Zariski multiplicity conjecture via Floer cohomology

Tomasz Pełka

joint work with Javier Fernández de Bobadilla

Basque Center for Applied Mathematics tpelka@bcamath.org

December 12, 2021

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:

 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$ $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:

 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$ $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_i f_i$, f_i homogeneous.

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
- $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$ $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_i f_i$, f_i homogeneous.
- f, g are topologically equivalent $(f \sim_{top} g)$ if \exists germ of a homeomorphism $\Phi : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ such that $\Phi(\{f = 0\}) = \{g = 0\}.$

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:

 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$ $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_i f_i$, f_i homogeneous.
- f, g are topologically equivalent $(f \sim_{top} g)$ if \exists germ of a homeomorphism $\Phi : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ such that $\Phi(\{f = 0\}) = \{g = 0\}.$

If $f,g:(\mathbb{C}^n,0)\to(\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_\sigma$.

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:

 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$ $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_i f_i$, f_i homogeneous.
- f, g are topologically equivalent $(f \sim_{top} g)$ if \exists germ of a homeomorphism $\Phi : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ such that $\Phi(\{f = 0\}) = \{g = 0\}.$

If $f,g:(\mathbb{C}^n,0)\to(\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_\sigma$.

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$
 - $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_j f_j$, f_j homogeneous.
- f,g are topologically equivalent $(f \sim_{\mathsf{top}} g)$ if \exists germ of a homeomorphism $\Phi \colon (\mathbb{C}^n,0) \to (\mathbb{C}^n,0)$ such that $\Phi(\{f=0\}) = \{g=0\}$.

If $f,g:(\mathbb{C}^n,0)\to(\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_g$.

•
$$\nu_f = 1$$
 [A'Campo '73]

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:

 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$ $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_i f_i$, f_i homogeneous.
- f, g are topologically equivalent $(f \sim_{top} g)$ if \exists germ of a homeomorphism $\Phi : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ such that $\Phi(\{f = 0\}) = \{g = 0\}.$

If $f,g:(\mathbb{C}^n,0)\to(\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_\sigma$.

- $\nu_f = 1 \text{ [A'Campo '73]}$
 - h log resolution, Exc $h = \sum_i E_j$, m_j multiplicity of E_j in $(h \circ f)^*(0)$, $m_j \geqslant \nu_f$

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$
 - $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_i f_i$, f_i homogeneous.
- f,g are topologically equivalent $(f \sim_{\mathsf{top}} g)$ if \exists germ of a homeomorphism $\Phi \colon (\mathbb{C}^n,0) \to (\mathbb{C}^n,0)$ such that $\Phi(\{f=0\}) = \{g=0\}.$

If $f,g:(\mathbb{C}^n,0)\to(\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_g$.

- $\nu_f = 1$ [A'Campo '73]
 - h log resolution, Exc $h = \sum_{i} E_{j}$, m_{j} multiplicity of E_{j} in $(h \circ f)^{*}(0)$, $m_{j} \geqslant \nu_{f}$
 - \blacksquare $F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$ Milnor fiber, $\phi \colon f^{-1}(\delta) \to f^{-1}(\delta)$ monodromy

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$
 - $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_i f_i$, f_i homogeneous.
- f,g are topologically equivalent $(f \sim_{\mathsf{top}} g)$ if \exists germ of a homeomorphism $\Phi \colon (\mathbb{C}^n,0) \to (\mathbb{C}^n,0)$ such that $\Phi(\{f=0\}) = \{g=0\}$.

If $f,g:(\mathbb{C}^n,0)\to(\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_g$.

- $\nu_f = 1$ [A'Campo '73]
 - h log resolution, Exc $h = \sum_j E_j$, m_j multiplicity of E_j in $(h \circ f)^*(0)$, $m_j \geqslant \nu_f$
 - $lacksquare F = f^{-1}(\delta) \cap \mathbb{B}_{arepsilon}$ Milnor fiber, $\phi \colon f^{-1}(\delta) o f^{-1}(\delta)$ monodromy

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$
 - $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_j f_j$, f_j homogeneous.
- f,g are topologically equivalent $(f \sim_{\mathsf{top}} g)$ if \exists germ of a homeomorphism $\Phi \colon (\mathbb{C}^n,0) \to (\mathbb{C}^n,0)$ such that $\Phi(\{f=0\}) = \{g=0\}$.

If $f,g:(\mathbb{C}^n,0)\to(\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_g$.

- $\nu_f = 1$ [A'Campo '73]
 - h log resolution, Exc $h=\sum_{i}E_{j},\ m_{j}$ multiplicity of E_{j} in $(h\circ f)^{*}(0),\ m_{j}\geqslant \nu_{f}$
 - lacksquare $F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$ Milnor fiber, $\phi \colon f^{-1}(\delta) o f^{-1}(\delta)$ monodromy

 - If $m<
 u_f$ then the sum is empty, so $\Lambda(\phi^m)=0$.

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$
 - $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_j f_j$, f_j homogeneous.
- f,g are topologically equivalent $(f \sim_{\mathsf{top}} g)$ if \exists germ of a homeomorphism $\Phi \colon (\mathbb{C}^n,0) \to (\mathbb{C}^n,0)$ such that $\Phi(\{f=0\}) = \{g=0\}.$

If $f,g:(\mathbb{C}^n,0)\to(\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_g$.

- $\nu_f = 1$ [A'Campo '73]
 - h log resolution, Exc $h=\sum_{i}E_{j},\ m_{j}$ multiplicity of E_{j} in $(h\circ f)^{*}(0),\ m_{j}\geqslant \nu_{f}$
 - $lacksquare F = f^{-1}(\delta) \cap \mathbb{B}_{arepsilon}$ Milnor fiber, $\phi \colon f^{-1}(\delta) o f^{-1}(\delta)$ monodromy

 - If $m < \nu_f$ then the sum is empty, so $\Lambda(\phi^m) = 0$.
 - If $\nu_f = 1$ then $\Lambda(\phi) = \Lambda(\mathsf{id}) = 1$.

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$
 - $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_j f_j$, f_j homogeneous.
- f,g are topologically equivalent $(f \sim_{\mathsf{top}} g)$ if \exists germ of a homeomorphism $\Phi \colon (\mathbb{C}^n,0) \to (\mathbb{C}^n,0)$ such that $\Phi(\{f=0\}) = \{g=0\}.$

If $f,g:(\mathbb{C}^n,0)\to(\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_g$.

- $\nu_f = 1$ [A'Campo '73]
 - h log resolution, Exc $h=\sum_{i}E_{j},\ m_{j}$ multiplicity of E_{j} in $(h\circ f)^{*}(0),\ m_{j}\geqslant \nu_{f}$
 - $lacksquare F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$ Milnor fiber, $\phi \colon f^{-1}(\delta) o f^{-1}(\delta)$ monodromy

 - If $m < \nu_f$ then the sum is empty, so $\Lambda(\phi^m) = 0$.
 - If $\nu_f = 1$ then $\Lambda(\phi) = \Lambda(\mathrm{id}) = 1$.
 - Dream: $\Lambda(\phi^{\nu_f}) \neq 0$.

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$
 - $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_j f_j$, f_j homogeneous.
- f,g are topologically equivalent $(f \sim_{\mathsf{top}} g)$ if \exists germ of a homeomorphism $\Phi \colon (\mathbb{C}^n,0) \to (\mathbb{C}^n,0)$ such that $\Phi(\{f=0\}) = \{g=0\}.$

If $f,g:(\mathbb{C}^n,0) o (\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_g$.

- $\nu_f = 1$ [A'Campo '73]
 - h log resolution, Exc $h = \sum_j E_j$, m_j multiplicity of E_j in $(h \circ f)^*(0)$, $m_j \geqslant \nu_f$
 - $lacksquare F = f^{-1}(\delta) \cap \mathbb{B}_{arepsilon}$ Milnor fiber, $\phi \colon f^{-1}(\delta) o f^{-1}(\delta)$ monodromy

 - If $m < \nu_f$ then the sum is empty, so $\Lambda(\phi^m) = 0$.
 - If $\nu_f=1$ then $\Lambda(\phi)=\Lambda(\mathrm{id})=1$.
 - Dream: $\Lambda(\phi^{\nu_f}) \neq 0$.
 - False: $f = z_1^2 + \cdots + z_n^2$, $\Lambda(\phi^2) = \Lambda(id) = 0$ if 2|n.

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$
 - $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_j f_j$, f_j homogeneous.
- f, g are topologically equivalent $(f \sim_{\mathsf{top}} g)$ if \exists germ of a homeomorphism $\Phi \colon (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ such that $\Phi(\{f = 0\}) = \{g = 0\}$.

If $f,g:(\mathbb{C}^n,0)\to(\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_g$.

- $\nu_f = 1$ [A'Campo '73]
- lacktriangle Φ is \mathcal{C}^1 [Ephraim '76]

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \ldots, z_n]\!]$
 - $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_j f_j$, f_j homogeneous.
- f,g are topologically equivalent $(f \sim_{\mathsf{top}} g)$ if \exists germ of a homeomorphism $\Phi \colon (\mathbb{C}^n,0) \to (\mathbb{C}^n,0)$ such that $\Phi(\{f=0\}) = \{g=0\}.$

If $f,g\colon (\mathbb{C}^n,0) o (\mathbb{C},0)$ are topologically equivalent then $u_f=\nu_g.$

- $\nu_f = 1$ [A'Campo '73]
- \blacksquare Φ is \mathcal{C}^1 [Ephraim '76]
- $f = \Psi \circ g \circ \Phi$ for Φ , Ψ bilipschitz [Risler–Trotman '97]

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$
 - $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_j f_j$, f_j homogeneous.
- f,g are topologically equivalent $(f \sim_{\mathsf{top}} g)$ if \exists germ of a homeomorphism $\Phi \colon (\mathbb{C}^n,0) \to (\mathbb{C}^n,0)$ such that $\Phi(\{f=0\}) = \{g=0\}.$

If $f,g\colon (\mathbb{C}^n,0) o (\mathbb{C},0)$ are topologically equivalent then $u_f=\nu_g.$

- $\nu_f = 1$ [A'Campo '73]
- lacktriangle Φ is \mathcal{C}^1 [Ephraim '76]
- $f = \Psi \circ g \circ \Phi$ for Φ , Ψ bilipschitz [Risler–Trotman '97]
- *n* = 2 [Zariski '32]

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$
 - $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_i f_i$, f_i homogeneous.
- f,g are topologically equivalent $(f \sim_{\mathsf{top}} g)$ if \exists germ of a homeomorphism $\Phi \colon (\mathbb{C}^n,0) \to (\mathbb{C}^n,0)$ such that $\Phi(\{f=0\}) = \{g=0\}.$

If $f,g:(\mathbb{C}^n,0) o (\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_g.$

- $\nu_f = 1$ [A'Campo '73]
- lacktriangle Φ is \mathcal{C}^1 [Ephraim '76]
- $f = \Psi \circ g \circ \Phi$ for Φ , Ψ bilipschitz [Risler–Trotman '97]
- n = 2 [Zariski '32]
- n = 3, $\nu_f = 2$ [Navarro-Aznar '80]

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$
 - $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_i f_i$, f_i homogeneous.
- f, g are topologically equivalent $(f \sim_{\mathsf{top}} g)$ if \exists germ of a homeomorphism $\Phi \colon (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ such that $\Phi(\{f = 0\}) = \{g = 0\}$.

If $f,g:(\mathbb{C}^n,0) o (\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_g$.

- $\nu_f = 1$ [A'Campo '73]
- \blacksquare Φ is \mathcal{C}^1 [Ephraim '76]
- $f = \Psi \circ g \circ \Phi$ for Φ , Ψ bilipschitz [Risler–Trotman '97]
- n = 2 [Zariski '32]
- n = 3, $\nu_f = 2$ [Navarro-Aznar '80]
- n = 3, f quasi-homogeneous [Xu–Yau '89]

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \dots, z_n]\!]$
 - $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_i f_i$, f_i homogeneous.
- f, g are topologically equivalent $(f \sim_{\mathsf{top}} g)$ if \exists germ of a homeomorphism $\Phi \colon (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ such that $\Phi(\{f = 0\}) = \{g = 0\}$.

If $f,g:(\mathbb{C}^n,0) o (\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_g.$

- $\nu_f = 1$ [A'Campo '73]
- \blacksquare Φ is \mathcal{C}^1 [Ephraim '76]
- $f = \Psi \circ g \circ \Phi$ for Φ , Ψ bilipschitz [Risler–Trotman '97]
- n = 2 [Zariski '32]
- n = 3, $\nu_f = 2$ [Navarro-Aznar '80]
- n = 3, f quasi-homogeneous [Xu–Yau '89]
- n = 3, $f(x, y, z) = p(x, y) + z^k$ [Mendras-Némethi '05]

- $0 \in f^{-1}(0)$ isolated hypersurface singularity:
 - $f: (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ holomorphic germ; $f \in \mathbb{C}[\![z_1, \ldots, z_n]\!]$
 - $0 \in \mathbb{C}^n$ isolated critical point of f; Sing $f^{-1}(0) = \{0\}$, $f^{-1}(\delta)$ smooth for $\delta \neq 0$.
- Multiplicity: $\nu_f = \min_j \deg f_j$, where $f = \sum_i f_i$, f_i homogeneous.
- f, g are topologically equivalent $(f \sim_{\mathsf{top}} g)$ if \exists germ of a homeomorphism $\Phi \colon (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0)$ such that $\Phi(\{f = 0\}) = \{g = 0\}$.

If $f,g:(\mathbb{C}^n,0) o (\mathbb{C},0)$ are topologically equivalent then $\nu_f=\nu_g$.

- $\nu_f = 1$ [A'Campo '73]
- \bullet Φ is \mathcal{C}^1 [Ephraim '76]
- $f = \Psi \circ g \circ \Phi$ for Φ , Ψ bilipschitz [Risler–Trotman '97]
- n = 2 [Zariski '32]
- n = 3, $\nu_f = 2$ [Navarro-Aznar '80]
- n = 3, f quasi-homogeneous [Xu–Yau '89]
- n = 3, $f(x, y, z) = p(x, y) + z^k$ [Mendras-Némethi '05]
- n > 3; $\mu < 2^n 1$; or n = 3 and $\mu \le 26$; or n = 3, $p_g \le 3$ [Yau–Zhuo '18]

- Continuous (or holomorphic) family of isolated hypersurface singularities:
 - $f_t \in \mathbb{C}[\![z_1,\ldots,z_n]\!]$ isolated hypersurface singularity, $f_t = \sum_{\iota} a_{\iota}(t) z^{\iota}$,
 - each $a_{\iota}: [0,1] \to \mathbb{C}$ is continuous (or: $a_{\iota}: \mathbb{D} \to \mathbb{C}$ is holomorphic)

- Continuous (or holomorphic) family of isolated hypersurface singularities:
 - $f_t \in \mathbb{C}[\![z_1,\ldots,z_n]\!]$ isolated hypersurface singularity, $f_t = \sum_{\iota} a_{\iota}(t) z^{\iota}$,
- each $a_{\iota}: [0,1] \to \mathbb{C}$ is continuous (or: $a_{\iota}: \mathbb{D} \to \mathbb{C}$ is holomorphic)
- A family is equimultiple if $\forall t : \nu_{f_t} = \nu_{f_0}$; topologically trivial if $\forall t : f_0 \sim_{\mathsf{top}} f_t$.

