$
(2)

This result had appeared implicitly in the work of Ruzsa [Ruz84], and explicitly in the work of Bergelson and Lesigne [BL08, Page 29] when it was generalized from \mathbb{Z} to \mathbb{Z}^d .

Representations using Cesàro Averages 2/2

Definition

Let G be a countable abelian group. Let $S(G) \subseteq \mathbb{S}^1$ denote the smallest set containing the image of each character $\chi \in \widehat{G}$.

We see that $S(\mathbb{Z}^d) = \mathbb{S}^1$, $S(\bigoplus_{n=1}^{\infty} (\mathbb{Z}/m\mathbb{Z}))$ consists of the *m*th roots of unity, and $S(\bigoplus_{n=1}^{\infty} (\mathbb{Z}/n\mathbb{Z}))$ consists of all roots of unity.

Theorem (F., 2023)

Let G be a countable abelian group and $(F_n)_{n=1}^{\infty}$ a Følner sequence. There exists a Følner subsequence $(F'_n)_{n=1}^{\infty}$ such that for any probability measure ν on \widehat{G} , there exists a sequence $(c_g)_{g \in G} \subseteq S(G)$ for which

$$\hat{\nu}(h) = \lim_{N \to \infty} \frac{1}{|F'_N|} \sum_{g \in F'_N} c_{g+h} \overline{c_g} \text{ and } \nu(\{\chi\}) = \lim_{N \to \infty} \frac{1}{|F'_N|} \sum_{g \in F'_N} c_g \overline{\chi(g)}.$$

Theorem (F., 2023)

Let G be a countable abelian group and $(F_n)_{n=1}^{\infty}$ a Følner sequence. There exists a Følner subsequence $(F'_n)_{n=1}^{\infty}$ such that for any probability measure ν on \widehat{G} , there exists a sequence $(c_g)_{g\in G} \subseteq S(G)$ for which $\widehat{\nu}(h) = \lim_{N \to \infty} \frac{1}{|F'_N|} \sum_{g \in F'_N} c_{g+h} \overline{c_g}$ and $\nu(\{\chi\}) = \lim_{N \to \infty} \frac{1}{|F'_N|} \sum_{g \in F'_N} c_g \overline{\chi(g)}$.

A Proof Sketch: Pick a sequence of monotilings $(\mathcal{T}_k)_{k=1}^{\infty}$ of G whose tile shapes S_k are $(K_k, \frac{1}{k})$ -invariant Følner blocks (see [CC19]). Pick $(F'_k)_{k=1}^{\infty}$ such that $|F'_k| > k^3 |F'_{k-1}| \cdot |S_k|$ and F'_k is sufficiently translation invariant. If $S_k + d$ is some tile of \mathcal{T}_k contained in $F'_k \setminus F'_{k-1}$ and $g + d \in S_k + d$, we let $c_{g+d} = \hat{g}(X_d)$, where $(X_d)_{d \in G}$ are i.i.d. random variables taking values in \hat{G} with distribution ν .

Sohail Farhangi

Creating a m.p.s.

Theorem (F., 2023)

Let G be a countably infinite abelian group and ν a probability measure on \widehat{G} . There exists a m.p.s. $(X, \mathscr{B}, \mu, \{T_g\}_{g \in G})$ and a $f \in L^2(X, \mu)$ satisfying |f| = 1, $\int_X fd\mu = \nu(\{0\})$, and $\hat{\nu}(g) = \langle T_g f, f \rangle$.

Proof Sketch: Let $(c_g)_{g\in G} \subseteq \mathbb{S}^1$ and $(F_n)_{n=1}^\infty$ be such that

 $\hat{\nu}(h) = \lim_{N \to \infty} \frac{1}{|F'_N|} \sum_{g \in F'_N} c_{g+h} \overline{c_g} \text{ and } \nu(\{0\}) = \lim_{N \to \infty} \frac{1}{|F'_N|} \sum_{g \in F'_N} c_g.$ Let βG denote the Stone-Čech compactification of G, let $\tilde{c} : \beta G \to \mathbb{S}^1$ be the unique continuous extension of $c : G \to \mathbb{S}^1$, and let $T : \beta G \to \beta G$ be given by $T_g(p) = g \cdot p$. The Følner sequence $(F_n)_{n=1}^{\infty}$ can be used to create a mean m on G, which lifts to a measure \tilde{m} on βG , so we take our system to be a standard factor of $(\beta G, \mathscr{B}, \tilde{m}, \{T_g\}_{g \in G})$ and note that $\hat{\nu}(g) = \langle T_g \tilde{c}, \tilde{c} \rangle$.

