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Abstract. We study the multiplicity modulo 2 of real analytic hypersurfaces. We prove
that, under some assumptions on the singularity, the multiplicity modulo 2 is preserved
by subanalytic bi-Lipschitz homeomorphisms of R

n. In the first part of the paper, we
find a subset of the tangent cone which determines the multiplicity mod 2 and prove
that this subset of S

n is preserved by the antipodal map. The study of such subsets of
S

n enables us to deduce the subanalytic metric invariance of the multiplicity modulo 2
under some extra assumptions on the tangent cone. We also prove a real version of a
theorem of Comte, and yield that the multiplicity modulo 2 is preserved by arc-analytic
bi-Lipschitz homeomorphisms.

0. Introduction

During the three last decades, various criteria for topological stability of singular al-
gebraic or analytic subsets were given. Numerous topological invariants were also found,
especially in algebraic geometry. For classification problems, invariants are very useful
to distinguish different classes. More recently, attention started to focus on the metric
type of singularities. But if we have lots of invariants describing the topological type of
singularities, we dispose of rather few ones devoted to the metric type of a singularity and
very few of them are explicitly computable from the equation of an analytic set.

This paper deals with analytic hypersurfaces of R
n and focuses on their multiplicity.

By multiplicity of a real analytic germ of hypersurface defined by a reduced analytic
equation P = 0, we mean the lowest degree in the expansion of P . In complex algebraic
geometry the multiplicity has a geometric interpretation as the cardinality of a generic
fiber of a generic projection onto a hyperplane. If we consider the multiplicity modulo 2,
this geometric interpretation also holds for real analytic hypersurfaces.

O. Zariski asked whether two germs analytic hypersurfaces of C
n which are homeo-

morphic have the same multiplicity. The Zariski conjecture is still open more than thirty
years later. It is easy to find examples of real analytic sets which are homeomorphic
and which have different multiplicities even modulo 2. For instance a cusp defined by
{(x; y) ∈ R

2/y2 = x3} is homeomorphic to a straight line. This raises a very natural
question: is the multiplicity mod 2 a metric invariant for real analytic hypersurfaces ?

Metric classification refers to classification up bi-Lipschitz maps h : R
n → R

n, which
are the maps satisfying:

1

C
|x − x′| ≤ |h(x) − h(x′)| ≤ C|x − x′|,

for some constant C ≥ 1. The smallest constant C for which this inequality holds is then
called the Lipschitz constant of h and is denoted by Lip(h).
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One will observe that in the above example the two given curves are homeomorphic but
not bi-Lipschitz homeomorphic.

In this paper we investigate this problem and give a partial answer. We prove that
the multiplicity modulo 2 of real analytic hypersurfaces is preserved by subanalytic bi-
Lipschitz maps under an extra assumption on the singularity which, roughly speaking, is
somewhat stronger than requiring that the singularities of the link are isolated. Namely we
introduce what we call the odd part of the tangent cone and are able to prove invariance
of the multiplicity modulo 2 in the case where this subset has only isolated singularities
(Theorem 4.2). We prove this result for all the hypersurfaces of R

3 as well (Theorem 4.1).
We also prove a real version of a theorem of George Comte: the multiplicity modulo 2
of a real analytic hypersurface is preserved by a subanalytic bi-Lipschitz homeomorphism
whose Lipschitz constant is sufficiently close to one (Theorem 4.4). For complex analytic
sets, a similar theorem has been proved by Comte in [C].

It is proved in [FFW] that any semialgebraic subset of Sn is the tangent cone of an
algebraic singular set. It would be interesting to investigate the question whether every
semialgebraic subset (or subanalytic subset) of Sn which is preserved by the antipodal
map may be the odd part of the tangent cone of a subanalytic singular set.

Content of the paper. We start by showing (Proposition 1.4) how the multiplicity
mod 2 can be computed from a part of the tangent cone (called the odd part of the tangent
cone). In section 2 we prove that the odd part of the tangent cone is equivariant (preserved
by the antipodal map). Section 3 is devoted to the topology of equivariant submanifolds
of Sn. This enables us to show that the multiplicity modulo 2 is preserved by arc-analytic
bi-Lipschitz homeomorphisms. Relating the multiplicity to the Euler characteristic of the
odd pat of the tangent cone when it has only isolated singularities, we prove that the
multiplicity modulo 2 is a topological invariant of the odd part of the tangent cone. The
last section concludes about our equimultiplicity results which are the main results of this
article.

Notations. Throughout this paper we write a ≡ b if a and b are two integers which are
equal mod 2. We write a ≡ b [4] if they are equal modulo 4. Given a subset X of R

n we
denote by cl(X) its closure and |.| stands for the Euclidian norm of R

n. We write R
>0

for
the positive real numbers.