- Continuous (or holomorphic) family of isolated hypersurface singularities:
 - $f_t \in \mathbb{C}[\![z_1,\ldots,z_n]\!]$ isolated hypersurface singularity, $f_t = \sum_{\iota} a_{\iota}(t)z^{\iota}$,
- lacksquare each $a_\iota\colon [0,1] o \mathbb{C}$ is continuous (or: $a_\iota\colon \mathbb{D} o \mathbb{C}$ is holomorphic)
- A family is equimultiple if $\forall t : \nu_{f_t} = \nu_{f_0}$; topologically trivial if $\forall t : f_0 \sim_{\mathsf{top}} f_t$.

Every topologically trivial family is equimultiple.

- Continuous (or holomorphic) family of isolated hypersurface singularities:
 - $f_t \in \mathbb{C}[\![z_1,\ldots,z_n]\!]$ isolated hypersurface singularity, $f_t = \sum_{\iota} a_{\iota}(t)z^{\iota}$,
- lacksquare each $a_\iota\colon [0,1] o \mathbb{C}$ is continuous (or: $a_\iota\colon \mathbb{D} o \mathbb{C}$ is holomorphic)
- A family is equimultiple if $\forall t : \nu_{f_t} = \nu_{f_0}$; topologically trivial if $\forall t : f_0 \sim_{\mathsf{top}} f_t$.

Every topologically trivial family is equimultiple.

- Continuous (or holomorphic) family of isolated hypersurface singularities:
 - $f_t \in \mathbb{C}[\![z_1,\ldots,z_n]\!]$ isolated hypersurface singularity, $f_t = \sum_\iota a_\iota(t) z^\iota$,
- lacksquare each $a_\iota\colon [0,1] o \mathbb{C}$ is continuous (or: $a_\iota\colon \mathbb{D} o \mathbb{C}$ is holomorphic)
- A family is equimultiple if $\forall t : \nu_{f_t} = \nu_{f_0}$; topologically trivial if $\forall t : f_0 \sim_{\mathsf{top}} f_t$.

Every topologically trivial family is equimultiple.

■ Milnor number
$$\mu = \dim_{\mathbb{C}} \mathbb{C}[\![z_1, \ldots, z_n]\!] / \langle \frac{\partial f}{\partial z_1}, \ldots, \frac{\partial f}{\partial z_n} \rangle$$

- Continuous (or holomorphic) family of isolated hypersurface singularities:
 - $f_t \in \mathbb{C}[\![z_1,\ldots,z_n]\!]$ isolated hypersurface singularity, $f_t = \sum_{\iota} a_{\iota}(t)z^{\iota}$,
- lacksquare each $a_\iota \colon [0,1] o \mathbb{C}$ is continuous (or: $a_\iota \colon \mathbb{D} o \mathbb{C}$ is holomorphic)
- A family is equimultiple if $\forall t : \nu_{f_t} = \nu_{f_0}$; topologically trivial if $\forall t : f_0 \sim_{\mathsf{top}} f_t$.

Every topologically trivial family is equimultiple.

- Milnor number $\mu = \dim_{\mathbb{C}} \mathbb{C}[\![z_1, \ldots, z_n]\!] / \langle \frac{\partial f}{\partial z_1}, \ldots, \frac{\partial f}{\partial z_n} \rangle$
- Milnor radius $\varepsilon > 0$ such that $\exists \, \delta > 0 \,\, \forall \varepsilon' \in (0, \varepsilon), \delta' \in \mathbb{D}^*_{\delta}, \, f^{-1}(\delta') \pitchfork \mathbb{S}_{\varepsilon'}$

- Continuous (or holomorphic) family of isolated hypersurface singularities:
 - $f_t \in \mathbb{C}[\![z_1,\ldots,z_n]\!]$ isolated hypersurface singularity, $f_t = \sum_\iota a_\iota(t) z^\iota$,
- lacksquare each $a_\iota \colon [0,1] o \mathbb{C}$ is continuous (or: $a_\iota \colon \mathbb{D} o \mathbb{C}$ is holomorphic)
- A family is equimultiple if $\forall t : \nu_{f_t} = \nu_{f_0}$; topologically trivial if $\forall t : f_0 \sim_{\mathsf{top}} f_t$.

Every topologically trivial family is equimultiple.

- Milnor number $\mu = \dim_{\mathbb{C}} \mathbb{C}[\![z_1, \ldots, z_n]\!] / \langle \frac{\partial f}{\partial z_1}, \ldots, \frac{\partial f}{\partial z_n} \rangle$
- Milnor radius $\varepsilon > 0$ such that $\exists \delta > 0 \ \forall \varepsilon' \in (0, \varepsilon), \delta' \in \mathbb{D}_{\delta}^*, \ f^{-1}(\delta') \pitchfork \mathbb{S}_{\varepsilon'}$
- Milnor fibration $f|: f^{-1}(\mathbb{S}_{\delta}) \cap \mathbb{B}_{\varepsilon} \to \mathbb{S}_{\delta}$, Milnor fiber: $F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$.

- Continuous (or holomorphic) family of isolated hypersurface singularities:
 - $f_t \in \mathbb{C}[\![z_1,\ldots,z_n]\!]$ isolated hypersurface singularity, $f_t = \sum_\iota a_\iota(t) z^\iota$,
- lacksquare each $a_\iota\colon [0,1] o \mathbb{C}$ is continuous (or: $a_\iota\colon \mathbb{D} o \mathbb{C}$ is holomorphic)
- A family is equimultiple if $\forall t : \nu_{f_t} = \nu_{f_0}$; topologically trivial if $\forall t : f_0 \sim_{\mathsf{top}} f_t$.

Every topologically trivial family is equimultiple.

- Milnor number $\mu = \dim_{\mathbb{C}} \mathbb{C}[\![z_1, \ldots, z_n]\!] / \langle \frac{\partial f}{\partial z_1}, \ldots, \frac{\partial f}{\partial z_n} \rangle$
- Milnor radius $\varepsilon > 0$ such that $\exists \delta > 0 \ \forall \varepsilon' \in (0, \varepsilon), \delta' \in \mathbb{D}^*_{\delta}, \ f^{-1}(\delta') \pitchfork \mathbb{S}_{\varepsilon'}$
- Milnor fibration $f|: f^{-1}(\mathbb{S}_{\delta}) \cap \mathbb{B}_{\varepsilon} \to \mathbb{S}_{\delta}$, Milnor fiber: $F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$.
- $F \simeq_{htp} \bigvee_{\mu} \mathbb{S}^{n-1}$ [Milnor '68]. Hence topologically trivial $\implies \mu$ -constant.

- Continuous (or holomorphic) family of isolated hypersurface singularities:
 - $f_t \in \mathbb{C}[\![z_1,\ldots,z_n]\!]$ isolated hypersurface singularity, $f_t = \sum_{\iota} \mathsf{a}_{\iota}(t) \mathsf{z}^{\iota}$,
 - lacksquare each $a_\iota\colon [0,1] o \mathbb{C}$ is continuous (or: $a_\iota\colon \mathbb{D} o \mathbb{C}$ is holomorphic)
- A family is equimultiple if $\forall t : \nu_{f_t} = \nu_{f_0}$; topologically trivial if $\forall t : f_0 \sim_{\mathsf{top}} f_t$.

Every topologically trivial family is equimultiple.

- Milnor number $\mu = \dim_{\mathbb{C}} \mathbb{C}[\![z_1, \ldots, z_n]\!] / \langle \frac{\partial f}{\partial z_1}, \ldots, \frac{\partial f}{\partial z_n} \rangle$
- Milnor radius $\varepsilon > 0$ such that $\exists \delta > 0 \ \forall \varepsilon' \in (0, \varepsilon), \delta' \in \mathbb{D}^*_{\delta}, \ f^{-1}(\delta') \pitchfork \mathbb{S}_{\varepsilon'}$
- Milnor fibration $f|: f^{-1}(\mathbb{S}_{\delta}) \cap \mathbb{B}_{\varepsilon} \to \mathbb{S}_{\delta}$, Milnor fiber: $F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$.
- $F \simeq_{htp} \bigvee_{n} \mathbb{S}^{n-1}$ [Milnor '68]. Hence topologically trivial $\implies \mu$ -constant.

- Continuous (or holomorphic) family of isolated hypersurface singularities:
 - $f_t \in \mathbb{C}[\![z_1,\ldots,z_n]\!]$ isolated hypersurface singularity, $f_t = \sum_{\iota} \mathsf{a}_{\iota}(t) \mathsf{z}^{\iota}$,
 - lacksquare each $a_\iota \colon [0,1] o \mathbb{C}$ is continuous (or: $a_\iota \colon \mathbb{D} o \mathbb{C}$ is holomorphic)
- A family is equimultiple if $\forall t : \nu_{f_t} = \nu_{f_0}$; topologically trivial if $\forall t : f_0 \sim_{\mathsf{top}} f_t$.

Every topologically trivial family is equimultiple.

It is convenient to generalize this question to μ -constant families.

- Milnor number $\mu = \dim_{\mathbb{C}} \mathbb{C}[\![z_1, \ldots, z_n]\!] / \langle \frac{\partial f}{\partial z_1}, \ldots, \frac{\partial f}{\partial z_n} \rangle$
- Milnor radius $\varepsilon > 0$ such that $\exists \delta > 0 \ \forall \varepsilon' \in (0, \varepsilon), \delta' \in \mathbb{D}^*_{\delta}, \ f^{-1}(\delta') \pitchfork \mathbb{S}_{\varepsilon'}$
- Milnor fibration $f|: f^{-1}(\mathbb{S}_{\delta}) \cap \mathbb{B}_{\varepsilon} \to \mathbb{S}_{\delta}$, Milnor fiber: $F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$.
- $F \simeq_{htp} \bigvee_{n} \mathbb{S}^{n-1}$ [Milnor '68]. Hence topologically trivial $\implies \mu$ -constant.

■ If $n \neq 3$, μ -constant \implies topologically trivial [Lê-Ramanujam '76]

- Continuous (or holomorphic) family of isolated hypersurface singularities:
 - $f_t \in \mathbb{C}[\![z_1,\ldots,z_n]\!]$ isolated hypersurface singularity, $f_t = \sum_{\iota} \mathsf{a}_{\iota}(t) \mathsf{z}^{\iota}$,
- lacksquare each $a_\iota\colon [0,1] o \mathbb{C}$ is continuous (or: $a_\iota\colon \mathbb{D} o \mathbb{C}$ is holomorphic)
- A family is equimultiple if $\forall t : \nu_{f_t} = \nu_{f_0}$; topologically trivial if $\forall t : f_0 \sim_{\mathsf{top}} f_t$.

Every topologically trivial family is equimultiple.

- Milnor number $\mu = \dim_{\mathbb{C}} \mathbb{C}[\![z_1, \ldots, z_n]\!] / \langle \frac{\partial f}{\partial z_1}, \ldots, \frac{\partial f}{\partial z_n} \rangle$
- Milnor radius $\varepsilon > 0$ such that $\exists \, \delta > 0 \,\, \forall \varepsilon' \in (0, \varepsilon), \, \delta' \in \mathbb{D}^*_{\delta}, \, f^{-1}(\delta') \, \pitchfork \, \mathbb{S}_{\varepsilon'}$
- Milnor fibration $f|: f^{-1}(\mathbb{S}_{\delta}) \cap \mathbb{B}_{\varepsilon} \to \mathbb{S}_{\delta}$, Milnor fiber: $F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$.
- $F \simeq_{htp} \bigvee_{\mu} \mathbb{S}^{n-1}$ [Milnor '68]. Hence topologically trivial $\implies \mu$ -constant.

- If $n \neq 3$, μ -constant \implies topologically trivial [Lê–Ramanujam '76]
 - Case n = 3 is **OPEN**.

Every $\mu\text{-constant}$ family is equimultiple.

Every $\mu\text{-constant}$ family is equimultiple.

■ Implies the original Zariski multiplicity conjecture for families.

Every $\mu\text{-constant}$ family is equimultiple.

- Implies the original Zariski multiplicity conjecture for families.
- Known in particular cases:

Every μ -constant family is equimultiple.

- Implies the original Zariski multiplicity conjecture for families.
- Known in particular cases:
 - \bullet (f_t) Whitney equisingular [Hironaka '69]

- Implies the original Zariski multiplicity conjecture for families.
- Known in particular cases:
 - (f_t) Whitney equisingular [Hironaka '69]
 - f_0 is quasi-homogeneous [Greuel '86, O'Shea '87]

- Implies the original Zariski multiplicity conjecture for families.
- Known in particular cases:
 - (f_t) Whitney equisingular [Hironaka '69]
 - f_0 is quasi-homogeneous [Greuel '86, O'Shea '87]
 - \blacksquare all f_t are Newton-nondegenerate [Abderrahmane '16]

- Implies the original Zariski multiplicity conjecture for families.
- Known in particular cases:
 - (f_t) Whitney equisingular [Hironaka '69]
 - f_0 is quasi-homogeneous [Greuel '86, O'Shea '87]
 - lacksquare all f_t are Newton-nondegenerate [Abderrahmane '16]
 - $f_t = f + tg + t^2h$, $f, g, h \in \mathbb{C}[\![z_1, \dots, z_n]\!]$ and $Sing\{in(f) = 0\} \not\subseteq \{in(h) = 0\}$ [Plenat–Trotman '13]

- Implies the original Zariski multiplicity conjecture for families.
- Known in particular cases:
 - (f_t) Whitney equisingular [Hironaka '69]
 - f₀ is quasi-homogeneous [Greuel '86, O'Shea '87]
 - lacksquare all f_t are Newton-nondegenerate [Abderrahmane '16]
 - $f_t = f + tg + t^2h$, $f, g, h \in \mathbb{C}[[z_1, \dots, z_n]]$ and $Sing\{in(f) = 0\} \not\subseteq \{in(h) = 0\}$ [Plenat–Trotman '13]
- Remark: weak Whitney ⇒ equimultiple [Trotman-van Straten '16]

- Implies the original Zariski multiplicity conjecture for families.
- Known in particular cases:
 - (f_t) Whitney equisingular [Hironaka '69]
 - f₀ is quasi-homogeneous [Greuel '86, O'Shea '87]
 - lacksquare all f_t are Newton-nondegenerate [Abderrahmane '16]
 - $f_t = f + tg + t^2h$, $f, g, h \in \mathbb{C}[[z_1, \dots, z_n]]$ and $Sing\{in(f) = 0\} \not\subseteq \{in(h) = 0\}$ [Plenat–Trotman '13]
- Remark: weak Whitney ⇒ equimultiple [Trotman-van Straten '16]
- one can assume that the family is holomorphic (even algebraic).

