
VANISHING HOMOLOGY

GUILLAUME VALETTE

Abstract. In this paper we introduce a new homology theory devoted to
the study of families such as semialgebraic or subanalytic families and in

general to any family definable in an o-minimal structure (such as Denjoy-
Carleman definable or ln−exp definable sets). The idea is to study the cycles

which are vanishing when we approach a special fiber. This also enables us to
derive local metric invariants for germs of definable sets. We prove that the
homology groups are finitely generated.

0. Introduction

The description of the topology of a set nearby a singularity is a primary
focus of attention of algebraic geometers. We can regard a semialgebraic singular
subset of Rn as a metric subspace. Then the behavior of the metric structure of a
collapsing family reflects implicit information on the geometry of the singularity
of the underlying set which is much more accurate than the one provided by the
study of the topology.

In [V1], the author proved a bi-Lipschitz version of Hardt’s theorem [H]. This
theorem pointed out that semialgebraic bi-Lipschitz equivalence is a good notion
of equisingularity to classify semialgebraic subsets from the metric point of view.
For this purpose, it is also very helpful to find invariants such as homological
invariants.

In this paper we introduce a homology theory for families of subsets which
provides information about the behavior of the metric structure of the fibers when
we approach a given fiber. This enables us to construct local metric invariants for
singularities. We prove that these homology groups are finitely generated when the
family is definable in an o-minimal structure. This allows, for instance, to define an
Euler characteristic which is a metric invariant for germs of algebraic or analytic
sets. These results were announced in [V4].

In [GM], M. Goresky and R. MacPherson introduced intersection homology
and showed that their theory satisfies Poincaré duality for pseudo-manifolds which
cover a quite large class of singular sets and turned out to be of great interest.
They also managed to compute the intersection homology groups from a trian-
gulation which yields that they are finitely generated. In [BB1] L. Birbrair and
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J.-P. Brasselet define their admissible chains to construct the metric homology
groups. Both theories select some chains by putting conditions on the support of
the chains. Our approach is similar in the sense that our homology groups will
depend on a velocity which estimates the rate of vanishing of the support of the
chains.

Our method relies on the result of [V1], where the author showed existence of
a triangulation enclosing the metric type of a definable singular set. To compute
the vanishing homology groups we will not use the triangulation constructed in
[V1] but Proposition 3.2.6 of the latter paper (which was actually the main step of
the construction). It makes it possible for the results proved below to go over non
necessarily polynomially bounded o-minimal structures. It seems that the method
of the present paper could be generalized to prove that the metric homology groups
introduced in [BB1] are finitely generated as well.

It is well known that, given a definable family, we may always study the
evolution of the fibers by studying what is called by algebraic geometers “the
generic fiber” (see example 1.3.2 for a precise definition).

Therefore if we carry out a homology theory for definable subsets in an o-
minimal structure expanding a given arbitrary real closed field, we will have a
homology theory for families. This is the point of view of the present paper. Hence,
even for families of subsets of Rn, the case of an arbitrary real closed field will
be required. Our approach will be patterned on the one of the classical homology
groups as much as possible. Some statements (Theorem 3.2.2) are close to those
given by Goresky and MacPherson for intersection homology but of course the
techniques are radically different since the setting is not the same.

The admissible chains depend on a velocity which is a convex subgroup v of
our real closed field R. For instance, if R is the field of real algebraic Puiseux series
endowed with the order making the indeterminate T smaller than any positive real
number, v may be the subgroup

(0.1) {x : ∃N ∈ N, |x| ≤ NT 2}.

The v-admissible chains are the chains having a “v-thin” support. Roughly speak-
ing, if v is as above, v-thin subsets of Rn are the generic fibers of families of sets
whose fibers collapse onto a lower dimensional subset with at least the velocity
Nt2 (if t is the parameter of the family, N ∈ N). For instance, let us consider the
cycle given by Birbrair and Goldshtein’s example. Namely, the subset of X ⊂ R4

defined by:

x2
1 + x2

2 = T 2p,

x2
3 + x2

4 = T 2q.(0.2)

This set is the generic fiber of a family of tori, such that the support of the gen-
erators of H1(X) collapse onto a point at rate T p and T q respectively. Therefore,
if for instance p = 0 and q = 2 then the 0-fiber is a circle and this family of torus
is v-thin (with v like in (0.1)).
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Taking all the v-admissible chains of a definable setX, we get a chain complex
which immediately gives rise to the v-vanishing homology groups Hv

j (X). We will
show that these groups are finitely generated (Corollary 3.2.3).

If X is the set defined by (0.2) with v like in (0.1), the v-vanishing homology
groups depend on of p and q. For instance, we will prove (see Example 4.3.2) that
if p = 0 and q = 2:

Hv
1 (X) = Q

(if Q is our coefficient group), and Hv
2 (X) = Q.

We may summarize it by saying that we get all the T 2-thin cycles of X. The
group Hv

j (X) is not always a subgroup of Hj(X). In general we may also have
cycles that do not appear in the classical homology groups, i. e. which are in the
kernel of the natural map Hv

j (X) → Hj(X). The following picture illustrates an
example for which such a situation occurs:

a

Figure 1.

The cycle a is collapsing onto a point faster than the set itself is collapsing.
We see that we have an admissible one dimensional chain a which bounds a two
dimensional chain which may fail to be admissible (depending on the velocity v).
Therefore Hv

1 (X) 6= 0 (while H1(X) = 0).

This homology theory is not a homotopy invariant. It is preserved by Lipschitz
homotopies but these are very hard to construct. For instance, given a function
f : Rn → R it is well known that there exists a topological deformation retract of
f−1(0; ε) onto f−1(0). It is easy to see that it is not possible to find such a retract
which would be Lipschitz if f(x; y) = y2 − x3. The method used in this paper
provides homotopies that are not Lipschitz but which preserve admissible chains.
It seems that one could define various homology theories for which this method
could be adapted. The theory developed below seemed to the author the simplest
one and the most natural to start.

We compute the vanishing homology groups in terms of some basic sets ob-
tained by constructing some nice cells decompositions (Theorem 3.2.2). For this
we construct a homotopy which carries a given singular chain to a chain of these
basic sets (Proposition 3.2.1). The homotopy has to preserve thin subsets. We are
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not able to construct such a homotopy for any admissible chain. Chains for which
we can construct such a homotopy are called strongly admissible and are chains
for which the distances in the support are known in a very explicit way. Therefore,
the first step is to show that any class in Hv

j (X) has a strongly admissible repre-
sentant (Lemma 3.1.3). This is achieved by constructing some rectilinearizations
of v-thin sets (Proposition 2.2.4). These are maps which transform our set into
a union of hyperplanes crossing normally while controlling the distances in the
transformation.

A non trivial convex subgroup v may be regarded as an interval in R which
has no endpoint. This fact will somewhat complicate our task. To overcome this
difficulty, we introduce an extra point u “at the end of v” which will fill the gap.
This point living in an extension kv ofR, we will carry out most of the constructions
rather in kv than in R. The precise definition of kv and the basic related notions
are provided in the first section below. An advantage of using model theory is
that we are able to carry out the theory for all the possible velocities (see example
1.1.2) in the same time.

Local invariants for singularities. An important application is that these ho-
mology groups may be used to derive local metric invariants for semialgebraic
singularities.

We may associate to every germ of semialgebraic set the vanishing homology
groups of the link introduced in [V2] which may be proved to be metric invariant of
the singularity. Let us explain why the results of the latter paper make it possible.

We start by recalling the notion of link introduced in [V2]. Let us recall its
definition. Let k(0+) be the field of real algebraic Puiseux series endowed with the
order that makes the indeterminate T positive and smaller than any real number
(see [BCR] example 1.1.2). Let X ⊂ Rn be a semialgebraic set and denote by d
the Euclidian distance. Assume 0 ∈ X and set

Xt = Sn−1(0; t) ∩X.

It is well known that the homology of the germ of X at the origin is completely
characterized by the topological type of Xt if t > 0 is small enough.

Observe that the family Xt is collapsing onto X0 = {0}. It is known that
the homology of the latter set is a topological invariant of A. The cycles of Xr are
collapsing to a single point with a certain “rate”. This rate is related to the metric
type of the singularity.

Let LX be the generic fiber of this family, that is to say, let:

LX := {x ∈ Xk(0+) : d(x; 0) = T}

where Xk(0+) denotes the subset of k(0+)n defined by the same equations as X.
In [V2] we proved that the set LX is a metric invariant which characterizes

the metric type of the singularity in the sense that:

Theorem 0.0.1. [V2] LX is semialgebraically bi-Lipschitz homeomorphic to LY

iff Y is semialgebraically bi-Lipschitz homeomorphic to X.
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As the vanishing homology groups are metric invariants, this theorem admits
the following immediate corollary.

Corollary 0.0.2. For any convex subgroup v ⊂ k(0+), the groups Hv
j (LX) are

semialgebraic bi-Lipschitz invariants of X.