All the stratifications are assumed topologically trivial. Given a subanalytic set C we
write Sing C for the singular locus of C i. e. the set of all the points of C at which the
set C is not a topological manifold.

Given λ ∈ Sn we write πλ : R
n+1 → R

n+1 for the orthogonal projection onto λ⊥.

Acknowledgements. This paper began when the author was invited by the Jagiellonian
University of Kraków. Part of this paper was carried out when the author was visiting
the Department of Mathematics of the University of Provence. The author is grateful to
Anna Valette for her careful reading of the manuscript and Jan Jaworowski for valuable
discussions. I thank the referees for useful remarks.

1. Euler cycles

In this section we relate the multiplicity of analytic hypersurfaces to their tangent cones
(Proposition 1.4).
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Notations. The projection πλ defined above induces a mapping π′
λ : Sn \ ±λ → Sn−1

defined by π′
λ(u) := πλ(u)

|πλ(u)| . Let C be a subanalytic subset of Sn. We set:

ϕλ(x) := card π′−1
λ (x) ∩ C,

(which is finite for generic x and λ).

We start by characterizing the sets for which ϕλ is constant generically modulo 2.

Definition 1.1. An (n−1) dimensional subanalytic set C is said to be an Euler cycle if
it is a closed set and if, for a stratification of C (and hence for any), the number of (n− 1)
dimensional strata containing a given (n− 2) dimensional stratum in their closure is even.

This is a well known property of real algebraic sets (see for instance [BCR], Theorem
11.1.1).

Proposition 1.2. Let C be a subanalytic subset of Sn and let λ ∈ Sn be generic. Then,
ϕλ(x) is constant modulo 2 for x generic in Sn−1 if and only if C is an Euler cycle.

Proof. Considering a cylindrical decomposition we may extract a finite partition of Sn−1

such that ϕλ is constant on each element of this partition. Fix some stratifications of C
and Sn−1 respectively in such a way that π′

λ maps submersively strata onto strata. Choose
a (n− 2) dimensional stratum β ⊂ Sn−1. Then there exist exactly two strata of Sn−1, say
α and α′, containing β in their closure.

Let π′−1
λ (β) ∩ C := {β1, . . . , βk}, π′−1

λ (α) ∩ C := {α1, . . . , αm} and π′−1
λ (α′) ∩ C :=

{α′
1, . . . , α

′
m′}.

For i ≤ k we set

(1.1) ji := card{αl/βi ⊂ cl(αl)}

(resp. j′i = card{α′
l/βi ⊂ cl(α′

l)}).

If C is an Euler cycle then ji ≡ j′i for each i. So
∑k

i=1 ji ≡
∑k

i=1 j′i and hence m ≡ m′.

To prove the converse, assume that C is not an Euler cycle. Thus, the condition of
the definition fails, say at β1. Let β = π′

λ(β1), then β lies in the closure of two (n − 1)
dimensional strata of Sn−1, say α and α′. But, as we assumed that the condition of
Definition 1.1 fails along the stratum β1, this implies (with the notation introduced in
(1.1)): j1 ≡ 1 + j′1.

For a sufficiently generic λ we may assume that π′−1
λ (π′

λ(β1)∩C) is the union of β1 and
of some strata lying in the closure of exactly two strata (this holds in particular if they lie
in the regular locus of C). This implies ji ≡ j′i for i > 1 and hence m ≡ 1 + m′. �

Hence, for an Euler cycle C, we denote by mλ(C) the generic value modulo 2 of ϕλ(x).
A priori this depends on λ.

1.1. Multiplicity mod 2 and tangent cone. If A is the germ of an analytic hypersur-
face of R

n+1 it is well known that card π−1
λ (x)∩A is constant modulo 2 for λ generic in Sn

and x generic in R
n sufficiently close to zero. This number coincides with the multiplicity

mod 2 of A at the origin, we will denote it by mA.

We are going to relate the notion of multiplicity mod 2 of a real analytic set to the
tangent cone. We recall that the tangent cone of a subanalytic set A of R

n+1 is defined
by:

CA = {λ ∈ Sn/∃γ : [0; ε[→ A, γ(t) = λt + · · · }.
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Usually, the tangent cone is rather the cone over this subset, but it will be more convenient
to work with subsets of Sn.

Every subanalytic map germ h : (Rn+1; 0) → (Rn+1; 0) is Lipschitz differentiable in the

sense that limr→0
h(rx)

r
exists, for any x ∈ R

n. Indeed, the arc r 7→ h(rx) is mapped onto

a subanalytic arc which must have an endpoint. Denote by d0h(x) the latter limit. Given
a subanalytic bi-Lipschitz homeomorphism h : (Rn+1; 0) → (Rn+1; 0) we may now define
a mapping h′ : Sn → Sn by setting:

(1.2) h′(x) :=
d0h(x)

|d0h(x)|
.

