Non-degenerate locally tame complete intersection varieties and geometry of non-isolated hypersurface singularities

Christophe Eyral

joint work with Mutsuo Oka

Institute of Mathematics Polish Academy of Sciences

くぼう くほう くほう

A new criterion to test Whitney equisingularity

 $f(t, z_1, ..., z_n) = f(t, z)$ polynomial function on $\mathbb{C} \times \mathbb{C}^n$ such that f(t, 0) = 0; as usual, we put $f_t(z) \coloneqq f(t, z)$

The aim of this talk is to investigate the local geometry, at singular points, of the hypersurfaces $V(f_t) := f_t^{-1}(0) \subseteq \mathbb{C}^n$ as the parameter *t* varies

 ${}^{\textcircled{R}}$ Hereafter, I am only interested in such a local situation, that is, in (arbitrarily small representatives of) germs at the origin

Theorem (Briançon) Suppose that for all small *t*:

- f_t has an isolated singularity at 0
- **2** Newton diagram of f_t is independent of t
- **3** $V(f_t)$ is non-degenerate

Then the family $\{V(f_t)\}$ is Whitney equisingular, that is, \exists Whitney (b)-regular stratification of $V(f) := f^{-1}(0) \subseteq \mathbb{C} \times \mathbb{C}^n$ such that the *t*-axis $\mathbb{C} \times \{0\}$ is a stratum

In particular, the local, ambient, topological type of $V(f_t)$ is independent of t

- Write $f_t(z) = \sum c_{\alpha} z^{\alpha}$, where $z^{\alpha} = z_1^{\alpha_1} \cdots z_n^{\alpha_n}$
- $\cdot \Gamma_+(f_t) =$ Newton polyhedron of f_t , i.e., the convex hull in \mathbb{R}^n_+ of

$$\bigcup_{\alpha, c_{\alpha} \neq 0} (\alpha + \mathbb{R}^{n}_{+})$$

 $\cdot \Gamma(f_t) =$ Newton diagram of f_t , i.e., the union of the compact faces of $\Gamma_+(f_t)$

 $\cdot \forall w := (w_1, \ldots, w_n) \in \mathbb{N}^n \setminus \{0\}:$

Non-degeneracy

 $V(f_t)$ is non-degenerate if for any "positive" weight vector w:

 $V(f_{t,w}) \cap \mathbb{C}^{*n}$

is a reduced non-singular hypersurface in \mathbb{C}^{*n} (i.e., $f_{t,w}$ has no critical point in $V(f_{t,w}) \cap \mathbb{C}^{*n}$)

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → の Q (や

Whitney (b)-regular stratification of V(f)

This is a complex analytic stratification of V(f) such that for any pair of strata S_1, S_2 and any point $p \in S_1 \cap \overline{S}_2$, we have S_2 is Whitney (b)-regular over S_1 at p, that is,

$$\begin{cases} p_k \} \text{ in } S_1, p_k \to p \\ \{q_k\} \text{ in } S_2, q_k \to p \\ \text{line}(p_k, q_k) \to \ell \\ T_{q_k} S_2 \to T \end{cases} \Rightarrow \ell \subseteq T$$

A (1) > A (1) > A

Local tameness

- $\cdot \quad \forall I \subseteq \{1, \dots, n\}, \text{ let } \mathbb{C}^I \coloneqq \{z \in \mathbb{C}^n \, ; \, z_i = 0 \text{ if } i \notin I\}$
- $\cdot \quad \mathcal{V}_{f_t} \coloneqq \{I \; ; \; f_t|_{\mathbb{C}^I} \equiv 0\}$

- $V(f_t)$ is locally tame if $\exists R(f_t) > 0$ such that:
 - $\forall I := \{i_1, \dots, i_m\} \neq \emptyset \text{ in } \mathcal{V}_{f_t};$ $\forall w = (w_1, \dots, w_n) \in \mathbb{N}^n \setminus \{0\} \text{ with } \{i; w_i = 0\} = I;$ $\forall u_{i_1}, \dots, u_{i_m} \in \mathbb{C}^* \text{ with } \sum_{i=1}^m |u_{i_i}|^2 < R(f_t);$

the intersection

$$V(f_{t,w}) \cap \{z \in \mathbb{C}^{*n} \mid z_{i_1} = u_{i_1}, \ldots, z_{i_m} = u_{i_m}\}$$

is a reduced non-singular hypersurface in $\{z \in \mathbb{C}^{*n} \mid z_{i_1} = u_{i_1}, \ldots, z_{i_m} = u_{i_m}\}$, that is, $f_{t,w}$ has no critical point in

$$V(f_{t,w}) \cap \{z \in \mathbb{C}^{*n} \mid z_{i_1} = u_{i_1}, \dots, z_{i_m} = u_{i_m}\}$$

