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LIPSCHITZ TRIANGULATIONS

GUILLAUME VALETTE

Abstract. In this paper we introduce a new tool called “Lipschitz

triangulations”, which gives combinatorially all information about the
metric type. We show the existence of such triangulations for semi-
algebraic sets. As a consequence we obtain a bi-Lipschitz version of

Hardt’s theorem. Hardt’s theorem states that, given a family defin-
able in an o-minimal structure, there exists (generically) a trivialization

which is definable in this o-minimal structure. We show that, for a
polynomially bounded o-minimal structure, there exists such an isotopy
which is bi-Lipschitz as well.

1. Introduction

In this paper we introduce a new notion of triangulation describing exactly
the metric type of a set, and we prove that semi-algebraic sets are triangulable
in this sense. As an application we obtain a bi-Lipschitz version of Hardt’s
theorem. This theorem, which appeared in [H2], states that, given a semi-
algebraic family of subsets of Rn, where R is a real closed field, we can find a
partition of the set of parameters such that over each element of this partition
the fibers of this family are semi-algebraically homeomorphic. Such a result
is proved in [S], [C], [BCR1], [BCR2], [H1], [H2]. Here we prove an analog
for semi-algebraic bi-Lipschitz equivalence. Our proof also holds over any
polynomially bounded o-minimal structure over R. Indeed, it works over any
o-minimal structure in which Theorem 4.1 holds. It is inspired by the proof
of M. Coste [C] of the topological case. There are also bi-Lipschitz equisin-
gularity results proved by A. Parusiński [P1] and T. Mostowski [M] involving
integration of vector fields, but these do not provide definable isotopies.

Our notion of Lipschitz triangulation is well adapted to the study of the
metric type of a singular set. It is a combinatorial tool, as can be triangula-
tions for the topological point of view, involving the entire Lipschitzian type
of the singularity. It also allows us to generalize an elegant proof of Hardt’s
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Theorem (see [C]). We construct simultaneous triangulations by triangulating
the generic fiber defined along an ultrafilter of definable sets.

The main difficulty of such a construction consists in finding regular pro-
jections. This means that we will need to find a direction which is transverse
to the tangent space at regular points of a given set. Given a set, there is no
regular projection in general, but for a semi-algebraic set we are able to find
such a projection up to a semi-algebraic bi-Lipschitz homeomorphism. We
construct this mapping in Section 3. We also give an “L-regular decomposi-
tion” theorem (see [P1], [K]).

The existence of Lipschitz triangulations is proved by induction. A key tool
is the preparation theorem for semi-algebraic continuous functions (Theorem
4.1). This theorem was first introduced by A. Parusiński in [P3] to prove the
existence of Lipschitz stratifications. Later J.-M. Lion and J.-P. Rolin [LR]
gave a version for global subanalytic sets and log-exp sets. Recently L. van
den Dries and P. Speissegger [vD-S] proved an o-minimal version of this result
for polynomially bounded o-minimal structures over R. Here we give a proof
in the semi-algebraic case over an arbitrary real closed field. Our statement is
weaker than that of [P3] and [LR], since it does not give a precise description
of the unit. However, it is just what we need. As a consequence of this result,
we can compare a definable function to a distance function over a definable
partition. This is done in Section 4.

In Section 5 we introduce our concept of Lipschitz triangulations. For in-
stance, if we consider a cusp {(x; y) ∈ R2 | y2 = x3}, it is clearly impossible
to find a bi-Lipschitz homeomorphism of this cusp onto a simplicial complex.
However, we can find a homeomorphism onto two edges joined at the origin
such that the length of any vertical segment passing through (x; 0) joining two
points of these two edges is multiplied by x3/2. For real algebraic curves such
a construction had been given by L. Birbrair [B]. We will generalize this to
higher dimensions. What is important is that two sets having the same semi-
algebraic Lipschitz trivialization will be semi-algebraically Lipschitz homeo-
morphic. Finally, as in [C], by performing simultaneous triangulations we
will obtain a bi-Lipschitz version of Hardt’s theorem. This theorem provides
a bound for the number of Lipschitzian types of sets defined by polynomi-
als of bounded degree over any real closed field, and over any polynomially
bounded o-minimal structure over R (where the existence of Lipschitz strati-
fications have not been proved yet). Definability of the isotopy provides more
information about the behavior of the Lipschitz constants when we approach
the instability locus (see Remarks 2.3). We believe that Lipschitz triangula-
tions may be useful in defining metric invariants and in counting the number
of Lipschitz types definable in a polynomially bounded o-minimal structure
over R (see Remark 5.8).

Throughout this paper R is a real closed field and Q+ denotes the set of
strictly positive rational numbers. In Section 3 we will work over an o-minimal
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structure over R. All the results of Sections 4 and 5 hold for semi-algebraic sets
over R or for a polynomially bounded o-minimal structure provided R = R.
Indeed, all the results of these sections could be stated over any polynomi-
ally bounded structure in which Theorem 4.1 holds. The word definable will
always mean definable in the considered o-minimal structure.

2. Statement of the main result

We assume either that S = (Sn)n∈N is the o-minimal structure of semi-
algebraic sets over R or that R = R and S is a polynomially bounded structure
over R.

Let A be a definable subset of Rn × Rp. We will consider such a subset
as a family of definable subsets of Rn parametrized by Rp. For U ⊆ Rp we
denote by AU the subfamily {q = (x; t) ∈ Rn × Rp | q ∈ A, t ∈ U}, and for
t ∈ Rp we denote by At the fiber of A at t, i.e., {x ∈ Rn | q = (x; t) ∈ A}.

Definition 2.1. Let A be a definable subset of Rn × Rp. We say that
A is definably bi-Lipschitz trivial along U ⊆ Rp if there exist t0 ∈ U and a
definable homeomorphism h : At0 × U → AU of the form h(x; t) = (ht(x); t)
together with a definable continuous function C : U → R satisfying for any
elements x and x′ in At0 , and t ∈ U ,

(2.1) |ht(x)− ht(x′)| ≤ C(t) · |x− x′|
and, for any (x;x′) ∈ At ×At, t ∈ U ,

(2.2) |h−1
t (x)− h−1

t (x′)| ≤ C(t) · |x− x′|.

In this paper we will prove the following theorem:

Theorem 2.2. Let A be a definable subset of Rn ×Rp. Then there exists
a definable partition of Rp, such that the family A is definably bi-Lipschitz
trivial along each element of this partition.

Remarks 2.3. (a) In fact, we will prove a stronger statement, since the
isotopy will also be defined on the ambient space. We could also require the
isotopy to preserve a finite number of given definable families.

(b) In Definition 2.1, the Lipschitz constants are functions of the parame-
ters. As they are continuous functions, we have Lipschitz triviality over any
closed bounded subset of each element of the partition. We cannot hope for
more. Indeed, for any non-Lipschitz stable family of sets, the Lipschitz con-
stants tend to infinity when the parameters approach the instability locus.
In the case of isotopies given by vector fields [P3], [M], constants of vector
fields tend to infinity inversely proportional to the distance to the boundary
of the strata. So the Lipschitz constant of the flow is given by the Gronwall
lemma as exponential of the inverse of the distance. In Theorem 2.2, the
bound obtained is better, since the constant is a definable function which,
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by  Lojasiewicz’s inequality, can be bounded by a power of the inverse of the
distance to the boundary.

(c) Trivialization theorems obtained by integration of vector fields assume
the properness of the mapping (see [P1]–[P4], [M]). This is not the case in
the above statement, as in Hardt’s theorem. Thus, also at infinity, we obtain
the finiteness of metric types of the fibers.

(d) We can also have the Lipschitz property with respect to the parameters
for bounded sets (as stated in Proposition 5.7).

In the non-bounded case, it is impossible to have in general bi-Lipschitzia-
nity with respect to parameters, as shown by the following example:

Example 2.4. Consider the family of sets A = {(x; y; t) ∈ R2 × R | y =
tx}. It is easy to check that along no interval of type ]0; ε[, we can have
the bi-Lipschitz property with respect the parameter t (even with a constant
depending on t).

3. Regular directions

This section deals with an arbitrary o-minimal structure. In the following
sections we will need regular directions. A regular direction of a definable
subset A is a vector whose distance to lines included in a tangent space at a
smooth point of A is bounded below. We will prove that for a definable set
over an o-minimal structure there exist such directions, up to a bi-Lipschitz
homeomorphism of the ambient space (Proposition 3.13).

3.1. Notations, definitions and basic results. In this section we give
definitions and prove lemmas which will be useful in the proof of Proposi-
tion 3.10 in finding regular directions for a definable subset. We start by
introducing some notations.

We denote by |.| the euclidian norm of Rn. We consider the induced dis-
tance over the sphere Sn−1. We write B(x; r) for the ball. We denote by
Gk,m the Grassmannian of k dimensional vector subspaces of Rm and we put
Gm =

⋃m−1
k=1 Gk,m.