Corollary 3.2.3 will imply that these groups are finitely generated so that
the vanishing homology Euler characteristic χv(LX) (see (3.16)) is a semialgebraic
bi-Lipschitz invariant of the germ X. Observe that the results of the present paper
show that these invariant are finitely generated and may be computed explicitly
from suitable decompositions. Some concrete examples are discussed in the last
section of the paper.

One may observe that the latter corollary is devoted to the only case of
semialgebraic sets. Although the results may go over any polynomially bounded
o-minimal structure, they are no longer true in the non polynomially bounded case
as it is shown by an explicit example at the end of the paper.

Content of the paper. In section 1, we give all the basic definitions and intro-
duce our vanishing homology. We prove in the next section some cell decomposition
theorems and rectilinearization theorems necessary to compute the vanishing ho-
mology groups. In section 3, we compute the v-vanishing homology groups in terms
of this cell decomposition. The main result is Theorem 3.2.2 which yields that the
homology groups are finitely generated. The last section computes the vanishing
homology groups on some examples.

The reader is referred to [C] or [vD] for basic facts about o-minimal structures.

Notations and conventions. Throughout this paper we work with a fixed o-
minimal structure expanding a real closed field R. Let LR be the first order lan-
guage of ordered fields together with an n-ary function symbol for each function
of the structure. The word definable means LR-definable. The language LR(u) is
the language LR extended by an extra symbol u.

The letter G will stand for an abelian group (our coefficient group). Singular
simplices will be definable continuous maps c : Tj → X, Tj being the j-simplex
spanned by 0, e1, . . . , ej where e1, . . . , ej is the canonical basis of Rj . Sometimes, we
will work in an extension kv of R and simplices will actually be maps c : Tj(kv)→
kn

v where Tj(kv) is the extension of Tj to kv. Given a definable set X ⊂ Rn we
denote by C(X) the chain complex of definable chains with coefficients in a given
group G. We will write |c| for the support of a chain c.

By Lipschitz function we will mean a function f satisfying

|f(x)− f(x′)| ≤ N |x− x′|

for some integer N . It is important to notice that we require the constant to be an
integer for R is not assumed to be archimedean. A map h : A → Rn is Lipschitz
if all its components are, and a homeomorphism h is bi-Lipschitz if h and h−1 are
Lipschitz.
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We denote by πn : Rn → Rn−1 the canonical projection and by cl(X) the
closure of a definable set X.

Let k(0+) be the field of real algebraic Puiseux series endowed with the order
that makes the indeterminate T positive and smaller than any real number (see
[BCR] example 1.1.2).

1. Definition of the vanishing homology.

1.1. The velocity v. We shall use some very basic facts of model theory. We refer
the reader to [M] for basic definitions.

The vanishing homology depends on a velocity v which estimates the rate
of vanishing of the cycles. This is a convex subgroup v of (R; +) (convex in the
sense that it is a convex subset of R).

We then define a 1-type by saying that a sentence ψ(u) ∈ LR(u) is in this
type iff the set

{x ∈ R : ψ(x)}

contains an interval [a; b] with a ∈ v and b /∈ v. This type is complete due to the
o-minimality of the theory.

We will denote by kv an LR-elementary extension of R realizing this type.
Roughly speaking we can say that the velocity is characterized by a cut in

R, at which the gap is “bigger” than the distance to the origin. This is to ensure
that the sum of two admissible chains will be admissible (see section 1.3).
Notations. Throughout this paper, a velocity v is fixed and u is the point realizing
the corresponding type in kv.

We define a convex subgroup w of (kv; +) extending the group v in a natural
way:

w := {x ∈ kv : ∃ y ∈ v, |x| ≤ y}.

Remark 1.1.1. Given z ∈ R we may define a velocity Nz by setting:

Nz := {x ∈ R : ∃N ∈ N, |x| ≤ Nz}.

Example 1.1.2. As in the above remark, the element T k gives rise to a subgroup
NT k of (k(0+);+) which is constituted by all the series z ∈ k(0+) having a valua-
tion greater or equal to k. One could also consider the velocity v defined by the set
of x satisfying |x| ≤ NT k for any N in Q. In the field of ln− exp definable germs
of one variable functions (in a right-hand side neighborhood) one may consider
the set of all the Lp integrable germs of series.

Extension of functions. On the other hand, as kv is an elementary extension of
R, it is well known that we may define Xv, the extension of X to kv, by regarding
the formula defining X in kn

v . Every mapping σ : X → Y may also be extended to
a mapping σv : Xv → Yv.
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1.2. v-thin sets. We give the definition of the v-thin sets which is required to
introduce the vanishing homology.

The ”v-thin” sets will be the sets collapsing faster than the velocity v. Before
stating the precise definition, we give an explicit example.

Example 1.2.1. Consider an algebraic set X ⊂ Rn. As in the end of the intro-
duction, assume 0 ∈ X and set Xt = S(0; t) ∩X.

Observe that the family Xt is collapsing onto X0 = {0}. Let us also recall
the notion of link introduced in [V2]:

LX := {x ∈ Xk(0+) : d(x; 0) = T},

Xk(0+) being the extension of X to k(0+).

Define a velocity by v := {x ∈ k(0+) : ∃N ∈ N, |x| ≤ NT 2}. Let us discuss
what it will mean for LX to be v-thin on some particular cases. We denote by
Sn−1(0;T ) the sphere in k(0+)n of radius T centered at the origin.

Roughly speaking, a LX will be v-thin if the distance to a lower codimensional
subset is less than NT 2 for some integer N . This means for instance that if LX is
a sphere in Sn−1(0;T ) such as

S(x; r) ∩ Sn−1(0;T ),

for x ∈ Sn−1(0;T ) and r ∈ k(0+), then LX is v-thin iff r ≤ NT 2 and in this case
the family Xt is a family of spheres of radius decreasing faster than Nt2. Then, in
particular no orthogonal projection of LX on a (n − 2) dimensional vector space
contains a ball of radius (N + 1)T 2. The set is said (n− 2; v)-thin.

A more sophisticated example is provided by the equation (0.2). Assume these
are the equations of LX . The set LX is supposed to sit in Sn−1(0;T ). Nevertheless
if we identify the complement of a ball in S4(0;T ) with k(0+)4 we may consider
the link as a subset of k(0+)4.

Then, LX is v-thin if p or q is greater or equal to 2. The tori Xt are collapsing
onto the origin and the v-vanishing homology will account for the rate of vanishing
of this cycle.

Let us emphasize the difference with the approach adopted by Birbrair and
Brasselet in [BB1],[BB2]. In the theory of the latter paper the authors consider
the rate of the volume of the subsets, so that the sum p+ q matters for the torus
to be admissible. Here, for being v-thin, the integer max(p; q) is determinant,
since it characterizes the distance to either S1 × {0} or {0} × S1, which are lower
dimensional subsets.

We now turn to the precise definition. We denote by Gj
n the Grassmaniann of

j dimensional vector spaces of Rn. Given P ∈ Gj
n we denote by πP the orthogonal

projection onto P .

Definitions 1.2.2. Let j ≤ n be integers. A j-dimensional definable subset X of
Rn is called v-thin if there exists z ∈ v such that, for any P ∈ Gj

n, no ball (in P )
of radius z entirely lies in πP (X).
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For simplicity we say that X is (j; v)-thin if either X is v-thin or dimX < j.
A set which is not v-thin will be called v-thick.

Note that in the above definition it is actually enough to require that the
property holds for a sufficiently generic linear projection π : Rn → Rj . As we said
in the introduction, roughly speaking, NT 2-thin sets of k(0+)n are the generic
fibers of one parameter families whose fibers “collapse onto a lower dimensional
subset at rate at least t2” (if t is the parameter of the family). Also, by convention
R0 = {0} so that a 0-dimensional subset is never v-thin. This is natural in the
sense that a family of points never collapses onto a lower dimensional subset.

Basic properties of (j; v)-thin sets. (1) If a definable subset A ⊂ X is (j; v)-thin
and if h : X → Y is a definable Lipschitz map then h(A) is (j; v)-thin.
(2) Given j, ∪p

i=1Xi is (j; v)-thin iff Xi is (j; v)-thin for any i = 1, . . . , p.

1.3. Definition of the vanishing homology. Given a definable setX let Cv
j (X)

be the G-submodule of Cj(X) generated by all the singular chains c such that |c|
is (j; v)-thin and |∂c| is (j; v)-thin as well. We endow this complex with the usual
boundary operator and denote by Zv

j (X) the cycles of Cv
j (X).

A chain σ ∈ Cv
j (X) is said v-admissible. We denote by Hv

j (X) the resulting
homology groups which we call the v-vanishing homology groups.

If v is Nz, for some z ∈ R (see Remark 1.1.1), then we will simply write
Cz

j (X) and Hz
j (X) (rather than CNz

j and HNz
j ).

