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Positive Definite Sequences

Definition

Let G be a locally compact second countable (l.c.s.c.) group. A
function f : G → C is positive definite if for any c1, · · · , cn ∈ C
and g1, · · · , gn ∈ G , we have

∑n
i ,j=1 cicj f (g

−1
i gj) ≥ 0. We denote

the set of all continuous positive definite functions on G by P(G ).

Theorem (Gelfand and Raikov, [Tem92, Theorem 5.B])

If ϕ ∈ P(G ) then there exists a unitary representation U of G in a
Hilbert space H and a cyclic vector f ∈ H such that
ϕ(g) = ⟨Ug f , f ⟩.

A consequence of the Gaussian Measure Space Construction is
that in the preceding theorem, U can be taken to be the Koopman
Representation of a measure preserving action of G .
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Special Representation of PD Sequences

Theorem (F., 2023)

If G is l.c.s.c. and ϕ ∈ P(G ), then there exists an ergodic m.p.s.
(X ,B, µ, {T}g∈G ) and f ∈ L2(X , µ) such that ϕ(g) = ⟨Tg f , f ⟩.
Furthermore, if ϕ is real-valued, then f can also be taken to be
real-valued.

If G is abelian and ϕ ∈ P(G ) satisfies ϕ(0) = 1, then there exists a

probability measure ν on Ĝ for which ϕ(g) = ν̂(g).

Theorem (F., 2023)

Let G be a countably infinite abelian group and ν a probability
measure on Ĝ . There exists a m.p.s. (X ,B, µ, {Tg}g∈G ) and a
f ∈ L2(X , µ) satisfying |f | = 1,

∫
X
fdµ = ν({0}), and

ν̂(g) = ⟨Tg f , f ⟩. Furthermore, if ϕ is real-valued, then there exists
a real-valued f ′ ∈ L2(X , µ) satisfying |f ′| ≤

√
2,∫

X
f ′dµ = 1√

2
ν({0}), and ν̂(g) = ⟨Tg f

′, f ′⟩.
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An Example

A set E ⊆ [0, 1] is symmetric if E = 1− E , and it is a
Kronecker set if for any continuous map ϕ : E → S1, there exists
a sequence of integers (ns)

∞
s=1 for which

lim
s→∞

sup
x∈E

|ϕ(x)− exp(2πinsx)| = 0. (1)

[CFS82, Appendix 4] has a construction of a perfect Kronecker set.

Theorem (Foiaş-Strătilă,[FS68], [CFS82, Theorem 14.4.2′])

If E ⊆ [0, 1] is a symmetric Kronecker set, ν a continuous measure
supported on E, and (X ,B, µ, {T n}n∈Z) is an ergodic m.p.s. with
some f ∈ L2(X , µ) for which ν̂(n) = ⟨T nf , f ⟩, then f has a
Gaussian distribution.

It follows that for ν as above, we cannot have the system
(X ,B, µ, {T n}n∈Z) be ergodic and |f | = 1 at the same time.
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Questions

Let G be a l.c.s.c. group and X := (X ,B, µ, {Tg}g∈G ) a m.p.s.

Question

If ϕ ∈ P(G ) with ϕ(0) = 1, does there exists a m.p.s. X and a
f ∈ L2(X , µ) with |f | = 1 for which ϕ(g) = ⟨Tg f , f ⟩?

Question (A)

If ϕ ∈ P(G ) is real-valued and satisfies ϕ ≥ 0, then what special
m.p.s. X and f ∈ L2(X , µ) can we pick so that ϕ(g) = ⟨Tg f , f ⟩?

Question (B)

Can we describe the ϕ ∈ P(G ) for which there exists a m.p.s. X
and a f ∈ L2(X , µ) with f ≥ 0 such that ϕ(g) = ⟨Tg f , f ⟩?
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The Gaussian Measure Space Construction

(GMSC)

If G is a l.c.s.c. group and ϕ ∈ P takes values in K ∈ {R,C}, then
let X = KG , let B denote the product σ-algebra, and let
Tg (xn)n∈G = (xng )n∈G . There exists a T -invariant probability
measure µ = µϕ on (X ,B) and πe ∈ L2K(X , µ) for which
ϕ(g) = ⟨πg , πe⟩ = ⟨Tgπe , πe⟩, where πg : X → K is the projection
onto the g th coordinate. In this construction, πe , and hence all πg ,
will have a Gaussian distribution, and (X ,B, µ, {Tg}g∈G ) is a
Gaussian dynamical system.
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Properties of the GMSC

Theorem ([Gla03, Theorem 3.59])

Let X := (X ,B, µ, {Tg}g∈G ) be a Gaussian dynamical system.
The following conditions are equivalent:
(i) The system X is ergodic.
(ii) The system X is weakly mixing.
(iii) The system X is weakly mixing on the first chaos, which is

the smallest T -invariant subspace of L2(X , µ) containing πe .