The bi-Lipschitz condition implies that d0h(x) is nonzero so that h′ is well defined.

We will deal with arc-analytic functions. They have been introduced by Kurdyka in
[K]. We recall their definition.

Definition 1.3. Let U be an open subset of the origin in R
n+1. A function f : U → R is

arc-analytic if for every analytic arc γ : [0; ε) → U the function f ◦ γ is analytic.

It is possible to compute the multiplicity mod 2 of an Euler cycle from its tangent cone.

Proposition 1.4. Let A be a germ (at 0) of analytic hypersurface of R
n+1. Then, there

exists an Euler cycle C ′
A ⊂ CA of pure dimension (n − 1), if nonempty, such that:

mλ(C ′
A) ≡ mA

for λ generic.

Proof. First we are going to associate, to a given hypersurface A, a subanalytic function
sA : CA \ N → N, where N is a subanalytic subset of Sn with dim N ≤ n − 2, such that
for any generic λ ∈ Sn \ CA we have

(1.3)
∑

y∈π
′−1

λ
(x)

sA(y) = card π−1
λ (rx) ∩ A

for any generic x ∈ Sn−1 and any positive real number r small enough.

A subanalytic function which takes only integral values, is constant on the strata of a
subanalytic stratification. Thus, it will be enough to define C ′

A as the closure of the union
of the strata on which sA is odd, in order to get a subset satisfying (1).

To define the function sA let us consider the spherical blowing-up at 0:

e : Sn × R
+ → R

n+1

defined by e(x; r) = rx. Then note that:

CA = cl(e−1(A)) ∩ Sn × {0},

and take a stratification S of cl(e−1(A)) compatible with CA. We may construct simulta-
neously a stratification S′ of R

n in such a way that πλ ◦ e maps submersively strata onto
strata. Now, for y in an (n−1)-dimensional stratum Y of S included in CA, we can define
sA(y) as the number of strata Y ′ satisfying cl(Y ′) \ Y ′ ⊇ Y .

Let y ∈ Sn be generic. For r small enough we set:

u := card π−1
λ (ry) ∩ A.

Let also:

π−1
λ (e(y; r)) ∩ A := {γ1(r), . . . , γu(r)}
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and π
′−1
λ (y) ∩ CA := {y1, . . . , yp}.

Note that each path γ̃i := e−1(γi) ends at some yi. Hence, to check (1.3) it is enough
to check that the number of γ̃j ’s ending at yi is precisely sA(yi). Fix j ≤ p and let
Y1, . . . , YsA(yj) be the strata such that yj ∈ cl(Yi), 1 ≤ i ≤ sA(yj). As the map πλ ◦ e|Yi

is

proper and submersive, it is a homeomorphism (we may assume the strata homeomorphic
to open balls of R

n). Therefore the γk’s may only belong to distinct Yi. It means that∑
sA(yj) ≤ u. Hence, it is enough to check that each Yi contains one of the γk’s.

Fix i ≤ m. By the curve selection lemma we can find a curve γ̃ in Yi ending at yj .
Hence we see that γ = e(γ̃) is a subanalytic curve ending at the origin and tangent to yj .
Let us remark that the vector y is tangent to πλ(γ). Let M be the stratum containing
e(y; r). Note that πλ ◦ e : Yi → M is a homeomorphism. As y is generic we can assume
that dim M = n and that y is not in the tangent cone of the boundary of M . But as the
vector y is tangent to πλ(γ(r)) this implies that e(y; r) is in the image of e ◦ πλ|Yi

for r
small enough, as required.

By definition, for x generic, sA(x) is nothing but the number of connected components
of

e−1(A \ {0}) ∩ B(x; ε),

for ε > 0 small enough. It is thus independent of the considered stratification. As C ′
A is

defined as the closure of the set of points in C ′
A at which sA is odd, we see that C ′

A is
independent of the stratification.

Note that the fact that C ′
A is an Euler cycle follows from the preceding proposition. �

Proposition 1.5. (metric invariance of C ′
A) Given two germs of analytic hypersur-

faces A and B and a germ of subanalytic or arc-analytic bi-Lipschitz homeomorphism
h : (Rn+1; 0) → (Rn+1; 0) such that h(A) = B, we have

h′(C ′
A) = C ′

B,

(see (1.2) for h′).