Every μ -constant family is equimultiple.

- Implies the original Zariski multiplicity conjecture for families.
- Known in particular cases:
 - (f_t) Whitney equisingular [Hironaka '69]
 - f_0 is quasi-homogeneous [Greuel '86, O'Shea '87]
 - lacksquare all f_t are Newton-nondegenerate [Abderrahmane '16]
 - $f_t = f + tg + t^2h$, $f, g, h \in \mathbb{C}[[z_1, \dots, z_n]]$ and $Sing\{in(f) = 0\} \not\subseteq \{in(h) = 0\}$ [Plenat–Trotman '13]
- Remark: weak Whitney ⇒ equimultiple [Trotman-van Straten '16]
- one can assume that the family is holomorphic (even algebraic).

Theorem (Fernández de Bobadilla, P. '21)

Zariski multiplicity conjecture for μ -constant families is true.

Every μ -constant family is equimultiple.

- Implies the original Zariski multiplicity conjecture for families.
- Known in particular cases:
 - (f_t) Whitney equisingular [Hironaka '69]
 - f_0 is quasi-homogeneous [Greuel '86, O'Shea '87]
 - lacksquare all f_t are Newton-nondegenerate [Abderrahmane '16]
 - $f_t = f + tg + t^2h$, $f, g, h \in \mathbb{C}[[z_1, \dots, z_n]]$ and $Sing\{in(f) = 0\} \not\subseteq \{in(h) = 0\}$ [Plenat-Trotman '13]
- Remark: weak Whitney ⇒ equimultiple [Trotman-van Straten '16]
- one can assume that the family is holomorphic (even algebraic).

Theorem (Fernández de Bobadilla, P. '21)

Zariski multiplicity conjecture for μ -constant families is true.

Proof.

Every μ -constant family is equimultiple.

- Implies the original Zariski multiplicity conjecture for families.
- Known in particular cases:
 - (f_t) Whitney equisingular [Hironaka '69]
 - f₀ is quasi-homogeneous [Greuel '86, O'Shea '87]
 - lacksquare all f_t are Newton-nondegenerate [Abderrahmane '16]
 - $f_t = f + tg + t^2h$, $f, g, h \in \mathbb{C}[[z_1, \dots, z_n]]$ and $Sing\{in(f) = 0\} \not\subseteq \{in(h) = 0\}$ [Plenat–Trotman '13]
- Remark: weak Whitney ⇒ equimultiple [Trotman-van Straten '16]
- one can assume that the family is holomorphic (even algebraic).

Theorem (Fernández de Bobadilla, P. '21)

Zariski multiplicity conjecture for μ -constant families is true.

Proof.

lacktriangledown ϕ_t - symplectic monodromy of the Milnor fibration of f_t

Every μ -constant family is equimultiple.

- Implies the original Zariski multiplicity conjecture for families.
- Known in particular cases:
 - (f_t) Whitney equisingular [Hironaka '69]
 - f_0 is quasi-homogeneous [Greuel '86, O'Shea '87]
 - \blacksquare all f_t are Newton-nondegenerate [Abderrahmane '16]
 - $f_t = f + tg + t^2h$, $f, g, \bar{h} \in \mathbb{C}[[z_1, \dots, z_n]]$ and $Sing\{in(f) = 0\} \not\subseteq \{in(h) = 0\}$ [Plenat–Trotman '13]
- Remark: weak Whitney ⇒ equimultiple [Trotman-van Straten '16]
- one can assume that the family is holomorphic (even algebraic).

Theorem (Fernández de Bobadilla, P. '21)

Zariski multiplicity conjecture for μ -constant families is true.

Proof.

• ϕ_t - symplectic monodromy of the Milnor fibration of $f_t \rightsquigarrow \mathsf{HF}^*(\phi_t^m)$

Every μ -constant family is equimultiple.

- Implies the original Zariski multiplicity conjecture for families.
- Known in particular cases:
 - (f_t) Whitney equisingular [Hironaka '69]
 - f₀ is quasi-homogeneous [Greuel '86, O'Shea '87]
 - lacksquare all f_t are Newton-nondegenerate [Abderrahmane '16]
 - $f_t = f + tg + t^2h$, $f, g, \bar{h} \in \mathbb{C}[[z_1, \dots, z_n]]$ and $Sing\{in(f) = 0\} \not\subseteq \{in(h) = 0\}$ [Plenat–Trotman '13]
- Remark: weak Whitney ⇒ equimultiple [Trotman-van Straten '16]
- one can assume that the family is holomorphic (even algebraic).

Theorem (Fernández de Bobadilla, P. '21)

Zariski multiplicity conjecture for μ -constant families is true.

Proof.

- lacktriangledown ϕ_t **symplectic** monodromy of the Milnor fibration of $f_t \leadsto \mathsf{HF}^*(\phi_t^m)$
- $\nu_{f_t} = \min\{m : \mathsf{HF}^*(\phi_t^m) \neq 0\} \text{ [McLean '19]}$

Every μ -constant family is equimultiple.

- Implies the original Zariski multiplicity conjecture for families.
- Known in particular cases:
 - (f_t) Whitney equisingular [Hironaka '69]
 - f₀ is quasi-homogeneous [Greuel '86, O'Shea '87]
 - \blacksquare all f_t are Newton-nondegenerate [Abderrahmane '16]
 - $f_t = f + tg + t^2h$, $f, g, h \in \mathbb{C}[[z_1, \dots, z_n]]$ and $Sing\{in(f) = 0\} \not\subseteq \{in(h) = 0\}$ [Plenat–Trotman '13]
- Remark: weak Whitney ⇒ equimultiple [Trotman-van Straten '16]
- one can assume that the family is holomorphic (even algebraic).

Theorem (Fernández de Bobadilla, P. '21)

Zariski multiplicity conjecture for μ -constant families is true.

Proof.

- lacktriangledown ϕ_t **symplectic** monodromy of the Milnor fibration of $f_t \leadsto \mathsf{HF}^*(\phi_t^m)$
- $\nu_{f_t} = \min\{m : \mathsf{HF}^*(\phi_t^m) \neq 0\} \; [\mathsf{McLean} \; '19]$
- $\blacksquare \mathsf{HF}^*(\phi_0^m) = \mathsf{HF}^*(\phi_t^m)$

Every μ -constant family is equimultiple.

- Implies the original Zariski multiplicity conjecture for families.
- Known in particular cases:
 - (f_t) Whitney equisingular [Hironaka '69]
 - f_0 is quasi-homogeneous [Greuel '86, O'Shea '87]
 - \blacksquare all f_t are Newton-nondegenerate [Abderrahmane '16]
 - $f_t = f + tg + t^2h$, $f, g, h \in \mathbb{C}[[z_1, \dots, z_n]]$ and $Sing\{in(f) = 0\} \not\subseteq \{in(h) = 0\}$ [Plenat–Trotman '13]
- Remark: weak Whitney ⇒ equimultiple [Trotman-van Straten '16]
- one can assume that the family is holomorphic (even algebraic).

Theorem (Fernández de Bobadilla, P. '21)

Zariski multiplicity conjecture for μ -constant families is true.

Proof.

- lacktriangledown ϕ_t **symplectic** monodromy of the Milnor fibration of $f_t \leadsto \mathsf{HF}^*(\phi_t^m)$
- $\nu_{f_t} = \min\{m : \mathsf{HF}^*(\phi_t^m) \neq 0\} \; [\mathsf{McLean} \; '19]$
- $\blacksquare \mathsf{HF}^*(\phi_0^m) = \mathsf{HF}^*(\phi_t^m)$

Problem: cannot isotope ϕ_0 to ϕ_t , because the Milnor radius can shrink!

- M smooth manifold
- ullet $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate

- M smooth manifold
- ullet $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
 - lacktriangledown is nondegenerate if $\omega(v,\cdot)$: $TM \to T^*M$ is an isomorphism $\forall v \in TM$.

- M smooth manifold
- $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
 - ω is nondegenerate if $\omega(v,\cdot)$: $TM \to T^*M$ is an isomorphism $\forall v \in TM$.
- $J \in End(TM)$ is an almost complex structure if $J^2 = -id$

- M smooth manifold
- $m{\omega} \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
- ω is nondegenerate if $\omega(v,\cdot)$: $TM \to T^*M$ is an isomorphism $\forall v \in TM$.
- $J \in \text{End}(TM)$ is an almost complex structure if $J^2 = -\text{id}$
- For $\varrho: M \to \mathbb{R}$, define a real 1-form $d^c \varrho = d\varrho \circ J \in T^*M$.

- M smooth manifold
- ullet $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
- ω is nondegenerate if $\omega(v,\cdot)$: $TM \to T^*M$ is an isomorphism $\forall v \in TM$.
- $J \in \text{End}(TM)$ is an almost complex structure if $J^2 = -\text{id}$
- For ϱ : $M \to \mathbb{R}$, define a real 1-form $d^c \varrho = d\varrho \circ J \in T^*M$.
- ϱ : $M \to \mathbb{R}$ is strictly plurisubharmonic (spsh) if $-dd^c\varrho(v,Jv) > 0 \ \forall v \neq 0$.
 - In particular, $-dd^c \varrho$ is symplectic.

- M smooth manifold
- ullet $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
- ω is nondegenerate if $\omega(v,\cdot)$: $TM \to T^*M$ is an isomorphism $\forall v \in TM$.
- $J \in End(TM)$ is an almost complex structure if $J^2 = -id$
- For ϱ : $M \to \mathbb{R}$, define a real 1-form $d^c \varrho = d\varrho \circ J \in T^*M$.
- $\varrho: M \to \mathbb{R}$ is strictly plurisubharmonic (spsh) if $-dd^c\varrho(v, Jv) > 0 \ \forall v \neq 0$.
 - In particular, $-dd^c \varrho$ is symplectic.
- **Example:** $M = \mathbb{C}^n$ with coordinates z_1, \ldots, z_n

- M smooth manifold
- ullet $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
- lacktriangledown is nondegenerate if $\omega(v,\cdot)\colon TM\to T^*M$ is an isomorphism $\forall v\in TM$.
- $J \in End(TM)$ is an almost complex structure if $J^2 = -id$
- For ϱ : $M \to \mathbb{R}$, define a real 1-form $d^c \varrho = d\varrho \circ J \in T^*M$.
- ϱ : $M \to \mathbb{R}$ is strictly plurisubharmonic (spsh) if $-dd^c\varrho(v,Jv) > 0 \ \forall v \neq 0$.
 - In particular, $-dd^c \varrho$ is symplectic.
- **Example:** $M = \mathbb{C}^n$ with coordinates z_1, \ldots, z_n
 - Polar coordinates: $z_j = r_j \theta_j$, $r_j = |z_j|$, $\theta_j \in \mathbb{S}^1$ if $z_j \neq 0$

- M smooth manifold
- ullet $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
 - ullet ω is nondegenerate if $\omega(v,\cdot)$: $TM \to T^*M$ is an isomorphism $\forall v \in TM$.
- $J \in \text{End}(TM)$ is an almost complex structure if $J^2 = -\text{id}$
- For ϱ : $M \to \mathbb{R}$, define a real 1-form $d^c \varrho = d\varrho \circ J \in T^*M$.
- $\varrho: M \to \mathbb{R}$ is strictly plurisubharmonic (spsh) if $-dd^c\varrho(v, Jv) > 0 \ \forall v \neq 0$.
 - In particular, $-dd^c \varrho$ is symplectic.
- **Example:** $M = \mathbb{C}^n$ with coordinates z_1, \ldots, z_n
 - Polar coordinates: $z_j = r_j \theta_j$, $r_j = |z_j|$, $\theta_j \in \mathbb{S}^1$ if $z_j \neq 0$
 - $\varrho(z) = \frac{1}{4}||z||^2 = \frac{1}{4}(r_1^2 + \dots + r_n^2)$

- M smooth manifold
- ullet $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
- lacktriangledown is nondegenerate if $\omega(v,\cdot)\colon TM\to T^*M$ is an isomorphism $\forall v\in TM$.
- $J \in \text{End}(TM)$ is an almost complex structure if $J^2 = -\text{id}$
- For ϱ : $M \to \mathbb{R}$, define a real 1-form $d^c \varrho = d\varrho \circ J \in T^*M$.
- ϱ : $M \to \mathbb{R}$ is strictly plurisubharmonic (spsh) if $-dd^c\varrho(v,Jv) > 0 \ \forall v \neq 0$.
 - In particular, $-dd^c \varrho$ is symplectic.
- **Example:** $M = \mathbb{C}^n$ with coordinates z_1, \ldots, z_n
 - Polar coordinates: $z_j = r_j \theta_j$, $r_j = |z_j|$, $\theta_j \in \mathbb{S}^1$ if $z_j \neq 0$
 - $\varrho(z) = \frac{1}{4}||z||^2 = \frac{1}{4}(r_1^2 + \dots + r_n^2)$
 - $\bullet d\varrho = \frac{1}{2} \sum_{j} r_{j} dr_{j}, -d^{c}\varrho = \frac{1}{2} \sum_{j} r_{j}^{2} d\theta_{j},$

- M smooth manifold
- ullet $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
 - lacktriangledown is nondegenerate if $\omega(v,\cdot)\colon TM\to T^*M$ is an isomorphism $\forall v\in TM$.
- $J \in \text{End}(TM)$ is an almost complex structure if $J^2 = -\text{id}$
- For ϱ : $M \to \mathbb{R}$, define a real 1-form $d^c \varrho = d\varrho \circ J \in T^*M$.
- ϱ : $M \to \mathbb{R}$ is strictly plurisubharmonic (spsh) if $-dd^c\varrho(v,Jv) > 0 \ \forall v \neq 0$.
 - In particular, $-dd^c \varrho$ is symplectic.
- **Example:** $M = \mathbb{C}^n$ with coordinates z_1, \ldots, z_n
 - Polar coordinates: $z_i = r_i \theta_i$, $r_i = |z_i|$, $\theta_i \in \mathbb{S}^1$ if $z_i \neq 0$
 - $\varrho(z) = \frac{1}{4}||z||^2 = \frac{1}{4}(r_1^2 + \dots + r_n^2)$
 - $d\varrho = \frac{1}{2} \sum_{i} r_{j} dr_{j}, -d^{c} \varrho = \frac{1}{2} \sum_{i} r_{j}^{2} d\theta_{j},$
 - $-dd^c \varrho = \sum_j r_j dr_j \wedge d\theta_j$ standard area form on \mathbb{C}^n .