If G = Z and ϕ ∈ P(Z) is given by ϕ(n) = e2πin
√
2, then the

GMSC gives us a m.p.s. X := (X ,B, µ, {T n}n∈Z) and a

f ∈ L2(X , µ) for which ⟨T nf , f ⟩ = e2πin
√
2. Since f is an

eigenvector of T for the eigenvalue e2πi
√
2, we see that X is not

weakly mixing, so it will not be ergodic either.
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Ergodic Representations on Groups

Theorem (Tucker-Drob, 2023)

Let ϕ ∈ P(G ) take values in K. Suppose that there exists a
unitary representation U of G on H that decomposes into a direct
sum of finite dimensional representations, and there exists f ∈ H
for which ϕ(g) = ⟨Ug f , f ⟩. There exists an ergodic m.p.s.
(K ,B, λK , {Tg}g∈G ) and F ∈ L2K(K , µK ) for which
ϕ(g) = ⟨TgF ,F ⟩.

Proof Sketch: In this case we see that K := U(G ) is a compact
group, and that ϕ : G → K uniquely extends to some ϕ̃ ∈ P(K )
taking values in K. Since K is compact and ϕ̃ is continuous, we
see that ϕ̃ ∈ L2(K , λK ). Letting L denote the left regular
representation of K , it is a classical result that there exists some
F ∈ L2(K , λK ) for which ϕ̃(k) = ⟨LkF ,F ⟩, so it suffices to restrict
L to a representation of G .
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Proof Sketch

Theorem (F., 2023)

If G is l.c.s.c. and ϕ ∈ P(G ), then there exists an ergodic m.p.s.
(X ,B, µ, {T}g∈G ) and f ∈ L2(X , µ) such that ϕ(g) = ⟨Tg f , f ⟩.
Furthermore, if ϕ is real-valued, then f can also be taken to be
real-valued.

Proof Sketch: Let U be a representation of G on H and f ′ is
cyclic vector for which ϕ(g) = ⟨Ug f

′, f ′⟩. Let H = Hw ⊕Hc , with
the restriction of U to Hw being weakly mixing, and the restriction
to Hc being a group rotation. Let f ′ = f ′w + f ′c with f ′w ∈ Hw and
f ′c ∈ Hc . Using the GMSC and the ergodic representation on
groups, we get for k ∈ {w , c} a weakly mixing for w and ergodic
for c m.p.s. Xk := (Xk ,Bk , µk , {Tk,g}g∈G ) and some
fk ∈ L2(Xw , µw ) for which ⟨Ug f

′
k , f

′
k⟩ = ⟨Tk,g fk , fk⟩. We now take

X = Xw ×Xc , and f ∈ L2(X , µ) given by f (x , y) = fw (x) + fc(y).
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Representations using Cesàro Averages 1/2

Theorem (Ruzsa, 1984)

If ν is a probability measure on T, then there exists a sequence of
complex numbers (cn)

∞
n=1 of modulus 1 for which

ν̂(h) = lim
N→∞

1

N

N∑
n=1

cn+hcn and lim
N→∞

1

N

N∑
n=1

cn = ν({0}). (2)

This result had appeared implicitly in the work of Ruzsa [Ruz84],
and explicitly in the work of Bergelson and Lesigne [BL08, Page
29] when it was generalized from Z to Zd .
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Representations using Cesàro Averages 2/2

Definition

Let G be a countable abelian group. Let S(G ) ⊆ S1 denote the

smallest set containing the image of each character χ ∈ Ĝ .

We see that S(Zd) = S1, S(⊕∞
n=1(Z/mZ)) consists of the mth

roots of unity, and S(⊕∞
n=1(Z/nZ)) consists of all roots of unity.

