Algebraic geometry of commuting matrices arXiv:2106.13137

Joachim Jelisiejew, partly joint with K. Šivic, J.M. Landsberg & A. Pal, . . .

IMPANGA, 19 Nov 2021 To get slides with links just send me an email. See also our article.

J.Jelisiejew Algebraic geometry of commuting matrices

For simplicity, everything over \mathbb{C} . \mathbb{M}_d denotes $d \times d$ matrices.

Definition

The variety* $C_n(\mathbb{M}_d)$ of *n*-tuples of commuting $d \times d$ is defined as

$$C_{n}(\mathbb{M}_{d}) = \{(x_{1}, \dots, x_{n}) \in (\mathbb{M}_{d})^{n} \mid \forall i, j : x_{i}x_{j} = x_{j}x_{i}\}.$$

$$(\mathcal{P}/\mathcal{M}_{d})^{n}$$

$$G_{\mathcal{C}}(n, \mathcal{M}_{d})$$
quadratic equations

principal component Motzkin, Taussky'55: n = 2 $C_2(M_d) \ni (k_1, x_2)$ iverdueble (singular) ...& Stark 2021 d = 2 $C_n(M_2)$ iverdueble <u>toric</u>. \clubsuit trace metrice. The good open (not necessarily dense!) locus

$$\{(x_1,\ldots,x_n)\in\mathbb{M}_d^n\mid \text{ simultaneously diagonalizable}\}$$

It closure is an irreducible component, the principal component.

Subjective big picture

Key open questions, small number of matrices

Classify points of
$$C_n(\mathbb{M}_d)$$
 up to $\operatorname{GL}_n \times \operatorname{GL}_d$ -action for small n, d .
 $\operatorname{GL}_d \subseteq \operatorname{IM}_d$ by conj. A where known: $d \leq 4$
 $\operatorname{GL}_n \subseteq (\operatorname{ing})^n$ by linux conde.
Find equations for the principal component inside $C_n(\mathbb{M}_d)$.
 $i(x_1, \dots, x_n) \times i$ diagonalizable j

Is the scheme $C_2(\mathbb{M}_d)$ reduced? Is it Cohen-Macaulay? (Charbonnel arXiv:2006.12942)

Key open questions II, small number of matrices

What is the smallest d such that $C_3(\mathbb{M}_d)$ is reducible?

Known: $12 \le d \le 29$, lower bound Šivie, upper bound Holbrook, Omladič+ ε Šivic.

Obtaind: din C3 (M2) > (2 (M2) induible din principal Vol 29.

For any *d* describe (a general point of) any component of $C_3(\mathbb{M}_d)$ other than the principal one. Describe any explicit triple (x_1, x_2, x_3) outside the principal component.

For $(x_1, x_2, x_3) \in C_3(\mathbb{M}_d)$ is it true that $\dim_{\mathbb{C}}(\mathbb{C}[x_1, x_2, x_3] \subset \mathbb{M}_d) \leq d$? (Gerstenhaben's question)

True for the principal component.

J.Jelisiejew

Algebraic geometry of commuting matrices

Classical swindle (e.g. Guralnick): $\bigvee_{i,j} \times_{i} \times_{i} = \bigcirc = \times_{j} \times_{i}$ The algebra $\mathbb{C}[x_1, x_2, x_3, x_4]$ is $\lambda \cdot Id_4 + \begin{bmatrix} 0 & 0 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad (x_1, \dots, x_n) \not\in J^{(n)}$ $\lambda \in \mathbb{C}.$ $\lambda \in \mathbb{C}.$

Violates Gerstenhaber's bound. $C_n(\mathbb{M}_d)$ is reducible for $n, d \geq 4$.

What are the components of $C_n(\mathbb{M}_d)$ in general?

Theorem (J-Šivic)

The number of irreducible components of $C_n(\mathbb{M}_d)$ for $d \leq 7$ is as shown in Table 1; we also have explicit descriptions of general points of each component (and general points are smooth).

d < 2 d = 3 d = 4 d = 5 d = 6 d = 7 $d \gg 0$ 1 *n* < 2 1 1 1 1 1 princ. 1 n = 3 1 1 $\gg 0$ n = 4 = 1 $\gg 0$ 1 21 n = 5 = 14 8 $\gg 0$ 4 2 n = 6 = 17 11 $\gg 0$ n > 7 1 1 2 13 $\gg 0$

Table: Number of components of $C_n(\mathbb{M}_d)$

J.Jelisiejew Algebraic geometry of commuting matrices

Results in matrix flavour I

Typically (not always), the elementary components have the form, up to GL_d action and adding scalar matrices,

$$x_1,\ldots,x_n\in \begin{bmatrix} 0 & *\\ 0 & 0 \end{bmatrix}$$

where * is $m \times (d - m)$ matrix for some fixed m and for n large enough.