Remark 1.3.1. If X is v-thin and if j = dimX then every j-chain is v-admissible.
Moreover every (j + 1)-dimensional chain is admissible by definition. Hence the
map Hv

j (X) → Hj(X) induced by the inclusion of the chain complexes is an
isomorphism. Note also that the map Hv

j−1(X)→ Hj−1(X) is a monomorphism.

Every Lipschitz map sends a (j; v)-thin set onto a (j; v)-thin set. Thus, every
Lipschitz map f : X → Y , where X and Y are two definable subsets, induces
a sequence of mappings fj,v : Hv

j (X) → Hv
j (Y ). In consequence, the vanishing

homology groups are preserved by definable bi-Lipschitz homeomorphisms.

As we said in the introduction this homology gives rise to a metric invariant
for families (preserved by families of bi-Lipschitz homeomorphisms) by considering
the generic fiber as described in the following example.

Example 1.3.2. Given an algebraic family X ⊂ Rn × R defined by f1 = · · · =
fp = 0, we set

X0+
:= {x ∈ k(0+)n : f1(x;T ) = · · · = fp(x;T ) = 0}.

Hence, Hv
j (X0+

) is a metric invariant of the family.
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1.4. The complex Cv
j (X;F). Given a finite family F , of closed subsets of X, we

write Cj(X;F) for the j-chains of ⊕
F∈F

Cj(F ). Similarly we set:

Cv
j (X;F) := ⊕

F∈F
Cv

j (F )

and denote by Hv
j (X;F) the corresponding homology groups. By Remark 1.3.1,

if τ is a chain of Zv
j (|σ|) whose class is σ in Hj(|σ|) then τ = σ in Hv

j (|σ|) as well.
Therefore, as Hj(|σ|;F) = Hj(|σ|) we get:

(1.3) Hv
j (X;F) ≃ Hv

j (X).

1.5. Strongly admissible chains. It is difficult to construct homotopies between
v-admissible chains. To overcome this difficulty we introduce strongly v-admissible
chains.

Definition 1.5.1. We denote by T q
j the set of all (x;λ) ∈ Tj×R such that x+λeq

belongs to Tj . A simplex σ : Tj → Rn is strongly v-admissible if there exists q
such that for any (x;λ) ∈ T q

j :

(1.4) (σ(x)− σ(x+ λeq)) ∈ v.

A chain is strongly admissible if it is a combination of strongly admissible

simplices. We denote by Ĉv
j (X) the chain complex generated by the strongly ad-

missible chains σ for which ∂σ is strongly admissible, and by Ẑj(X) the strongly

admissible cycles. The resulting homology is denoted by Ĥv
j (X). If F is a family

of closed subsets of X, we also define Ĉv
j (X;F), Ẑv

j (X;F), and Ĥv
j (X;F) in an

analogous way (see section 1.4).

Example 1.5.2. Let σ : T2(k(0+))→ k(0+)2 be defined by

σ(x1;x2) = (
1

T
+ x1;x2T

2).

Fix x ∈ T2(k(0+)). Then, observe that, for any λ ∈ k(0+) such that (x+λe2)
belongs to T2(k(0+)) we have (σ(x)− σ(x+ λe2)) = λT 2. Therefore σ is strongly
v-admissible if v is the subgroup of k(0+) defined as in (0.1). We see that the
support is v-thin and that T2(k(0+)) is contracted along e2 by T 2. This is the
difference between admissible and strongly admissible simplices: the condition is
not only on the image but also on the way the mapping operates. It must contract
the standard simplex along a vector of the canonical basis.

Remark 1.5.3. Let σ : Tj → Rn be a strongly admissible simplex with j ≤ n.
Then by definition, there exists z ∈ v such that for any x ∈ Tj :

d(σ(x);σ(∂Tj)) ≤ z.

As σ(∂Tj) is of dimension strictly inferior to j we see that the image of this
set under a projection onto Rj contains no open ball in Rj . In other words, if
σ and ∂σ are strongly admissible chains then σ is admissible. In consequence, a
strongly admissible cycle is admissible.
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2. Rectilinearizations of v-thin sets.

2.1. Regular directions. We recall a result proved in [V1] which will be very
useful to compute our vanishing homology. We start by the definition of a regular
direction. We denote by Xreg the set of points x ∈ X at which X is a C1 manifold.

Definition 2.1.1. Let X be a definable set of Rn. An element λ of Sn−1 is said
regular for X if there exists a positive α ∈ Q:

d(λ;TxXreg) ≥ α,

for any x ∈ Xreg.

Not every definable set has a regular line. However, we have:

Proposition 2.1.2. [V1] Let A be a definable subset of Rn of empty interior.
Then there exists a definable bi-Lipschitz homeomorphism h : Rn → Rn such that
en is regular for h(A).

Remark 2.1.3. When en is regular for a set X, we may find finitely many Lips-
chitz definable functions, say ξi : Rn−1 → R, i = 1, . . . , s, satisfying

(2.5) ξ1 ≤ · · · ≤ ξs,

and such that the set X is included in the union of their respective graphs.

2.2. Cell decompositions. In order to fix notations we recall the definition of
the cells, which, as usual, are introduced inductively. All the definitions of this
section deal with subsets of Rn, but since R stands for an arbitrary real closed
field, we will use them for subsets of kn

v as well.

Definitions 2.2.1. For n = 0 a cell of Rn is {0}. A cell E of Rn is either the
graph of a definable function ξ : E′ → R, where E′ is a cell of Rn−1 or a band of
type:

(2.6) {x = (x′;xn) ∈ E′ ×R : ξ1(x
′) < xn < ξ2(x

′)},

where ξ1, ξ2 : E′ → R are two definable functions satisfying ξ1 < ξ2 or ±∞. The
cell E is Lipschitz if E′ is Lipschitz and if ξ1 and ξ2 (or ξ) are Lipschitz functions
(and {0} is Lipschitz). A closed cell is the closure of a cell (which is obtained by
replacing < by ≤ in the definition).

Given z ∈ R, the Lipschitz cell E is z-admissible if

(1) E′ is z-admissible
(2) If E is a band defined by two functions ξ1 and ξ2, then either (ξ2−ξ1)(x) ≤

z for any x ∈ E′, or (ξ2 − ξ1)(x) ≥ z for any x ∈ E′.

Set also that the cell {0} is z-admissible.
A cell E of dimension j is canonically homeomorphic to (0; 1)j . The barycen-

tric subdivision of E is the partition defined by the image by this homeomor-
phism of the barycentric subdivision of (0; 1)j .

We shall need the following very easy lemma.
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Lemma 2.2.2. Let E′ be a w-thick Lipschitz cell of kn−1
v and let ξs : E′ → kv,

s = 1, 2, be two Lipschitz functions such that ξ1 < ξ2 and (ξ1 − ξ2)(x) /∈ w, for
any x ∈ E′. Then the band:

E := {(x; y) ∈ E′ × kv : ξ1(x) < y < ξ2(x)}

is w-thick.

Proof. We may assume that E′ is open in kn−1
v since we may find a bi-Lipschitz

homeomorphism which carries E′ onto an open cell. Then E is also an open cell
and, for any positive z ∈ w the cell E′ contains a ball of radius z, say B(x0; z). In
this case, let

t0 :=
ξ2(x0)− ξ1(x0)

2
,

and y0 := (x0; t0). We shall show that that B(y0; z) ⊂ E.
For any y = (x; t) ∈ B(y0; z), we may write

(2.7) t− ξ1(x) = (t− t0) + (t0 − ξ1(x0)) + (ξ1(x0)− ξ1(x)),

and observe that as |t − t0| ≤ t ∈ w, we certainly have (t − t0) ∈ w. On the
other hand, since ξ1 is Lipschitz (ξ1(x0)− ξ1(x)) belongs to w as well. We have by
assumption 2(t0 − ξ1(x0)) /∈ w so that (t− ξ1(x0)) /∈ w. Therefore,

(t0 − ξ1(x0)) > |t− t0|+ |ξ1(x0)− ξ1(x)|,

which, thanks to (2.7), implies that (t0 − ξ1(x0)) and (t − ξ1(x)) have the same
sign. This means that (t− ξ1(x0)) is positive. Arguing in the same way, we could
show that (t− ξ2(x)) is negative. This shows that y ∈ E. �

Definition 2.2.3. The subset {0} is an L-cell decomposition of R0. For n > 0,
an L-cell decomposition of Rn is a cell decomposition of Rn satisfying:

(i) The cells of Rn−1 constitute an L-cell decomposition of Rn−1

(ii) There exist finitely many Lipschitz functions ξ1, . . . , ξs : Rn−1 → R sat-
isfying (2.5) such that the union of all the cells which are graphs of a
function on a subset of Rn−1, is the union of the graphs of the ξi’s.