Proof. The map h′ sends CA into CB . Two rays rx and rx′ are mapped onto subanalytic
arcs which may not be tangent since h is bi-Lipschitz. Hence h′ is a homeomorphism. Let
sA be the function defined in the proof of the previous proposition for A and denote by
sB the analogous function for B.

Recall that, for x generic sA(x) is the number of connected components of

(cl(e−1(A)) \ CA) ∩ B(x; ǫ)

(for ǫ small enough), where e : Sn × R
+ → R

n+1 is the spherical blowing-up e(x; r) = rx.
As h is a homeomorphism, we clearly have sB(h′(x)) = sA(x), for any x generic in CA,
and hence h′ sends C ′

A onto C ′
B . �

The function sA in the proof corresponds to the multiplicities introduced by K. Kurdyka
and G. Raby in [KR]. In the latter paper, the authors point out that those multiplicities
are analytic invariants. The above argument proves that they are actually subanalytic
metric invariants.

As the set C ′
A corresponds to the points having an odd multiplicity we will call it the

odd part of the tangent cone. This section shows that only the odd part is relevant
to determine the multiplicity mod 2 of a given analytic hypersurface.

We shall need the following lemma.
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Lemma 1.6. Let h : (Rn+1; 0) → (Rn+1; 0) be a germ of subanalytic bi-Lipschitz homeo-
morphism with Lipschitz constant L. Then h′ satisfies for any x and x′ in Sn:

(1.4)
1

L2
|x − x′| − δ ≤ |h′(x) − h′(x′)| ≤ L2|x − x′| + Lδ

where δ := L − 1.

Proof. Define:

h̃r(x) := (|h(rx)|;
h(rx)

|h(rx)|
).

Now observe that, due to the bi-Lipschitz character of h, we must have:

||h(rx)| − r| ≤ δr.

Therefore, from the definition of h̃r, an easy computation shows that:

|h̃r(x) − h̃r(x
′)| ≤ L2|x − x′| + Lδ.

Arguing on h̃−1
r we get the other inequality. �

2. Hypersurfaces and paths

In this section the letter C will stand for a subanalytic closed Euler cycle of Sn, n > 1.

Definition 2.1. A subanalytic C1 arc γ : [0; 1] → Sn is said to be an allowed path for

C if for every t in the set Iγ = {t ∈ [0; 1]/γ(t) ∈ C} the point γ(t) is a regular point of C
at which the mapping γ is transverse to C.

Note that the set Iγ is always finite, so that we may define the length of an allowed
path γ by:

lgC γ = card Iγ .

It is easy to see that two points of the complement of C in Sn may be joint by an
allowed path. Therefore we may define for λ and µ in Sn \ C:

dC(λ;µ) := min{lgC γ/γ allowed path joiningλ and µ}.

This is not a distance on Sn \ C since it can vanish at two distinct points (if they
lie in the same connected component). Actually this is a distance on the (finite) set of
the connected components of Sn \ C. It is well known that the homology class of the
intersection of two cycles only depends on the homology class of the cycles. We use this
fact in the next proposition to derive a property of the distance dC which will be useful
for our purpose.

Proposition 2.2. The value of dC(λ;µ) mod 2 is independent of the allowed path joining
λ and µ.

Proof. Let γ1 and γ2 be two allowed paths joining λ and µ. The union γ of these two
allowed paths defines a 1-geometric cycle γ. Therefore, as C is an Euler cycle, the homology
class (in H0(S

n; Z2)) of C ∩ γ only depends on the homology classes of C and γ.

But, since H1(Sn; Z2) is zero, the Poincaré dual of the fundamental class of C is zero
and thus its cup product with the dual of the fundamental class of γ vanishes as well. On
the other hand, by definition, if [.] denotes the dual of the fundamental class we have:

lgC γ ≡ [γ([0; 1]) ∩ C]

(identifying Hn(Sn; Z2) with Z2). Hence lgC γ1 + lgC γ2 ≡ 0, as required. �
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Note that an immediate consequence of Proposition 2.2 is:

(2.5) dC(λ;µ) ≡ dC(λ; τ) + dC(τ ;µ)

for any λ, τ and µ in Sn \ C.

Remark 1. We may associate a graph GC to C, whose vertices are the connected
components of Sn \ C and the edges are connecting two vertices V and V ′ satisfying
dim cl(V ) ∩ cl(V ′) ≥ n − 1. The distance dC is now the geodesic distance in the graph.
Proposition 2.2 says that the graph GC is bi-colorable.

2.1. Multiplicity mod 2 and dC . In this section A is the germ of an analytic hyper-
surface of R

n+1. The relation between dC and the multiplicity is given by the following
proposition.

Proposition 2.3. For any λ ∈ Sn \ CA, we have:

mA ≡ dC′
A
(λ;−λ).