- M smooth manifold
- ullet $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
- lacktriangledown is nondegenerate if $\omega(v,\cdot)\colon TM\to T^*M$ is an isomorphism $\forall v\in TM$.
- $J \in \text{End}(TM)$ is an almost complex structure if $J^2 = -\text{id}$
- For $\varrho \colon M \to \mathbb{R}$, define a real 1-form $d^c \varrho = d\varrho \circ J \in T^*M$.
- ϱ : $M \to \mathbb{R}$ is strictly plurisubharmonic (spsh) if $-dd^c\varrho(v,Jv) > 0 \ \forall v \neq 0$.
 - In particular, $-dd^c \varrho$ is symplectic.
- **Example:** $M = \mathbb{C}^n$ with coordinates z_1, \ldots, z_n
 - Polar coordinates: $z_i = r_i \theta_i$, $r_i = |z_i|$, $\theta_i \in \mathbb{S}^1$ if $z_i \neq 0$
 - $\varrho(z) = \frac{1}{4}||z||^2 = \frac{1}{4}(r_1^2 + \dots + r_n^2)$
 - $d\varrho = \frac{1}{2} \sum_{i} r_{j} dr_{j}, -d^{c} \varrho = \frac{1}{2} \sum_{i} r_{j}^{2} d\theta_{j},$
 - $-dd^c \varrho = \sum_i r_j dr_j \wedge d\theta_j$ standard area form on \mathbb{C}^n .
- $\lambda \in \Omega^1(M)$ is a Liouville form if $d\lambda$ is symplectic

- M smooth manifold
- lacksquare $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
 - lacktriangledown is nondegenerate if $\omega(v,\cdot)$: $TM \to T^*M$ is an isomorphism $\forall v \in TM$.
- $J \in \text{End}(TM)$ is an almost complex structure if $J^2 = -\text{id}$
- For ϱ : $M \to \mathbb{R}$, define a real 1-form $d^c \varrho = d\varrho \circ J \in T^*M$.
- ϱ : $M \to \mathbb{R}$ is strictly plurisubharmonic (spsh) if $-dd^c\varrho(v,Jv) > 0 \ \forall v \neq 0$.
 - In particular, $-dd^c \varrho$ is symplectic.
- **Example:** $M = \mathbb{C}^n$ with coordinates z_1, \ldots, z_n
 - Polar coordinates: $z_i = r_i \theta_i$, $r_i = |z_i|$, $\theta_i \in \mathbb{S}^1$ if $z_i \neq 0$
 - $\varrho(z) = \frac{1}{4}||z||^2 = \frac{1}{4}(r_1^2 + \dots + r_n^2)$
 - $d\varrho = \frac{1}{2} \sum_{i} r_{j} dr_{j}, -d^{c} \varrho = \frac{1}{2} \sum_{i} r_{j}^{2} d\theta_{j},$
 - $-dd^c \varrho = \sum_j r_j dr_j \wedge d\theta_j$ standard area form on \mathbb{C}^n .
- $\lambda \in \Omega^1(M)$ is a Liouville form if $d\lambda$ is symplectic
- Liouville vector field: ν_{λ} : $(d\lambda)(\nu_{\lambda}, \cdot) = \lambda$.

- M smooth manifold
- ullet $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
 - lacksquare ω is nondegenerate if $\omega(v,\cdot)$: $TM \to T^*M$ is an isomorphism $\forall v \in TM$.
- $J \in \text{End}(TM)$ is an almost complex structure if $J^2 = -\text{id}$
- For $\varrho \colon M \to \mathbb{R}$, define a real 1-form $d^c \varrho = d\varrho \circ J \in T^*M$.
- ϱ : $M \to \mathbb{R}$ is strictly plurisubharmonic (spsh) if $-dd^c\varrho(v,Jv) > 0 \ \forall v \neq 0$.
 - In particular, $-dd^c \varrho$ is symplectic.
- **Example:** $M = \mathbb{C}^n$ with coordinates z_1, \ldots, z_n
 - Polar coordinates: $z_j = r_j \theta_j$, $r_j = |z_j|$, $\theta_j \in \mathbb{S}^1$ if $z_j \neq 0$

$$\varrho(z) = \frac{1}{4}||z||^2 = \frac{1}{4}(r_1^2 + \cdots + r_n^2)$$

$$\bullet d\varrho = \frac{1}{2} \sum_{j} r_{j} dr_{j}, -d^{c} \varrho = \frac{1}{2} \sum_{j} r_{j}^{2} d\theta_{j},$$

$$-dd^c \varrho = \sum_i r_i dr_j \wedge d\theta_j$$
 - standard area form on \mathbb{C}^n .

- Liouville vector field: ν_{λ} : $(d\lambda)(\nu_{\lambda}, \cdot) = \lambda$.
- Liouville domain: (M, λ) , $\lambda \in \Omega^1$ Liouville, v_λ points outwards ∂M .

- M smooth manifold
- ullet $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
 - lacksquare ω is nondegenerate if $\omega(v,\cdot)\colon TM\to T^*M$ is an isomorphism $\forall v\in TM$.
- $J \in \text{End}(TM)$ is an almost complex structure if $J^2 = -\text{id}$
- For ϱ : $M \to \mathbb{R}$, define a real 1-form $d^c \varrho = d\varrho \circ J \in T^*M$.
- ϱ : $M \to \mathbb{R}$ is strictly plurisubharmonic (spsh) if $-dd^c\varrho(v,Jv) > 0 \ \forall v \neq 0$.
 - In particular, $-dd^c \varrho$ is symplectic.
- **Example:** $M = \mathbb{C}^n$ with coordinates z_1, \ldots, z_n
 - Polar coordinates: $z_j = r_j \theta_j$, $r_j = |z_j|$, $\theta_j \in \mathbb{S}^1$ if $z_j \neq 0$

$$\varrho(z) = \frac{1}{4}||z||^2 = \frac{1}{4}(r_1^2 + \dots + r_n^2)$$

$$\bullet d\varrho = \frac{1}{2} \sum_{j} r_{j} dr_{j}, -d^{c} \varrho = \frac{1}{2} \sum_{j} r_{j}^{2} d\theta_{j},$$

$$-dd^c \varrho = \sum_j r_j dr_j \wedge d\theta_j$$
 - standard area form on \mathbb{C}^n .

- Liouville vector field: ν_{λ} : $(d\lambda)(\nu_{\lambda}, \cdot) = \lambda$.
- Liouville domain: (M, λ) , $\lambda \in \Omega^1$ Liouville, v_λ points outwards ∂M .

■ Example:
$$M = \mathbb{B}$$
, $\lambda = \lambda_{\mathrm{std}} = \frac{1}{2} \sum_{j} r_{j}^{2} d\theta_{j}$, $v_{\lambda} = \frac{1}{2} \sum_{j} r_{j} \frac{\partial}{\partial r_{j}}$;

- M smooth manifold
- ullet $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
 - ω is nondegenerate if $\omega(v,\cdot)$: $TM \to T^*M$ is an isomorphism $\forall v \in TM$.
- $J \in \text{End}(TM)$ is an almost complex structure if $J^2 = -\text{id}$
- For ϱ : $M \to \mathbb{R}$, define a real 1-form $d^c \varrho = d\varrho \circ J \in T^*M$.
- ϱ : $M \to \mathbb{R}$ is strictly plurisubharmonic (spsh) if $-dd^c\varrho(v,Jv) > 0 \ \forall v \neq 0$.
 - In particular, $-dd^c \varrho$ is symplectic.
- **Example:** $M = \mathbb{C}^n$ with coordinates z_1, \ldots, z_n
 - Polar coordinates: $z_j = r_j \theta_j$, $r_j = |z_j|$, $\theta_j \in \mathbb{S}^1$ if $z_j \neq 0$
 - $\varrho(z) = \frac{1}{4}||z||^2 = \frac{1}{4}(r_1^2 + \dots + r_n^2)$
 - $d\varrho = \frac{1}{2} \sum_{j} r_j dr_j, -d^c \varrho = \frac{1}{2} \sum_{j} r_j^2 d\theta_j,$
 - $lacksquare -dd^carrho = \sum_j r_j dr_j \wedge d heta_j$ standard area form on \mathbb{C}^n .
- $\lambda \in \Omega^1(M)$ is a Liouville form if $d\lambda$ is symplectic
- Liouville vector field: ν_{λ} : $(d\lambda)(\nu_{\lambda}, \cdot) = \lambda$.
- Liouville domain: (M, λ) , $\lambda \in \Omega^1$ Liouville, v_λ points outwards ∂M .
 - Example: $M = \mathbb{B}$, $\lambda = \lambda_{\mathrm{std}} = \frac{1}{2} \sum_{j} r_{j}^{2} d\theta_{j}$, $v_{\lambda} = \frac{1}{2} \sum_{j} r_{j} \frac{\partial}{\partial r_{j}}$;
 - Milnor fiber: $M = \mathbb{B}_{\varepsilon} \cap f^{-1}(\delta)$, $\lambda = \lambda_{\mathsf{std}}$

- M smooth manifold
- ullet $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
 - lacksquare ω is nondegenerate if $\omega(v,\cdot)$: $TM \to T^*M$ is an isomorphism $\forall v \in TM$.
- $J \in \text{End}(TM)$ is an almost complex structure if $J^2 = -\text{id}$
- For ϱ : $M \to \mathbb{R}$, define a real 1-form $d^c \varrho = d\varrho \circ J \in T^*M$.
- ϱ : $M \to \mathbb{R}$ is strictly plurisubharmonic (spsh) if $-dd^c\varrho(v,Jv) > 0 \ \forall v \neq 0$.
 - In particular, $-dd^c \varrho$ is symplectic.
- **Example:** $M = \mathbb{C}^n$ with coordinates z_1, \ldots, z_n
 - Polar coordinates: $z_j = r_j \theta_j$, $r_j = |z_j|$, $\theta_j \in \mathbb{S}^1$ if $z_j \neq 0$

$$\varrho(z) = \frac{1}{4}||z||^2 = \frac{1}{4}(r_1^2 + \cdots + r_n^2)$$

$$d\varrho = \frac{1}{2} \sum_{j} r_j dr_j, -d^c \varrho = \frac{1}{2} \sum_{j} r_j^2 d\theta_j,$$

$$-dd^c \varrho = \sum_j r_j dr_j \wedge d\theta_j$$
 - standard area form on \mathbb{C}^n .

■ Liouville vector field: ν_{λ} : $(d\lambda)(\nu_{\lambda}, \cdot) = \lambda$.

■ Example:
$$M = \mathbb{B}$$
, $\lambda = \lambda_{\mathsf{std}} = \frac{1}{2} \sum_{j} r_{j}^{2} d\theta_{j}$, $v_{\lambda} = \frac{1}{2} \sum_{j} r_{j} \frac{\partial}{\partial r_{j}}$;

■ Milnor fiber: $M = \mathbb{B}_{\varepsilon} \cap f^{-1}(\delta)$, $\lambda = \lambda_{std}$

In general: Y - Stein
$$\varrho$$
: Y $\to \mathbb{R}$ spsh; $M = \varrho^{-1}(-\infty, c]$, $\lambda = -d^c\varrho$, $v_\lambda = \nabla\varrho$.

- M smooth manifold
- ullet $\omega \in \Omega^2(M)$ is symplectic if $d\omega = 0$ and ω is nondegenerate
 - lacktriangledown is nondegenerate if $\omega(v,\cdot)$: $TM \to T^*M$ is an isomorphism $\forall v \in TM$.
- $J \in \text{End}(TM)$ is an almost complex structure if $J^2 = -\text{id}$
- For $\varrho \colon M \to \mathbb{R}$, define a real 1-form $d^c \varrho = d\varrho \circ J \in T^*M$.
- $\varrho: M \to \mathbb{R}$ is strictly plurisubharmonic (spsh) if $-dd^c\varrho(v, Jv) > 0 \ \forall v \neq 0$.
 - In particular, $-dd^c \varrho$ is symplectic.
- **Example:** $M = \mathbb{C}^n$ with coordinates z_1, \ldots, z_n
 - Polar coordinates: $z_j = r_j \theta_j$, $r_j = |z_j|$, $\theta_j \in \mathbb{S}^1$ if $z_j \neq 0$
 - $\varrho(z) = \frac{1}{4}||z||^2 = \frac{1}{4}(r_1^2 + \dots + r_n^2)$
 - $d\varrho = \frac{1}{2} \sum_{j} r_j dr_j, -d^c \varrho = \frac{1}{2} \sum_{j} r_j^2 d\theta_j,$
 - $lacksquare -dd^carrho = \sum_j r_j dr_j \wedge d heta_j$ standard area form on \mathbb{C}^n .
- $\lambda \in \Omega^1(M)$ is a Liouville form if $d\lambda$ is symplectic
- Liouville vector field: ν_{λ} : $(d\lambda)(\nu_{\lambda}, \cdot) = \lambda$.

- Example: $M = \mathbb{B}$, $\lambda = \lambda_{\text{std}} = \frac{1}{2} \sum_{j} r_{j}^{2} d\theta_{j}$, $v_{\lambda} = \frac{1}{2} \sum_{j} r_{j} \frac{\partial}{\partial r_{j}}$;
- Milnor fiber: $M = \mathbb{B}_{\varepsilon} \cap f^{-1}(\delta)$, $\lambda = \lambda_{\text{std}}$
- In general: Y Stein ϱ : $Y \to \mathbb{R}$ spsh; $M = \varrho^{-1}(-\infty, c]$, $\lambda = -d^c \varrho$, $v_\lambda = \nabla \varrho$.
- $(\partial M, \lambda)$ is a contact manifold, i.e. $\lambda \wedge (d\lambda)^{n-1} \neq 0$.

• $g: M \to B$ fibration (i.e. surjective submersion), $\omega \in \Omega^2(M)$,

- $g: M \to B$ fibration (i.e. surjective submersion), $\omega \in \Omega^2(M)$,
- ullet $\omega \in \Omega^2(M)$ is fiberwise symplectic if $\omega|_{g^{-1}(b)}$ is symplectic for all $b \in B$.