An L-cell decomposition is said compatible with finitely many given definable
subsets X1, . . . ,Xm if these subsets are union of cells. It is said z-admissible if
every cell is z-admissible. Taking the barycentric subdivision of every cell, we get
a barycentric subdivision of an L-cell decomposition.

We are going to show that, we may find a u-admissible L-cell decomposition
which is compatible with some given LR(u)-definable subsets of kn

v . This will be
helpful to prove that the homology groups are finitely generated, since we will
show that only the Nu-thin cells are relevant to compute the homology groups.
The following proposition deals with subsets of kv since we will apply it to kv but
of course the proof goes over an arbitrary model of the theory.
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Proposition 2.2.4. Let X1, . . . ,Xm be LR(u)-definable subsets of kn
v . There exists

a LR(u) definable bi-Lipschitz homeomorphism h : kn
v → kn

v such that we can find
a u-admissible L-cell decomposition of kn

v compatible with h(X1), . . . , h(Xm).

Proof. For n = 0 there is nothing to prove. Assume n > 1 and apply Proposition
2.1.2 to ∪m

j=1∂Xj (where ∂ denotes the topological boundary). Then (see Remark
2.1.3) there exist finitely many definable Lipschitz functions ξi, i = 1, . . . , s satis-
fying (2.5). Consider a cell decomposition of kn

v compatible with X1, . . . ,Xm, all
the graphs of the ξi’s, as well as all the sets

{x ∈ kn−1
v : ξi+1(x)− ξi(x) = u}.

Now apply the induction hypothesis to all the cells of this decomposition which lie
in kn−1

v to get a cell decomposition E of kn−1
v . Then set ξ0 := −∞, ξs+1 :=∞, and

consider the cell decomposition of kn
v constituted by the graphs of the restrictions

of the functions ξi’s to an element of E on the one hand, and all the subsets of
type:

{(x;xn) ∈ E × kv : ξi(x) < xn < ξi+1(x)},

where E ∈ E , on the other hand. The required properties hold. �

2.3. Rectilinearization of v-thin sets. We introduce the notion of rectilin-
earization. This is a mapping which transforms a set into a union of coordinate
hyperplanes and which induces an isomorphism in homology (the usual one). Ad-
missible rectilinearizations will be very helpful to construct strongly admissible
chains (see section 1.5). It will be convenient to ”rectilinearize” several sets si-
multaneously in order to get simplicial chains compatible with a given family (see
section 1.4).

We are going to show that we can always find a v-admissible rectilinearization
compatible with a given family of v-thin sets.

Definitions 2.3.1. A hyperplane complex is a subsetW of Rn, which is a union
of finitely many coordinate hyperplanes of type xj = s where, for each hyperplane,
s is an integer. There is a canonical cell decomposition of Rn compatible with W .
We refer to the cells (resp. closure of the cells) as the cells of W (resp. closed

cells of W ).
Let X1, . . . ,Xm be definable subsets. A rectilinearization of X1, . . . ,Xm is

a continuous mapping h : Rn → Rn, such that the h−1(Xi)’s are union of cells of
W and such that for any i = 1, . . . ,m the mapping hi : h−1(Xi)→ Xi induces an
isomorphism in homology (the usual one).

If X1, . . . ,Xm are v-thin, a rectilinearization of X1, . . . ,Xm is v-admissible

if for each cell σ of W included in h−1(Xi) there exists an integer q with eq tangent
to σ for which

(2.8) (h(x)− h(x+ λeq)) ∈ v

for any x ∈ σ and λ ∈ R such that x+ λeq ∈ σ.
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Remark 2.3.2. After a barycentric subdivision of h−1(Xi), we get a simplicial
complex Ki and a map hi : Ki → Xi which induces an isomorphism in homology.
Note that, thanks to (2.8) each simplicial chain gives rise (identifying each j-
simplex to Tj in a linear way) to a strongly admissible chain (see Definition 1.5.1).
Moreover, as h induces an isomorphism in homology, this identification defines an
isomorphism in homology Hj(Ki)→ Hj(Xi).

Proposition 2.3.3. Let X1, . . . ,Xm be closed definable v-thin subsets of Rn. Then
there exists a v-admissible rectilinearization of X1, . . . ,Xm.

Proof. We start by proving the following statements (Hn) by induction on n.

(Hn). Let E be a u-admissible L-cell decomposition of kn
v and let Y1, . . . , Yr denote

the w-thin closed cells. Then there exists a Nu-admissible rectilinearization h :
kn

v → kn
v of Y1, . . . , Yr such that, for every E in E , h−1(cl(E)) is a union of closed

cells of W and there exists a strong deformation retract rE : h−1(cl(E))×I → CE ,
where CE is a closed cell of W .

Note that it follows from the existence of this deformation retract that h
induces an isomorphism in homology above any union of closed cells of E . Actually,
the existence of rYi

implies

Hj(h
−1(Yi)) ≃ Hj(CYi

) ≃ Hj(Yi),

and the map h|h−1(Yi) : h−1(Yi)→ Yi induces an isomorphism in homology. There-
fore, thanks to the Mayer-Vietoris property and to the 5-Lemma, we see that
for any subset X constituted by the union of finitely many closed cells the map
h|h−1(X) : h−1(X)→ X induces an isomorphism in homology.

Note that nothing is to be proved for n = 0 and assume (Hn−1). Apply
the induction hypothesis to the family constituted by the closure of the cells of
E in kn−1

v which are w-thin to get a rectilinearization h : kn−1
v → kn−1

v and a
hyperplane complex W .

Note that by definition, the cells of E on which the restriction of πn is one-
to-one are included in the union of finitely many graphs of definable Lipschitz
functions ξ1, . . . , ξs : kn−1

v → kv satisfying (2.5).

We obtain a hyperplane complex W̃ by taking the inverse image of W by πn,
and by adding the hyperplanes defined by xn = i, i = 1, . . . , s.

Define now the desired mapping h̃ as follows:

h̃(x; i+ t) = (h(x); (1− t)ξi(h(x)) + tξi+1(h(x)))

for 1 ≤ i < s integer, x ∈ kn
v and t ∈ [0; 1). Define also:

h̃(x; 1− t) = (h(x); ξ1(h(x))− t)

and

h̃(x; s+ t) = (h(x); ξs(h(x)) + t)
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for t ∈ [0;∞). This defines a mapping h̃ : kn
v → kn

v . We are going to check that

(2.9) |h̃(x)− h̃(x+ λen)| ≤ u

when x and (x+ λen) belong to the same cell.

Let σ be a cell of W̃ which is mapped into ∪r
i=1Yi. If πn(σ) is w-thin (2.9)

follows from the induction hypothesis. Otherwise h̃(σ) must lie in the band delim-
ited by the graphs of the restrictions of ξi and ξi+1 for some i ∈ {1, . . . , s − 1}

as described in (2.6). If h̃(πn(σ)) fails to be w-thin then, thanks to Lemma 2.2.2

(recall that h̃(σ) is w-thin) and the u-admissibility of the cell decomposition, we
necessarily have:

|ξi(x)− ξi+1(x)| ≤ u,

for any x ∈ πn(σ). This, together with definition of h̃, implies that h̃ satisfies (2.9)

and yields that h̃ is Nu-admissible. It remains to find the retraction rE for each
cell E.

Fix E ∈ E and observe that it follows from the definition of h̃ and the
induction hypothesis that h̃−1(cl(E)) is a union of cells of W̃ . If E is the graph of
a function ξ : E′ → kv (where E′ := πn(E)), then the result directly follows from
the induction hypothesis. Otherwise, since E is an L-cell decomposition, the cell E
lies in the band delimited by the graphs of two consecutive functions, say ξi and
ξ+1. Let

Γi := {(x;xn) ∈ kn−1
v × kv : i ≤ xn ≤ i+ 1}.

We first define first a retract:

r′E : h̃−1(cl(E))× [0;
1

2
]kv
→ Γi ∩ h̃

−1(cl(E)),

by setting for xn ≥ i+ 1:

r′E(x;xn; t) := (x; 2txn + (1− 2t)(i+ 1)),

and for xn ≤ i:

r′E(x;xn; t) := (x; 2txn + (1− 2t)i),

and of course r′E(x;xn; t) := (x;xn) when i ≤ xn ≤ i+ 1.

Note that it follows from the definition of h̃ that if (x;xn) belongs to h̃−1(cl(E))
then for any i+ 1 ≤ x′n ≤ xn and any xn ≤ x

′
n ≤ i:

h̃(x;x′n) = h̃(x;xn).