Proof. Choose a generic fiber of π′
λ. This provides an allowed path from λ to −λ. Its

length modulo 2 is mλ(C ′
A) if the fiber is sufficiently generic. But, by Proposition 1.4,

mλ(C ′
A) ≡ mA. �

As a consequence we see that dC′
A
(λ;−λ) only depends on the connected component

of Sn \ CA where λ is chosen. The number mλ merely says whether λ and −λ are of the
same color in the coloring of Sn \ C ′

A.

Definition 2.4. We will say that a set C ⊆ Sn is a-invariant if it is preserved globally by
the antipodal map (i. e. a(C) = C, with a(x) = −x). In this case dC(−λ;−µ) = dC(λ;µ)
for any λ and µ in Sn \ C.

Proposition 2.5. Modulo 2, the number dC(λ;−λ) is independent of λ ∈ Sn \ C if and
only if C is a-invariant.

Proof. To prove the ”only if” remark that by (2.5) we have

dC(−λ;−λ) ≡ dC(λ;µ) + dC(µ;−µ) + dC(−µ;−λ).

Then the result follows from dC(λ;µ) = dC(−µ;−λ). For the ”if” part, as C is closed, it
is enough to show a(x) ∈ C, for x in a dense subset of C. Take x generic in C, with a(x)
not in C. If x is sufficienty generic, then C is a topological manifold at C. The set C
separates a little neighborhood of x in Sn in two connected components. Thus, we may
pick λ and µ close to x such that dC(λ;µ) = 1. Using the above identity, we see that, if
dC(λ;−λ) ≡ dC(µ;−µ) then

dC(−λ;−µ) ≡ 1.

But as a(x) does not belong to C, dC(λ;µ) = 0, if λ and µ are chosen sufficiently close to
x. A contradiction. �

Remark 2. As a consequence of Propositions 2.3 and 2.5, the odd part of the tangent cone
is a-invariant. In view of the two above propositions it is natural to set mC :≡ dC(λ;−λ),
for a generic λ, so that now

mA = mC′
A
.
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It is already enough to establish the invariance of the multiplicity modulo 2 under arc-
analytic bi-Lipschitz mappings. Arc-analytic bi-Lipschitz mapping are studied in[FKP]
where it is shown that the inverse of a bilipschitz arc-analytic map is arc-analytic.

Theorem 2.6. Multiplicity mod 2 is an arc-analytic bi-Lipschitz invariant for real analytic
hypersurfaces of R

n.

Proof. Let A and B be two germs of analytic sets and let h be an arc-analytic bi-Lipschitz
homeomorphism sending A onto B. By Proposition 1.5, h′ is a homeomorphism sending
C ′

A onto C ′
B . Observe that, as h is arc-analytic, a ray r 7→ rλ (with λ ∈ Sn) is sent onto

an analytic arc which may not be a cusp since h is bi-Lipschitz. This clearly means that
the tangent half-lines at 0 of the image of this analytic arc have opposite directions, that
is to say h′(−λ) = −h′(λ). Therefore

mA = dC′
A
(λ;−λ) = dC′

B
(h′(λ);h′(−λ)) = mB.

�

It is proved in [KK] that the lines {x2 = y3} and {x3 = y7} are arc-analytically home-
omorphic. Hence the hypothesis ”bi-Lipschitz” may not be omitted.

Remark 3. As the Yang’s index (see [Y]) is preserved by equivariant mappings, the
Yang’s index of C ′

A is an arc-analytic bi-Lipschitz invariant.

3. On a-invariant hypersurfaces of Sn

3.1. The case of S2. In this section we focus on hypersurfaces of S2. This will enable us to
prove the invariance through a subanalytic bi-Lipschitz homeomorphism of the multiplicity
mod 2 for hypersurfaces of R

3 in section 4. Actually in this setting we have a better result.
The multiplicity mod 2 may be characterized just by means of the distance dC introduced
above. This fact is no longer true in higher dimensions.

More precisely, let us define the diameter of an Euler cycle C ⊂ S2 as the integer:

δC = sup{dC(λ;µ)/λ, µ ∈ S2 \ C}.

Theorem 3.1. If C is an a-invariant Euler cycle of S2 of dimension one then

δC ≡ mC .

Proof. We need to check that δC ≡ dC(−λ;λ), for some λ ∈ S2 \ C. Let λ and µ be such
that δC = dC(λ;µ). We actually are going to see that

dC(λ;µ) ≤ max(dC(λ;−λ); dC(µ;−µ)).