- $g: M \to B$ fibration (i.e. surjective submersion), $\omega \in \Omega^2(M)$,
- ullet $\omega \in \Omega^2(M)$ is fiberwise symplectic if $\omega|_{g^{-1}(b)}$ is symplectic for all $b \in B$.

$$TM = V \oplus H = \ker Dg \oplus \{v : \forall w \in \ker Dg : \ \omega(v, w) = 0\}, \quad Dg : H \stackrel{\cong}{\to} TB.$$

- $g: M \to B$ fibration (i.e. surjective submersion), $\omega \in \Omega^2(M)$,
- $\omega \in \Omega^2(M)$ is fiberwise symplectic if $\omega|_{g^{-1}(b)}$ is symplectic for all $b \in B$.

$$TM = V \oplus H = \ker Dg \oplus \{v : \forall w \in \ker Dg : \omega(v, w) = 0\}, \quad Dg : H \stackrel{\cong}{\to} TB.$$

- For any $\nu_B \in \Gamma(B, TB)$ there is a unique symplectic lift $\nu \in \Gamma(M, TM)$
 - $(Dg)(\nu_B) = \nu$.
 - lacksquare ν is ω -orthogonal to the fibers of g

- $g: M \to B$ fibration (i.e. surjective submersion), $\omega \in \Omega^2(M)$,
- $\omega \in \Omega^2(M)$ is fiberwise symplectic if $\omega|_{g^{-1}(b)}$ is symplectic for all $b \in B$.

$$TM = V \oplus H = \ker Dg \oplus \{v : \forall w \in \ker Dg : \omega(v, w) = 0\}, \quad Dg : H \stackrel{\cong}{\to} TB.$$

- For any $\nu_B \in \Gamma(B, TB)$ there is a unique symplectic lift $\nu \in \Gamma(M, TM)$
 - $(Dg)(\nu_B) = \nu$.
 - ν is ω -orthogonal to the fibers of g
- \blacksquare (M,ω) symplectic, $H_t:M\to\mathbb{R}$ smooth (time-dependent Hamiltonian)

- $g: M \to B$ fibration (i.e. surjective submersion), $\omega \in \Omega^2(M)$,
- $\omega \in \Omega^2(M)$ is fiberwise symplectic if $\omega|_{g^{-1}(b)}$ is symplectic for all $b \in B$.

$$TM = V \oplus H = \ker Dg \oplus \{v : \forall w \in \ker Dg : \omega(v, w) = 0\}, \quad Dg : H \stackrel{\cong}{\to} TB.$$

- For any $\nu_B \in \Gamma(B, TB)$ there is a unique symplectic lift $\nu \in \Gamma(M, TM)$
 - $(Dg)(\nu_B) = \nu$.
 - ν is ω -orthogonal to the fibers of g
- \blacksquare (M,ω) symplectic, $H_t: M \to \mathbb{R}$ smooth (time-dependent Hamiltonian)
- Hamiltonian vector field ν_{H_t} : $\omega(\cdot, \nu_{H_t}) = dH_t$

- $g: M \to B$ fibration (i.e. surjective submersion), $\omega \in \Omega^2(M)$,
- ullet $\omega \in \Omega^2(M)$ is fiberwise symplectic if $\omega|_{g^{-1}(b)}$ is symplectic for all $b \in B$.

$$TM = V \oplus H = \ker Dg \oplus \{v : \forall w \in \ker Dg : \omega(v, w) = 0\}, \quad Dg : H \stackrel{\cong}{\to} TB.$$

- For any $\nu_B \in \Gamma(B, TB)$ there is a unique symplectic lift $\nu \in \Gamma(M, TM)$
 - $(Dg)(\nu_B) = \nu$.
 - ν is ω -orthogonal to the fibers of g
- \blacksquare (M,ω) symplectic, $H_t \colon M \to \mathbb{R}$ smooth (time-dependent Hamiltonian)
- Hamiltonian vector field ν_{H_t} : $\omega(\cdot, \nu_{H_t}) = dH_t$
- Time τ flow $\psi_{\tau}^{H_t}$ of ν_{H_t} is automatically a symplectomorphism.

- $g: M \to B$ fibration (i.e. surjective submersion), $\omega \in \Omega^2(M)$,
- $\omega \in \Omega^2(M)$ is fiberwise symplectic if $\omega|_{g^{-1}(b)}$ is symplectic for all $b \in B$.

$$TM = V \oplus H = \ker Dg \oplus \{v : \forall w \in \ker Dg : \omega(v, w) = 0\}, \quad Dg : H \stackrel{\cong}{\to} TB.$$

- For any $\nu_B \in \Gamma(B, TB)$ there is a unique symplectic lift $\nu \in \Gamma(M, TM)$
 - $(Dg)(\nu_B) = \nu$.
 - ν is ω -orthogonal to the fibers of g
- \blacksquare (M,ω) symplectic, $H_t \colon M \to \mathbb{R}$ smooth (time-dependent Hamiltonian)
- Hamiltonian vector field ν_{H_t} : $\omega(\cdot, \nu_{H_t}) = dH_t$
- Time τ flow $\psi_{\tau}^{H_t}$ of ν_{H_t} is automatically a symplectomorphism.

- \blacksquare (M, λ, ϕ) is an abstract contact open book (acob) if
 - \blacksquare (M, λ) Liouville domain
 - $lack \phi \colon M o M$ diffeomorphism, $\phi|_{\mathcal C} = \operatorname{id}_{\mathcal C}$ for some neighborhood $\mathcal C$ of ∂M
 - $lack \phi^*\lambda-\lambda=da_\phi$ for some smooth $a_\phi\colon M o\mathbb R$ (action).

- \blacksquare (M, λ, ϕ) is an abstract contact open book (acob) if
 - (M, λ) Liouville domain
 - ullet $\phi \colon M \to M$ diffeomorphism, $\phi|_{\mathcal{C}} = \mathrm{id}_{\mathcal{C}}$ for some neighborhood \mathcal{C} of ∂M
 - ullet $\phi^*\lambda \lambda = da_\phi$ for some smooth $a_\phi \colon M \to \mathbb{R}$ (action).
- Isotopy: $(M, \lambda, \phi) \sim (M', \lambda', \phi')$ if \exists smooth families $(\lambda_t) \subseteq \Omega^1(M)$, ϕ_t :
 - $\forall t$: (M, λ_t, ϕ_t) is an acob, $\phi_t|_C = \mathrm{id}_C$ for a fixed nbhd C of ∂M
 - $(\lambda_0, \phi_0) = (\lambda, \phi); (\lambda_1, \phi_1) = (\Psi^* \widetilde{\lambda}_1, \Psi^{-1} \circ \widetilde{\phi}_1 \circ \Psi) \text{ for a diffeo } \Psi \colon M' \to M.$

- \blacksquare (M, λ, ϕ) is an abstract contact open book (acob) if
 - (M, λ) Liouville domain
 - \bullet $\phi: M \to M$ diffeomorphism, $\phi|_C = \mathrm{id}_C$ for some neighborhood C of ∂M
 - $\phi^*\lambda \lambda = da_\phi$ for some smooth $a_\phi \colon M \to \mathbb{R}$ (action).
- Isotopy: $(M, \lambda, \phi) \sim (M', \lambda', \phi')$ if \exists smooth families $(\lambda_t) \subseteq \Omega^1(M)$, ϕ_t :
 - $\forall t$: (M, λ_t, ϕ_t) is an acob, $\phi_t|_C = \mathrm{id}_C$ for a fixed nbhd C of ∂M
 - $(\lambda_0, \phi_0) = (\lambda, \phi); (\lambda_1, \phi_1) = (\Psi^* \widetilde{\lambda}_1, \Psi^{-1} \circ \widetilde{\phi}_1 \circ \Psi) \text{ for a diffeo } \Psi \colon M' \to M.$

- \blacksquare (M, λ, ϕ) is an abstract contact open book (acob) if
 - (M, λ) Liouville domain
 - ullet $\phi \colon M \to M$ diffeomorphism, $\phi|_{\mathcal{C}} = \mathrm{id}_{\mathcal{C}}$ for some neighborhood \mathcal{C} of ∂M
 - ullet $\phi^*\lambda \lambda = da_\phi$ for some smooth $a_\phi \colon M \to \mathbb{R}$ (action).
- Isotopy: $(M, \lambda, \phi) \sim (M', \lambda', \phi')$ if \exists smooth families $(\lambda_t) \subseteq \Omega^1(M)$, ϕ_t :
 - $\forall t$: (M, λ_t, ϕ_t) is an acob, $\phi_t|_C = \mathrm{id}_C$ for a fixed nbhd C of ∂M
 - $\bullet (\lambda_0,\phi_0)=(\lambda,\phi); \ (\lambda_1,\phi_1)=(\Psi^*\widetilde{\lambda}_1,\Psi^{-1}\circ\widetilde{\phi}_1\circ\Psi) \ \text{for a diffeo } \Psi\colon M'\to M.$
- - $N = (M \times [0,1]) / [(x,0) \sim (\phi(x),1), (y,0) \sim (y,t) : y \in \partial M]$

- \blacksquare (M, λ, ϕ) is an abstract contact open book (acob) if
 - (M, λ) Liouville domain
 - \bullet ϕ : $M \to M$ diffeomorphism, $\phi|_C = \mathrm{id}_C$ for some neighborhood C of ∂M
 - ullet $\phi^*\lambda \lambda = da_\phi$ for some smooth $a_\phi \colon M \to \mathbb{R}$ (action).
- Isotopy: $(M, \lambda, \phi) \sim (M', \lambda', \phi')$ if \exists smooth families $(\lambda_t) \subseteq \Omega^1(M)$, ϕ_t :
 - $\forall t$: (M, λ_t, ϕ_t) is an acob, $\phi_t|_C = \mathrm{id}_C$ for a fixed nbhd C of ∂M
 - $\bullet (\lambda_0,\phi_0)=(\lambda,\phi); \ (\lambda_1,\phi_1)=(\Psi^*\widetilde{\lambda}_1,\Psi^{-1}\circ\widetilde{\phi}_1\circ\Psi) \ \text{for a diffeo } \Psi\colon M'\to M.$
- \blacksquare {acobs}/ $\sim \ni (M, \lambda, \phi) \stackrel{\text{[Giroux '20]}}{\longrightarrow} (N, \alpha, \pi) \in \{\text{contact open books}\}/\sim$
 - $N = (M \times [0,1]) / [(x,0) \sim (\phi(x),1), (y,0) \sim (y,t) : y \in \partial M]$
 - binding $L = \partial M \times \{*\}$, $\pi: N \setminus L \to \mathbb{S}^1$: second projection.

- \blacksquare (M, λ, ϕ) is an abstract contact open book (acob) if
 - (M, λ) Liouville domain
 - ullet $\phi \colon M \to M$ diffeomorphism, $\phi|_{\mathcal{C}} = \mathrm{id}_{\mathcal{C}}$ for some neighborhood \mathcal{C} of ∂M
 - ullet $\phi^*\lambda \lambda = da_\phi$ for some smooth $a_\phi \colon M \to \mathbb{R}$ (action).
- Isotopy: $(M, \lambda, \phi) \sim (M', \lambda', \phi')$ if \exists smooth families $(\lambda_t) \subseteq \Omega^1(M)$, ϕ_t :
 - $\forall t$: (M, λ_t, ϕ_t) is an acob, $\phi_t|_C = \mathrm{id}_C$ for a fixed nbhd C of ∂M
 - $\bullet (\lambda_0,\phi_0)=(\lambda,\phi); \ (\lambda_1,\phi_1)=(\Psi^*\widetilde{\lambda}_1,\Psi^{-1}\circ\widetilde{\phi}_1\circ\Psi) \ \text{for a diffeo } \Psi\colon M'\to M.$
- - $N = (M \times [0,1]) / [(x,0) \sim (\phi(x),1), (y,0) \sim (y,t) : y \in \partial M]$
 - binding $L = \partial M \times \{*\}$, $\pi: N \setminus L \to \mathbb{S}^1$: second projection.
 - $\alpha = \lambda + cdt$

- \blacksquare (M, λ, ϕ) is an abstract contact open book (acob) if
 - (M, λ) Liouville domain
 - \bullet ϕ : $M \to M$ diffeomorphism, $\phi|_C = \mathrm{id}_C$ for some neighborhood C of ∂M
 - ullet $\phi^*\lambda \lambda = da_\phi$ for some smooth $a_\phi \colon M \to \mathbb{R}$ (action).
- Isotopy: $(M, \lambda, \phi) \sim (M', \lambda', \phi')$ if \exists smooth families $(\lambda_t) \subseteq \Omega^1(M)$, ϕ_t :
 - $\forall t$: (M, λ_t, ϕ_t) is an acob, $\phi_t|_C = \mathrm{id}_C$ for a fixed nbhd C of ∂M
 - $\bullet (\lambda_0,\phi_0)=(\lambda,\phi); \ (\lambda_1,\phi_1)=(\Psi^*\widetilde{\lambda}_1,\Psi^{-1}\circ\widetilde{\phi}_1\circ\Psi) \ \text{for a diffeo } \Psi\colon M'\to M.$
- - $N = (M \times [0,1]) / [(x,0) \sim (\phi(x),1), (y,0) \sim (y,t) : y \in \partial M]$
 - binding $L = \partial M \times \{*\}$, $\pi: N \setminus L \to \mathbb{S}^1$: second projection.
 - $\alpha = \lambda + cdt$
 - $\blacksquare \rightsquigarrow \text{contact pair } (N, L).$

- \blacksquare (M, λ, ϕ) is an abstract contact open book (acob) if
 - \blacksquare (M, λ) Liouville domain
 - \bullet $\phi: M \to M$ diffeomorphism, $\phi|_C = \mathrm{id}_C$ for some neighborhood C of ∂M
 - ullet $\phi^*\lambda \lambda = da_\phi$ for some smooth $a_\phi \colon M \to \mathbb{R}$ (action).
- Isotopy: $(M, \lambda, \phi) \sim (M', \lambda', \phi')$ if \exists smooth families $(\lambda_t) \subseteq \Omega^1(M)$, ϕ_t :
 - $\forall t$: (M, λ_t, ϕ_t) is an acob, $\phi_t|_C = \mathrm{id}_C$ for a fixed nbhd C of ∂M
 - $\bullet (\lambda_0,\phi_0)=(\lambda,\phi); \ (\lambda_1,\phi_1)=(\Psi^*\widetilde{\lambda}_1,\Psi^{-1}\circ\widetilde{\phi}_1\circ\Psi) \ \text{for a diffeo } \Psi\colon M'\to M.$
- - $N = (M \times [0,1]) / [(x,0) \sim (\phi(x),1), (y,0) \sim (y,t) : y \in \partial M]$
 - binding $L = \partial M \times \{*\}$, $\pi: N \setminus L \to \mathbb{S}^1$: second projection.
 - $\alpha = \lambda + cdt$
 - $\blacksquare \rightsquigarrow \text{contact pair } (N, L).$
- $B \subseteq M$ is a codimension zero family of fixed points if:
 - $\phi|_B = \mathrm{id}$
 - B submanifold with boundary (and corners), codim $_M B = 0$,
 - \exists N neighborhood of B, $H: N \to (-\infty, 0]$ smooth:
 - $B = H^{-1}(0)$
 - $\phi|_N$ is the time one Hamiltonian flow of H.

■ Milnor fibration: $f|: f^{-1}(\mathbb{S}^1_{\delta}) \cap \mathbb{B}_{\varepsilon} \to \mathbb{S}^1_{\delta}$, $\omega = d\lambda_{\text{std}}$, $1 \gg \delta > 0$, $\varepsilon > 0$.