This implies that r′E preserves h̃−1(cl(E)).
On the other hand, thanks to the induction hypothesis, there exists a retract

rE′ : h−1(cl(E′))× [0; 1]kv
→ CE′ . Let us extend this rE′ into a retract:

r′′E′ : π−1
n (h−1(cl(E′)))× [

1

2
; 1]kv

→ π−1
n (CE′)

by

r′E(x;xn; t) := (rE′(x; 2t− 1);xn).
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Clearly, there exists a unique cell CE of W̃ which is included in Γi and which
projects on CE′ . Now, these retracts give rise to a retract

r̃E : h̃−1(cl(E))× [0; 1]kv
→ CE

defined by r̃E(x; t) := r′E(x; t) if t ≤ 1
2 and

r̃E(x; t) := r′′E(r′E(x;
1

2
); t)

if t ≥ 1
2 . This yields (Hn).

We return to the proof of the proposition. Apply Proposition 2.2.4 toX1,v, . . . ,Xm,v.
This provides a bi-Lipschitz homeomorphism g : kn

v → kn
v such that we can find

a u-admissible L-cell decomposition of kn
v compatible with g(X1,v), . . . , g(Xm,v).

Note that, as the g(Xi,v)’s are w-thin, each of them is the union of some w-thin
cells. Then by (Hn), there exists a Nu-admissible rectilinearization of these cells
h : kn

v → kn
v .

Composing with g, the mapping h gives rise to a Nu-admissible rectilineariza-
tion f of X1,v, . . . ,Xm,v. As the Xi,v are extensions, there exist two families of
rectilinearizations fz and hz for z ∈ [a; b] with a < u < b and a, b ∈ R. Let us
check that these rectilinearizations are v-admissible for z ∈ v large enough.

Note that each Xi is the union of the images by hz of finitely many cells of
W . Furthermore, as (2.9) is a first order formula we get that hz satisfies on any
given cell in the inverse image of the Xi’s:

|hz(x)− hz(x+ λen)| ≤ z,

when x and (x+ λen) belong to this given cell.
This implies that f satisfies (since g is bi-Lipschitz):

|fz(x)− fz(x+ λen)| ≤ Nz,

for some N ∈ N and any z ∈ v large enough on any cell mapped into one of the
Xi’s. Thus, (2.8) holds and fz is w-admissible. �

Remark 2.3.4. Actually, working a little more, we could have proved that the
constructed rectilinearization induces an isomorphism in homology above any sub-
set A of Rn. Namely, in the above proof, given a subset A of Rn, the induced

mapping h̃ : h̃−1(A)→ A induces an isomorphism in homology.
Observe also that the constructed mapping is a homeomorphism above a

dense definable subset. If we take an algebraic hypersurface, the situation is fairly
similar to the one which occurs with resolution of singularities in the sense that the
inverse image of the set above which the map is not one-to-one (the “exceptional
divisor”) is constituted by finitely many coordinate hyperplanes normal to the hy-
perplanes lying above our given set. We could also have a more precise description
of how the mapping h modifies the distances (like in [V1]). More precisely, it is
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possible to see that on each cell, we have

|h(x)− h(x′)| ∼
n∑

i=1

ϕi(x)|xi − x
′
i|

where ϕi is a quotient of sums of product of powers of distances to cells of W . If we
compare this result with Theorem 5.1.3 of [V1], we see that now the contractions
(see [V1]) are expressed in the canonical basis. The inconvenient is that the map h is
not a homeomorphism (contrarily as in [V1]), but since it induces an isomorphism
between the homology groups, it will be enough for the purpose of the present
paper.

3. The vanishing homology groups are finitely generated

3.1. Some preliminary lemmas. Every mapping σ : Tj → X may be extended
to a mapping σv : Tj(kv) → Xv (see subsection 1.1). Let ∆ext

j (Xv) be the sub-
module of Cw

j (Xv) generated by the simplices which are extensions of an element
of Cv

j (X). Clearly, for each j the mapping:

ext : Cv
j (X)→ ∆ext

j (Xv),

which assigns to every chain σ the chain σv, induces an isomorphism in homology.

The following Lemma says that the vanishing homology groups for the ve-
locities Nu and w coincide with the homology groups of ∆ext

j when the considered
set is LR-definable.

Lemma 3.1.1. Let X be a definable subset of Rn. Then the maps induced by the
inclusions Hj(∆

ext(Xv)) → Hu
j (Xv) and Hj(∆

ext(Xv)) → Hw
j (Xv) are isomor-

phisms for any j.

Proof. We do the proof for u. To get the proof for w, just replace u by w. We
first check that this map is onto. Let σ =

∑
i∈I gici ∈ Z

u
j (Xv). By definition of u

there exist finitely many LR-definable mappings, say τi : Tj(kv) × [a;u]kv
→ Xv,

with a ∈ v such that ci(x) = τi(x;u) for any x ∈ Tj(kv). Define θi(x) := τi(x; a)
and θ :=

∑
i∈I giθi ∈ Cext

j (Xv). Observe that τi gives rise to a Nu-admissible
(j + 1)-chain (after a subdivision of Tj(kv)× [a;u]). Moreover, as the property of
admissibility may be expressed by a formula with parameters in R and with u,
we know that the obtained chain is Nu-admissible if a is chosen large enough. Set
τ :=

∑
i∈I giτi ∈ C

u
j+1(Xv) and note that since τi(x;u) = ci(x) and τi(x; a) = θi(x)

we clearly have ∂τ = σ−θ. As θ belongs to Cext
j (Xv), this implies that the inclusion

Cext
j (Xv)→ Cu

j (Xv) induces a surjection in homology.
We now check that this map is injective by applying a similar argument. Let

α ∈ Cext
j (Xv) with α = ∂σ where σ belongs to Cu

j+1(Xv). The chain σ induces

chains τ ∈ Cu
j+2(Xv) and θ ∈ Cext

j+1(Xv) such that ∂τ = σ−θ in the same way as in

the previous paragraph. But this implies ∂θ = α which means that α ∈ ∂Cext
j+1(Xv),

as required. �
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Given a definable family Y of Rn ×R and t ∈ R, we denote by Yt the fiber

at t:

{x ∈ Rn : (x; t) ∈ Y }.

We also define the restriction of the family to [a; b] as follows:

Y[a;b] := {(x; t) ∈ Y : a ≤ t ≤ b}.

Lemma 3.1.2. Let Y be a LR(u)-definable family of kn
v × kv such that Yu is a

Nu-thin subset of kn
v and let j = dimYu. Then there exists z in v such that for

any t ∈ v greater than z the map induced by inclusion:

Hw
k (Yt)→ Hu

k (Y[z;u]),

is an isomorphism for k = j and is one-to-one for k = j − 1.

Proof. As Y is LR(u)-definable and Nu-thin there exists z in v such that for any
t in v greater than z, Yt is w-thin. Thanks to Remark 1.3.1, this implies that the
natural mapping Hw

j (Yt)→ Hj(Yt) is an isomorphism.
Furthermore, since the family Y is topologically trivial if the interval [z;u]

is chosen small, the inclusion Hj(Yt) → Hj(Y[z;u]) induces an isomorphism in
homology as well.

We have the following commutative diagram for t ∈ v greater than z:

1

4

3 2

Hw
j (Yt) Hj(Yt)

Hu
j (Y[z;u]) Hj(Y[z;u])-

-

? ?

By the above, the arrows 1 and 2 are isomorphisms. Moreover as Yu is Nu-
thin the family Y[z;u] is Nu-thin. Thus, the arrow 4 is an monomorphism (see the
last sentence of Remark 1.3.1). This implies that the arrow 3 is an isomorphism
and establishes the theorem in the case k = j.

Now, in the case where k = j − 1 we can write the same diagram for Hj−1.
The arrows 1 and 2 (of the obtained diagram) are still one-to-one (again thanks to
Remark 1.3.1 and the topological triviality of Y[z;u]), so that the arrow 3 is clearly
one-to-one. �

The following lemma is a consequence of existence of v-admissible rectilin-
earizations.

Lemma 3.1.3. Given X ⊂ kn
v LR(u)-definable and F finite family of closed

LR(u)-definable subsets of X, the map Ĥw
j (X;F) → Hw

j (X), induced by the in-
clusion, is onto.
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Proof. Let σ ∈ Cw
j (X). If the support of σ is of dimension < j then the class of σ

is 0 in Hw
j (X). Thus, we may assume that dim|σ| = j.

Let h : kn
v → kn

v be a w-admissible rectilinearization of |σ| and of all the ele-
ments of F . There exists a simplicial chain τ (see Remark 2.3.2), which is strongly
w-admissible since h is w-admissible, such that σ = τ in Hj(|σ|) = Hw

j (|σ|) (see
Remark 1.3.1). But this means that the class of τ is that of σ also in Hw

j (X). This
yields that the inclusion induces an onto map in homology. �

It is unclear for the author whether the inclusion of the above lemma is
one-to-one. Actually, it is even unclear whether Ĥv

j (X) is finitely generated.

3.2. The main result. It is very hard to construct homotopies which are Lips-
chitz mappings. To compute the homology, we actually just need to find a homo-
topy that carries a chain σ to the cells of a given cell decomposition, and which
preserves the v-admissibility of the chain σ. We prove something even weaker:
given a strongly w-admissible chain, we may construct a homotopy which carries
the chain σ to a strongly Nu-admissible chain of the cells of dimension j. This is
enough since we have seen that we had isomorphisms between the theories defined
by w and Nu. This technical step is performed in the following proposition.