A Lipschitzian function is said to be Q−Lipschitzian when the Lipschitz
constant can be chosen in Q+ (recall that R is not necessarily archimedian).

We define a metric d on Gk,m by

d(P ;Q) = sup{d(λ;Sm−1 ∩Q);λ is a unit vector of P},

where d(λ;Q) denotes the distance in Rm.
Given a definable set A ⊆ Rm, we define τ(A) to be the closure of the set

of vector spaces which are tangent to A at a regular point, i.e.,

τ(A) = cl {TxA ∈ Gm | x ∈ Areg}.
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Given X ⊆ Gm, we denote by Λ(X) the projective subspace of Sm−1 consist-
ing of all unit vectors included in an element of X.

Let λ ∈ Sn. We denote by πλ : Rn+1 → Nλ the orthogonal projection onto
the normal space of the vector λ, and by qλ the coordinate of q along λ.

Let A and A′ be elements of Sn, with A′ ⊆ Nλ, and ξ : A′ → R be a
definable function. The set A is said to be the graph of the function ξ for λ if

A = {q ∈ Rn+1 | πλ(q) ∈ A′ and qλ = ξ(πλ(q))}.

The projection πλ also induces a mapping π̃λ : Sn\{±λ} → Sn−1(Nλ) defined
by π̃λ(u) = πλ(u)/|πλ(u)|.

Definition 3.1. Let A be a definable set of Rn+1. An element λ of Sn

is said to be regular for A if

d(λ; (Λ ◦ τ)(A)) ≥ α

with α ∈ Q+. A subset of Sn is said to be regular for A if all its elements are
regular.

The following observations are consequences of the definitions and basic
results about Lipschitz functions.

Observations. Let λ ∈ Sn and r ∈ Q+.
(0) Given a definable partition of Rn, it is possible to refine it in such a

way that on each element of this partition two given points q and q′ may be
joined by a definable path of length equivalent (up to constants in Q) to the
distance between these two points. This is a consequence of the existence
of L-regular decompositions. (See [K], [P4]; actually, in Section 3.3 we shall
prove a theorem guaranteeing the existence of such a decomposition having
an extra property.)

(1) If A is a union of graphs for λ of Q−Lipschitzian functions, then there
exists r ∈ Q+ such that B(λ; r) is regular for A. Also, if B(λ; r) ⊆ Sn is
regular for the definable set A ⊆ Rn+1, then A is the union of the graphs
for λ of some Q−Lipschitzian functions. Moreover, if A is the graph for λ
of a Lipschitzian function ξ : Nλ → R, then ξ is C-Lipschitzian with C ≤
1/d(λ; Λ(τ(A))).

Proof. The first assertion is obvious. For the second we may assume that
λ is en+1, the last vector of the canonical basis. By cylindrical decomposition,
the set A can be included in the graphs of some definable functions ξi : Vi → R.
By the first observation it is enough to bound their derivatives (that exit
generically). Now for a regular point x ∈ Vi we have d(λ;T(x;ξi(x))A) =
1/(
√

1 + |∂xξi|2), and we are done. The last assertion also follows, since
d(λ;T ) ≤ d(λ; Λ(T )). �
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(2) Every definable Q−Lipschitzian function ξ defined over a subset A of
Rn can be extended to a definable Q−Lipschitzian function ξ̂ defined over the
whole of Rn. (Actually, it is enough to set ξ̂(q) = inf{ξ(q′)+C|q−q′| | q′ ∈ A}
if ξ ≥ 0 is a C-Lipschitz function on A.) If ξ1 and ξ2 are two definable functions
such that ξ1 ≤ ξ ≤ ξ2, then by considering max(min(ξ̂; ξ2); ξ1), if necessary,
we can require that ξ̂ also fulfills ξ1 ≤ ξ̂ ≤ ξ2.

(3) If A is the union of the graphs for a direction λ of definable functions
θ1, . . . , θk over Rn, we can find an ordered family of definable functions ξ1 ≤
· · · ≤ ξk such that A is the union of the graphs of these functions for λ.

(4) Given a family of definable Lipschitzian functions f1, . . . , fk, defined
over Rn, we can find some definable Lipschitzian functions ξ1, . . . , ξm such
that over each cell C ⊆ Rn+1 delimited by the graphs of two consecutive
functions ξi and ξi+1 the functions |qn+1 − fi(x)| (where q = (x; qn+1)) are
comparable to each other (for the relation ≤) and comparable to the functions
fi ◦π (where π is the canonical projection). Indeed, it suffices to consider the
graphs of the functions fi, fi + fj and (fi + fj)/2; then the family ξ1, . . . , ξm
is given by the last point.

Proposition 3.2. Let B be a connected subset of Sn, λ0 ∈ B, and let
ξ : Nλ0 → R be a continuous definable function. Let H be the graph of ξ
for λ0. Suppose that B is regular for H. Then, for any λ ∈ B, the set H is
the graph of a function ξλ : Nλ → R. Moreover, the set “under the graph”,
namely,

E(H;λ) = {q ∈ Rn+1 | qλ ≤ ξλ(πλ(q))},
is independent of λ ∈ B.

Proof. Let

C = {λ ∈ B | ∀x ∈ Nλ card π−1
λ (x) ∩H = 1}.

We have to check that C = B. Let λ ∈ C. Let r(λ) = d(λ; Λ(τ(H))).
We claim that B(λ; r(λ)/2) ⊆ C. Consider λ′ ∈ B(λ; r(λ)/2) different from

λ, x ∈ Nλ, and set l′ = πλ(λ′). It suffices to show that the line L generated
by λ′ and passing through x intersects H in exactly one point. The line L is
the graph for λ of the function η(x + tl′) = α · t with α > 2/r(λ). On the
other hand, since λ ∈ C, the set H is the graph for λ of a 2/r(λ)-Lipschitzian
function ξλ (see Observation (1) above). This implies that for t large enough
we have η(x + tl′) ≥ ξ(x + tl′), and that η(x − tl′) ≤ ξ(x − tl′). Thus there
is a point q such that ξ(q) = η(q), which implies that the line L cuts H. The
uniqueness of the intersection is clear from the fact that α > 2/r(λ) and ξ is
2/r(λ)-Lipschitzian. This proves the claim.

Note that this implies that C is open in B. Indeed, this proves also the
closeness. Consider λ ∈ B and a continuous definable arc γ in C tending
to λ. Since r(γ(t)) tends to r(λ), which is nonzero, the ball B(γ(t); r(γ(t)))
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contains λ for t small enough. So the closeness of C follows from the above
claim.

It remains to check that E(H;λ) is independent of λ ∈ B. It is the closure
of one of the two connected components of the complement of the graph. So,
it suffices to find at least one point which is in common to all the E(H;λ)
and which lies outside H. The set H is the zero locus of the function f(q) =
qλ0 − ξ(πλ0(q)). Locally, at a smooth point q of H it is clear that E(H;λ) is
given by the sign of dqf(λ). But as B is regular for H, this never vanishes
and so is of constant sign over B. �

Remark 3.3. Consider en+1, the last vector of the canonical basis. Sup-
pose B ⊆ Sn−1 is regular for a subset A ⊆ Rn. Then, for any a ∈ Q+ the
set

π̃−1
en+1

(B) ∩ {λ ∈ Sn | d(λ; {±en+1}) ≥ a}

is regular for π−1
en+1

(A). Moreover, if A is the graph of a Q−Lipschitzian
function for λ ∈ B, and if B is connected, then π−1

en+1
(A) is the graph of a

Q−Lipschitzian function for any λ′ in

π̃−1
λ (B) ∩ {λ ∈ Sn | d(λ; {±en+1}) ≥ a},

for any a ∈ Q+ (by Proposition 3.2). Moreover, in this case the following
holds:

E(π−1
en+1

(A);λ′) = π−1
en+1

(E(A;λ)).

We will also need a lemma due to K. Kurdyka [K]:

Lemma 3.4. Let η ∈ Q+ be less than 1/2 and l ∈ Sn. Given ν, n ∈ N
there exist strictly positive constants ε ∈ Q+ and t ∈ Q+ such that for any
P1, . . . , Pν in Gn,n+1 there exists a line P /∈ B(l; η) such that for any Y ∈⋃ν
i=1B(Pi; ε) we have

d(P ;Sn ∩ Y )) ≥ t.

This statement is a bit different from that given in [K] (see Lemma 3 of
[K]), since here we need to be able to choose the line P in the complement
of a sufficiently small given ball. Moreover, we work over an arbitrary real
closed field. However, the same proof gives the above version of the lemma.