Sohail Farhangi

Table of Contents

Representations of Positive Definite Sequences

- The Gaussian Measure Space Construction
 Ergodic Representations on Groups
- 3 Special Representations for Abelian Groups
- 4 Van der Corput sets and sets of recurrence in Z
 Nice vdC-sets and set of nice recurrence in Z

Definition ([NRS12])

A set $V \subseteq \mathbb{N}$ is a **van der Corput (vdC) set** if for any unitary operator $U : \mathcal{H} \to \mathcal{H}$ and any $f \in \mathcal{H}$ satisfying $\langle U^{v}f, f \rangle = 0$ for all $v \in V$, we have Pf = 0, where P is the projection onto the subspace of U-fixed points.

Theorem (F., 2023)

The following are equivalent to V being a vdC-set:

- **(**) For any ergodic m.p.s. \mathcal{X} and any $f \in L^2(X, \mu)$ satisfying $\langle T^v f, f \rangle = 0$ for all $v \in V$, we have $\int_X f d\mu = 0$.
- **(a)** For any m.p.s. \mathcal{X} and any $f \in L^2(X, \mu)$ satisfying |f| = 1 and $\langle T^v f, f \rangle = 0$ for all $v \in V$, we have $\int_X f d\mu = 0$.
- (*i*) with f real-valued, or (*ii*) with f real-valued and bounded.

See [KL18] for a longer list of characterizations of vdC-sets.

Sets of Recurrence

Definition

A set $R \subseteq \mathbb{N}$ is a **set of (measurable) recurrence** if for any m.p.s. $\mathcal{X} := (X, \mathcal{B}, \mu, \{T^n\}_{n \in \mathbb{Z}})$, and any $A \in \mathcal{B}$ with $\mu(A) > 0$, there exists some $r \in R$ for which $\mu(A \cap T^rA) > 0$.

Theorem

The following are equivalent to R being a set of recurrence:

- **()** For any m.p.s. \mathcal{X} , and any $f \in L^2(X, \mu) \setminus \{0\}$ with $f \ge 0$, there exists $r \in R$ for which $\langle T^r f, f \rangle > 0$.
- Q R is a set of recurrence for all ergodic system.
- (i) holds for all ergodic system.
- For any sequence $(c_n)_{n=1}^{\infty} \in \{0,1\}^{\mathbb{N}}$, we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N c_{n+r}c_n = 0 \text{ for all } r\in R \Rightarrow \lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N c_n = 0.$$

Ruzsa's Problem

Kamae and Mendes France [KMF78] showed that every vdC-set is a set of recurrence. Ruzsa [Ruz84] asked if every set of recurrence is also a vdC-set? Bourgain [Bou87] constructed the first example of a set of recurrence that is not a vdC-set. Bourgain's construction was then refined by Mountakis [Mou23]. Furthering our understanding of the difference between vdC-sets and sets of recurrence is one purpose of the Questions (A) and (B).

Question (A)

If $\phi \in \mathbf{P}(G)$ is real-valued and satisfies $\phi \ge 0$, then what special m.p.s. \mathcal{X} and $f \in L^2(X, \mu)$ can we pick so that $\phi(g) = \langle T_g f, f \rangle$?

Question (B)

Can we describe the $\phi \in \mathbf{P}(G)$ for which there exists a m.p.s. \mathcal{X} and a $f \in L^2(\mathcal{X}, \mu)$ with $f \ge 0$ such that $\phi(g) = \langle T_g f, f \rangle$?

Quasi-van der Corput sets

Let us provisionally define $Q \subseteq \mathbb{N}$ to be a **quasi-vdC-set** if for any m.p.s. $(X, \mathcal{B}, \mu, \{T^n\}_{n \in \mathbb{Z}})$ and any measurable $f : X \to \{-1, 1\}$, we have that

$$\langle T^q f, f \rangle = 0 \ \forall \ q \in Q \Rightarrow \int_X f d\mu = 0.$$
 (3)

Theorem

Q is a quasi-vd*C* set if and only if for any m.p.s. \mathcal{X} and any $A \in \mathscr{B}$ satisfying $\mu(A) = \frac{1}{4} + \mu(A \cap T^q A)$ for all $q \in Q$, we have $\mu(A) = \frac{1}{2}$. Hence quasi-vd*C* \Rightarrow recurrence.

Question ([KL18])

Is every quasi-vdC set a vdC-set? Is every set of recurrence a quasi-vdC set?

Sohail Farhangi

Koopman Representations and vdC-sets

Nice sets

Definition

 $R \subseteq \mathbb{N}$ is a **set of nice recurrence** if for any m.p.s. \mathcal{X} , any $A \in \mathscr{B}$, and any $\epsilon > 0$ there exists $r \in R$ for which $\mu(A \cap T^r A) > \mu(A)^2 - \epsilon$.