Let γ be an allowed path from λ to −λ realizing the distance. Observe that −γ is also such
a path. The union γ ∪ −γ separates the sphere into at least two connected components.
Remark that, as this path is a-invariant, the points µ and −µ may not lie in the same
connected component of S2 \γ ∪−γ (see for instance [J] Corollary 3). It means that there
is a geodesic σ from µ to −µ which cuts a geodesic σ′ from λ to −λ (either γ or −γ). Let
θ be a connected component crossed by both σ and σ′.

Note that, as θ is crossed by a geodesic from µ to −µ, we have

dC(µ; θ) + dC(θ;−µ) = dC(µ;−µ).

So that if dC(θ;−µ) ≥ dC(λ; θ) then we get

dC(λ;µ) ≤ dC(−µ;µ).
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Hence we may suppose dC(θ;−µ) ≤ dC(λ; θ). But then as we also have:

dC(λ; θ) + dC(θ;−λ) = dC(λ;−λ)

we get:

dC(−λ;−µ) ≤ dC(λ;−λ).

As dC(λ;µ) = dC(−λ;−µ), we are done. �

Even for a hypersurface of S3, the above proposition is no longer true. For instance,
the torus

{x ∈ R
4 : x2

1 + x2
2 =

1

2
, x2

3 + x2
4 =

1

2
}

is an a-invariant subset of S3 and has a diameter equal to 1 while the distance from a
connected component to its opposite is zero.

3.2. On a-invariant submanifolds of Sn. We will say for short that an a-invariant
Euler cycle C of Sn is even if mC = 0 and odd if mC = 1 (see Remark 2). The question
raised by section 2 is the following: can an even hypersurface of Sn be homeomorphic to
an odd one?

We answer negatively in this section in some particular cases. We start by considering
the case of manifolds that are submanifolds of an odd dimensional sphere. In this case,
it is known that we can have a characterization of the multiplicity in terms of the Euler
characteristic (see for instance [Vi], 1.3.B).

Proposition 3.2. Let C be an a-invariant subanalytic submanifold of S2k+1 of dimension
2k. Then

mC ≡
1

2
χ(C).

Proof. Let π : S2k+1 → RP 2k+1 be the quotient map and let C ′ := π(C). Observe that
mC ≡ 0 if and only if the number of intersection points of C ′ with a generic projective line
is even, which means that the number of intersection points with any closed subanalytic
generic closed path is even.

Therefore, if mC = 0 then we may associate a color (say either white or black) to each
connected component of RP 2k+1 \C ′ such that two adjacent connected components have
opposite colors. But, thanks to Poincaré duality, this implies that

χ(C ′) =
∑

F∈C

χ(∂F ) =
∑

F∈C

2.χ(F )

where C is the family constituted by the closure of the white connected components. As
χ(C) = 2χ(C ′) this proves the result in the case where mC is even.

Now, if mC is nonzero we may stratify C ′ and choose a generic projective hyperplane
P cutting transversely the strata so that P ∩ C ′ is a topological manifold of dimension
2k − 1. This implies that

χ(P ∩ C ′) = 0.

Observe that P ∪C ′ is even and so, like in the even case, we may choose a coloring of the
complement. The same computation yields

χ(P ∪ C ′) ≡ 0,

which means that χ(C ′) is odd from which we conclude that 1
2χ(C) is odd. �
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Proposition 3.2 does generalize to singular sets as it is shown by the following example:

Figure 1.

The above picture shows a singular a-invariant subset of R
3 ∪{pt} ≈ S3. It is invariant

with respect to the involution of S3 (and not that of R
3). Thus, the two pinched handles

are interchanged by the antipodal map. This set is odd but the Euler characteristic is zero.
However, we are going to show that in the case where we have only isolated singularities,
an even subset may not be homeomorphic to an odd one (Proposition 3.3).

In the case where we only have an isolated singularities we may deduce the result
invariance of the multiplicity by deleting the singularities.

Proposition 3.3. Let C1 and C2 be two a-invariant subanalytic hypersurfaces of S2k+1

which have only isolated singularities. Assume that there exists a homeomorphism h :
S2k+1 → S2k+1 which maps C1 onto C2. Then C1 is even iff C2 is.

Proof. Assume that C1 is odd and C2 even. We first choose a coloring of the family of
the connected components of the complement of C1 and C2, as explained in Remark 1.
We may assume that h preserves the colors. Pulling back the antipodal map by h (i. e.
setting ∗x := h−1(−h(x))) we get an involution ∗ on Sn preserving C1 and preserving the
colors.

We denote by W the union of all the white connected components of the complement
of C1 and by B the union of all the black ones. Let us define:

Λ= := {x ∈ Sing C1 : χ(W ∩ S(x; ε)) = χ(B ∩ S(x; ε))}.

where Sing C1 denotes the points at which C1 is not a topological manifold. It is well
known that Λ= is independent of ε if it is chosen small enough. Let also Λ6= := Sing C1\Λ=.