3.2. Regular families.

Definition 3.5. A regular family of hypersurfaces of Rn+1 is a family
H = (Hk;λk)1≤k≤b with b ∈ N of definable subsets of Rn+1 together with
elements of Sn such that the following properties hold for each k < b:

(i) The sets Hk and Hk+1 are respectively the graphs for λk of two global
Q−Lipschitzian functions ξk and ξ′k such that ξk ≤ ξ′k.
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(ii) We have
E(Hk+1;λk) = E(Hk+1;λk+1).

Let A be a definable subset of Rn+1 of empty interior. We say that the
family H is compatible with A, if A ⊆

⋃b
k=1Hk. An extension of H is a

regular family compatible with the set
⋃b
k=1Hk.

Given k < b, we denote by Gk the cylinder defined by the functions ξk and
ξ′k, i.e., Gk = E(Hk+1;λk) \ Int(E(Hk;λk)). Note that by Proposition 3.2, if
B is a connected regular subset for Hk ∪Hk+1 containing λk, then the set Gk
may be defined using any λ ∈ B.

We say that another regular family H ′ coincides with H outside Gk if for
each j′ either H ′j ⊆ Gk or there exists j′ such that H ′j = Hj′ .

Remark 3.6. We may always assume that the Gk are of nonempty inte-
rior. Indeed, if Int(Gk) = ∅, then Hk = Hk+1, and in this case we may remove
(Hk+1;λk+1) from the sequence.

The following lemma allows us to assume that the interiors of the sets Gk
are connected.

Lemma 3.7. Let H be a regular system of hypersurfaces. There exists an
extension Ĥ of H such that all the sets Int(Ĝk) are connected.

Proof. Let 1 ≤ m ≤ b − 1. Suppose that Gm is not connected. Let
A1, . . . , Aν be the connected components of Gm. Set A′i = πλm(Ai). Each Ai
is of the form

{(xλm ; qλm) ∈ A′i ⊕Nλm | ξm(xλm) ≤ qλm ≤ ξ′m(xλm)}.
Clearly ξm = ξ′m over the boundary of A′i. Thus we can define Lipschitzian
functions ηi, 1 ≤ i ≤ ν − 1, as follows. We set over A′j , ηi = ξ′j whenever
1 ≤ j ≤ i, and ηi = ξj when j > i. Therefore we have that η1 ≤ · · · ≤ ην−1.
Now it suffices to

• let Ĥk = Hk and λ̂k = λk if k ≤ m,
• let Ĥk be the graph of ηi−m for λm and λ̂k = λm for m + 1 ≤ k ≤
m+ ν − 1,
• let Ĥk = Hk and λ̂k = λk if m+ 1 ≤ k ≤ b+ ν − 1.

This is clearly a regular system of hypersurfaces. Note that the sets Int(Ĝk)
are the connected components of Int(Gm). �

Given a regular family of hypersurfaces H, it will be convenient to extend
the notations in the following way. Define H0 = {−∞} and Hb+1 = {+∞}.
Suppose all the elements of Sn are regular for these two sets. Suppose also that
they are the respective graphs of two functions which take −∞ and +∞ as
constant values (for any λ). Define also λ0 = λ1, λb+1 = λb, E(H0;λ0) = ∅,
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G0 = E(H1;λ1), Gb = Rn+1 \ Int(E(Hb;λb)). Observe that now Rn+1 =⋃b
k=0Gk.
We want to prove that every definable set with empty interior admits a

regular family compatible with it (Proposition 3.10). To this end, we first
prove the following lemma, which is a consequence of Observations (1) and
(2) of the previous section.

Lemma 3.8. Let H = (Hk;λk)1≤k≤b be a regular family of hypersurfaces
of Rn+1 and let m ∈ {0, . . . , b}. Let A be a definable subset of Gm of empty
interior such that λm is regular for A. Then H can be extended to a regular
family of hypersurfaces H̃ compatible with A, which coincides with H outside
Gm.

Proof. By property (i) of Definition 3.5 the sets Hm and Hm+1 are re-
spectively the graphs for λm of two Q−Lipschitzian functions ξm and ξ′m.
By Observation (1) the set A can be included in a finite number of graphs
for λm of Q−Lipschitzian functions. By Observation (2) these functions, say
θ1, . . . , θν , can be assumed to be ordered and satisfy ξm ≤ θi ≤ ξ′m. So, it
suffices to

• let H ′k = Hk and λ′k = λk whenever 1 ≤ k ≤ m,
• let H ′k be the graph of θk−m for λm and λ′k = λm for m < k ≤ m+ ν,
• let H ′k = Hk−ν and λ′k = λk−ν , whenever m+ 1 + ν ≤ k ≤ b+ ν.

Properties (i) and (ii) clearly hold by construction. �

We will need a second lemma, which concerns the extension of a regular
family by a second one.

Lemma 3.9. Let H = (Hk;λk)1≤k≤b be a regular family of hypersurfaces
of Rn+1, m ≤ b an integer and r ∈ Q+ such that B(λm; r) is regular for
Hm∪Hm+1. Let Ĥ = (Ĥk; λ̂k)k≤b̂ be a second regular system of hypersurfaces

of Rn+1, such that for each k, λ̂k ∈ B(λm; r). Then we can find an extension
H̃ = (H̃k; λ̃k)k≤b̃ of H, which coincides with H outside Gm, such that we have

Gm =
⋃m+b̂
j=m G̃j. Moreover, λ̃m = λ̂1 and for each 1 ≤ k ≤ b̂ we may require

λ̃k+m = λ̂k and G̃k+m ⊆ (Ĝk ∩Gm) ∪Hm ∪Hm+1.

Proof. Let k ≤ b̂ be an integer. Since λ̂k ∈ B(λm; r), by Proposition 3.2,
the setsHm andHm+1 are respectively the graphs for λ̂k of twoQ−Lipschitzian
functions µk and µ′k. Moreover, the set Ĥk is also the graph for λ̂k of a
Q−Lipschitzian function ξ̂k. Define

ηk = min(max(µk; ξ̂k);µ′k),

in order to get a function whose graph is included in Gm. Now we define the
desired regular family (H̃k; λ̃k)1≤k≤b̃ as follows.
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• Let H̃k = Hk and λ̃k = λk if k < m.
• Let H̃m = Hm and λ̃m = λ̂1.
• Let H̃k be the graph of ηk−m for λ̂k−m, and let λ̃k = λ̂k−m, whenever
m+ 1 ≤ k ≤ m+ b̂.
• Finally, let H̃k = Hk−b̂ and λ̃k = λk−b̂ if m+ b̂+ 1 ≤ k ≤ b+ b̂.

Now we check that the properties (i) and (ii) hold for the family H̃.
For k < m − 1, or k ≥ m + b̂ + 1, the result is clear since the family H̃

is, in fact, the family H. For k = m − 1 property (i) follows from (i) for
H and property (ii) is a consequence of Proposition 3.2, since we assumed
λ1 ∈ B(λm; r), which is regular for Hm. For k = m property (i) also follows
from Proposition 3.2 for the same reason and property (ii) is trivial.

So assume now m < k ≤ m + b̂. As λ̃k = λ̂k−m, the sets Hm and Hm+1

are the graphs for λ̃k of µk−m and µ′k−m. Moreover, by (i) for Ĥ, the set
Ĥk+1−m is the graph for λ̃k of a Q−Lipschitzian function ξ̂′k−m such that
ξ̂k−m ≤ ξ̂′k−m.

Define
η′k = min(max(µk−m; ξ̂′k−m);µ′k−m).

We claim that the graph of η′k for λ̃k is that of ηk+1−m for λ̃k+1. To see this,
note that the graph of η′k (resp. ηk+1−m) coincides

• with Hm over E(Hm; λ̃k) (resp. E(Hm; λ̃k+1)),
• with Ĥk+1−m over E(Hm+1; λ̃k) \E(Hm; λ̃k) (resp. E(Hm+1; λ̃k+1) \
E(Hm; λ̃k+1)),
• with Hm+1 over Rn+1 \E(Hm+1; λ̃k) (resp. Rn+1 \E(Hm+1; λ̃k+1)).

But, by Proposition 3.2, as the ball B(λm; r) is connected and regular for
Hm∪Hm+1, the sets E(Hm; l) and E(Hm+1; l) do not depend on l ∈ B(λm; r).
As λ̃k and λ̃k+1 both belong to B(λm; r), the claim is clear.

This claim proves that H̃k+1 is the graph of η′k for λ̃k. Now, to check (i),
we just have to prove that ηk−m ≤ η′k. But this is clear, as ξ̂k−m ≤ ξ̂′k−m by
the definition of η′k and ηk−m.

It remains to check property (ii). If k = m+ b̂− 1, this is a consequence of
Proposition 3.2, since we have assumed that λ̃k belongs to B(λm; r).

Let k be such that m ≤ k ≤ m + b̂ − 1. First note that by (ii) for Ĥ we
have

E(Ĥk+1; λ̂k) = E(Ĥk+1; λ̂k+1).