Proposition 3.2.1. Let X be a closed LR(u)-definable subset of kn
v and let E

be a u-admissible L-cell decomposition compatible with X. Let F be the family
constituted by the closed cells of E and let Yj be the union of the closures of the
(Nu; j)-thin elements of the barycentric subdivision of E which lie in X. Then,
there exists a map

ϕ : Ĉw
j (X;F)→ Ĉu

j (Yj)

such that:

(i) ϕ∂ − ∂ϕ = 0

(ii) For any σ ∈ Ẑw
j (X;F) we have: ϕσ = σ, in Hu

j (X),

(iii) If Y is the union of some elements of F , then for any σ ∈ Ẑw
j (X;F) with

|σ| ⊂ Y we have: ϕσ = σ in Hu
j (Y ).

Proof. We are going to prove the following statements:
Claim. Given σ ∈ Cj(X;F), there exists a definable homotopy

hσ : Tj(kv)× [0; 1]kv
→ X,

such that:

(1) For each x the path t 7→ hσ(x; t) stays in the same closed cell,
(2) For each t the map x 7→ hσ(x; t) is a strongly Nu-admissible simplex if σ

is a strongly w-admissible simples,
(3) If σ is strongly w-admissible, the support of the simplex ϕσ : Tj(kv)→ X

defined by ϕσ(x) = hσ(x; 1) entirely lies in Yj
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(4) We have

∂h∗(σ)− h∗(∂σ) = ϕσ − σ

for any σ ∈ Cj(X;F) where (as usual) h∗ : Cj(X;F) → Cj+1(X;F) is
the mapping induced by h on the chain complexes.

Note that ϕ is defined by (3). Observe that (4) implies (i), together with (2)
implies (ii), and together with (1) yields (iii).

We prove that it is possible to construct such a homotopy by induction on
n (the dimension of the ambient space). Let E ′ be the cell decomposition of kn−1

v

constituted by all the cells of E lying in kn−1
v . Let σ in Cj(X;F) and write σ :=

(σ̃;σn) ∈ kn−1
v ×kv. Apply the induction hypothesis to σ̃ and E ′ to get a homotopy

hσ̃ : Tj(kv)× [0; 1]kv
→ kn−1

v .
By definition, the union of the cells of E on which πn is one-to-one is given by

the graphs of finitely many Lipschitz functions ξ1 ≤ · · · ≤ ξs. Note that we may
retract the cells above (resp. below) the graph of ξs (resp. ξ1) onto the graph of ξs
(resp. ξ1) so that we may assume that X entirely lies between these two graphs.

By compatibility with F we know that the support of σ entirely lies in one
single cell E ∈ E which is either the graph of a Lipschitz function ξ or a band which
is delimited by the graph of the restriction to E′ := πn(E) of two consecutive
functions ξi and ξi+1, with ξi < ξi+1 on E′. In the latter case, we may define a
function νσ : Tj(kv)→ [0; 1]kv

by setting for x ∈ Tj(kv)

νσ(x) :=
σn(x)− ξi(σ̃(x))

ξi+1(σ̃(x))− ξi(σ̃(x))
.

To deal with both cases simultaneously it is convenient to set νσ(x) ≡ 0 and
ξi = ξi+1 = ξ, if the cell is described by the graph of a single function ξ. To define
hσ we first define a function sσ : Tj(kv)→ [0; 1]kv

. We set:

sσ(ei) = 0 if σn(ei)− ξi(σ̃(ei)) ∈ w and ξi+1(σ̃(ei))− σn(ei) 6= 0

and sσ(ei) = 1 otherwise.

Then we extend sσ over Tj(kv) linearly.
Now we can set for (x; t) ∈ Tj(kv)× [0; 1

2 ]kv
:

θ(x; t) = 2tsσ(x) + (2t− 1)νσ(x).

Set for simplicity: ξ′ = ξi+1 − ξi and, for x = (x̃;xn) ∈ kn−1
v × kv and t ∈ [0; 1]kv

,
let:

hσ(x; t) := (σ̃(x); ξi(σ̃(x)) + θ(x; t)ξ′(σ̃(x))) if t ≤
1

2

hσ(x; t) := (hσ̃(x̃; 2t− 1) ; ξi(hσ̃(x̃; 2t− 1)) + sσ(x) ξ′(hσ̃(x̃; 2t− 1)) ) if t ≥
1

2
.

Note that as sσ (resp. νσ) satisfies:

s∂σ = ∂sσ
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(resp. ν∂σ = ∂νσ), we see that the map induced by hσ is a chain homotopy.
Moreover, it is clear from the definition of hσ that the path t 7→ hσ(x; t) remains
in the same closed cells. Therefore (1) and (4) hold.

To check (2), fix a strongly admissible simplex σ. We have to check that there
exists q ∈ {1, . . . , n} such that:

(3.10) (hσ(x+ λeq; t)− hσ(x; t)) ∈ Nu

for any (x;λ) ∈ T q
j (kv) and any t in [0; 1]kv

.
If σ is the graph of one single function ξ then the result is immediate for

t ≤ 1
2 and follows from the induction hypothesis for t ≥ 1

2 .
By definition of strongly admissible simplices there exists a vector of the

canonical basis, say eq, such that:

(3.11) (σ(x)− σ(x+ λeq)) ∈ w,

for any (x;λ) ∈ T q
j (kv). This implies that

(3.12) (σ(0)− σ(eq)) ∈ w.

We distinguish two cases:

First case: sσ(0) = sσ(eq). This implies that for any (x;λ) ∈ T q
j (kv) we have

sσ(x) = sσ(x+ λeq),

and therefore

(3.13) |θ(x)− θ(x+ λeq)| ≤ |νσ(x)− νσ(x+ λeq)|.

Note that if ξ′(σ̃(x)) ∈ w then ξ′(σ̃(x+ λeq)) ∈ w, which means that in this case
(3.10) follows immediately from (3.11) for t ≤ 1

2 . Otherwise ξ′(σ̃(x)) /∈ w and then
by (3.11):

(3.14)
1

2
ξ′(σ̃(x)) ≤ ξ′(σ̃(x+ λeq)) ≤ 2 ξ′(σ̃(x)).

Recall that the functions ξi and ξi+1 are both Lipschitz functions. Hence, if σ
is strongly admissible, for t ≤ 1

2 a straightforward computation shows that thanks
to (3.13) and (3.14) we have for any (x;λ) ∈ T q

j (kv):

(3.15) (hσ(x+ λeq; t)− hσ(x; t)) ∈ w.

For t ≥ 1
2 , (3.10) still holds thanks to the induction hypothesis and the

Lipschitzness of ξi and ξi+1.

Second case: sσ(0) 6= sσ(eq). In this case we observe that if sσ(0) is 0 then

(σn(0)− ξi(σ̃(0))) ∈ w

which amounts to
d(σ(0); Γξi

) ∈ w,

(where Γξi
denotes the graph of ξi). By (3.12), this implies that d(σ(eq); Γξi

)
belongs to w and so

(σn(eq)− ξi(σ̃(eq)) ∈ w.
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As sσ(eq) is necessarily equal to 1 we see that

σn(eq)− ξi+1(σ̃(eq)) = 0

so that
ξ′(σ̃(eq)) ∈ w.

But, as the cell E is u-admissible this implies that for any x ∈ E′:

ξ′(x) ≤ u.

This, together with the induction hypothesis, implies that hσ satisfies (3.10).
This completes the proof of (2).

It remains to prove (3). First observe that all the ej ’s are sent by ϕσ onto
vertices of E. Note also that

ϕσ(x) = (ϕσ̃(x); ξi(ϕσ̃(x)) + sσ(x)ξ′(ϕσ̃(x)))

and so, by the definition of the cells, the support of ϕσ lies in cells of dimension
at most j of F . Moreover we just checked that (3.10) holds in any case. This
implies that ϕσ is strongly admissible and therefore its support must lie in Yj .
This completes the proof of the claim. �

We are now able to express the v-vanishing homology groups in terms of the
(usual) homology groups of some v-thin subsets constituted by the v-thin cells of
the barycentric subdivision of some L-cell decompositions.

Theorem 3.2.2. For any X ⊂ Rn closed definable, there exist some definable
subsets of X:

X0 ⊂ · · · ⊂ Xd+1 = Xd

such that:
Hv

j (X) ≃ Im(Hj(Xj)→ Hj(Xj+1))

(where the arrow is induced by inclusion and Im stands for image).