Observe that Λ= and Λ6= are a-invariant subsets. Moreover, since we have assumed that
the singularities are isolated, these sets are finite. We shall define a map c : Λ6= → {B,W},
invariant for both involutions − and ∗. Actually, it is enough to set:

c(λ) = W, if χ(B ∩ S(x; ε)) < χ(W ∩ S(x; ε))
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and c(λ) = B, otherwise.

Choose also a mapping d : Λ= → {W,B} such that d(−x) = −d(x) (it is clearly possible
since − has no fixed point). Now, let us set

C− := (C1 \
⋃

x∈SingC1

B(x; ε)) ∪ (
⋃

x∈Λ=

S(x; ε) ∩ d(x)) ∪ (
⋃

x∈Λ 6=

S(x; ε) ∩ c(x)).

It defines an a-invariant subset of S2k+1. Define now an equivariant subset of S2k+1

invariant under the action of ∗ by setting:

C∗ := (C2 \
⋃

x∈SingC2

B(h(x); ε)) ∪ (
⋃

x∈Λ=

S(h(x); ε) ∩ h(W )) ∪ (
⋃

x∈Λ 6=

S(h(x); ε) ∩ c′(x)),

where c′(x) = h(c(x)).

Note that, as C1 has been modified only locally at the singularities, the values of dC

have been modified only for the points lying close to Sing C1 and therefore C− is still odd
and C∗ is still even.

Remark that as we have cut off the singular locus, the set C ′ := C1 \
⋃

x∈SingC1
B(x; ε)

is a manifold with boundary. Near x ∈ Sing C1, this boundary is also the boundary of the
closure of the manifolds S(x; ε) ∪ W and S(x; ε) ∪ B. Therefore, near every x ∈ Sing C1,
the sets C ′ ∪ (S(x; ε) ∩W ) and C ′ ∪ (S(x; ε) ∩W ) are topological manifolds and hence so
are C− and C∗. We claim that:

χ(C−) = χ(C∗),

which will clearly contradict Proposition 3.2 since we have already observed that C− is
even and C∗ odd.

To prove this claim, first remark that the set C− and C∗ are the respective disjoint
union of three sets. The first and the third set involved in each union are germs and
links at singular points of homeomorphic sets. As the Euler characteristic of the link is a
topological invariant of the singularity, they have the same Euler charactersitic. Thus, it
is enough to prove that the Euler characteristics of the second set coincide, i. e.:

∑

x∈Λ=

χ(S(h(x); ε) ∩ h(W )) =
∑

x∈Λ=

χ(S(x; ε) ∩ d(x)).

But, by definition of Λ= we have

χ(S(x; ε) ∩ W ) = χ(S(x; ε) ∩ B),

for any x ∈ Λ=. This implies the preceding equality (no matter d(x) is W or B) and yields
the claim. �

Remark 4. Actually the odd hypersurfaces of Sn are those having Yang’s index equal to
(n− 1) (see [J, Y]). Hence, we have proved in this section that an a-invariant subanalytic
subset of Sn with only isolated singularities cannot be homeomorphic to one having a
Yang index strictly inferior.

4. Multiplicity mod 2 and bi-Lipschitz maps

4.1. The main results. We end this article by proving four equimultiplicity theorems
that are consequences of the main results of the previous section. We start by the case of
hypersurfaces of R

3.

Theorem 4.1. Multiplicity mod 2 is a subanalytic bi-Lipschitz invariant for real analytic
hypersurfaces of R

3.
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Proof. Let A be the germ of a real analytic hypersurface of R
3. By proposition 2.3 and

Proposition 1.4 we have

mA = dC′
A
(λ;−λ)

for λ /∈ C ′
A. By Theorem 3.1 we know that the number dC′

A
(λ;−λ) is a topological

invariant of C ′
A. But by (2) of Proposition 1.5 if an analytic germ A is subanalytically

bi-Lipschitz homeomorphic to an analytic germ B then C ′
A is homeomorphic to C ′

B . �

We also can state the following criteria of equimultiplicity mod 2:

Theorem 4.2. Let A be the germ of an analytic hypersurface of R
n with n even. Assume

that CA has only isolated singularities. Then the multiplicity mod 2 of A is preserved by
subanalytic bi-Lipschitz homeomorphisms.

Let us make a little more precise the statement of the above Theorems. By ”the
multiplicity mod 2 of A is preserved by subanalytic bi-Lipschitz homeomorphisms” we
mean that another germ of analytic hypersurface B of R

n, for which we have a germ
of subanalytic bi-Lipschitz homeomorphism h : (Rn; 0) → (Rn; 0) carrying A onto B,
has the same multiplicity mod 2 as A. Actually the theorem holds not only for analytic
hypersurfaces but for all Euler cycles having a ”well defined multiplicity” (that is to say
an a-invariant odd part of the tangent cone, see Proposition 2.5).

