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For simplicity, everything over C. Md denotes d × d matrices.

Definition
The variety* Cn(Md) of n-tuples of commuting d × d is defined as

Cn(Md) = {(x1, . . . , xn) ∈ (Md)
n | ∀i , j : xixj = xjxi} .

Motzkin, Taussky’55: n = 2
. . . & Stark 2021 d = 2
The good open (not necessarily dense!) locus

{(x1, . . . , xn) ∈ Mn
d | simultaneously diagonalizable}

It closure is an irreducible component, the principal component.
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Key open questions, small number of matrices

Classify points of Cn(Md) up to GLn ×GLd -action for small n, d .

Find equations for the principal component inside Cn(Md).

Is the scheme C2(Md) reduced? Is it Cohen-Macaulay?
(Charbonnel arXiv:2006.12942)
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Key open questions II, small number of matrices

What is the smallest d such that C3(Md) is reducible?

Known: 12 ≤ d ≤ 29, lower bound Šivic, upper bound Holbrook,
Omladič+εŠivic.

For any d describe (a general point of) any component of C3(Md)
other than the principal one. Describe any explicit triple (x1, x2, x3)
outside the principal component.

For (x1, x2, x3) ∈ C3(Md) is it true that
dimC(C[x1, x2, x3] ⊂ Md) ≤ d? (Gerstenhaben’s question)

True for the principal component.
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Larger number of matrices: nothing (was) known

Classical swindle (e.g. Guralnick):

x1 =

�0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

�
, x2 =

�0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

�
, x3 =

�0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

�
, x4 =

�0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

�
.

The algebra C[x1, x2, x3, x4] is

λ · Id4 +




0 0 ∗ ∗
0 0 ∗ ∗
0 0 0 0
0 0 0 0


 λ ∈ C.

Violates Gerstenhaber’s bound. Cn(Md) is reducible for n, d ≥ 4.

What are the components of Cn(Md) in general?
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Results in matrix flavour I

Theorem (J-Šivic)

The number of irreducible components of Cn(Md) for d ≤ 7 is as
shown in Table 1; we also have explicit descriptions of general
points of each component (and general points are smooth).

d ≤ 2 d = 3 d = 4 d = 5 d = 6 d = 7 d � 0

n ≤ 2 1 1 1 1 1 1 1
n = 3 1 1 1 1 1 1 � 0
n = 4 1 1 2 2 2 2 � 0
n = 5 1 1 2 4 4 8 � 0
n = 6 1 1 2 4 7 11 � 0
n ≥ 7 1 1 2 4 7 13 � 0

Table: Number of components of Cn(Md)
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Results in matrix flavour I

Typically (not always), the elementary components have the form,
up to GLd action and adding scalar matrices,

x1, . . . , xn ∈
�
0 ∗
0 0

�

where ∗ is m × (d −m) matrix for some fixed m and for n large
enough.
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Results in matrix flavour II

Theorem (J-Šivic)

The variety Cn(Md) has generically nonreduced components for all
n ≥ 4 and d ≥ 8. For example, the locus of quadruples of the form
(up to GL8 action and adding scalar matrices):




0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




is a generically nonreduced component.
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Results in matrix flavour II

Locus L of quadruples



0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




.

Computer: L ∩ (principal component) ⊂ L is a divisor. Get a
divisor in C4 ⊗ C4 ⊗ C4 invariant under S3 and GL4 ×GL4 ×GL4.
Which divisor is it?
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ADHM construction

Definition
Let S = C[y1, . . . , yn]. For (x1, . . . , xn) ∈ Cn(Md) we define an
S-module structure on Cd by

yi · v := xi (v) for all v ∈ Cd .

We will denote the resulting module associated to (x1, . . . , xn) by
M.

The module has tons of invariants: number of generators, Hilbert
function, resolution etc. which we employ to get a better grasp on
the matrices themselves.
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ADHM construction – example

x1 =




0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


 x2 =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0




x3 =




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 x4 =




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 .