- Milnor fibration: $f|: f^{-1}(\mathbb{S}^1_{\delta}) \cap \mathbb{B}_{\varepsilon} \to \mathbb{S}^1_{\delta}$, $\omega = d\lambda_{\mathrm{std}}$, $1 \gg \delta > 0$, $\varepsilon > 0$.
- Monodromy: ϕ : $f^{-1}(\delta) \to f^{-1}(\delta)$: time one flow of the symplectic lift of $\frac{\partial}{\partial \theta}$

- $\blacksquare \text{ Milnor fibration: } f|\colon f^{-1}(\mathbb{S}^1_\delta) \cap \mathbb{B}_\varepsilon \to \mathbb{S}^1_\delta, \ \omega = d\lambda_{\mathrm{std}}, \ 1 \gg \delta > 0, \ \varepsilon > 0.$
- Monodromy: ϕ : $f^{-1}(\delta) \to f^{-1}(\delta)$: time one flow of the symplectic lift of $\frac{\partial}{\partial \theta}$
- Lemma: $\exists \, \delta_0 > 0$ and a closed $B \subseteq \mathbb{C}^n$ such that $\forall \delta \in (0, \delta_0)$
 - $f^{-1}(0) \cap B = f^{-1}(0) \cap \mathbb{B}_{\varepsilon}$, $(F = f^{-1}(\delta) \cap B, \lambda_{std})$ Liouville domain
 - \bullet $(F, \lambda_{\text{std}}, \phi)$ acob, whose isotopy type does not depend on δ .

- $\qquad \text{Milnor fibration: } f|\colon f^{-1}(\mathbb{S}^1_\delta)\cap \mathbb{B}_\varepsilon \to \mathbb{S}^1_\delta, \ \omega = d\lambda_{\mathrm{std}}, \ 1\gg \delta > 0, \ \varepsilon > 0.$
- Monodromy: ϕ : $f^{-1}(\delta) \to f^{-1}(\delta)$: time one flow of the symplectic lift of $\frac{\partial}{\partial \theta}$
- **Lemma:** $\exists \delta_0 > 0$ and a closed $B \subseteq \mathbb{C}^n$ such that $\forall \delta \in (0, \delta_0)$
 - $f^{-1}(0) \cap B = f^{-1}(0) \cap \mathbb{B}_{\varepsilon}$, $(F = f^{-1}(\delta) \cap B, \lambda_{std}|)$ Liouville domain
 - \bullet $(F, \lambda_{\rm std}|, \phi|)$ acob, whose isotopy type does not depend on δ .
- This lemma can be done in families. Resulting acobs are isotopic for all t.

- Milnor fibration: $f|: f^{-1}(\mathbb{S}^1_{\delta}) \cap \mathbb{B}_{\varepsilon} \to \mathbb{S}^1_{\delta}$, $\omega = d\lambda_{\mathsf{std}}$, $1 \gg \delta > 0$, $\varepsilon > 0$.
- Monodromy: ϕ : $f^{-1}(\delta) \to f^{-1}(\delta)$: time one flow of the symplectic lift of $\frac{\partial}{\partial \theta}$
- Lemma: $\exists \, \delta_0 > 0$ and a closed $B \subseteq \mathbb{C}^n$ such that $\forall \delta \in (0, \delta_0)$
 - $f^{-1}(0) \cap B = f^{-1}(0) \cap \mathbb{B}_{\varepsilon}$, $(F = f^{-1}(\delta) \cap B, \lambda_{\text{std}}|)$ Liouville domain
- \bullet $(F, \lambda_{\rm std}|, \phi|)$ acob, whose isotopy type does not depend on δ .
- This lemma can be done in families. Resulting acobs are isotopic for all t.

■ ε - Milnor radius \implies associated contact pair $(N, L) = (\mathbb{S}_{\varepsilon}, \mathbb{S}_{\varepsilon} \cap f^{-1}(0))$.

 (M,λ,ϕ) - acob

 (M,λ,ϕ) - acob \leadsto HF* (ϕ) - fixed point Floer cohomology

- (M,λ,ϕ) acob \leadsto HF* (ϕ) fixed point Floer cohomology
- \blacksquare $\mathbb{Z}\text{-graded}$ abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].

 (M, λ, ϕ) - acob \leadsto HF* (ϕ) - fixed point Floer cohomology

- Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
- $\phi \rightsquigarrow \phi \circ \psi_1^{H_t}$, (J_t) a.c. structures, $\phi^*J_t = J_{t+1}$; (H_t, J_t) generic.
- + small positive slope near ∂M .

 (M, λ, ϕ) - acob \leadsto HF* (ϕ) - fixed point Floer cohomology

- Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
- $\phi \leadsto \phi \circ \psi_1^{H_t}$, (J_t) a.c. structures, $\phi^* J_t = J_{t+1}$; (H_t, J_t) generic. + small positive slope near ∂M .
- $\mathsf{CF}^*(\phi) = \bigoplus_{x \in \mathsf{Fix}(\phi)} \mathbb{Z}_2\langle x \rangle$, \mathbb{Z} -graded by the Conley–Zehnder index

$$(M, \lambda, \phi)$$
 - acob \rightsquigarrow HF* (ϕ) - fixed point Floer cohomology

- Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
- $\phi \leadsto \phi \circ \psi_1^{H_t}$, (J_t) a.c. structures, $\phi^* J_t = J_{t+1}$; (H_t, J_t) generic. + small positive slope near ∂M .
- $\mathsf{CF}^*(\phi) = \bigoplus_{x \in \mathsf{Fix}(\phi)} \mathbb{Z}_2\langle x \rangle$, \mathbb{Z} -graded by the Conley–Zehnder index
- $\partial(x) = \sum_{CZ(x)-CZ(y)=1} \#\{\text{Floer trajectories } u \text{ joining } x \text{ and } y\}/_{\mathbb{R}} \cdot \langle y \rangle$

$$(M, \lambda, \phi)$$
 - acob \leadsto $\mathsf{HF}^*(\phi)$ - fixed point Floer cohomology

- Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
- $\phi \leadsto \phi \circ \psi_1^{H_t}$, (J_t) a.c. structures, $\phi^* J_t = J_{t+1}$; (H_t, J_t) generic. + small positive slope near ∂M .
- ullet CF* $(\phi) = igoplus_{x \in Fix(\phi)} \mathbb{Z}_2 \langle x \rangle$, \mathbb{Z} -graded by the Conley–Zehnder index
- $\partial(x) = \sum_{CZ(x)-CZ(y)=1} \#\{\text{Floer trajectories } u \text{ joining } x \text{ and } y\}/_{\mathbb{R}} \cdot \langle y \rangle$
 - $u: \mathbb{R} \times \mathbb{R} \to M, \ u(s,t) = \phi(u(s,t+1)), \ u(s,t) \xrightarrow{t \to +\infty} x, \ u(s,t) \xrightarrow{y \to -\infty} y$

$$(M,\lambda,\phi)$$
 - acob \leadsto $\mathsf{HF}^*(\phi)$ - fixed point Floer cohomology

- Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
- $\phi \leadsto \phi \circ \psi_1^{H_t}$, (J_t) a.c. structures, $\phi^* J_t = J_{t+1}$; (H_t, J_t) generic. + small positive slope near ∂M .
- $\mathsf{CF}^*(\phi) = \bigoplus_{x \in \mathsf{Fix}(\phi)} \mathbb{Z}_2\langle x \rangle$, \mathbb{Z} -graded by the Conley–Zehnder index
- $lacksquare \partial(x) = \sum_{\mathsf{CZ}(x) \mathsf{CZ}(y) = 1} \#\{\mathsf{Floer}\ \mathsf{trajectories}\ u\ \mathsf{joining}\ x\ \mathsf{and}\ y\}/_{\mathbb{R}} \cdot \langle y \rangle$
 - $u: \mathbb{R} \times \mathbb{R} \to M, \ u(s,t) = \phi(u(s,t+1)), \ u(s,t) \xrightarrow{t \to +\infty} x, \ u(s,t) \xrightarrow{y \to -\infty} y$

$$(M,\lambda,\phi)$$
 - acob \leadsto $\mathsf{HF}^*(\phi)$ - fixed point Floer cohomology

- Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
- $\phi \rightsquigarrow \phi \circ \psi_1^{H_t}$, (J_t) a.c. structures, $\phi^*J_t = J_{t+1}$; (H_t, J_t) generic.
 - + small positive slope near ∂M .
- ullet CF* $(\phi)=igoplus_{x\in {\sf Fix}(\phi)}\mathbb{Z}_2\langle x
 angle$, \mathbb{Z} -graded by the Conley–Zehnder index
- $\partial(x) = \sum_{CZ(x)-CZ(y)=1} \#\{\text{Floer trajectories } u \text{ joining } x \text{ and } y\}/_{\mathbb{R}} \cdot \langle y \rangle$
 - $u: \mathbb{R} \times \mathbb{R} \to M, \ u(s,t) = \phi(u(s,t+1)), \ u(s,t) \xrightarrow{t \to +\infty} x, \ u(s,t) \xrightarrow{y \to -\infty} y$
- $\mathsf{HF}^*(\phi) = H^*(\mathsf{CF}^*(\phi))$

$$(M,\lambda,\phi)$$
 - acob \leadsto $\mathsf{HF}^*(\phi)$ - fixed point Floer cohomology

- Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
- $\phi \rightsquigarrow \phi \circ \psi_1^{H_t}$, (J_t) a.c. structures, $\phi^*J_t = J_{t+1}$; (H_t, J_t) generic.
 - + small positive slope near ∂M .
- ullet CF* $(\phi)=igoplus_{x\in {\sf Fix}(\phi)}\mathbb{Z}_2\langle x
 angle$, \mathbb{Z} -graded by the Conley–Zehnder index
- $\partial(x) = \sum_{CZ(x)-CZ(y)=1} \#\{Floer\ trajectories\ u\ joining\ x\ and\ y\}/_{\mathbb{R}}\cdot\langle y\rangle$
 - $u: \mathbb{R} \times \mathbb{R} \to M, \ u(s,t) = \phi(u(s,t+1)), \ u(s,t) \xrightarrow{t \to +\infty} x, \ u(s,t) \xrightarrow{y \to -\infty} y$ $\frac{\partial}{\partial s} u + J_t \frac{\partial}{\partial s} u = 0$
- $\blacksquare \mathsf{HF}^*(\phi) = H^*(\mathsf{CF}^*(\phi))$

Property 1: $HF^*(\phi)$ is invariant under isotopy of acobs.

$$(M,\lambda,\phi)$$
 - acob \leadsto $\mathsf{HF}^*(\phi)$ - fixed point Floer cohomology

- Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
- $\phi \rightsquigarrow \phi \circ \psi_1^{H_t}$, (J_t) a.c. structures, $\phi^*J_t = J_{t+1}$; (H_t, J_t) generic.
 - + small positive slope near ∂M .
- lacksquare CF* $(\phi) = igoplus_{x \in Fix(\phi)} \mathbb{Z}_2\langle x \rangle$, \mathbb{Z} -graded by the Conley–Zehnder index
- $lack \partial(x) = \sum_{\mathsf{CZ}(x) \mathsf{CZ}(y) = 1} \#\{\mathsf{Floer\ trajectories\ } u\ \mathsf{joining\ } x\ \mathsf{and\ } y\}/_{\mathbb{R}} \cdot \langle y \rangle$
 - $u: \mathbb{R} \times \mathbb{R} \to M, \ u(s,t) = \phi(u(s,t+1)), \ u(s,t) \xrightarrow{t \to +\infty} x, \ u(s,t) \xrightarrow{y \to -\infty} y$ $\frac{\partial}{\partial s} u + J_t \frac{\partial}{\partial s} u = 0$
- \blacksquare HF*(ϕ) = H*(CF*(ϕ))

Property 1: $HF^*(\phi)$ is invariant under isotopy of acobs.

■ In fact, $HF^*(\phi)$ depends only on the associated contact pair [McLean '19].

 (M, λ, ϕ) - acob \rightsquigarrow HF* (ϕ) - fixed point Floer cohomology

- Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
- $\phi \rightsquigarrow \phi \circ \psi_1^{H_t}$, (J_t) a.c. structures, $\phi^*J_t = J_{t+1}$; (H_t, J_t) generic.
 - + small positive slope near ∂M .
- lacksquare CF* $(\phi) = igoplus_{x \in Fix(\phi)} \mathbb{Z}_2\langle x \rangle$, \mathbb{Z} -graded by the Conley–Zehnder index
- $lack \partial(x) = \sum_{\mathsf{CZ}(x) \mathsf{CZ}(y) = 1} \#\{\mathsf{Floer\ trajectories\ } u\ \mathsf{joining\ } x\ \mathsf{and\ } y\}/_{\mathbb{R}} \cdot \langle y \rangle$
 - $u: \mathbb{R} \times \mathbb{R} \to M, \ u(s,t) = \phi(u(s,t+1)), \ u(s,t) \xrightarrow{t \to +\infty} x, \ u(s,t) \xrightarrow{y \to -\infty} y$ $\frac{\partial}{\partial s} u + J_t \frac{\partial}{\partial s} u = 0$
- \blacksquare HF*(ϕ) = H*(CF*(ϕ))

Property 1: $HF^*(\phi)$ is invariant under isotopy of acobs.

■ In fact, $HF^*(\phi)$ depends only on the associated contact pair [McLean '19].

Property 2: (Morse-Bott-type spectral sequence)

■ Assume $Fix(\phi) = \bigsqcup_{i \in I} B_i$, B_i - codimension zero family ($\stackrel{\cdot}{\Leftrightarrow}$

 (M,λ,ϕ) - acob \leadsto HF* (ϕ) - fixed point Floer cohomology

- Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
- $\phi \rightsquigarrow \phi \circ \psi_1^{H_t}$, (J_t) a.c. structures, $\phi^*J_t = J_{t+1}$; (H_t, J_t) generic.
 - + small positive slope near ∂M .
- $\mathsf{CF}^*(\phi) = \bigoplus_{x \in \mathsf{Fix}(\phi)} \mathbb{Z}_2\langle x \rangle$, \mathbb{Z} -graded by the Conley–Zehnder index
- $\partial(x) = \sum_{CZ(x)-CZ(y)=1} \#\{Floer\ trajectories\ u\ joining\ x\ and\ y\}/_{\mathbb{R}}\cdot\langle y\rangle$
 - $u: \mathbb{R} \times \mathbb{R} \to M, \ u(s,t) = \phi(u(s,t+1)), \ u(s,t) \xrightarrow{t \to +\infty} x, \ u(s,t) \xrightarrow{y \to -\infty} y$ $\frac{\partial}{\partial s} u + J_t \frac{\partial}{\partial s} u = 0$
- \blacksquare HF*(ϕ) = H*(CF*(ϕ))

Property 1: $HF^*(\phi)$ is invariant under isotopy of acobs.

■ In fact, $HF^*(\phi)$ depends only on the associated contact pair [McLean '19].

Property 2: (Morse–Bott-type spectral sequence)

- Assume $Fix(\phi) = \bigsqcup_{i \in I} B_i$, B_i codimension zero family $\left\langle \begin{array}{c} \vdots \\ \circlearrowleft \end{array} \right\rangle$
- Fix ι : $\{a_{\phi|_{B_{\iota}}}: i \in I\} \to \mathbb{Z}$ increasing function.