But, as above, E(H̃k+1; λ̃k) (resp. λ̃k+1) is equal

• to E(Hm; λ̃k) over E(Hm; λ̃k) (resp. λ̃k+1),
• to E(Ĥk+1−m; λ̃k) over E(Hm+1; λ̃k) \ E(Hm; λ̃k) (resp. λ̃k+1),
• to E(Hm+1; λ̃k) over Rn+1 \ E(Hm+1; λ̃k) (resp. λ̃k+1).
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As λ̃k+1 and λ̃k both belong to the ball B(λm; r), this proves (ii).
The second part of the statement of the lemma follows from the construc-

tion. �

Proposition 3.10. For each definable set A of Rn+1, of empty interior,
there exists a regular family of hypersurfaces of Rn+1 compatible with A.

Proof. Actually, we will prove by induction on n that there exists a regular
family of hypersurfaces of Rn+1 compatible with a given definable subset such
that all the λk can be chosen in a given ball B(λ; η) in Sn, for η ∈ Q+.

For n = 0 the result is clear. So assume it is true for n − 1. Let A be a
definable subset and B(λ; η) ⊆ Sn, η ∈ Q+.

Take e /∈ B(λ; η) such that −e /∈ B(λ; η). We can choose e in such a way
that πe restricted to A is finite to one. Let ν be the maximal number of
points of a fiber of πe restricted to A. For any ε ∈ Q+, there exists a partition
(Ai)i∈I of Ne such that, for each i ∈ I, the set τ(π−1

e (cl(Ai))∩A) is included
in the union of ν balls of radius ε. Consider such a partition for the ε given
by Lemma 3.4. Choose η′ ∈ Q+ such that

(3.1) B(π̃e(λ); η′) ⊆ π̃e(B(λ; η/2)).

Apply the induction hypothesis (identify Ne with Rn) to the set consisting
of the union of the boundaries of the sets Ai to get a regular family of Rn,
H = (Hk;λk)1≤k≤b, such that all the λk belong to B(π̃e(λ); η′). By Lemma
3.7 we may assume that each set Int(Gk) is connected. We may also assume
it to be of nonempty interior (see Remark 3.6). Now this implies that each
Gk is included in cl(Aj) for some j as follows. The set Ai∩ Int(G′′k) is an open
set of empty boundary of Int(G′′k). Hence it is a connected component. But
as Int(G′′k) is connected, it must be either the empty set or Int(G′′k) itself.

Then define
H ′k = π−1

e (Hk).
By (3.1), λk ∈ π̃e(B(λ; η/2)). So, choose some λ′k ∈ π̃e

−1(λk) ∩B(λ; η/2).
As λ′k ∈ B(λ; η/2) and e does not belong to the ball B(λ; η), we have

d(λ′k; e) ≥ η/2. So, by Remark 3.3 (identify again Ne with Rn), the set H ′k
is the graph of a Q−Lipschitzian function. And, as H satisfies (ii), again by
Remark 3.3, condition (ii) is clearly fulfilled by H ′.

Fix m less than b. By Lemma 3.4 and the choice of ε, over each Gm the
set A is the union of the graphs of some definable functions having a common
regular ball B(P ; t) with t in Q+ (since we have seen that each Gm is included
in some cl(Aj)).

We would like to extend H ′ to a regular family containing these graphs,
applying Lemma 3.8. The problem is that all the tangent spaces of these
graphs may cover all the regular directions of H ′m near λ′m. So we project a
second time, now along P , and construct another family that we can extend
to a family compatible with these graphs.
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We may assume that πP restricted to A is finite to one. Lemma 3.4 also
states that we may require that P and −P do not belong to the ball B(λ′m; r).

Note that as λ′m is regular for H ′m∪H ′m+1, by Observation (1), there exists
r ∈ Q+ such that B(λ′m; r) is regular for H ′m ∪ H ′m+1. Moreover, as λ′m ∈
B(λ; η/2), we may choose r in such a way that we have B(λ′m; r) ⊆ B(λ; η).
Note also that there exists a constant r′ ∈ Q+ such that

(3.2) B(π̃P (λ′m); r′) ⊆ π̃P (B(λ′m; r/2)),

where the first ball is taken in Sn−1.
To complete the proof we need a lemma.

Lemma 3.11. Let l ∈ Sn, r ∈ Q+ and n1 ∈ N. Let C be a closed subset
of Gn+1 and P an element of Sn such that

(3.3) d(P ; Λ(C)) ≥ t,
where t ∈ Q+. Then there exists α ∈ Q+ such that for any P1, . . . , Pn1 in C

and any y ∈ π̃P (B(l; r/2)) there exists λ̂ ∈ B(l; r/2) ∩ π̃−1
P (y) such that

d

(
λ̂; Λ

(
n1⋃
i=1

Pi

))
≥ α.

The proof of this lemma will be given later; we first show that it is enough
to finish the proof of the proposition. Let n0 be the maximal value of the
cardinality of fibers of πP|A . Applying this lemma with n1 = 2n0, C =
τ(A ∩G′m) and l = λ′m, we get a constant α.

Consider (Vσ)σ∈Σ, a finite partition of NP into definable sets, such that for
any Vσ

τ(A ∩ π−1
P (Vσ)) ⊆

n0⋃
i=0

B(Pi;α/2),

for some P1, . . . , Pn0
in τ(A ∩G′m).

Note that, as a consequence of Lemma 3.11, this implies that for any el-
ements σ and σ′ in Σ and for any y ∈ π̃P (B(λ′m; r/2)), there exists λ̂ ∈
B(λ′m; r/2) ∩ π̃−1

P (y) such that

(3.4) d
(
λ̂ ; Λ(τ(π−1

P (Vσ ∪ Vσ′) ∩G′m ∩A))
)
≥ α

2
.

Apply the induction hypothesis to get a regular family of hypersurfaces H ′′ of
Rn (identify NP with Rn) compatible with the boundaries of the sets Vσ. Do
it in such a way that all the associated lines λ′′k are elements of B(π̃P (λ′m); r′).

Define now

(3.5) Ĥk = π−1
P (H ′′k ).

The compatibility with the boundaries of the sets Vσ implies that every
G′′k is included in a subset cl(Vσ) (by the argument we used for Gk and the
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partition (Ai)i∈I). Thus, according to (3.4) for y = λ′′k , for each k > 1 there
exists λ̂k ∈ B(λm; r/2) ∩ π̃−1

P (λ′′k) such that

(3.6) d
(
λ̂k ; Λ(τ(π−1

P (G′′k) ∩G′m ∩A))
)
≥ α

2
.

Also, as a consequence of (3.4) and the compatibility of the G′′k with the sets,
we can find λ̂1 ∈ B(λm; r/2) ∩ π̃−1

P (λ′′1) such that

(3.7) d
(
λ̂1 ; Λ(τ(π−1

P (G′′0 ∪G′′1) ∩G′m ∩A))
)
≥ α

2
.

Note that, as P /∈ B(λ′m; r), we have for each k

d(λ̂k;P ) ≥ r

2
.

Hence, by construction and Remark 3.3, as λ̂k ∈ π̃−1
P (λ′′k), this implies that

the family Ĥ is a regular system of hypersurfaces. Moreover, as B(λ′m; r/2) ⊆
B(λ; η), all the λ̂k belong to B(λ; η). Note also that, as B(λ′m; r) is regular
for H ′m ∪H ′m+1 and λ̂k ∈ B(λm; r/2), the ball B( λ̂k; r/2) is regular for H ′m ∪
H ′m+1.

So we can apply Lemma 3.9 to H ′ and Ĥ to obtain a regular family of
hypersurfaces H̃ which is compatible with the sets G′m ∩ Ĥk.

But, by (3.5) we have
π−1
P (G′′k) = Ĝk.

Together with (3.6) this implies for k > 1

(3.8) d
(
λ̂k ; Λ(τ(Ĝk ∩G′m ∩A))

)
≥ α

2
.

Similarly, from (3.7) we obtain

(3.9) d
(
λ̂1 ; Λ(τ((Ĝ0 ∪ Ĝ1) ∩G′m ∩A))

)
≥ α

2
.

Note that as for each 1 ≤ k ≤ b̂ we have λk ∈ B(λ′k; r), λk is regular for
H ′m ∪ H ′m+1. Recall that Lemma 3.9 also states that λ̃m = λ̂1, λ̃k+m = λ̂k
and

(3.10) G̃k+m ⊆ H ′m ∪H ′m+1 ∪ (Ĝk ∩G′m)

for each 1 ≤ k ≤ b̂.
But, as for any k the vector λ̂k is regular for H ′m∪H ′m+1 by (3.8), (3.9) and

(3.10), this implies that for each m ≤ j ≤ m + b̂, the vector λ̃j is regular for
G̃j ∩A. So, by Lemma 3.8, we can extend H̃ to a family compatible with the

set
⋃m+b̂
j=m G̃j ∩A. But Lemma 3.9 also states that

⋃m+b̂
j=m G̃j = G′m. Therefore

the family obtained is indeed compatible with G′m∩A. Since all the extensions
do not modify the family outside G′m we can carry out the construction over
all the G′m successively. This provides the desired family. �
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It remains to prove Lemma 3.11. For this it will be convenient to work up
to a coordinate system. We will provide Sn with projective coordinates in the
following sense. Let U+

i (resp. U−i ) denote

{x ∈ Sn | xi ≥ ε}

(resp. xi ≤ −ε) with ε ∈ Q+ small enough. Then define hi : Ui → Rn by
hi(x1; . . . ;xn) = (x1/xi; . . . ;xn/xi). Note that hi is a Q-Lipschitzian isomor-
phism.