Theorem (F., 2023)

Let G be a countable abelian group and (Fn)
∞
n=1 a Følner

sequence. There exists a Følner subsequence (F ′
n)

∞
n=1 such that for

any probability measure ν on Ĝ , there exists a sequence
(cg )g∈G ⊆ S(G ) for which

ν̂(h) = lim
N→∞

1

|F ′
N |

∑
g∈F ′

N

cg+hcg and ν({χ}) = lim
N→∞

1

|F ′
N |

∑
g∈F ′

N

cgχ(g).
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Proof Sketch

Theorem (F., 2023)

Let G be a countable abelian group and (Fn)
∞
n=1 a Følner

sequence. There exists a Følner subsequence (F ′
n)

∞
n=1 such that for

any probability measure ν on Ĝ , there exists a sequence
(cg )g∈G ⊆ S(G ) for which

ν̂(h) = lim
N→∞

1

|F ′
N |

∑
g∈F ′

N

cg+hcg and ν({χ}) = lim
N→∞

1

|F ′
N |

∑
g∈F ′

N

cgχ(g).

A Proof Sketch: Pick a sequence of monotilings (Tk)
∞
k=1 of G

whose tile shapes Sk are (Kk ,
1
k
)-invariant Følner blocks (see

[CC19]). Pick (F ′
k)

∞
k=1 such that |F ′

k | > k3|F ′
k−1| · |Sk | and F ′

k is
sufficiently translation invariant. If Sk + d is some tile of Tk

contained in F ′
k \ F ′

k−1 and g + d ∈ Sk + d , we let cg+d = ĝ(Xd),

where (Xd)d∈G are i.i.d. random variables taking values in Ĝ with
distribution ν.
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Creating a m.p.s.

Theorem (F., 2023)

Let G be a countably infinite abelian group and ν a probability
measure on Ĝ . There exists a m.p.s. (X ,B, µ, {Tg}g∈G ) and a
f ∈ L2(X , µ) satisfying |f | = 1,

∫
X
fdµ = ν({0}), and

ν̂(g) = ⟨Tg f , f ⟩.

Proof Sketch: Let (cg )g∈G ⊆ S1 and (Fn)
∞
n=1 be such that

ν̂(h) = lim
N→∞

1

|F ′
N |

∑
g∈F ′

N

cg+hcg and ν({0}) = lim
N→∞

1

|F ′
N |

∑
g∈F ′

N

cg .

Let βG denote the Stone-Čech compactification of G , let
c̃ : βG → S1 be the unique continuous extension of c : G → S1,
and let T : βG → βG be given by Tg (p) = g · p. The Følner
sequence (Fn)

∞
n=1 can be used to create a mean m on G , which lifts

to a measure m̃ on βG , so we take our system to be a standard
factor of (βG ,B, m̃, {Tg}g∈G ) and note that ν̂(g) = ⟨Tg c̃ , c̃⟩.
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Van der Corput sets

Definition ([NRS12])

A set V ⊆ N is a van der Corput (vdC) set if for any unitary
operator U : H → H and any f ∈ H satisfying ⟨Uv f , f ⟩ = 0 for all
v ∈ V , we have Pf = 0, where P is the projection onto the
subspace of U-fixed points.

Theorem (F., 2023)

The following are equivalent to V being a vdC-set:
(i) For any ergodic m.p.s. X and any f ∈ L2(X , µ) satisfying

⟨T v f , f ⟩ = 0 for all v ∈ V , we have
∫
X
fdµ = 0.

(ii) For any m.p.s. X and any f ∈ L2(X , µ) satisfying |f | = 1 and
⟨T v f , f ⟩ = 0 for all v ∈ V , we have

∫
X
fdµ = 0.

(iii) (i) with f real-valued, or (ii) with f real-valued and bounded.

See [KL18] for a longer list of characterizations of vdC-sets.
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Sets of Recurrence

Definition

A set R ⊆ N is a set of (measurable) recurrence if for any
m.p.s. X := (X ,B, µ, {T n}n∈Z), and any A ∈ B with µ(A) > 0,
there exists some r ∈ R for which µ(A ∩ T rA) > 0.