In the associated module M = �e1, e2, e3, e4� we have x1(e3) = e1
and so on. The module M is graded, generated by e3, e4, with
Hilbert series 2 + 2T and resolution:

�
2 6 4 − −
− − 4 6 2

�
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ADHM construction – abstractly

space objects

Modd(An) modules
Quotdr (An) modules with fixed r generators
Cn(Md) modules with fixed basis
U st modules with fixed basis and fixed r generators

U st Cn(Md)

Quotdr (An) Modd(An)

smooth fib.dim. rd

/GLd /GLd

Table: Moduli spaces
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Results in Quot flavour

Theorem (J-Šivic)
d ≤ 2 d = 3 d = 4 d = 5 d = 6 d = 7 d � 0

n ≤ 2 1, . . . 1, . . . 1, . . . 1, . . . 1, . . . 1, . . . 1, . . .
n = 3 1, . . . 1, . . . 1, . . . 1, . . . 1, . . . 1, . . . � 0
n = 4 1, . . . 1, . . . 1, 2, . . . 1, 2, . . . 1, 2, . . . 1, 2, . . . � 0
n = 5 1, . . . 1, . . . 1, 2, . . . 1, 3, 4, . . . 1, 3, 4, . . . 1, 4, 7, 8, . . . � 0
n = 6 1, . . . 1, . . . 1, 2, . . . 1, 3, 4, . . . 1, 4, 6, 7, . . . 1, 5, 9, 11, . . . � 0
n ≥ 7 1, . . . 1, . . . 1, 2, . . . 1, 3, 4, . . . 1, 4, 6, 7, . . . 1, 6, 10, 12, 13, . . . � 0

Table: Number of components of Quotdr (An). In each entry, consecutive
numbers correspond to the number of components for r = 1, 2, . . . and
“. . . ” means that the numbers stabilize at the value of the last entry. In
particular, we see that for r ≥ 5 we already have all the components (for
d ≤ 7).
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Key open questions, in Quot flavour

Is the scheme Quotd�0(A2) reduced? Is it Cohen-Macaulay? One
can take d instead of � 0.

What is the smallest d such that there exists a zero-dimensional
C[x1, x2, x3]-module M with dimCM = d which is not a limit of
semisimple modules? What is any explicit example (for any d , not
necessarily small) of such a module?

For a zero-dimensional module M over S = C[x1, x2, x3] is it true
that dimC im(S → End(M)) ≤ dimCM?
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Key open questions, in Quot flavour

What can be said about deformations of zero-dimensional modules
over C[x1, x2, x3]?

What about self-dual modules, not necessarily in three variables?

Proposition (Wojtala)

Structural results on Hilbert functions (e.g. Iarrobino’s symmetric
decomposition) extend from algebras to modules.
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Results on motives of Quot

Let Quotdr (A∞) = colimn Quot
d
r (An) and let

Vectdr =
�
f : C⊕r → V | dimC V = d , f is non-zero

�

this is formally an open subset of the tautological bundle over the
stack Vectd . We have a forgetful map

i : Quotdr (A∞) → Vectdr

Theorem (J-Nardin-Yakerson)

The map i is an A1-equivalence on affines. For example, the ring
H∗(Quotdr (A∞)(C),Z) is isomorphic to Z[c1, . . . , cd ]/c

r
d .
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Connection to tensors

Let A, B , C have dimension d , let T ∈ A⊗ B ⊗ C . A tensor has
rank at most d if it has the form T =

�d
i=1 ai ⊗ bi ⊗ ci . It has

border rank at most d if it is a limit of such. A tensor is concise if it
does not live in any A� ⊗B � ⊗ C � where (−)� are subspaces, at least
one of them proper. Concise tensors have border rank at least d .

Problem (Nightmare)

Classify concise tensors of border rank d .

Problem (Open problem, reasonable)

Do the same for small d . (d ≤ 4 done although not written down,
but already d = 5 seems very open)

Find equations of minimal border rank tensors among concise
tensors. (⇔ describe σd(Segre) ∩ {concise} ⊂ P(A⊗ B ⊗ C ).)
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Connection to tensors cd.

Proposition (known)

T of minimal border rank =⇒ T satisfies Strassen’s equations.

For (x1, . . . , xd−1) ∈ Cd−1(Md) form a naive tensor�d
i=1 ai ⊗ xi ∈ A⊗ B ⊗ C , where xd = Idd .