 (M,λ,ϕ) - acob \leadsto $\mathsf{HF}^*(\phi)$ - fixed point Floer cohomology

- Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
- $\phi \rightsquigarrow \phi \circ \psi_1^{H_t}$, (J_t) a.c. structures, $\phi^*J_t = J_{t+1}$; (H_t, J_t) generic.
 - + small positive slope near ∂M .
- lacksquare CF* $(\phi)=igoplus_{x\in Fix(\phi)}\mathbb{Z}_2\langle x
 angle$, \mathbb{Z} -graded by the Conley–Zehnder index
- $\partial(x) = \sum_{CZ(x)-CZ(y)=1} \#\{Floer\ trajectories\ u\ joining\ x\ and\ y\}/_{\mathbb{R}}\cdot\langle y\rangle$
 - $u: \mathbb{R} \times \mathbb{R} \to M, \ u(s,t) = \phi(u(s,t+1)), \ u(s,t) \xrightarrow{t \to +\infty} x, \ u(s,t) \xrightarrow{y \to -\infty} y$ $\frac{\partial}{\partial s} u + J_t \frac{\partial}{\partial s} u = 0$
- \blacksquare HF*(ϕ) = H*(CF*(ϕ))

Property 1: $HF^*(\phi)$ is invariant under isotopy of acobs.

■ In fact, $HF^*(\phi)$ depends only on the associated contact pair [McLean '19].

Property 2: (Morse-Bott-type spectral sequence)

- Assume $Fix(\phi) = \bigsqcup_{i \in I} B_i$, B_i codimension zero family $\left\langle \begin{array}{c} \vdots \\ \circlearrowleft \end{array} \right\rangle$
- Fix ι : $\{a_{\phi|_{B_i}}: i \in I\} \to \mathbb{Z}$ increasing function.
- \exists spectral sequence \Rightarrow HF*(ϕ) with first page:

$$E_1^{p,q} = igoplus_{\{i: \iota(i) = p\}} H_{\dim M - (p+q) - \mathsf{CZ}(B_i)}(B_i, B_i \cap \partial M).$$

 (M, λ, ϕ) - acob \rightsquigarrow HF* (ϕ) - fixed point Floer cohomology

- Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
- $\phi \rightsquigarrow \phi \circ \psi_1^{H_t}$, (J_t) a.c. structures, $\phi^*J_t = J_{t+1}$; (H_t, J_t) generic.
 - + small positive slope near ∂M .
- $\mathsf{CF}^*(\phi) = \bigoplus_{x \in \mathsf{Fix}(\phi)} \mathbb{Z}_2\langle x \rangle$, \mathbb{Z} -graded by the Conley–Zehnder index
- $lack \partial(x) = \sum_{\mathsf{CZ}(x) \mathsf{CZ}(y) = 1} \#\{\mathsf{Floer\ trajectories\ } u\ \mathsf{joining\ } x\ \mathsf{and\ } y\}/_{\mathbb{R}} \cdot \langle y \rangle$
 - $u: \mathbb{R} \times \mathbb{R} \to M, \ u(s,t) = \phi(u(s,t+1)), \ u(s,t) \xrightarrow{t \to +\infty} x, \ u(s,t) \xrightarrow{y \to -\infty} y$ $\frac{\partial}{\partial s} u + J_t \frac{\partial}{\partial s} u = 0$
- $\mathsf{HF}^*(\phi) = H^*(\mathsf{CF}^*(\phi))$

Property 1: $HF^*(\phi)$ is invariant under isotopy of acobs.

■ In fact, $HF^*(\phi)$ depends only on the associated contact pair [McLean '19].

Property 2: (Morse–Bott-type spectral sequence)

- Assume $Fix(\phi) = \bigsqcup_{i \in I} B_i$, B_i codimension zero family
- lacksquare Fix $\iota\colon\{a_{\phi|_{B_i}}:i\in I\} o\mathbb{Z}$ increasing function.
- \exists spectral sequence \Rightarrow HF*(ϕ) with first page:

$$E_1^{p,q} = \bigoplus_{\{i: \iota(i) = p\}} H_{\dim M - (p+q) - \mathsf{CZ}(B_i)}(B_i, B_i \cap \partial M).$$

GOAL: find a symplectic monodromy ϕ with $Fix(\phi) = \bigcup codim 0$ families.

■ Recall: we need to work with $F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$ for $\varepsilon >$ Milnor radius.

GOAL: find a symplectic monodromy ϕ with $Fix(\phi) = \bigcup codim 0$ families.

Recall: we need to work with $F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$ for $\varepsilon > \text{Milnor radius}$.

Key Lemma

- Y Stein space with only isolated singularities,
- $f \colon Y \to \mathbb{C}$ holomorphic with only isolated critical points; $0 \in \mathbb{C}$ crit. value

GOAL: find a symplectic monodromy ϕ with $Fix(\phi) = \bigcup codim 0$ families.

Recall: we need to work with $F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$ for $\varepsilon > \text{Milnor radius}$.

Key Lemma

- Y Stein space with only isolated singularities,
- $f \colon Y \to \mathbb{C}$ holomorphic with only isolated critical points; $0 \in \mathbb{C}$ crit. value
- $(F = f^{-1}(\delta) \cap B, -d^c \varrho, \phi)$ monodromy acob.

GOAL: find a symplectic monodromy ϕ with Fix $(\phi) = \lfloor \rfloor$ codim 0 families.

Recall: we need to work with $F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$ for $\varepsilon > \text{Milnor radius}$.

Key Lemma

- Y Stein space with only isolated singularities,
- $f \colon Y \to \mathbb{C}$ holomorphic with only isolated critical points; $0 \in \mathbb{C}$ crit. value
- $(F = f^{-1}(\delta) \cap B, -d^c \varrho, \phi)$ monodromy acob.
- Fix $m \ge 1$. Let $h: (X, D) \to (Y, f^{-1}(0))$ be an *m*-separated log resolution
 - $D = (f \circ h)^*(0)_{\text{red}} \text{snc, } (f \circ h)^*(0) = \sum_i m_i D_i, \ D_i \cap D_j \neq \emptyset \implies m_i + m_j > m.$

GOAL: find a symplectic monodromy ϕ with $Fix(\phi) = \bigcup codim 0$ families.

Recall: we need to work with $F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$ for $\varepsilon > \text{Milnor radius}$.

Key Lemma

- Y Stein space with only isolated singularities,
- lacksquare $f\colon Y o\mathbb{C}$ holomorphic with only isolated critical points; $0\in\mathbb{C}$ crit. value
- $(F = f^{-1}(\delta) \cap B, -d^c \varrho, \phi)$ monodromy acob.
- Fix $m \ge 1$. Let $h: (X, D) \to (Y, f^{-1}(0))$ be an m-separated log resolution
 - $lacksquare D = (f \circ h)^*(0)_{\text{red}}$ snc, $(f \circ h)^*(0) = \sum_i m_i D_i, \ D_i \cap D_j \neq \emptyset \implies m_i + m_j > m$.

Then $(F, -d^c \varrho, \phi^m) \sim (F_{AC}, \lambda_{AC}, \phi^m_{AC})$ such that:

I Fix $(\phi_{AC}^m) = \bigsqcup_{\{i:m:|m|} B_i$, B_i - codim 0 family of fixed points.

GOAL: find a symplectic monodromy ϕ with $Fix(\phi) = \bigcup codim 0$ families.

Recall: we need to work with $F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$ for $\varepsilon >$ Milnor radius.

Key Lemma

- Y Stein space with only isolated singularities,
- $f \colon Y \to \mathbb{C}$ holomorphic with only isolated critical points; $0 \in \mathbb{C}$ crit. value
- $(F = f^{-1}(\delta) \cap B, -d^c \varrho, \phi)$ monodromy acob.
- Fix $m \ge 1$. Let $h: (X, D) \to (Y, f^{-1}(0))$ be an m-separated log resolution
 - $lacksquare D = (f \circ h)^*(0)_{\text{red}}$ snc, $(f \circ h)^*(0) = \sum_i m_i D_i, \ D_i \cap D_j \neq \emptyset \implies m_i + m_j > m$.

Then $(F, -d^c \varrho, \phi^m) \sim (F_{AC}, \lambda_{AC}, \phi^m_{AC})$ such that:

- **I** Fix $(\phi_{AC}^m) = \bigsqcup_{\{i:m:|m|} B_i$, B_i codim 0 family of fixed points.
- $\exists \frac{m}{m_i}$ -fold covering $B_i \to D_i^{\circ}$, where $D_i^{\circ} = (D \setminus (D D_i)) \cap h^{-1}(B)$.

GOAL: find a symplectic monodromy ϕ with $Fix(\phi) = \bigsqcup codim\ 0$ families.

■ Recall: we need to work with $F = f^{-1}(\delta) \cap \mathbb{B}_{\varepsilon}$ for $\varepsilon >$ Milnor radius.

Key Lemma

- Y Stein space with only isolated singularities,
- $f \colon Y \to \mathbb{C}$ holomorphic with only isolated critical points; $0 \in \mathbb{C}$ crit. value
- $(F = f^{-1}(\delta) \cap B, -d^c \varrho, \phi)$ monodromy acob.
- Fix $m \ge 1$. Let $h: (X, D) \to (Y, f^{-1}(0))$ be an m-separated log resolution

Then $(F, -d^c \varrho, \phi^m) \sim (F_{AC}, \lambda_{AC}, \phi^m_{AC})$ such that:

- $Fix(\phi_{AC}^m) = \bigsqcup_{\{i:m_i|m\}} B_i$, B_i codim 0 family of fixed points.
- $\exists \frac{m}{m_i}$ -fold covering $B_i \to D_i^{\circ}$, where $D_i^{\circ} = (D \setminus (D D_i)) \cap h^{-1}(B)$.
- $[a_{\phi_{AC}^m}] = w_i \frac{m}{m_i}$, where $-\sum_i w_i D_i$ is very ample.

 $lacksquare (f_t)\colon (\mathbb{C}^n,0) o (\mathbb{C},0)$ - μ -constant family, $t\in [0,t_0],\, 1\gg t_0>0$

- $(f_t)\colon (\mathbb{C}^n,0) o (\mathbb{C},0)$ μ -constant family, $t \in [0,t_0], \ 1 \gg t_0 > 0$
- $F_0 = f_0^{-1}(\delta) \cap B$ Milnor fiber

- $lacksquare (f_t)\colon (\mathbb{C}^n,0) o (\mathbb{C},0)$ μ -constant family, $t\in [0,t_0],\, 1\gg t_0>0$
- $F_0 = f_0^{-1}(\delta) \cap B$ Milnor fiber
- $(F_t = f_t^{-1}(\delta) \cap B, \lambda_{\mathsf{std}}, \phi_t)$ monodromy acobs, isotopic $\forall t$

- $lacksquare (f_t)\colon (\mathbb{C}^n,0) o (\mathbb{C},0)$ μ -constant family, $t\in [0,t_0],\, 1\gg t_0>0$
- $F_0 = f_0^{-1}(\delta) \cap B$ Milnor fiber
- $(F_t = f_t^{-1}(\delta) \cap B, \lambda_{\text{std}}, \phi_t)$ monodromy acobs, isotopic $\forall t$
- Fix $m \geqslant 1$. We have $\mathsf{HF}^*(\phi_0^m) = \mathsf{HF}^*(\phi_t^m)$ for all $t \in [0, t_0]$

- $lacksquare (f_t)\colon (\mathbb{C}^n,0) o (\mathbb{C},0)$ μ -constant family, $t\in [0,t_0],\, 1\gg t_0>0$
- \blacksquare $F_0 = f_0^{-1}(\delta) \cap B$ Milnor fiber
- $(F_t = f_t^{-1}(\delta) \cap B, \lambda_{\mathsf{std}}, \phi_t)$ monodromy acobs, isotopic $\forall t$
- Fix $m \ge 1$. We have $\mathsf{HF}^*(\phi_0^m) = \mathsf{HF}^*(\phi_t^m)$ for all $t \in [0, t_0]$

- Fix $t \in [0, t_0]$. Let h m-separated resolution of f_t ; $(h \circ f_t)^*(0) = \sum m_i D_i$
 - say D_0 proper transform of $f_t^{-1}(0)$.

- $lacksquare (f_t)\colon (\mathbb{C}^n,0) o (\mathbb{C},0)$ μ -constant family, $t\in [0,t_0],\, 1\gg t_0>0$
- $F_0 = f_0^{-1}(\delta) \cap B$ Milnor fiber
- $(F_t = f_t^{-1}(\delta) \cap B, \lambda_{\text{std}}, \phi_t)$ monodromy acobs, isotopic $\forall t$
- Fix $m \geqslant 1$. We have $\mathsf{HF}^*(\phi_0^m) = \mathsf{HF}^*(\phi_t^m)$ for all $t \in [0, t_0]$

- Fix $t \in [0, t_0]$. Let h m-separated resolution of f_t ; $(h \circ f_t)^*(0) = \sum m_i D_i$
 - say D_0 proper transform of $f_t^{-1}(0)$.
- Key lemma $\leadsto E_r^{p,q} \Rightarrow \mathsf{HF}^*(\phi_t^m)$ such that

$$H_{2n-2-(p+q)-2\frac{m}{m_i}\operatorname{ld}(D_i)}(B_i,B_i\cap\partial F_t)$$

- $lacksquare (f_t)\colon (\mathbb{C}^n,0) o (\mathbb{C},0)$ μ -constant family, $t\in [0,t_0],\, 1\gg t_0>0$
- \blacksquare $F_0 = f_0^{-1}(\delta) \cap B$ Milnor fiber
- $lackbrack (F_t = f_t^{-1}(\delta) \cap B, \lambda_{\mathsf{std}}, \phi_t)$ monodromy acobs, isotopic $\forall t$
- Fix $m \geqslant 1$. We have $\mathsf{HF}^*(\phi_0^m) = \mathsf{HF}^*(\phi_t^m)$ for all $t \in [0, t_0]$

- Fix $t \in [0, t_0]$. Let h m-separated resolution of f_t ; $(h \circ f_t)^*(0) = \sum m_i D_i$
 - say D_0 proper transform of $f_t^{-1}(0)$.
- Key lemma $\leadsto E_r^{p,q} \Rightarrow \mathsf{HF}^*(\phi_t^m)$ such that $E_1^{p,q} = \bigoplus_{\{i: m_i \mid m, \ p = -\frac{m}{m_i} w_i\}} H_{2n-2-(p+q)-2\frac{m}{m_i} \operatorname{Id}(D_i)}(B_i, B_i \cap \partial F_t)$
- Case i = 0 (proper transform) : $H_*(B_0, B_0 \cap \partial F_t) = 0$.