Proof. This can be checked in the same way as Theorem 4.1, replacing Theorem 3.1 by
Proposition 3.3. Note that if CA has only isolated singularities, C ′

A has isolated singular-
ities as well. �

Remark that Proposition 3.2 shows that when n is even it is not necessary to have a
homeomorphism of the ambient space.

In the case where n is odd we may prove the metric invariance of the multiplicity if C ′
A

is a manifold. This is due to the fact that we may take the suspension of the odd part of
the tangent cone.

Theorem 4.3. If C ′
A is a topological manifold, the conclusion of the previous theorem

holds for any n.

Proof. We may assume that n is odd. Observe that the suspension of C ′
A provides a a-

equivariant subset of Sn, which has only isolated singularities. The respective suspensions
of two homeomorphic sets are clearly homeomorphic. Thus, we may apply exactly the
same argument as in the previous theorem. �

Of course, if CA is a topological manifold then so is C ′
A.

In order to state the last equimultiplicity theorem, we introduce a notation. Given a
germ of analytic hypersurface A ⊂ R

n+1, let:

ρA := sup
x∈Sn

d(x;C ′
A),

(where C ′
A is defined by Proposition 1.4).

We are going to see that, two germs of real analytic sets A and B which are subanalyt-
ically bi-Lipschitz homeomorphic have the same multiplicity when the Lipschitz constant
is close enough to one. In the complex case, a similar theorem has been proved by Comte
in [C].
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In the theorem below, the bound for the Lipschitz constant of h could be slightly
improved but this complicates the computations. Actually, the most important fact is
that we give a bound which only depends on A.

Theorem 4.4. Let A and B be germs at 0 of real analytic hypersurfaces of R
n+1. Let

h : (Rn+1; 0) → (Rn+1; 0) be the germ of a subanalytic bi-Lipschitz homeomorphism with

|Lip(h) − 1| ≤
ρ2

A

48 and h(A) = B. Then mA ≡ mB.

Proof. By Proposition 1.5, the mapping h′ : Sn → Sn satisfies h′(C ′
A) = C ′

B and, by
Lemma 1.6, (1.4) holds. Set for simplicity L := Lip(h) and δ := L − 1.

Take x ∈ Sn such that d(x;C ′
A) = ρA. First we observe that, by definition of ρA, we

have:

d(h′(x);C ′
B) ≥

ρA

C2
−

ρ2
A

48
≥ ρA − 2

ρ2
A

48
ρA −

ρ2
A

48
≥

3

4
ρA,

(since 1
L2 ≥ 1 − 2δ and ρA ≤ 2).

Now remark that if
d(−h′(−x);h′(x)) < d(h′(x);C ′

B),

then −h′(−x) and h′(x) belong to the same connected component of Sn \C ′
B , and hence,

by Proposition 2.3 and Proposition 2.2, the conclusion of the theorem ensues. Therefore,
thanks to the previous inequality, it is enough to show that

d(−h′(−x);h′(x)) <
3

4
ρA.

But by (1.4):

d(h′(x);h′(−x)) ≥
2

L2
−

ρ2
A

48
≥ 2 − 5

ρ2
A

48
.

By Pythagoras this implies that:

d(h′(x);−h′(−x)) ≤

√
20ρ2

A

48
<

3

4
ρA,

as required. �

4.2. A conjecture. The general case still remains undecided, even in R
4. As the re-

sults of section 1 and 2 are general, it is enough to generalize Proposition 3.3. In other
words, the subanalytic bi-Lipschitz invariance of the multiplicity mod 2 for real analytic
hypersurfaces would be established if the following conjecture were proved:

Conjecture. Let C and C ′ be two a-invariant Euler cycles of Sn of dimension (n − 1).
Assume that there exists a subanalytic homeomorphism h : Sn → Sn such that h(C) = C ′.
Then C is even iff so is C ′ (see section 3 for the definition).

It seems to be true at least in S3 (on pictures). Note that it is enough to solve the prob-
lem for odd dimensional spheres (or even dimensional) since we may take the suspension
of the subsets.
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[KR] K. Kurdyka and G. Raby, Densité des ensembles sous-analytiques. Ann. Inst. Fourier (Grenoble)

39 (1989), no. 3, 753–771.
[M] W. S. Massey, Singular homology theory. Graduate Texts in Mathematics, 70. Springer-Verlag,

New Yodim-Berlin, 1980.
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