Theorem (J-Šivic)

The variety $C_n(\mathbb{M}_d)$ has generically nonreduced components for all $n \ge 4$ and $d \ge 8$. For example, the locus of quadruples of the form (up to GL₈ action and adding scalar matrices):

is a generically nonreduced component.

 $C_{L}(M_{g})$ Locus \mathcal{L} of quadruples Computer: $\mathcal{L} \cap (\text{principal component}) \subset \mathcal{L}$ is a divisor. Get a divisor in $\mathbb{C}^4 \otimes \mathbb{C}^4 \otimes \mathbb{C}^4$ invariant under S_3 and $GL_4 \times GL_4 \times GL_4$. Which divisor is it? $(x_1, x_3) \in \{y : yx, = x, y\} = C_2(cont_{x_1})$ (x.. - xn) (y.. - yn) c[y.. - yn] [17] $C_{\pi}(M_{d}) \supseteq (x_{1}, x_{1}, x_{2})$ **J.Jelisieiew** Algebraic geometry of commuting matrices

ADHM construction

ADHM construction

Definition

Let $S = \mathbb{C}[y_1, \ldots, y_n]$. For $(x_1, \ldots, x_n) \in C_n(\mathbb{M}_d)$ we define an S-module structure on \mathbb{C}^d by

$$y_i \cdot v := x_i(v)$$
 for all $v \in \mathbb{C}^d$.

We will denote the resulting module associated to (x_1, \ldots, x_n) by M.

The module has tons of invariants: number of generators, Hilbert function, resolution etc. which we employ to get a better grasp on the matrices themselves.

In the associated module $M = \langle e_1, e_2, e_3, e_4 \rangle$ we have $\overline{x_1}(e_3) = e_1$ and so on. The module M is graded, generated by e_3 , e_4 , with Hilbert series 2 + 2T and resolution:

$$\begin{bmatrix} 2 & 6 & 4 & - & - \\ - & - & 4 & 6 & 2 \end{bmatrix}$$

space	objects	
$Mod^d(\mathbb{A}^n)$	modules	
$\operatorname{Quot}^d_r(\mathbb{A}^n)$	modules with fixed <i>r</i> generators	
$C_n(\mathbb{M}_d)$	modules with fixed basis	
$\mathcal{U}^{ ext{st}}$	modules with fixed basis and fixed r generat	tors
Vort	to of stable data	
	$\begin{array}{c} \mathcal{U}^{\mathrm{st}} \xrightarrow{\mathrm{smooth fib.dim. } rd} & C_n(\mathbb{M}_d) \\ \downarrow / \operatorname{GL}_d & \text{if } n \geqslant d & \downarrow / \operatorname{GL}_d & \downarrow \\ \end{array}$	- ~~)
Q	$\operatorname{uot}^d_r(\mathbb{A}^n) \longrightarrow \operatorname{Mod}^d(\mathbb{A}^n) \qquad \sum_{r \in \mathcal{T}} \mathcal{M}_r(\mathbb{A}^n)$	5

Table: Moduli spaces

Theorem (J-Šivic)							
	$d \leq 2$	d = 3	<i>d</i> = 4	<i>d</i> = 5	<i>d</i> = 6	d = 7	$d \gg 0$
$n \le 2$ n = 3 n = 4 n = 5 n = 6 n > 7	$1, \dots $ $1, \dots$ $1, \dots$ $1, \dots$ $1, \dots$ $1, \dots$ $1, \dots$	$1, \dots \\ 1, \dots $	$1, \dots \\ 1, \dots \\ 1, 2, \dots $	$\begin{array}{c} 1, \ldots \\ 1, \ldots \\ 1, 2, \ldots \\ 1, 3, 4, \ldots \\ 1, 3, 4, \ldots \\ 1, 3, 4, \ldots \end{array}$	$1, \dots \\ 1, \dots \\ 1, 2, \dots \\ 1, 3, 4, \dots \\ 1, 4, 6, 7, \dots \\ 1, 4, 6, 7, \dots$	$1, \dots \\ 1, \dots \\ 1, 2, \dots \\ 1, 4, 7, 8, \dots \\ 1, 5, 9, 11, \dots \\ 1, 6, 10, 12, 13, \dots$	$\begin{array}{c} 1, \ldots \\ \gg 0 \end{array}$

Table: Number of components of $\operatorname{Quot}_r^d(\mathbb{A}^n)$. In each entry, consecutive numbers correspond to the number of components for r = 1, 2, ... and "..." means that the numbers stabilize at the value of the last entry. In particular, we see that for $r \ge 5$ we already have all the components (for $d \le 7$).