Now through such a chart the set Sn ∩ NP is a vector subspace and π̃P
becomes an orthogonal projection. The following lemma is fairly elementary,
but describes a useful property of π̃P .

Lemma 3.12. Let λ ∈ Sn, T ∈ Gn+1 and x ∈ T ∩ π̃−1
P (λ). Let v be a unit

vector tangent at x to π̃−1
P (λ). Then

d(P ;T ) ≤ d(v;Sn ∩ T ).

Proof. Let w be the vector of Sn ∩ T which realizes d(v;Sn ∩ T ). Observe
that the vectors x, P , and v are in the same two dimensional vector space.
Moreover, (x; v) is an orthonormal basis of this plane. Let P = αx+ βv with
α2 + β2 = 1. Then |P − (αx+ βw)| = β|v − w| ≤ |v − w|. �

Proof of Lemma 3.11. Up to a choice of the coordinate system of Sn (iden-
tify P with the last vector of the canonical basis) we can identify each Λ({T}),
for T ∈ C, with an element of Gk,n, k ≤ n, and the mapping π̃P with the or-
thogonal projection onto Rn−1. Denote by Q the direction of this projection.
By Lemma 3.12, hypothesis (3.3) implies that there exists u ∈ Q+ such that

d (Q; Λ({T})) ≥ u

for any T ∈ C.
This implies that Q is transverse to all the elements of the set C and that

for any x ∈ Q and any P1, . . . , Pn0 in C

(3.11) d

(
x ;

n0⋃
i=1

Λ(Pi)

)
≤ 1
u
· d

(
x;

n0⋃
i=1

Λ(Pi) ∩Q

)
.

For any y ∈ π̃P (B(l; r/2)) the length of the line segment π̃−1
P (y) ∩ B(l; r) is

bounded below by a strictly positive rational number α0.
Let α be the rational number α0u/(2n0). Then, using (3.11) one can easily

see that if the conclusion of the lemma failed for some y ∈ π̃P (B(l; r/2)), we
could cover the segment π̃−1

P (y) ∩ B(l; r) by n0 segments of length less than
α0/(2n0). This contradicts the fact that the length of this segment is not less
than α0. �
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Proposition 3.13. Let A be a definable subset of Rn of empty interior.
Then there exists a definable bi-Lipschitz homeomorphism h : Rn → Rn such
that h(A) has a regular projection.

Proof. By the above proposition there exists a regular system of hypersur-
faces H = (Hk;λk)1≤k≤b compatible with A. We define h over E(Hk;λk),
by induction on k, in such a way that h(E(Hk;λk)) = E(Fk; en) (and so
h(Hk) = Fk), where Fk is the graph of a function ηk for en, the last vector of
the canonical basis of Rn.

For k = 1 choose an orthonormal basis of Nλ1 and set h(q) = (xλ1 ; qλ1),
where xλ1 are the coordinates of πλ1(q) in this basis. Let k ≥ 1. By (i) the
sets Hk and Hk+1 are the graphs for λk of two Lipschitzian functions ξk and
ξ′k. For q ∈ E(Hk+1;λk) \ E(Hk;λk) define h(q) to be the element

h(πλk(q); ξk ◦ πλk(q)) + (qλk − ξk ◦ πλk(q))en.

Thanks to the property (ii) of Definition 3.5 we have E(Hk+1;λk+1) =
E(Hk+1;λk). Hence h is, in fact, defined over E(Hk+1;λk+1). Since ξk is
Lipschitzian, this is a bi-Lipschitz homeomorphism. Note also that the image
is E(Fk+1; en), where Fk+1 is the graph of the Lipschitzian function

ηk+1(q) = ηk ◦ πen(q) + (ξ′k − ξk) ◦ πλk ◦ h−1(q; ηk ◦ πen(q)).

This gives h over E(Hb;λb), and we can extend h to all of Rn as in the case k =
1. Now it is easy to check that h defines a bi-Lipschitz homeomorphism. �

3.3. About L-regular cell decompositions. L−regular decompositions
were introduced by A. Parusiński to prove the existence of Lipschitz stratifi-
cation of subanalytic sets ([P2], [P4], [K]). In Section 4 we will need a specific
version of such a decomposition. We want to be able to choose the directions
involved in this decomposition in a given finite subset Sn depending only on
n. This is stated in Proposition 3.16. The proof is inspired from the proof of
existence of L−regular decompositions given in [K].

We recall a definition from [K]:

Definition 3.14. Let α ∈ Q+ and let A ∈ Sn. We say that A is α−flat
if there exists P ∈ Gn−1,n such that

Λ(τ(A)) ⊆ Λ(B(P ;α)).

Lemma 3.15. Let s ∈ N. There exist λ1, . . . , λN in Sn and α ∈ Q+ such
that for any P1, . . . , Ps in Gn,n+1 we can find i ≤ N such that

λi /∈ Λ

(
s⋃
i=1

B(Pi;α)

)
.
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Proof. Let α be the rational number given by Lemma 3.4. Let λ1, . . . , λN
in Sn, such that

⋃N
i=1B(λi;α/2) = Sn. Let P1, . . . , Ps in Gn,n+1 and suppose

that for any i ∈ {1, . . . N} we have λi ∈ Λ(
⋃s
i=1B(Pi;α/2)). This implies

that Λ(
⋃s
i=1B(Pi;α)) ⊇ Sn. This contradicts Lemma 3.4. �

Using this lemma we can now prove the existence of the required L−regular
decomposition:

Proposition 3.16. There exists {λ1, . . . , λN} ⊆ Sn such that for any
elements A1, . . . , Am of Sn+1, there exists a cylindrical decomposition (Ci)i∈I
of Rn+1 adapted to all the sets Ak, 1 ≤ k ≤ m, such that for each open cell
Ci, we can find λj(i), 1 ≤ j(i) ≤ N , regular for the boundary of Ci.

Proof. According to Lemma 3.15 it is sufficient to prove by induction on n
the following assertions: given α ∈ Q+ and A1, . . . , Am in Sn, there exists a
cylindrical decomposition adapted to A1, . . . , Am, such that the boundary of
each open cell is the union of 2n definable subsets which are α−flat.

For n = 0 the result is clear. Let n ∈ N∗, α ∈ Q+ and let A1, . . . , Am
be elements of Sn+1. Denote by π : Rn+1 → Rn the canonical projection.
Choose a cylindrical definable cell decomposition V = (Vj)j∈J′ adapted to
A1, . . . , Am. Consider a partition (Wj)j∈J of Rn such that if Vj′ is a cell of V
of empty interior in Rn, then Vj′ ∩ π−1(Wj) is α−flat. Apply the induction
hypothesis to the sets Wj and to the elements of the cylindrical decomposition
of Rn defined by (Vj)j∈J′ to get a cylindrical decomposition (C ′i)i∈I′ . Define

Ci,j = π−1(C ′i) ∩ Vj .

The boundary of an open cell Ci,j is included in the union of π−1(∂C ′i) and
two subsets of two α−flat graphs. This completes the induction step. �

4. On the preparation theorem

In this section we prove the preparation theorem. As we mentioned in the
introduction, our statement is less precise than that in [P3] or [LR], since
it does not give a precise description of the unit. However, it is exactly
what we need for the construction of definable bi-Lipschitz trivializations.
We will prove the preparation theorem for semi-algebraic subsets over any
real closed field. As a consequence of this theorem, we will then prove a
proposition concerning positive definable functions, which can be stated over
any o-minimal structure satisfying it.

Given two definable functions, f, g : A→ R, we write f ∼
K
g, for K ⊆ R,

if there exist two positive constants C1 and C2 in K such that C1f ≤ g ≤ C2f .

Theorem 4.1 (Preparation Theorem). Let ξ : Rn+1 → R be a semi-
algebraic function. Then there exists a semi-algebraic partition (Vi)i∈I of
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Rn+1, such that for any element Vi there exist semi-algebraic continuous func-
tions a, θ : Vi → R, and r ∈ Q such that

(4.1) ξ(q) = (qn+1 − θ(x))r a(x)U(q),

for q = (x; qn+1) ∈ Vi, with U a semi-algebraic function over Vi bounded below
and above by rational numbers.