Theorem

The following are equivalent to R being a set of recurrence:
(i) For any m.p.s. X , and any f ∈ L2(X , µ) \ {0} with f ≥ 0,

there exists r ∈ R for which ⟨T r f , f ⟩ > 0.
(ii) R is a set of recurrence for all ergodic system.
(iii) (i) holds for all ergodic system.
(iv) For any sequence (cn)

∞
n=1 ∈ {0, 1}N, we have

lim
N→∞

1

N

N∑
n=1

cn+rcn = 0 for all r ∈ R ⇒ lim
N→∞

1

N

N∑
n=1

cn = 0.
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Ruzsa’s Problem

Kamae and Mendes France [KMF78] showed that every vdC-set is
a set of recurrence. Ruzsa [Ruz84] asked if every set of recurrence
is also a vdC-set? Bourgain [Bou87] constructed the first example
of a set of recurrence that is not a vdC-set. Bourgain’s
construction was then refined by Mountakis [Mou23]. Furthering
our understanding of the difference between vdC-sets and sets of
recurrence is one purpose of the Questions (A) and (B).

Question (A)

If ϕ ∈ P(G ) is real-valued and satisfies ϕ ≥ 0, then what special
m.p.s. X and f ∈ L2(X , µ) can we pick so that ϕ(g) = ⟨Tg f , f ⟩?

Question (B)

Can we describe the ϕ ∈ P(G ) for which there exists a m.p.s. X
and a f ∈ L2(X , µ) with f ≥ 0 such that ϕ(g) = ⟨Tg f , f ⟩?
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Quasi-van der Corput sets

Let us provisionally define Q ⊆ N to be a quasi-vdC-set if for any
m.p.s. (X ,B, µ, {T n}n∈Z) and any measurable f : X → {−1, 1},
we have that

⟨T qf , f ⟩ = 0 ∀ q ∈ Q ⇒
∫
X

fdµ = 0. (3)

Theorem

Q is a quasi-vdC set if and only if for any m.p.s. X and any
A ∈ B satisfying µ(A) = 1

4
+ µ(A ∩ T qA) for all q ∈ Q, we have

µ(A) = 1
2
. Hence quasi-vdC⇒recurrence.

Question ([KL18])

Is every quasi-vdC set a vdC-set? Is every set of recurrence a
quasi-vdC set?
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Nice sets

Definition

R ⊆ N is a set of nice recurrence if for any m.p.s. X , any
A ∈ B, and any ϵ > 0 there exists r ∈ R for which
µ(A ∩ T rA) > µ(A)2 − ϵ.

Definition

V ⊆ N is a nice vdC-set if for any (cn)
∞
n=1 ⊆ S1 we have

sup
v∈V

lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

cn+vcn

∣∣∣∣∣ ≥ lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

cn

∣∣∣∣∣
2

Definition

F ⊆ N is a nice FC+-set if for any probability measure ν on T we
have supf ∈F |ν̂(f )| ≥ ν({0}).
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Relations between Nice sets

Theorem (Bergelson and Lesigne, [BL08, Section 3])

(i) Every nice FC+-set is a nice vdC-set and a set of nice
recurrence.

(ii) If V is a nice vdC-set and ν is a probability measure on T,
then supv∈V |ν̂(v)| ≥ ν({0})2.

Theorem (F., [Far22, Chapter 5])

(i) Every nice vdC-set is a set of nice recurrence.
(ii) F is a nice FC+-set if and only if for any (cn)

∞
n=1 ⊆ C

satisfying lim supN→∞
1
N

∑N
n=1 |cn|2 < ∞, we have

sup
v∈V

lim sup
N→∞

1

N

∣∣∣∣∣
N∑

n=1

cn+vcn

∣∣∣∣∣ ≥ lim sup
N→∞

∣∣∣∣∣ 1N
N∑

n=1

cn

∣∣∣∣∣
2

.
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More Quesitons

Question (Bergelson and Lesigne, [BL08, Section 3])

Is every set of nice recurrence also a nice vdC-set? Is every nice
vdC-set also a nice FC+-set?

Question

Is there any relationship between the class of sets of nice
recurrence and the class of vdC-sets?

Question

Suppose that E ⊆ [0, 1] is a symmetric Kronecker set and ν is a
probability measure supported on E. What can we say about
Zν := {n ∈ N | ν̂(n) = 0}?
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