Proof. We start by defining inductively the subsets Xj ’s. Set X0 = ∅ and assume
that X0, . . . ,Xj−1 have already been defined. According to Proposition 2.2.4, up
to a bi-Lipschitz homeomorphism, we can assume that we have a u-admissible
L-cell decomposition compatible with Xv and Xj−1,v. Let Ej be the barycentric
subdivision of this cell decomposition and define Θj as the union of all the (j; Nu)-
thin cells. There exists a LR-definable family Yj such that Yj,u = Θj . Now, thanks
to Lemma 3.1.2, there exists z in v, such that for any t in v greater than z:

Hw
j (Yj,t) ≃ H

u
j (Yj,u).

Now define Xj as the subset of Rn defined by a LR-formula defining Yj,t

for some t ≥ z in v. If t is chosen large enough, Xj is v-thin. As bi-Lipschitz
homeomorphisms induce isomorphisms between the vanishing homology groups,
we identify subsets with their image so that, for instance, we consider below the
Xj,v’s and Yj,u as subsets of Xv.
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Consider the following diagram:

Im{Hj(Xj)→ Hj(Xj+1)}
a
← Im{Hv

j (Xj)→ Hv
j (Xj+1)}

b
→ Hv

j (X),

where again a and b are induced by the inclusions of the corresponding chain
complexes. We shall show that a and b are both isomorphisms.

a is an isomorphism: We have the following commutative diagram:

Hv
j (Xj) Hv

j (Xj+1)

Hj(Xj) Hj(Xj+1)-

-

? ?

where all the maps are induced by inclusion. By Remark 1.3.1, the first vertical
arrow is an isomorphism and the second is one-to-one. This proves that a is an
isomorphism.

b is onto: Note that it is enough to prove that the inclusion Xj → X induces an
onto map between the v-vanishing homology groups.

We have the following commutative diagram:

diag. 1.

ext

ext
Hv

j (Xj) Hj(∆
ext(Xj,v))

Hj+1(∆
ext(Xv))Hv

j (X)

Hw
j (Xj,v)

Hw
j (Xv)

-

-

-

-

? ?

where the mapping ext, provided by extension of chains, is an isomorphism (see
section 3.1).

By Lemma 3.1.1 the latter horizontal arrows are isomorphisms as well. There-
fore, it is enough to prove that the map induced by inclusion Hw

j (Xj,v)→ Hw
j (Xv)

(the last vertical arrow) is onto.
For t ≥ z in v, let α and β be the maps defined by inclusion:

Hw
j (Yj,t)

α
→ Hj(Yj,[z;u])

β
← Hu

j (Yj,u).

By Lemma 3.1.2, α and β are isomorphisms so that γ := β−1α provides the
following commutative diagram:

γ

Hw
j (Yj,t) Hw

j (Xv)

Hu
j (Yj,u) Hu

j (Xv)-

-

? ?
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By Lemma 3.1.1 the second vertical arrow is onto. Thus, it is enough to show
that Hu

j (Yj,u) → Hu
j (Xv) is onto. By construction, Yj,u is the union of all the

(j; Nu)-thin closed cells of the barycentric subdivision of Ej . Note that it is enough

to consider a chain σ ∈ Ẑw
j (Xv;F) where F is the family constituted by all the

closure of the cells of Ej (since the inclusion Ĥw
j (Xv;F)→ Hu

j (Xv) is onto, thanks
to Lemmas 3.1.1 and 3.1.3). By (ii) of Proposition 3.2.1, there exists ϕσ ∈ C

u
j (Yj,u)

such that σ = ϕσ in Hu
j (Xv), as required.

b is one-to-one: Note that as diag. 1. holds for Xj+1 as well (and the horizontal
arrows are isomorphisms as well), it is enough to show that the map induced by
inclusion

b′ : Im(Hw
j (Xj,v)→ Hw

j (Xj+1,v))→ Hw
j (Xv)

is one-to-one. Recall that by definition Xj+1,v is Yj+1,t, for some t and consider
the following commutative diagram:

νt

νu

Hw
j (Xj,v)

Hu
j (Yj+1,u)

Hw
j (Yj+1,t)

Hu
j (Yj+1,[z;u])

-

-

? ?

where again νu and νt are induced by the respective inclusions. By Lemma 3.1.2
these maps are one-to-one.

This implies that we have the following commutative diagram:

b′

b′′

µ

Im(Hw
j (Xj,v)→ Hw

j (Yj+1,t))

Im(Hw
j (Xj,v)→ Hu

j (Yj+1,u))

Hw
j (Xv)

Hu
j (Xv)

-

-

? ?

where all the horizontal arrows are induced by the corresponding inclusions and µ
is induced by the restriction of ν−1

u νt. Since µ is one-to-one, it is enough to show
that b′′ is one-to-one.

To check that b′′ is one-to-one, take σ in Zw
j (Xj,v) which bounds a chain of

Cu
j+1(Xv). As the inclusion Hw

j (Xv) → Hu
j (Xv) is an isomorphism, there exists

τ in Cw
j+1(Xv) such that σ = ∂τ . Consider a w-admissible rectilinearization of

|τ |, |σ| and F where F is the family constituted by the closure the cells of the
barycentric subdivision of Ej+1. The chain σ is equal in Hj(Xj,v) ≃ Hw

j (Xj,v) (for
Xj,v is (j;w)-thin, see Remark 1.3.1) to a simplicial chain σ′ which is strongly
w-admissible and compatible with F (see Remark 2.3.2). The class of the chain
σ is zero in Hj(|τ |) and therefore σ′ bounds a simplicial chain τ ′ which is also
strongly w-admissible (again by Remarks 1.3.1 and 2.3.2).
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By construction, Xj,v is a union of cells of Ej+1 and the union of all the
closure of the cells of dimension (j + 1) of the barycentric subdivision of Ej+1

which are (j+1; Nu)-thin is precisely Yj+1,u. Therefore we may apply Proposition

3.2.1 to Xv. This provides a map ϕ : Ĉw
j (Xv;F)→ Ĉu

j (Yj+1,u;F) such that

∂ϕτ ′ = ϕ∂τ ′ = ϕσ′ .

As by (iii) of this proposition σ′ = ϕσ′ in Hu
j (Xj,v), this implies that the

class of σ is zero in Hu
j (Yj+1,u) and yields that b′′ is one-to-one. �

Corollary 3.2.3. For any closed definable subset X, the vanishing homology
groups Hv

j (X) are finitely generated.

Note that the above corollary enables us to define an Euler characteristic
which is a definable metric invariant by setting:

(3.16) χv(X) :=

∞∑

i=1

(−1)i dimHv
i (X).

This invariant for definable subsets of Rn gives rise to a metric for definable
families or for germs of definable sets (see example 1.3.2 and Corollary 0.0.2).

Remark 3.2.4. The hypothesis closed is assumed for convenience. We could
shrink an open tubular neighborhood of radius z ∈ v of the points lying in the clo-
sure but not in X so that we would have a deformation retract of our set onto the
complement of this neighborhood which is very close to the identity, and hence
which preserves thin subsets, identifying the vanishing homology groups of our
given set with those of a closed subset.

4. Some examples.

We give some examples of computations of the homology groups. It is conve-
nient to develop ad hoc techniques to compute the homology groups such as the
excision property. Let us take Q as our coefficient group.

4.1. The excision property. It follows from the definition that we may have
c+ c′ in Cv

j although neither c nor c′ belong to this set. This is embarrassing since
it makes it impossible the splitting of a chain of X into a chain of X \ A plus a
chain of A, which is crucial for the excision property. To overcome this difficulty
we are going to consider more chains. This will not affect the resulting homology
groups.

We defined the vanishing homology groups by requiring for a chain σ that
|σ| and |∂σ| to be both (j; v)-thin. We may work with another chain complex.

Let A and X be closed definable subsets of Rn with A ⊂ X and denote by F
the pair {X \ Int(A);A} where Int(A) is the interior of A. Let ∆v

j (X) the subset
of Cv

j (X;F) constituted by the j-chains having a (j; v)-thin support. Of course,
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such a family of modules is not preserved by the boundary operator but, if we
want to have a chain complex, we may add the boundaries by setting:

∆′v
j (X) := ∆v

j (X) + ∂∆v
j+1(X).

This provides a chain complex with obviously Hj(∆
′v(X)) = Hv

j (X).
The inconvenient is that we are going to work with non admissible chains

but the advantage is that we have now more freedom to work since we have more
chains. For instance if (c1 + c2) ∈ ∆′v

j (X) then c1 and c2 both belong to ∆′v
j (X).

To state the excision property we need to introduce the homology groups of
a pair. For this purpose, we first set:

∆v
j (X/A) := {c ∈ ∆v

j (X) : (∂c− ∂Ac) ∈ ∆v
j−1(X)},

where ∂A takes the boundary and projects it onto Cj(A).
Define also

∆v,X
j (A) := ∆v

j (A) + ∂A∆v
j+1(X/A).

First observe that by definition if c ∈ ∆v
j+1(X/A) then

∂Ac ∈ ∆v
j (X) + ∂∆v

j+1(X).