Proof. We first prove the result in the particular case of a polynomial func-
tion. Let Q : Rn ×R→ R be a polynomial function. Consider a partition of
Rn such that, over any element of this partition, Q(x; y) can be factorized in
the following form:

A(x)(y − θ1(x)) . . . (y − θk(x))((y − a1(x))2 + δ1(x)) . . . ((y − al(x))2 + δl(x))

with ai, δi and θi semi-algebraic functions over Rn and with δi positive on
the considered element of the partition. Clearly, up to a subpartition, we may
suppose that over any element and for any i either ((y − ai(x))2 + δi(x)) ∼

Q

(y − ai(x))2 or ((y − ai)2 + δi) ∼Q δi. Also we may require that for any i
and j, either |y − θi(x)| ∼

Q
|y − θj(x)|, or |y − θi(x)| ∼

Q
|θj(x) − θi(x)|, or

|y − θj(x)| ∼
Q
|θj(x) − θi(x)|. Thus we obtain a simultaneous preparation

of all the terms of the factorization of Q. This completes the proof in the
polynomial case.

We now consider the general case. There exists a partition of Rn+1 such
that ξ is algebraic over each element of this partition. So write P (x; y; z) =∑d
i=0 qi(x; y)zi, where P (x; y; ξ(x; y)) ≡ 0 with qi polynomial functions. Up

to a subpartition, we may suppose that the terms qi(x; y)ξ(x; y)i have constant
signs and are comparable (for relation ≤) with each other. Let I be the set of
indices for which the term is negative, and J the set of those for which it is
positive. We may also suppose that the functions qi, for i ∈ {1, . . . , d}, and ξ
either are zero or do not vanish over an element of the partition. Thus we get∑

i∈I
qi(x; y)ξ(x; y)i = −

∑
i∈J

qi(x; y)ξ(x; y)i.

As all the terms are comparable with each other, both sums are equivalent to
their maximal term. Hence, we can find i0 ∈ I and j0 ∈ J such that

qi0ξ
i0 ∼

Q
−qj0ξj0 .

Therefore

|ξ| ∼
Q

∣∣∣∣ qi0qj0
∣∣∣∣1/(j0−i0)

.

But the qi are polynomials and so can be prepared. Then, as in the polynomial
case, we can find a simultaneous preparation of qi0 and qj0 to get the desired
preparation. �
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Remark 4.2. Let α be an element of R̃p (the Stone space of the Boolean
algebra of definable sets; see [BCR1], [BCR2], [C], or Section 5.2 of this paper
for precise definitions). If an o-minimal structure satisfies the preparation
theorem, then the o-minimal extension over k(α) also satisfies the preparation
theorem. Actually, given α ∈ R̃p, if we have a preparation of ξ : Rp×Rn → R
by a and θ, the functions aα and θα obviously provide a preparation of ξα.
This follows from the definitions.

For the last result of this section we fix an o-minimal structure which is
either the semi-algebraic sets over R or a polynomially bounded structure over
R (and in this case R = R).

The preparation theorem allows us to compare a semi-algebraic function
to a product of powers of distance functions to semi-algebraic subsets, as
described in the following proposition.

Proposition 4.3. Let ξ : Rn → R be a positive definable function. Then
there exists a partition of Rn such that over each element of this partition the
function ξ is ∼

R
to a product of powers of distances to definable subsets of

Rn.

Proof. We proceed by induction on n. For n = 1 the result follows from
Theorem 4.1 or from Theorem 2.1 of [vD-S] (in the o-minimal case). As-

sume that it is true for some n ≥ 0. Let λ1, . . . , λN be the elements of Sn

given by Proposition 3.16. Applying Theorem 4.1 (or Theorem 2.1 of [vD-S]
in the o-minimal case) to ξ ◦ Ai, where Ai is an orthogonal linear mapping
of Rn sending the vector λi onto the last vector of the canonical basis for
i ∈ {1, . . . , N}, and taking the intersections of all the obtained partitions, we
get a definable partition (Vj)j∈J of Rn+1. Therefore over each Vj and for each
i we can find continuous functions a, θ : πλi(Vj)→ R and r ∈ R such that

(4.2) ξ(q) = (qλi − θ(xλi))r a(xλi)U(q),

for q = (xλi ; qλi) ∈ Vj , with U a continuous semi-algebraic function over Vj
bounded below and above by rational numbers.

Apply Proposition 3.16 to the family consisting of all the sets of the parti-
tion (Vj)j∈J and the zero locus of ξ. This gives a partition (V ′j )j∈J′ such that
each element V ′j which is open is of the form

{q = (xλk ; qλk) ∈ πλk(V ′j ) ⊕ 〈λk〉 | ξ1(xλk) ≤ qλk ≤ ξ2(xλk)},
for some k ∈ {1, . . . , N}, where ξν : πλk(V ′j )→ R, ν = 1, 2, areQ−Lipschitzian
functions, and such that the function ξ is of the form (4.2) for each vector λi.
Let V ′j be an open element of the partition V ′. By the induction hypothe-
sis (identify Nλk with Rn) it is sufficient to prove the result for the function
|qλk − θ(xλk)|. By the compatibility of the partition with the zero locus of ξ,
we have either θ ≤ ξ1 or θ ≥ ξ2. Up to a subpartition we may assume that
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only one case occurs over Vi, for instance, θ ≤ ξ1 . So we see that |qλk−θ(xλk)|
is ∼

Q
either to |qλk − ξ1(xλk)| or to |ξ1(xλk) − θ(xλk)|. In the first case, as

ξ1 is Lipschitzian, we deduce that |qλk − θ(xλk)| is ∼
Q

to the distance to the
graph of ξ1 for λk. In the second case this is a consequence of the induction
hypothesis. For sets V ′j of strictly positive codimension one can also deduce
the result from the induction hypothesis. �

5. Lipschitz triangulations

Throughout this section we fix an o-minimal structure S over R in which
Theorem 4.1 is valid. So, in particular, the results are true for the semi-
algebraic sets over an arbitrary real closed field R or for a polynomially
bounded structure over R.

5.1. Lipschitz triangulations and proof of the main theorem. As
mentioned in the introduction, we will define a triangulation adapted to the
study of the Lipschitzian type. This will be a homeomorphism onto a sim-
plicial complex, so it will be a triangulation in the usual sense. Clearly this
cannot be a bi-Lipschitz homeomorphism. We shall require that over each
simplex the distances are preserved up to “some contractions” explicitly de-
scribed along the directions of specific coordinate systems of Rn. All these
contractions will be defined by sums of products of powers of distance to faces.
Namely, given a simplex σ, we will consider functions φσ,i over σ in a complex
K which are a finite sum of functions of type

(5.1) d(q;σ1)α1 . . . . .d(q;σk)αk ,

where σ1, . . . , σk are simplices of K and α1, . . . , αk are real numbers. A finite
sum of such function will be called a standard simplicial function. Indeed,
Definition 5.2 will involve standard simplicial functions over σ × σ, that is,
such sums of distances involving q or another point q′.

What is important is that two sets having the same triangulation will
be Lipschitz homeomorphic (with same coordinates systems and equivalent
contraction functions). Let us point out that distances in the given set will
not be equivalent to distances in the simplicial complex.

The reader can refer to [C] or [S] for basic definitions about triangulations.
Given a point q ∈ Rn, we write q1, . . . , qn for the coordinates of q in the
canonical basis and πi : Rn → Ri for the canonical projection.

First we introduce the concept of a tame system of coordinates on Rn,
which will describe the directions of contractions:

Definition 5.1. A tame system of coordinates on Rn is a family of func-
tions (ψ1; . . . ;ψn) of the form

(5.2) ψi(q) =
qi − θi(πi−1(q))

|θi(πi−1(q))− θ′i(πi−1(q))|
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(and 0 whenever θi ◦ πi−1(q) = θ′i ◦ πi−1(q)), where θi and θ′i are piecewise
linear functions on Ri−1.

This gives the following definition:

Definition 5.2. A Lipschitz triangulation of Rn is the data of a finite
simplicial complex K together with a homeomorphism h : |L| → Rn, where
L is a union of open simplices of K, such that for every σ ∈ L there exist
ϕσ,1 , . . . , ϕσ,k , standard simplicial functions over σ × σ, satisfying for any q
and q′ in σ

(5.3) |h(q)− h(q′)| ∼
R

n∑
i=1

ϕσ,i(q; q′) · |qi,σ − q′i,σ|,

where (q1,σ, . . . , qn,σ) is a tame system of coordinates of Rn. Let A1, . . . , Ak
be subsets of Rn. A Lipschitz triangulation of A1, . . . , Ak is a Lipschitz tri-
angulation of Rn such that each h−1(Ai) is a union of open simplices.