as a function of the n - m variables $(z_i)_{i \notin I}$

 \mathbb{R} $R(f_t)$ = radius of local tameness for f_t

Example $f_t = z_1^2 z_2^3 + z_1^3 z_2^2 + t z_1^2 z_2^4$

- ▶ $I = \{1\}, \{2\} \text{ or } \{1,2\}$
 - $\begin{array}{l} \cdot f_t|_{\mathbb{C}^{\{1\}}}(z_1,0) \equiv 0 \Rightarrow \{1\} \in \mathcal{V}_{f_t} \\ \cdot f_t|_{\mathbb{C}^{\{2\}}}(0,z_2) \equiv 0 \Rightarrow \{2\} \in \mathcal{V}_{f_t} \\ \cdot \{1,2\} \notin \mathcal{V}_{f_t} \end{array}$

► $w = (w_1, w_2)$ with $\{i; w_i = 0\} = \{1\}$, i.e, with $w_1 = 0$ $\Rightarrow \Delta(w; f_t) = \{\alpha \in \Gamma_+(f_t) \mid w_2\alpha_2 \text{ minimal}\}$ $\forall u_1 \in \mathbb{C}^*$ the function $z_2 \mapsto f_{t,w}(u_1, z_2) = u_1^3 z_2^2$ has no critical points on $V(f_{t,w}) \cap \{z \in \mathbb{C}^{*2} \mid z_1 = u_1\}$

►
$$w' = (w'_1, w'_2)$$
 with $\{i; w'_i = 0\} = \{2\}$, i.e, with $w'_2 = 0$
 $\Rightarrow \Delta(w'; f_t) = \{\alpha \in \Gamma_+(f_t) \mid w'_1\alpha_1 \text{ minimal}\}$
 $\forall u_2 \in \mathbb{C}^*$ the function $z_1 \mapsto f_{t,w'}(z_1, u_2) = z_1^2 u_2^3 + tz_1^2 u_2^4$ has no critical points on
 $V(f_{t,w'}) \cap \{z \in \mathbb{C}^{*2} \mid z_2 = u_2\}$

provided that $|u_2| < 1/|t|$ ($t \neq 0$) [because the derivative is $2z_1u_2^3(1 + tu_2)$]

Therefore, $V(f_t)$ is locally tame and $R(f_t) = 1/|t|$ is a radius of local tameness for f_t if $t \neq 0$ while $R(f_0) = \infty$ is a radius of local tameness for f_{0} , t = 1/|t| is a radius of local tameness for f_{0} .

Theorem (M. Oka and CE, 2017) Suppose that for all small *t*:

- Newton diagram of f_t is independent of t
- **2** $V(f_t)$ is non-degenerate
- V(f_t) is locally tame and there is a radius of local tameness for f_t which is > R for some R > 0 independent of t

Then the family $\{V(f_t)\}$ is Whitney equisingular

🍘 This is a generalization of Briançon's theorem to non-isolated singularities

Example
$$f_t = z_1^2 z_2^3 + z_1^3 z_2^2 + t z_1^2 z_2^4$$

It is locally tame $(R(f_0) = \infty \text{ and } R(f_t) = 1/|t| \text{ if } t \neq 0)$; we have $R(f_t) > R \coloneqq 1$ for all |t| < 1. It is also non-degenerate, and has constant Newton diagram. Thus the family $\{V(f_t)\}$ is Whitney equisingular.

Remark

In general, if $h = h_1 \cdot h_2$ and if $\dim_0(V(h_1) \cap V(h_2)) \ge 1$, then h is never non-degenerate if its Newton diagram intersect each coordinate axis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Non-degenerate, locally tame, complete intersection variety

 $h^1(\mathsf{z}),\ldots,h^{k_0}(\mathsf{z})$ polynomial functions on \mathbb{C}^n such that $h^k(0)=0$

► $V(h^1,...,h^{k_0}) = \{z; h^1(z) = \cdots = h^{k_0}(z) = 0\}$ is a non-degenerate, locally tame, complete intersection variety if

I for any "positive" weight vector w:

$$V(h_{\mathsf{w}}^1,\ldots,h_{\mathsf{w}}^{k_0})\cap\mathbb{C}^{*n}$$

is a reduced, non-singular, complete intersection variety in \mathbb{C}^{*n} , that is, the k_0 -form $dh^1_w \wedge \cdots \wedge dh^{k_0}_w$ is nowhere vanishing in $V(h^1_w, \ldots, h^{k_0}_w) \cap \mathbb{C}^{*n}$