Key open questions, in Quot flavour

Is the scheme $\operatorname{Quot}_{\gg 0}^{d}(\mathbb{A}^2)$ reduced? Is it Cohen-Macaulay? One can take *d* instead of $\gg 0$.

Vincipal component of Cn (Md) - modules Timits of scinisingle (=05/11m)

What is the smallest d such that there exists a zero-dimensional $\mathbb{C}[x_1, x_2, x_3]$ -module M with dim $\mathbb{C} M = d$ which is not a limit of semisimple modules? What is **any** explicit example (for any d, not necessarily small) of such a module?

For a zero-dimensional module M over $S = \mathbb{C}[x_1, x_2, x_3]$ is it true that $\dim_{\mathbb{C}} \operatorname{im}(S \to \operatorname{End}(M)) \leq \dim_{\mathbb{C}} M$?

J.Jelisiejew Algebraic geometry of commuting matrices

Key open questions, in Quot flavour

D. Heyman :

What can be said about deformations of zero-dimensional modules over $\mathbb{C}[x_1, x_2, x_3]$?

What about self-dual modules, not necessarily in three variables?

Proposition (Wojtala)

Structural results on Hilbert functions (e.g. larrobino's symmetric decomposition) extend from algebras to modules.

Results on motives of Quot

$$S^{\oplus r} \longrightarrow /\mathcal{A} \mid \longrightarrow /\mathcal{A} \land \mathcal{A}^{*} \land \mathcal{A$$

this is formally an open subset of the tautological bundle over the stack $Vect^d$. We have a forgetful map

$$\begin{array}{c} \mathbf{d} = 2 \quad \operatorname{answe} = \begin{array}{c} \cdot & \cdot & \cdot \\ \cdot & \mathbf{d} + & \cdot \\ \cdot & \mathbf{d} + & \mathbf{d} \end{array} \\ & \mathbf{d} + & \mathbf{d} + & \mathbf{d} \end{array} \\ & \mathbf{d} + & \mathbf{d} + & \mathbf{d} \end{array} \\ & \mathbf{d} + & \mathbf{d} + & \mathbf{d} \end{array} \\ & \mathbf{d} + & \mathbf{d} + & \mathbf{d} \end{array} \\ & \mathbf{d} + & \mathbf{d} + & \mathbf{d} \end{array} \\ & \mathbf{d} + & \mathbf{d} + & \mathbf{d} + & \mathbf{d} \end{array} \\ & \mathbf{d} + & \mathbf{d} + & \mathbf{d} + & \mathbf{d} \end{array} \\ & \mathbf{d} + & \mathbf{d} + & \mathbf{d} + & \mathbf{d} + & \mathbf{d} \end{array} \\ & \mathbf{d} + & \mathbf{d} +$$

Connection to tensors

Let A, B, C have dimension d, let $T \in A \otimes B \otimes C$. A tensor has rank at most d if it has the form $T = \sum_{i=1}^{d} a_i \otimes b_i \otimes c_i^c$. It has border rank at most d if it is a limit of such. A tensor is concise if it does not live in any $A' \otimes B' \otimes C'$ where (-)' are subspaces, at least one of them proper. Concise tensors have border rank at least d.

Problem (Nightmare)

Classify concise tensors of border rank d.

Problem (Open problem, reasonable)

Do the same for small d. (d \leq 4 done although not written down, but already d = 5 seems very open)

Find equations of minimal border rank tensors among concise tensors. (\Leftrightarrow describe $\sigma_d(\text{Segre}) \cap \{\text{concise}\} \subset \mathbb{P}(A \otimes B \otimes C).$)

Proposition (known)

T of minimal border rank \implies T satisfies Strassen's equations.

For $(x_1, \ldots, x_{d-1}) \in C_{d-1}(\mathbb{M}_d)$ form a *naive* tensor $\sum_{i=1}^d a_i \otimes x_i \in A \otimes B \otimes C$, where $x_d = \operatorname{Id}_d$. $T \in A \otimes B \otimes C$ is 1_A -generic if for some $\alpha \in A^*$ the element $T(\alpha) \in B \otimes C$ is a matrix of full rank.

concise $T \in A \otimes B \otimes C$ satisfying Strassen's equations	is isomorphic to
general	??
1_A -generic	naive tensor from (x_1, \ldots, x_{d-1})
	$(\Leftrightarrow structure \ tensor \ of \ module)$
1_{A} - and 1_{B} -generic	structure tensor of algebra
1_{A} - and 1_{B} - and 1_{C} -generic	structure tensor of
	Gorenstein algebra

Proposition (Landsberg-Michałek, Abelian tensors)

The naive tensor is of minimal border rank iff (x_1, \ldots, x_{d-1}) is in the principal component.