Therefore, by definition of ∆v,X
j we get

∆v,X
j (A) ⊂ ∆v

j (X) + ∂∆v
j+1(X) = ∆′v

j (X).

Thus, we may set

∆v
j (X;A) :=

∆′v
j (X)

∆v,X
j (A)

,

and
Hv

j (X;A) := Hj(∆
v(X;A)).

Remark 4.1.1. If X is a v-thin set of dimension j then Hv
j (X;A) = Hj(X;A)

(see Remark 1.3.1).

Let i : ∆v,X
j (A) → ∆′v

j (X) be the inclusion. Clearly, we have the following
exact sequences:

(4.17) 0→ ∆v,X
j (A)

i
→ ∆′v

j (X)
q
→ ∆′v

j (X;A)→ 0,

(where q is the quotient map) and therefore we get the following long exact se-

quence:

...→ Hv
j (δXA)→ Hv

j (X)→ Hv
j (X;A)→ Hv

j−1(δXA)→ ...

Remark 4.1.2. We could have defined the homology groups of a pair byHv
j (X;A) :=

Hv
j (Cv(X;A)) where Cv(X;A) :=

Cv
j (X)

Cv
j
(A) , and of course the latter exact sequence

would hold for Hv
j (A) (instead of Hv

j (δXA)). However the excision property would
not hold.
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As we said, if (c+ c′) belongs to ∆v
j (X) then c and c′ both belong to Cv

j (X).
Therefore, the excision property holds for Hv

j (X;A). Let (X;A) and W be defin-
able such that W lies in the interior of A. Then for any j:

(4.18) Hv
j (X;A) = Hv

j (X \W ;A \W ).

4.2. Basic examples. The easiest example is the link of a set at a nonsingular
point.

Example 4.2.1. In the case where the set is smooth near the origin, as the
vanishing homology is invariant under definable bi-Lipschitz homeomorphisms, we
may identify our set with open neighborhood of zero in Rn. If X denotes such a
set then LX is Sn−1(0;T ), i. e. the sphere of radius T in k(0+)n. Using some very
basic techniques (by constructing homotopies between Sn−1(T )\{pt} and a point)
we can easily see that Hv

j (LX) is zero if j < n− 1 for any velocity v.
Moreover if T belongs to v then the sphere is v-thin and by Remark 1.3.1 we

immediately get

Hv
n−1(LX) ≃ Q.

On the other hand, if T /∈ v, LX is v-thick and then the support of a 2-cycle σ
may not cover the whole sphere and thus may be retracted onto a point. Therefore
if T /∈ v then

Hv
n−1(LX) ≃ 0.

In the following example we deal with the constant family. In this case the
result is also very natural. This example will be useful for the next one.

Example 4.2.2. Let N be a compact semialgebraic manifold of Rn. Consider then
the extension Nk(0+) of N to k(0+)n, i. e. the submanifold of k(0+)n obtained by
regarding the equations of N in k(0+)n. This is the generic fiber of the constant
family N ×R. Let us fix a velocity v. If 1 ∈ v then all the simplices are admissible
and

Hv
j (Nk(0+)) ≃ Hj(N),

for any j.
Otherwise, the support any (j; v)-thin chain σ is collapsing onto a subset of

dimension less than j in N . This means that σ bounds a chain τ is Nk(0+) which
is also v-admissible. Therefore, if 1 /∈ v then Hv

j (Nk(0+)) = 0, for any j.

The next case that we will consider is the case of conical singularities. In this
case, the Lipschitz geometry of the set is completely determined by the topology
of the germ and the vanishing homology may be easily computed.

Example 4.2.3. (Conical singularities) Let X ⊂ Rn be the germ at 0 of a de-
finable set having an isolated singularity at 0. Given a definable set N , we denote
by CN the cone over N . We say that X has a conical singularity at 0 if there
exists a germ of definable homeomorphism h : (CN ; 0)→ (X; 0), with N definable
manifold, bi-Lipschitz with respect to the inner metric.
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If X denotes such a set, observe that LX is nothing that LX is nothing but
the image of Nk(0+) under the homothety ι : k(0+)n → k(0+)n, x 7→ T · x.

Let us now fix a velocity v and compute the corresponding v-vanishing ho-
mology groups. Define

v′ :=
1

T
· v = {x ∈ k(0+) : Tx ∈ v}.

As ι(Nk(0+)) = LX , by definition of the v-vanishing homology groups we have:

Hv
j (LX) = Hv′

j (Nk(0+)).

But, by the preceding example, this means that we have, if T ∈ v then 1 ∈ v′ and

Hv
j (LX) ≃ Hj(LX).

Similarly if T ∈ v then 1 /∈ v′ and Hv
j (LX) = 0.

4.3. Further examples. We give two extra examples. The first one is similar to
the one given by L. Birbrair and A. Fernandes ([BF] example 4.2) for the metric
homology and which looks like the one sketched on fig 1. It is characterized by
the fact that there is a vanishing 1-cycle σ which bounds a chain τ too big for
being admissible. This creates homology. This situation may occur with the metric
homology groups as well and these cycles are referred in [BF] by the authors, as
Cheeger’s cycles.

Example 4.3.1. We consider two spheres from which we shrink a little disk which
collapses into a point and which intersects along the boundaries of these disks. This
is the generic fiber of a family of sets collapsing to zero.

Let

X(ε) := {(x; y; z) ∈ k(0+)3 : (x− ε(T 2 − T 6))2 + y2 + z2 = T 4, εx ≥ 0}

for ε = ±1. Then let X := X(1) ∪X(−1) and A = X(1) ∩X(−1).
Let us simply consider the velocity T 2. The computation could actually be

carried out for any velocity. Since the set A is NT 4-thin we have:

HT 4

1 (δXA) = HT 4

1 (A) = H1(A) = Q,

and HT 4

0 (δXA) = 0.
Note that, thanks to the excision property, we have:

Hv
1 (X;A) ≃ Hv

1 (X(1);A)⊕Hv
1 (X(−1);A).

If we add the disk

D = {(x; y; z) ∈ k(0+)3 : (x− ε(T 2 − T 6))2 + y2 + z2 = T 4, εx ≤ 0}

to X(1), we get the sphere S2. Thus, by the excision property,

HT 4

1 (X(1);A) ≃ HT 4

1 (S2;D) = 0,

and so HT 4

1 (X;A) = 0. Examining the exact sequence of the pair (X;A) we see
that:

HT 4

1 (X) ≃ HT 4

1 (δXA) ≃ Q.
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Observe also that we have: HT 4

2 (X) ≃ 0 and HT 4

0 (X) ≃ 0.
It is interesting to look at the metric homology [BB1] [BB2] on this example.

The volume of the two half-spheres is proportional to T 4, which is precisely the
rate of the volume of the vanishing cycle in the middle. Hence, the above vanishing
cycle is not captured by the metric homology.

We end by computing the vanishing homology groups of Birbrair-Goldshtein
examples. The result is actually similar to the one found by Birbrair and Brasselet
in [BB1] section 7 for the metric homology.

Example 4.3.2. Let X be the set defined by (0.2) assume that p < q. Let us
compute for instance the vanishing homology groups for the velocity T q. We could
use here the excision property and follow the classical methods for computing
the homology groups of the torus but it is actually simpler to derive it from the
classical homology groups of X since it is NT q-thin. This implies that the inclusion
HT q

2 (X) → H2(X) is an isomorphism and that the inclusion HT q

1 (X) → H1(X)
is one-to-one. Therefore

HT q

2 (X) ≃ Q

and dimHT q

1 (X) ≤ 2. Actually, one generator of H1(X) has a representant with
T q-thin support and every 1-chain representing a different class has a support
whose length is clearly bigger than T p. This proves that dimHT q

1 (X) = 1.

4.4. On Corollary 0.0.2. We assumed in Corollary 0.0.2 that X is a semialge-
braic set because this was the setting of [V2]. Nevertheless, the main ingredient
of the proof of Theorem 0.0.1 is Theorem 5.1.3 of [V1]. As this theorem holds
over any polynomially bounded o-minimal structure, Corollary 0.0.2 is still true
in this setting as well. However, the metric type of the link LX may fail to be a
metric invariant of the singularity when the set is definable in a non-polynomially
bounded o-minimal structure as it is shown by the following example.

Example 4.4.1. Let X := {(x; y) ∈ R2 : |y| = e
−1

x2 } and Y = {(x; y) ∈ R2 :

|y| = e
−2

x2 }. Note that X and Y are both definable in the ln − exp structure (see
[vDS], [LR], [W]). Furthermore X and Y are definably bi-Lipschitz homeomorphic.
However the links ofX and Y are constituted by two points of k2

0+
(where k0+

is the

corresponding residue field) whose respective distances are clearly not equivalent.
Note that a revolution of these subsets about the x-axis provides two subsets

whose links have different vanishing homology groups (for a suitable velocity).
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