With this definition two definable subsets admitting the same simplicial
complex as definable triangulation, with ∼

R
functions ϕσ and the same tame

systems of coordinates, are definably bi-Lipschitz homeomorphic. So simul-
taneous Lipschitz triangulations of fibers of a family will provide definable
trivializations. We first prove the existence of such triangulations.

Theorem 5.3. Let A1, . . . , Ak be definable subsets of Rn. Then there
exists a definable Lipschitz triangulation of A1, . . . , Ak.

Proof. In fact, we will prove the following stronger statement: given a finite
family of definable functions (ηl)l∈L, we can construct a Lipschitz triangula-
tion of A1, . . . , Ak such that over each simplex each function ηl ◦ h is ∼

R
to a

standard simplicial function.
We prove this by induction on n. We denote by π : Rn+1 → Rn the

canonical projection. For n = 1 the result is clear. Assume that it is true for
some n ≥ 1. We may assume that the subsets A1, . . . Ak are of empty interior,
since it is enough to construct a triangulation of their boundaries.

Apply Proposition 4.3 to each function ηl to obtain a partition (Vi)i∈I of
Rn+1 such that, over each Vi, each function ηl is equivalent to a product of
powers of distances to definable subsets (Wj)j∈J of Rn+1. By Proposition
3.13 we may assume that all the boundaries of the elements of the families
(Vi)i∈I , (Ai)1≤i≤k and (Wi)i∈J are included in the union of a finite number
of graphs of some Lipschitzian functions θ1 ≤ · · · ≤ θµ. By Observation (4)
applied to the functions θi and to the functions d(x;π(∂Wi)), there exist a
finite number of functions ξ1, . . . , ξm such that over each cell delimited by the
graphs of two consecutive functions ξi and ξi+1 all the functions |qn+1 − θi|
are comparable to each other and comparable to the functions d(x;π(∂Wi)).
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Consider a cylindrical definable cell decomposition of Rn+1 adapted to
the graphs of the functions ξi and the sets Wi. This provides a partition
X1, . . . , Xs of Rn. Refining it we may assume that the functions d(x;π(∂Wi))
are comparable with each other. Apply the induction hypothesis to get a
Lipschitz triangulation (h;K) of the sets Xi, 1 ≤ i ≤ s.

Also by the induction hypothesis, we can do this in such a way that
over each simplex, each function |ξj − θi| ◦ h and all the functions q →
d(h(x);π(∂Wj ∩ Γθi)) are ∼

R
to standard simplicial functions, where Γθi is

the graph of θi.
The simplicial complex is constructed as for topological triangulations (see

[C], [S]). Let ζ1 ≤ · · · ≤ ζm be piecewise linear functions over |K| such that
ζi = ζi+1 whenever ξi ◦ h = ξi+1 ◦ h. Let also ζ0 = ζ1 − 1 and ζm+1 = ζm + 1.
Let

N = {(x; qn+1) ∈ Rn ×R | ζ0(x) ≤ qn+1 ≤ ζm+1(x)}.
We obtain a polyhedral decomposition of N by taking the inverse image by
π|N of the simplices of K of dimension n− 1 on the one hand, and by taking
all the images of |K| by the mappings x→ (x; ζi(x)) on the other hand. After
a barycentric subdivision of this polyhedral we obtain a simplicial complex
K̃.

The union of the graphs gives a simplicial complex. Let L̃ be the union of
open simplices σ lying over |K| and included in

{(x; qn+1) ∈ Rn ×R | ζ0(x) < qn+1 < ζm+1(x)}.

Define now over L̃ the desired homeomorphism h̃ by

h̃(x; t ζi(x) + (1− t)ζi+1(x)) = (h(x); t ξi(h(x)) + (1− t)ξi+1(h(x)))

for 1 ≤ i ≤ m, x ∈ Rn and t ∈ [0; 1]. Define also

h̃(x; t ζ0(x) + (1− t) ζ1(x)) =
(
h(x); ξ1(h(x))− t

1− t

)
and

h̃(x; t ζm+1(x) + (1− t) ζm(x)) =
(
h(x); ξm(h(x)) +

t

1− t

)
for t ∈ [0; 1). This defines a homeomorphism h̃ : |L̃| → Rn+1.

It remains to check that over each simplex σ the mapping h̃ fulfills an
inequality of type (5.3). Let σ be a simplex of K̃, q and q′ two points of σ. Set
now q = (x; tζi(x)+(1−t)ζi+1(x)) and q′ = (x′; t′ζi(x′)+(1−t′)ζi+1(x′)) with
0 ≤ i ≤ m for t and t′ in [0; 1]. Then define q′′ = (x; t′ζi(x) + (1− t′)ζi+1(x)).

We begin with the case when 1 ≤ i ≤ m− 1. Let p = h̃(q), p′ = h̃(q′) and
p′′ = h̃(q′′). We can consider x, x′, p, p′ and p′′ as functions of q and q′. As
ξi and ξi+1 are Lipschitzian functions, we have over σ × σ
(5.4) |p− p′| ∼

R
|p− p′′|+ |h(x)− h(x′)|.
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Let σ′ be the simplex of K containing π(σ). Since h is a Lipschitz triangula-
tion, we can find functions ϕσ′,1, . . . , ϕσ′,n and a tame system of coordinates
(x1,σ; . . . ;xn,σ) such that for any x and x′ in σ′

(5.5) |h(x)− h(x′)| ∼
R

n∑
l=1

ϕσ′,l(x;x′)|xl,σ − x′l,σ|.

On the other hand, as π(q) = π(q′′), by construction we have

|pn+1 − p′′n+1| ∼R |qn+1 − q′′n+1 | ·
ξi+1(h(x))− ξi(h(x))

ζi+1(x)− ζi(x)
.

Recall that we have constructed the triangulation K in such a way that (ξi+1−
ξi) ◦ h are respectively ∼

R
to standard functions ψi of K. Note that the

composite ψi ◦ π gives a standard simplicial function of K̃. Moreover, ζi and
ζi+1 defines a tame coordinate on Rn+1. Denote it by qn+1,σ. Thus we have

(5.6) |p− p′′| ∼
R
|qn+1,σ − q′n+1,σ | · ϕσ,n+1(q; q′)

for a standard simplicial function ϕσ,n+1 (which here actually depends only
on q). Define ϕσ,l(q; q′) = ϕσ′,l(π(q);π(q′)). Then by (5.6), (5.5) and (5.4) we
get the desired equivalence.

Now consider the case i = 0. By construction we have over σ × σ,

(5.7) |pn+1 − p′′n+1| ∼R
1

(qn+1 − ζ0(x))(q′n+1 − ζ0(x′))
· |qn+1 − q′′n+1|.

Note that in this case |qn+1 − q′′n+1| is ∼
R

to the linear coordinate defined
by ζ0 and ζ1, and 1/(qn+1 − ζ0(x)) is ∼

R
to distance to the graph of ζ0.

Therefore we can apply the same argument as in the above case to get the
desired equivalence.

The same argument works for the case i = m. This proves the Lipschitz
property of the triangulation h̃.

It remains to check that the given functions ηl are ∼
R

to standard simplicial
functions over any simplex σ. Let σ ∈ K̃; the set h(σ) is included in the cell
delimited by ξi and ξi+1, for some 1 ≤ i ≤ m− 1. As the boundaries of the Vi
are subsets of the union of the graphs of the functions ξ1, . . . , ξm, over h(σ)
the functions ηl are ∼

R
to a product of powers of distances to some Wj , so it

suffices to show the result for functions of type q → d(h(q);Wj). As K̃ is also
a triangulation of the sets Wj , for each j we have that either h(σ) is included
in Wj or the distance to Wj is ∼

R
to the distance to its boundary. In the first

case the result is obvious, since the function is zero over σ. By construction,
the boundary ∂Wj is included in the union of the graphs of the functions θν .

Moreover, clearly we have for any ν ∈ {1, . . . , µ}

(5.8) d(q; ∂Wi ∩ Γθν ) ∼
R
|qn+1 − θν(x)|+ d(x;π(∂Wi ∩ Γθν )),

where q = (x; qn+1) in Rn ×R.
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As both terms of the right-hand-side are positive, the sum is ∼
R

to the
maximum of these two terms, and hence ∼

R
to one of them, since they are

comparable over h(σ). Note that clearly

d(q; ∂Wi) = min
1≤ν≤µ

d(q; ∂Wi ∩ Γθν ).

But as gν = d(π(q);π(∂Wi ∩ Γθν )) are comparable functions and are compa-
rable with all the functions |qn+1−θν(x)|, the function d(q; ∂Wi) is equivalent
over h(σ) to one of the functions gν or to some function |qn+1 − θν(x)|.