T ∈ A⊗ B ⊗ C is 1A-generic if for some α ∈ A∗ the element
T (α) ∈ B ⊗ C is a matrix of full rank.

concise T ∈ A⊗ B ⊗ C is isomorphic to
satisfying Strassen’s equations

general ??
1A-generic naive tensor from (x1, . . . , xd−1)

(⇔ structure tensor of module)
1A- and 1B -generic structure tensor of algebra

1A- and 1B - and 1C -generic structure tensor of
Gorenstein algebra
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Connection to tensors cd.

Proposition (Landsberg-Michałek, Abelian tensors)

The naive tensor is of minimal border rank iff (x1, . . . , xd−1) is in
the principal component.

Corollary
1A-generic, 1B -generic tensors satisfying Strassen’s equations are of
minimal border rank for all d ≤ 7.

What about 1A-generic?
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Connection to tensors cd.

Theorem (J)

For d ≤ 6, a tuple (x1, . . . , xd−1) ∈ Cd−1(Md) is in the principal
component iff dim(C[x1, . . . , xd−1]) ≤ d .

End-closed condition: The condition dim(C[x1, . . . , xd−1]) ≤ d is
conveniently rewritten as: the space V = �x1, . . . , xd−1, Idd�
satisfies V · V ⊂ V .

Corollary
1A-generic, 1B -generic tensors satisfying Strassen’s equations and
End-closed condition are of minimal border rank.
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Nasty example

There is (up to degeneration and taking into account J-Šivic) one
nontrivial example.




0 0 e1 0 e2 e3
0 0 0 e1 e4 e5
0 0 0 0 e1 0
0 0 0 0 0 e1
0 0 0 0 0 0
0 0 0 0 0 0




The deformation of this tuple, parameterized by λ ∈ C is given by



0 λ2e4 e1 −λe5 e2 e3
−λe1 0 −λe4 e1 e5 e4
−λ3e4 λ2e1 0 λ2e4 e1 −λe5

0 0 0 −λ2e5 λe2 − λe4 λe3 + e1
0 0 0 0 −λ2e5 0
0 0 0 0 0 −λ2e5



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Connection to tensors final result

Theorem (J-Landsberg-Pal)

For d = 5, concise minimal border rank tensors are cut out of
concise tensors by

1 Strassen’s equations (actually p = 1 Koszul flattenings),
2 End-closed condition,
3 (1, 1, 1)-equations (coming from border apolarity by

Buczyńska-Buczyński).
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Thanks!

Thanks for attention!
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Methods I: Macaulay’s inverse systems

Macaulay’s inverse systems / apolarity for modules.
S = C[y1, . . . , yn] T = C[z1, . . . , zn]
F = Se1 ⊕ Se2 ⊕ . . .⊕ Ser
F ∗ := Te∗1 ⊕ . . .⊕ Te∗r
Is an S-module via yiyj ◦ (z2

i zj)e
∗
k = zie

∗
k . Admits a pairing

F × F ∗ → C defined usually on dual bases.

Theorem (J-Šivic)

For every M = F/K annihilated by S�0 there exist σ1, . . . ,σr ∈ F ∗

such that K = (Sσ1 + . . .+ Sσr )
⊥. Say: M apolar to σ1, . . . ,σr .

Example
The module coming from x1, . . . , x4 is the apolar module of
z1e

∗
3 + z2e

∗
4 , z3e

∗
3 + z4e

∗
4 .
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ADHM construction – example

Example
The module coming from x1, . . . , x4 is the apolar module of
z1e

∗
3 + z2e

∗
4 , z3e

∗
3 + z4e

∗
4 .

x1 =




0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


 x2 =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0




x3 =




0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 x4 =




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 .

In the associated module M = �e1, e2, e3, e4� we have x1(e3) = e1
and so on. So M = (Se3 ⊕ Se4)/K with
K = (y1e4, y2e3, y2e4 − y1e3, y3e4, y4e3, y4e4 − y3e3)S .
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Methods II: Białynicki-Birula decomposition

Gm � Quotdr (An).

geometry algebra

[F/K ] is Gm-fixed K ⊂ F homogeneous
Hom(K ,F/K )i ϕ : K → F/K shifting degree by i

Proposition

If Hom(K ,F/K )>0 = 0 or Hom(K ,F/K )<0 = 0 locally there exists
a retraction onto fixed points.
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Methods II: Białynicki-Birula decomposition – scribbling
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