Definition

 $V \subseteq \mathbb{N}$ is a **nice vdC-set** if for any $(c_n)_{n=1}^{\infty} \subseteq \mathbb{S}^1$ we have

$$\sup_{v \in V} \limsup_{N \to \infty} \left| \frac{1}{N} \sum_{n=1}^{N} c_{n+v} \overline{c_n} \right| \ge \limsup_{N \to \infty} \left| \frac{1}{N} \sum_{n=1}^{N} c_n \right|^2$$

Definition

 $F \subseteq \mathbb{N}$ is a **nice FC**⁺-**set** if for any probability measure ν on \mathbb{T} we have $\sup_{f \in F} |\hat{\nu}(f)| \ge \nu(\{0\})$.

Sohail Farhangi

Relations between Nice sets

Theorem (Bergelson and Lesigne, [BL08, Section 3])

- Every nice FC⁺-set is a nice vdC-set and a set of nice recurrence.
- () If V is a nice vdC-set and ν is a probability measure on \mathbb{T} , then $\sup_{v \in V} |\hat{\nu}(v)| \ge \nu(\{0\})^2$.

Theorem (F., [Far22, Chapter 5])

- Every nice vdC-set is a set of nice recurrence.
- () *F* is a nice *FC*⁺-set if and only if for any $(c_n)_{n=1}^{\infty} \subseteq \mathbb{C}$ satisfying $\limsup_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} |c_n|^2 < \infty$, we have

$$\sup_{v \in V} \limsup_{N \to \infty} \frac{1}{N} \left| \sum_{n=1}^{N} c_{n+v} \overline{c_n} \right| \geq \limsup_{N \to \infty} \left| \frac{1}{N} \sum_{n=1}^{N} c_n \right|^2.$$

Question (Bergelson and Lesigne, [BL08, Section 3])

Is every set of nice recurrence also a nice vdC-set? Is every nice vdC-set also a nice FC⁺-set?

Question

Is there any relationship between the class of sets of nice recurrence and the class of vdC-sets?

Question

Suppose that $E \subseteq [0,1]$ is a symmetric Kronecker set and ν is a probability measure supported on E. What can we say about $Z_{\nu} := \{n \in \mathbb{N} \mid \hat{\nu}(n) = 0\}$?

[BL08] Vitaly Bergelson and Emmanuel Lesigne. Van der Corput sets in Z^d. Colloq. Math., 110(1):1−49, 2008.

[Bou87] J. Bourgain. Ruzsa's problem on sets of recurrence. Israel J. Math., 59(2):150–166, 1987.

[CC19] Paulina Cecchi and María Isabel Cortez. Invariant measures for actions of congruent monotileable amenable groups. *Groups Geom. Dyn.*, 13(3):821–839, 2019.

[CFS82] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ. Ergodic theory, volume 245 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1982. Translated from the Russian by A. B. Sosinskii. [Far22] Sohail Farhangi. Topics in ergodic theory and ramsey theory. PhD dissertation, the Ohio State University, 2022. [FS68] Ciprian Foiaș and Şerban Strătilă. Ensembles de Kronecker dans la théorie ergodique. C. R. Acad. Sci. Paris Sér. A-B, 267:A166–A168, 1968.

 [Gla03] Eli Glasner.
 Ergodic theory via joinings, volume 101 of Mathematical Surveys and Monographs.
 American Mathematical Society, Providence, RI, 2003.

 [KL18] Michael Kelly and Thái Hoàng Lê.
 Van der Corput sets with respect to compact groups. Arch. Math. (Basel), 110(4):343–349, 2018.

[KMF78] T. Kamae and M. Mendès France. van der Corput's difference theorem. *Israel J. Math.*, 31(3-4):335–342, 1978.

[Mou23] Andreas Mountakis.

Distinguishing sets of strong recurrence from van der corput sets.

Israel J. Math., 2023+.

[NRS12] Marina Ninčević, Braslav Rabar, and Siniša Slijepčević. Ergodic characterization of van der Corput sets. Arch. Math. (Basel), 98(4):355–360, 2012.

[Ruz84] I. Z. Ruzsa.

Connections between the uniform distribution of a sequence and its differences.

In *Topics in classical number theory, Vol. I, II (Budapest, 1981)*, volume 34 of *Colloq. Math. Soc. János Bolyai*, pages 1419–1443. North-Holland, Amsterdam, 1984.

[Tem92] Arkady Tempelman.

Ergodic theorems for group actions, volume 78 of *Mathematics and its Applications*.

Kluwer Academic Publishers Group, Dordrecht, 1992. Informational and thermodynamical aspects, Translated and revised from the 1986 Russian original.