Recall that we have required the triangulation (h;K) to be such that
d(h(x);π(∂Wj ∩ Γθν )) is ∼

R
to a standard simplicial function of K. So it

suffices to prove that the function |pn+1 − θν ◦ h| is ∼
R

over σ to a standard
simplicial function of K̃. Assume that σ is between the graphs of ζi and ζi+1.
We can write

|pn+1 − θν ◦ h| = pn+1 − ξi ◦ h+ (ξi ◦ h− θν ◦ h)

if ν ≤ i and

|pn+1 − θν ◦ h| = ξi+1 ◦ h− pn+1 + (θν ◦ h− ξi+1 ◦ h)

if ν ≥ i+ 1. But, by (5.6) and (5.7), we have over σ

pn+1 − ξi(h(x)) ∼
R
|qn+1 − ζi(x)| . ϕσ,n+1(q; q′).

Clearly, the function |qn+1 − ζi(x)| is ∼
R

to a standard simplicial function.
As all the |ξi ◦ h − θj ◦ h| have been assumed to be equivalent to standard
simplicial functions, the theorem is proved. �

Remark 5.4. If σ is a simplex such that h(σ) is bounded, it is not neces-
sary to involve in the definition of Lipschitz triangulation standard simplicial
functions depending on q and q′. More precisely, instead of (5.3), it is enough
to require

|h(q)− h(q′)| ∼
R

n∑
i=1

ϕσ,i(q) · |qi,σ − q′i,σ|

with ϕσ,i(q) standard simplicial functions of q. Moreover, in this case, by
construction the simplices involved in the expression of the functions ϕσ,i are
of dimension i− 2, so that for i = 1, the simplex is reduced to the empty set
and ϕσ,1 ≡ 1.

5.2. Proof of the main theorem. As an application of the above theo-
rem we will now generalize the argument of [C] to bi-Lipschitz triviality. That
is, we will realize simultaneous triangulations by triangulating the generic
fibers.

We shall need some basic facts about the Stone space of the Boolean algebra
of definable sets. We recall some results about ultrafilters from [C] or [BCR1]–
[BCR2].

A definable ultrafilter α of Rn is a collection of definable subsets satisfying
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(1) ∅ /∈ α,
(2) A and B belong to α iff A ∩B ∈ α,
(3) A ∈ α iff Rn \A /∈ α.

We denote by R̃n the set of definable ultrafilters together with the topology
that makes Ũ = {α | U ∈ α}, for U ⊆ Rn definable, a basis of closed-open
sets. This topology is quasi-compact. Let D(Ũ) denote the set of definable
functions over U . We obtain a sheaf over R̃n. The residue field of the local
ring at α is denoted by k(α), which is a real closed extension of R. Now for
U ⊆ Rp ×Rn definable we set

Uα = {g ∈ k(α)p | ∃V ∈ α, ∀x ∈ V, (g(x);x) ∈ U}.

This defines an o-minimal structure over k(α). A definable function f : U → R
induces fα : Uα → k(α) defined by Γfα = (Γf )α (where Γf denotes the graph).

In model theory the set R̃n can be identified with the sets of complete n
types with the Stone topology [Ma]. Then k(α) is an elementary extension
which realizes the type α.

These notions provide powerful methods to prove Theorem 2.2, giving an el-
egant application of the notion of Lipschitz triangulations. Roughly speaking,
we will obtain a “parameterized version” by working in a field of functions
(of the parameters). A parameterized version of the triangulation theorem
immediately gives a trivialization theorem.

Proof of Theorem 2.2. Let α ∈ R̃p and let (h;K) be a Lipschitz triangu-
lation of Aα. We may suppose that this triangulation has its vertices in Qn.
This implies (see [C]) that we can find Uα ∈ α, a simplicial complex K ′ ⊆ Rn
with |K ′|k(α) = |K|, and a mapping H : L′ × Uα → Rn × Uα, with L′ the
union of some open simplices of K ′, such that each (Ht;K ′) is a Lipschitz
triangulation of At. Let ψt = Ht ◦ H−1

t0 for some t0 ∈ Uα. Then, by the
definition of Lipschitz triangulations, each ψt is a bi-Lipschitz homeomor-
phism. This implies that ψα is a bi-Lipschitz homeomorphism. Therefore
there exists U ′α ∈ α such that the mapping ψ : At0 × U ′α → AU ′α defined by
ψ(x; t) = (ψt(x); t) is a family of bi-Lipschitz homeomorphisms. The sets Ũ ′α
constitute an open covering of R̃p. By the compactness of this set we have
the desired covering. �

5.3. Lipschitzianity with respect to parameters. Isotopies construc-
ted with vector fields are also Lipschitzian with respect to the parameters.
We will prove this in the case of a family with bounded fibers. However, as
shown by Example 2.4, we cannot expect such a result to hold in general
for non-bounded sets. Isotopies constructed using Lipschitz stratifications are
always given by integration of vector fields and involve bounded sets, since
integration theorems require a properness assumption (see [P1], [P2], or [M]).
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We first prove a proposition to help us in this direction, which can be
regarded as a Lipschitzian version of Theorem 5.19 of [C]. We recall that the
dimension of α ∈ R̃n is the minimal p ∈ N such that there exists U ∈ α of
dimension p (as a definable set).

Proposition 5.5. Let α ∈ R̃p, dim α = p, and let f : Rn ×Rp → R be a
definable function such that fα is Lipschitzian. Then the generic fiber of the
differential (dxf)α is bounded in k(α) (partial derivatives exist generically)
over any bounded subset of k(α)n.

Proof. The problem comes from derivatives with respect to parameters.
Suppose that the conclusion fails. This implies that we can find a bounded
curve γ :]0; ε[→ (Γf )α (where Γf denotes the graph of f), such that en+1 ∈
τ = lim

t→0
Tγ(t) Γfk(α) (where en+1 is the (n + 1)st vector of the canonical

basis). As γ is bounded, we can extend it at zero. As fα is Lipschitzian, en+1

is regular for (Γf )α. This implies that τ and k(α)n+1×{0} are not transverse
in k(α)n+1 × k(α)p. Let µ : [0; ε[×U ′ → Rn+1 ×Rp be such that µα = γ. If ε
is chosen small enough, the wing µ is a smooth manifold with boundary. Note
that the image of µ′(x) = µ(x; 0) is transverse to Rn × {0} in Rn ×Rp. But,
as the image of µ is a C1 manifold with boundary, at any point x ∈ U ′ the
limit P (x) = lim

t→0
Tµ(x;t) µ([0; ε[×U ′) contains T(x;µ′(x)) Γµ′ . So, as obviously

Pα ⊆ τ , we get a contradiction. �

Remark 5.6. As shown by Example 2.4, the above proposition is not true
over a non-bounded set.

Let α ∈ R̃p, dim α = p, and A be a definable family of sets of Rn×Rp such
that each At is a bounded set. Consider a family of functions f : Rn ×Rp →
R×Rp satisfying over A for each 1 ≤ i ≤ n+ p∣∣∣∣( ∂f∂xi

)
α

∣∣∣∣ ≤M,

for M ∈ k(α). Then we can find U ∈ α and a continuous function C : U → R
such that for (x; t) ∈ AU

|df(x; t)| ≤ C(t).

This implies that we can find a continuous function C : U×U → R, such that
for any (q; q′) ∈ AU ×AU

(5.9) |f(x; t)− f(x′; t′)| ≤ C(t; t′) · |q − q′|.

Thus this argument leads us to the following proposition, which is an improve-
ment of Theorem 2.2 in the bounded case:
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Proposition 5.7. Let A ∈ Sn+p be such that each At is bounded, for
t ∈ Rp. Then the isotopy given by Theorem 2.2 satisfies

|h(x; t)− h(x′; t′)| ≤ C(t; t′) · |q − q′|
and

|h−1(x; t)− h−1(x′; t′)| ≤ C(t; t′) · |q − q′|,
where q = (x; t) and q′ = (x′; t′), for any (q; q′) ∈ AU ×AU .

Proof. Let α ∈ R̃p. To trivialize over an element of α we may assume
that α is of dimension p, since we can work up to a coordinate system of the
support of the ultrafilter. We then apply inequality (5.9) to the components
of the fibers ψα and ψ−1

α in the proof of Theorem 2.2. �

Lipschitz triangulations can have another point of interest:

Remark 5.8. In [SS] L. Siebenmann and D. Sullivan asked whether the
number of Lipschitz types of analytic germs is countable. It is well known that
this is true if we replace the Lipschitz type by the topological type. Actu-
ally, this is a consequence of the existence of triangulations (in the topological
sense), since it is clear that the number of topological types of finite sim-
plicial complexes is countable. Therefore we see that another application of
the existence of Lipschitz triangulations for polynomially bounded o-minimal
structure is a positive answer to the conjecture by L. Siebenmann and D. Sul-
livan (considering the o-minimal structure of global subanalytic sets). In fact,
we can show that the number of Lipschitz types in a polynomially bounded o-
minimal structure over R is the cardinality of the set of exponents Λ involved
in the preparation theorem of L. van den Dries and P. Speissegger [vD-S].
The details will appear in the forthcoming paper [V].
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