Corollary

 1_A -generic, 1_B -generic tensors satisfying Strassen's equations are of minimal border rank for all $d \leq 7$.

What about 1_A -generic?

Theorem (J)

For $d \leq 6$, a tuple $(x_1, \ldots, x_{d-1}) \in C_{d-1}(\mathbb{M}_d)$ is in the principal component iff dim $(\mathbb{C}[x_1, \ldots, x_{d-1}]) \leq d$.

End-closed condition: The condition dim($\mathbb{C}[x_1, \ldots, x_{d-1}]$) $\leq d$ is conveniently rewritten as: the space $V = \langle x_1, \ldots, x_{d-1}, \mathsf{Id}_d \rangle$ satisfies $V \cdot V \subset V$.

Corollary

 1_A -generic, $\frac{1_B}{Generic}$ tensors satisfying Strassen's equations and End-closed condition are of minimal border rank. $d \leq G$

There is (up to degeneration and taking into account J-Šivic) one nontrivial example.

The deformati

$$\begin{bmatrix} 0 & \lambda^2 e_4 & e_1 & -\lambda e_5 & e_2 & e_3 \\ -\lambda e_1 & 0 & -\lambda e_4 & e_1 & e_5 & e_4 \\ -\lambda^3 e_4 & \lambda^2 e_1 & 0 & \lambda^2 e_4 & e_1 & -\lambda e_5 \\ 0 & 0 & 0 & -\lambda^2 e_5 & \lambda e_2 - \lambda e_4 & \lambda e_3 + e_1 \\ 0 & 0 & 0 & 0 & -\lambda^2 e_5 & 0 \\ 0 & 0 & 0 & 0 & 0 & -\lambda^2 e_5 \end{bmatrix}$$

Theorem (J-Landsberg-Pal)

For d = 5, concise minimal border rank tensors are cut out of concise tensors by

- Strassen's equations (actually p = 1 Koszul flattenings),
- 2 End-closed condition,
- (1,1,1)-equations (coming from border apolarity by Buczyńska-Buczyński).

Thanks for attention!

Macaulay's inverse systems / apolarity for modules. $S = \mathbb{C}[y_1, \ldots, y_n]$ $T = \mathbb{C}[z_1, \ldots, z_n]$ $F = Se_1 \oplus Se_2 \oplus \ldots \oplus Se_r$ $F^* := Te_1^* \oplus \ldots \oplus Te_r^*$ Is an S-module via $y_i y_j \circ (z_i^2 z_j)e_k^* = z_i e_k^*$. Admits a pairing $F \times F^* \to \mathbb{C}$ defined usually on dual bases.

Theorem (J-Šivic)

For every M = F/K annihilated by $S_{\gg 0}$ there exist $\sigma_1, \ldots, \sigma_r \in F^*$ such that $K = (S\sigma_1 + \ldots + S\sigma_r)^{\perp}$. Say: M apolar to $\sigma_1, \ldots, \sigma_r$.

Example

The module coming from x_1, \ldots, x_4 is the apolar module of $z_1e_3^* + z_2e_4^*, z_3e_3^* + z_4e_4^*$.

Example

The module coming from x_1, \ldots, x_4 is the apolar module of $z_1e_3^* + z_2e_4^*, z_3e_3^* + z_4e_4^*$.

In the associated module $M = \langle e_1, e_2, e_3, e_4 \rangle$ we have $x_1(e_3) = e_1$ and so on. So $M = (Se_3 \oplus Se_4)/K$ with $K = (y_1e_4, y_2e_3, y_2e_4 - y_1e_3, y_3e_4, y_4e_3, y_4e_4 - y_3e_3)S$.

J.Jelisiejew

Algebraic geometry of commuting matrices

Methods II: Białynicki-Birula decomposition

 $\mathbb{G}_{\mathrm{m}} \bigcirc \operatorname{\mathsf{Quot}}^d_r(\mathbb{A}^n).$

geometry	algebra
$[F/K]$ is \mathbb{G}_{m} -fixed	$K \subset F$ homogeneous
$Hom(K, F/K)_i$	$\varphi \colon \mathcal{K} \to \mathcal{F}/\mathcal{K}$ shifting degree by i

Proposition

If $Hom(K, F/K)_{>0} = 0$ or $Hom(K, F/K)_{<0} = 0$ locally there exists a retraction onto fixed points.

Methods II: Białynicki-Birula decomposition – scribbling