②
$$\exists R(h^1, ..., h^{k_0}) > 0$$
 such that:
 $\cdot \forall I := \{i_1, ..., i_m\} \neq \emptyset$ in $\mathcal{V}_{h^1} \cap \cdots \cap \mathcal{V}_{h^{k_0}};$
 $\cdot \forall w = (w_1, ..., w_n) \in \mathbb{N}^n \setminus \{0\}$ with $\{i; w_i = 0\} = I;$
 $\cdot \forall u_{i_1}, ..., u_{i_m} \in \mathbb{C}^*$ with $\sum_{j=1}^m |u_{i_j}|^2 < R(h^1, ..., h^{k_0});$
the intersection

$$V(h_{w}^{1},...,h_{w}^{k_{0}}) \cap \{z \in \mathbb{C}^{*n} \mid z_{i_{1}} = u_{i_{1}},...,z_{i_{m}} = u_{i_{m}}\}$$

is a reduced, non-singular, complete intersection variety in $\{z \in \mathbb{C}^{*n} \mid z_{i_1} = u_{i_1}, \dots, z_{i_m} = u_{i_m}\}$

 \mathbb{P} $R(h^1, \ldots, h^{k_0}) =$ radius of local tameness for $\{h^1, \ldots, h^{k_0}\}_{k \in \mathbb{P}}$

Let $f(t,z) \coloneqq f^1(t,z) \cdots f^{k_0}(t,z)$, where $f^k(t,z)$ is a polynomial function on $\mathbb{C} \times \mathbb{C}^n$ such that $f^k(t,0) = 0$; as usual, put $f_t(z) \coloneqq f(t,z)$ and $f_t^k(z) \coloneqq f^k(t,z)$

Theorem (M. Oka and CE, 2021) Suppose that for all small *t*:

• $\forall k = 1, ..., k_0$, the Newton diagram of f_t^k is independent of t

$$\forall \{k_1,\ldots,k_p\} \subseteq \{1,\ldots,k_0\}:$$

• $V(f_t^{k_1}, \ldots, f_t^{k_p})$ non-degenerate, locally tame, complete intersection variety • there is a radius of local tameness for $\{f_t^{k_1}, \ldots, f_t^{k_p}\}$ which is > R for some R > 0 independent of t and of $\{k_1, \ldots, k_p\}$

(families $\{f_t\}$ satisfying (1) and (2) above are called Newton-admissible) Then $\{V(f_t)\}$ is Whitney equisingular

🎯 This extends all previous theorems

Example $f^k(t,z) \coloneqq \sum_{i=1}^n (a_i(k) + t b_i(k)) z_i^{p_i} z_{i+1}^{q_i} \ (1 \le k \le k_0)$

· $p_i, q_i \in \mathbb{N}^*$ are so that there exists a positive weight vector $w = (w_1, \ldots, w_n)$ so that $f_t^1(z), \ldots, f_t^{k_0}(z)$ are weighted homogeneous polynomials of *w*-degree *d*

• For generic $a_i(k), b_i(k) \in \mathbb{C}^*$, the family $\{f_t\}$ is Newton-admissible, and hence $\{V(f_t)\}$ is Whitney equisingular

Sketch of the proof

A Whitney (b)-regular stratification of V(f) answering the theorem (i.e., having $\mathbb{C} \times \{0\}$ as a stratum) is given by the canonical toric stratification of V(f)

· For any $I \subseteq \{1, \ldots, n\}$ and $K \subseteq \{1, \ldots, k_0\}$ let

$$S'(K) \coloneqq \bigcap_{k \in K} \left(V(f^k) \cap (\mathbb{C} \times \mathbb{C}^{*'}) \right) \setminus \bigcup_{k \in K^c} \left(V(f^k) \cap (\mathbb{C} \times \mathbb{C}^{*'}) \right)$$

where $\mathbb{C}^{*I} := \{z \in \mathbb{C}^n; z_i = 0 \Leftrightarrow i \notin I\}$; note that $S^{\emptyset}(\{1, \ldots, k_0\}) = \mathbb{C} \times \{0\}$.

• Non-degeneracy condition $\Rightarrow S^{I}(K)$ is smooth (near 0)

It follows that the collection of all sets S'(K) is a complex analytic stratification of V(f); it is called the canonical toric stratification of V(f).

 \cdot We must show that for any

$$I \subseteq J \subseteq \{1, \dots, n\} \text{ and } L \subseteq K \subseteq \{1, \dots, k_0\} \text{ with } S^{I}(K) \cap \overline{S^{J}(L)} \neq \emptyset,$$

 $S^{J}(L)$ is Whitney (b)-regular over $S^{I}(K)$ at any point $(t^{0}, z^{0}) \in S^{I}(K) \cap \overline{S^{J}(L)}$.

· Pick real analytic paths

$$\rho(s) \coloneqq (t(s), \mathsf{z}(s))$$
 and $\rho'(s) \coloneqq (t'(s), \mathsf{z}'(s))$

in $\mathbb{C} \times \mathbb{C}^n$ such that:

•
$$\rho(0) = \rho'(0) = (t^0, z^0)$$

• $\rho'(s) \in S^I(K) \text{ and } \rho(s) \in S^J(L) \text{ for } s \neq 0$

Put $\ell(s) \coloneqq \rho(s) - \rho'(s)$. By the curve selection lemma, it suffices to prove that

$$\ell_{\infty} \coloneqq \lim_{s \to 0} \frac{\ell(s)}{\|\ell(s)\|} \in T_{\infty} \coloneqq \lim_{s \to 0} T_{\rho(s)} S^{J}(L).$$

· To simplify, assume $J = \{1, \dots, n\}$ and $L = \{1, \dots, k_L\}$. Note that

$$T_{\rho(s)}S^{J}(L) = (df^{1}(\rho(s)) \wedge \cdots \wedge df^{k_{L}}(\rho(s)))^{\perp}$$

= {v \in T_{\rho(s)}(\mathbb{C} \times \mathbb{C}^{n}) | v_{v}(df^{1}(\rho(s)) \wedge \cdots \wedge df^{k_{L}}(\rho(s))) = 0}.

Write $o_{k_L} \coloneqq \operatorname{ord}_s df^1(\rho(s)) \land \cdots \land df^{k_L}(\rho(s))$ and put

$$\omega_{\infty} \coloneqq \lim_{s \to 0} \frac{1}{s^{o_{k_L}}} \cdot df^1(\rho(s)) \wedge \cdots \wedge df^{k_L}(\rho(s)).$$

Then $T_{\infty} = \omega_{\infty}^{\perp}$, and we must prove that $\ell_{\infty} \in \omega_{\infty}^{\perp}$.

· To do that, we show that \exists linearly independent 1-forms $\omega_1, \ldots, \omega_{k_l}$ such that

$$\omega_{\infty} = \omega_1 \wedge \cdots \wedge \omega_{k_l}$$

(then, of course, it will be enough to prove that $\omega_k(\ell_{\infty}) = 0$ for all $1 \le k \le k_L$)

· The main difficulty is that, in general, if $I \in \mathcal{V}_{f_t^k}$ for some of the functions f_t^k , then the limits of the normalized 1-forms

$$df^1(\rho(s)),\ldots,df^{k_L}(\rho(s))$$

as $s \to 0$ are not linearly independent. The subterfuge used to solve this problem is to replace the corresponding differential $df^k(\rho(s))$ with a term of the form

$$df^{k}(\rho(s)) + \sum_{k'=1}^{k-1} c_{k,k'}(s) \, df^{k'}(\rho(s)),$$

where $c_{k,k'}(s)$ are suitable polynomials.

• The forms ω_k corresponding to the functions f^k such that $I \in \mathcal{V}_{f_t^k}$ can be constructed using the above subterfuge and the uniform local tameness condition.

• The forms ω_k corresponding to the functions f^k such that $I \notin \mathcal{V}_{f_t^k}$ are constructed using the non-degeneracy condition.

Application: Thom's a_f condition

Pick a sufficiently small representative of (the germ at 0 of)

$$f(t,z) \coloneqq f^1(t,z) \cdots f^{k_0}(t,z)$$

so that 0 is the only possible critical value of f. Then we have:

Theorem (Parusiński and Briançon-Maisonobe-Merle) If S is a Whitney (b)-regular stratification of V(f), then S satisfies Thom's a_f condition, that is, for any stratum S, any point $p \in S$, and any sequence $\{p_q\} \notin V(f)$ such that

Theorem (M. Oka and CE, 2021) If $\{f_t\}$ is Newton-admissible, then the canonical toric stratification S of V(f) satisfies Thom's a_f condition

Proof By our theorem, S is Whitney (b)-regular. Then we apply the theorem of Parusiński and Briançon-Maisonobe-Merle.

Christophe Eyral

Application to the Milnor fibration

Theorem (M. Oka and CE, 2021) If $\{f_t\}$ is Newton-admissible, then the Milnor fibrations of f_0 and f_t at 0 are isomorphic for all small t

Ingredients of the proof

- **1** The canonical toric stratification S of V(f) satisfies Thom's a_f condition
- **②** For any t and any $\varepsilon > 0$ sufficiently small

 $\{t\} \times S_{\varepsilon} \mathrel{\Uparrow} ((\{t\} \times \mathbb{C}^n) \cap S)$

for any $S \in S$ (this follows from the Whitney (b)-regularity condition)

- Using (1) and (2) we show that {f_t} has a uniform stable radius for the Milnor fibrations of the f_t's at 0
- O Theorem (Oka) {f_t} has a uniform stable radius ⇒ the Milnor fibrations of f₀ and f_t at 0 are isomorphic for all small t

Thank you for your attention!

= 990