- $lacksquare (f_t)\colon (\mathbb{C}^n,0) o (\mathbb{C},0)$ μ -constant family, $t\in [0,t_0],\, 1\gg t_0>0$
- $F_0 = f_0^{-1}(\delta) \cap B$ Milnor fiber
- $(F_t = f_t^{-1}(\delta) \cap B, \lambda_{\text{std}}, \phi_t)$ monodromy acobs, isotopic $\forall t$
- Fix $m \ge 1$. We have $\mathsf{HF}^*(\phi_0^m) = \mathsf{HF}^*(\phi_t^m)$ for all $t \in [0, t_0]$

- Fix $t \in [0, t_0]$. Let h m-separated resolution of f_t ; $(h \circ f_t)^*(0) = \sum m_i D_i$
 - say D_0 proper transform of $f_t^{-1}(0)$.
- Key lemma \rightarrow $E_r^{p,q} \Rightarrow \mathsf{HF}^*(\phi_t^m)$ such that

$$\{i:m_i|m, p=-\frac{m}{m_i}w_i\}$$

$$\bigoplus_{m} H_{2n-2-(p+q)-2\frac{m}{m_i}\operatorname{ld}(D_i)}(B_i, B_i \cap \partial F_t)$$

■ Case i = 0 (proper transform) : $H_*(B_0, B_0 \cap \partial F_t) = 0$.

■ Case
$$i \neq 0$$
: $m_i \geqslant \nu_{f_t}$, $H_*(B_i, B_i \cap \partial F_t) = H_*(B_i) \neq 0$.

- (f_t) : $(\mathbb{C}^n,0) o (\mathbb{C},0)$ μ -constant family, $t \in [0,t_0]$, $1 \gg t_0 > 0$
- $F_0 = f_0^{-1}(\delta) \cap B$ Milnor fiber
- $lackbrack (F_t = f_t^{-1}(\delta) \cap B, \lambda_{\mathsf{std}}, \phi_t)$ monodromy acobs, isotopic $\forall t$
- Fix $m \ge 1$. We have $\mathsf{HF}^*(\phi_0^m) = \mathsf{HF}^*(\phi_t^m)$ for all $t \in [0, t_0]$

- Fix $t \in [0, t_0]$. Let h m-separated resolution of f_t ; $(h \circ f_t)^*(0) = \sum m_i D_i$
 - say D_0 proper transform of $f_t^{-1}(0)$.
- Key lemma $\leadsto E_r^{p,q} \Rightarrow \mathsf{HF}^*(\phi_t^m)$ such that

$$E_{1}^{p,q} = \bigoplus_{\{i:m_{i}|m, \ p=-\frac{m}{m_{i}}w_{i}\}}^{\{i,m_{i}|m, \ p=-\frac{m}{m_{i}}w_{i}\}} H_{2n-2-(p+q)-2\frac{m}{m_{i}}\operatorname{Id}(D_{i})}(B_{i}, B_{i} \cap \partial F_{t})$$

- Case i = 0 (proper transform) : $H_*(B_0, B_0 \cap \partial F_t) = 0$.
- Case $i \neq 0$: $m_i \geqslant \nu_{f_t}$, $H_*(B_i, B_i \cap \partial F_t) = H_*(B_i) \neq 0$.
- Therefore, $E_1^{p,q} = 0$ for $m < \nu_{f_t}$; $E_1^{p,q}$ has a nonzero column if $m_i = m$.

- $(f_t): (\mathbb{C}^n,0) \to (\mathbb{C},0)$ μ -constant family, $t \in [0,t_0], \ 1 \gg t_0 > 0$
- $F_0 = f_0^{-1}(\delta) \cap B$ Milnor fiber
- $(F_t = f_t^{-1}(\delta) \cap B, \lambda_{\text{std}}, \phi_t)$ monodromy acobs, isotopic $\forall t$
- Fix $m \ge 1$. We have $\mathsf{HF}^*(\phi_0^m) = \mathsf{HF}^*(\phi_t^m)$ for all $t \in [0, t_0]$

- Fix $t \in [0, t_0]$. Let h m-separated resolution of f_t ; $(h \circ f_t)^*(0) = \sum m_i D_i$
 - say D_0 proper transform of $f_t^{-1}(0)$.
- Key lemma $\rightsquigarrow E_r^{p,q} \Rightarrow \mathsf{HF}^*(\phi_t^m)$ such that

$$E_{1}^{p,q} = \bigoplus_{\{i: m_{i} \mid m, \ p = -\frac{m}{m_{i}} w_{i}\}}^{H_{2n-2-(p+q)-2\frac{m}{m_{i}} \operatorname{ld}(D_{i})}} (B_{i}, B_{i} \cap \partial F_{t})$$

- Case i = 0 (proper transform) : $H_*(B_0, B_0 \cap \partial F_t) = 0$.
- Case $i \neq 0$: $m_i \geqslant \nu_{f_t}$, $H_*(B_i, B_i \cap \partial F_t) = H_*(B_i) \neq 0$.
- Therefore, $E_1^{p,q} = 0$ for $m < \nu_{f_t}$; $E_1^{p,q}$ has a nonzero column if $m_i = m$. $\nu_{f_t} = \min\{m : \mathsf{HF}^*(\phi_t^m) \neq 0\} = \min\{m : \mathsf{HF}^*(\phi_0^m) \neq 0\} = \nu_{f_t}$

 $lacksquare
u_f = \min\{m: \mathsf{HF}^*(\phi^m)
eq 0\}$ for ϕ - monodromy of the Milnor fiber of f

- $lacksquare
 u_f = \min\{m: \mathsf{HF}^*(\phi^m)
 eq 0\} ext{ for } \phi$ monodromy of the Milnor fiber of f
 - This equality, in a Milnor ball, was first proved by McLean ('19)

- $\mathbf{v}_f = \min\{m : \mathsf{HF}^*(\phi^m) \neq 0\} \text{ for } \phi \text{ monodromy of the Milnor fiber of } f$
 - This equality, in a Milnor ball, was first proved by McLean ('19)

- $\mathbf{v}_f = \min\{m : \mathsf{HF}^*(\phi^m) \neq 0\} \text{ for } \phi \text{ monodromy of the Milnor fiber of } f$
 - This equality, in a Milnor ball, was first proved by McLean ('19)

Multiplicity depends only on the embedded contact type of the link.

■ Let $P = \{ \text{in } f = 0 \} \subseteq \mathbb{P}^n$: projectivized tangent cone

- $\mathbf{v}_f = \min\{m : \mathsf{HF}^*(\phi^m) \neq 0\} \text{ for } \phi \text{ monodromy of the Milnor fiber of } f$
 - This equality, in a Milnor ball, was first proved by McLean ('19)

- Let $P = \{ \text{in } f = 0 \} \subseteq \mathbb{P}^n$: projectivized tangent cone
- Zariski question B: (f_t) μ -constant $\implies P_0 \cong_{homeo} P_t$?

- $\mathbf{v}_f = \min\{m : \mathsf{HF}^*(\phi^m) \neq 0\} \text{ for } \phi \text{ monodromy of the Milnor fiber of } f$
 - This equality, in a Milnor ball, was first proved by McLean ('19)

- Let $P = \{ \text{in } f = 0 \} \subseteq \mathbb{P}^n$: projectivized tangent cone
- Zariski question B: (f_t) μ -constant $\implies P_0 \cong_{homeo} P_t$?
- Answer: **NO**, even if (f_t) is Whitney equisingular [F. de Bobadilla '05]

- $\mathbf{v}_f = \min\{m : \mathsf{HF}^*(\phi^m) \neq 0\} \text{ for } \phi \text{ monodromy of the Milnor fiber of } f$
 - This equality, in a Milnor ball, was first proved by McLean ('19)

- Let $P = \{ \text{in } f = 0 \} \subseteq \mathbb{P}^n$: projectivized tangent cone
- Zariski question B: (f_t) μ -constant $\implies P_0 \cong_{\mathsf{homeo}} P_t$?
- Answer: **NO**, even if (f_t) is Whitney equisingular [F. de Bobadilla '05]

$$f_t = \begin{pmatrix} y_1 & y_2 \end{pmatrix} \begin{pmatrix} x_3 & x_2 \\ x_2 & tx_1 - x_3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + x_1^4 + x_2^4 + x_3^4 \colon (\mathbb{C}^5, 0) \to (\mathbb{C}, 0).$$

- $\mathbf{v}_f = \min\{m : \mathsf{HF}^*(\phi^m) \neq 0\} \text{ for } \phi \text{ monodromy of the Milnor fiber of } f$
 - This equality, in a Milnor ball, was first proved by McLean ('19)

Multiplicity depends only on the embedded contact type of the link.

- Let $P = \{ \text{in } f = 0 \} \subseteq \mathbb{P}^n$: projectivized tangent cone
- Zariski question B: (f_t) μ -constant $\implies P_0 \cong_{homeo} P_t$?
- Answer: **NO**, even if (f_t) is Whitney equisingular [F. de Bobadilla '05]

$$f_t = \begin{pmatrix} y_1 & y_2 \end{pmatrix} \begin{pmatrix} x_3 & x_2 \\ x_2 & tx_1 - x_3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + x_1^4 + x_2^4 + x_3^4 \colon (\mathbb{C}^5, 0) \to (\mathbb{C}, 0).$$

Nonetheless...

- $\mathbf{v}_f = \min\{m : \mathsf{HF}^*(\phi^m) \neq 0\} \text{ for } \phi \text{ monodromy of the Milnor fiber of } f$
 - This equality, in a Milnor ball, was first proved by McLean ('19)

Multiplicity depends only on the embedded contact type of the link.

- Let $P = \{ \text{in } f = 0 \} \subseteq \mathbb{P}^n$: projectivized tangent cone
- Zariski question B: (f_t) μ -constant $\implies P_0 \cong_{homeo} P_t$?
- Answer: **NO**, even if (f_t) is Whitney equisingular [F. de Bobadilla '05]

$$f_t = \begin{pmatrix} y_1 & y_2 \end{pmatrix} \begin{pmatrix} x_3 & x_2 \\ x_2 & tx_1 - x_3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + x_1^4 + x_2^4 + x_3^4 \colon (\mathbb{C}^5, 0) \to (\mathbb{C}, 0).$$

Nonetheless...

If (f_t) is μ -constant, then $H_*(P_0) = H_*(P_t)$ for all t.

■ **Proof:** HF* $^{-2n\nu_f-n+1}(\phi^{\nu_f}) = H_{2(n\nu_f-1)-*}(P)$ [BFdBLN '20]; and $\nu_{f_0} = \nu_{f_t}$.

- $\mathbf{v}_f = \min\{m : \mathsf{HF}^*(\phi^m) \neq 0\} \text{ for } \phi \text{ monodromy of the Milnor fiber of } f$
 - This equality, in a Milnor ball, was first proved by McLean ('19)

Multiplicity depends only on the embedded contact type of the link.

- Let $P = \{ \text{in } f = 0 \} \subseteq \mathbb{P}^n$: projectivized tangent cone
- Zariski question B: (f_t) μ -constant $\implies P_0 \cong_{homeo} P_t$?
- Answer: **NO**, even if (f_t) is Whitney equisingular [F. de Bobadilla '05]

$$f_t = \begin{pmatrix} y_1 & y_2 \end{pmatrix} \begin{pmatrix} x_3 & x_2 \\ x_2 & tx_1 - x_3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + x_1^4 + x_2^4 + x_3^4 \colon (\mathbb{C}^5, 0) \to (\mathbb{C}, 0).$$

Nonetheless...

- **Proof**: HF* $^{-2n\nu_f-n+1}(\phi^{\nu_f}) = H_{2(n\nu_f-1)-*}(P)$ [BFdBLN '20]; and $\nu_{f_0} = \nu_{f_t}$.
- In fact, $H_{2(dm-1)-1-}(P) = H_c^*(\mathcal{X}_m(f,0))$

- $\mathbf{v}_f = \min\{m : \mathsf{HF}^*(\phi^m) \neq 0\} \text{ for } \phi \text{ monodromy of the Milnor fiber of } f$
 - This equality, in a Milnor ball, was first proved by McLean ('19)

Multiplicity depends only on the embedded contact type of the link.

- Let $P = \{ \text{in } f = 0 \} \subseteq \mathbb{P}^n$: projectivized tangent cone
- Zariski question B: (f_t) μ -constant $\implies P_0 \cong_{homeo} P_t$?
- Answer: **NO**, even if (f_t) is Whitney equisingular [F. de Bobadilla '05]

$$f_t = \begin{pmatrix} y_1 & y_2 \end{pmatrix} \begin{pmatrix} x_3 & x_2 \\ x_2 & tx_1 - x_3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + x_1^4 + x_2^4 + x_3^4 : (\mathbb{C}^5, 0) \to (\mathbb{C}, 0).$$

Nonetheless...

- **Proof**: HF* $^{-2n\nu_f-n+1}(\phi^{\nu_f}) = H_{2(n\nu_f-1)-*}(P)$ [BFdBLN '20]; and $\nu_{f_0} = \nu_{f_t}$.
- In fact, $H_{2(dm-1)-1-}(P) = H_c^*(\mathcal{X}_m(f,0))$
 - $\mathbb{Z}_m(f,0) = \{ \gamma \colon \operatorname{Spec} \mathbb{C}[t]/(t^{m+1}) \to \mathbb{C}^n : \gamma(0) = 0, \ f(\gamma) \equiv t^m \ (\operatorname{mod} \ t^{m+1}) \}$

- $\mathbf{v}_f = \min\{m : \mathsf{HF}^*(\phi^m) \neq 0\} \text{ for } \phi \text{ monodromy of the Milnor fiber of } f$
 - This equality, in a Milnor ball, was first proved by McLean ('19)

Multiplicity depends only on the embedded contact type of the link.

- Let $P = \{ \text{in } f = 0 \} \subseteq \mathbb{P}^n$: projectivized tangent cone
- Zariski question B: (f_t) μ -constant $\implies P_0 \cong_{\mathsf{homeo}} P_t$?
- Answer: **NO**, even if (f_t) is Whitney equisingular [F. de Bobadilla '05]

$$f_t = \begin{pmatrix} y_1 & y_2 \end{pmatrix} \begin{pmatrix} x_3 & x_2 \\ x_2 & tx_1 - x_3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + x_1^4 + x_2^4 + x_3^4 : (\mathbb{C}^5, 0) \to (\mathbb{C}, 0).$$

Nonetheless...

- **Proof**: $\mathsf{HF}^{*-2n\nu_f-n+1}(\phi^{\nu_f}) = H_{2(n\nu_f-1)-*}(P)$ [BFdBLN '20]; and $\nu_{f_0} = \nu_{f_t}$.
- In fact, $H_{2(dm-1)-1-}(P) = H_c^*(\mathcal{X}_m(f,0))$
 - $\mathbb{Z}_m(f,0) = \{ \gamma \colon \operatorname{Spec} \mathbb{C}[t]/(t^{m+1}) \to \mathbb{C}^n : \gamma(0) = 0, \ f(\gamma) \equiv t^m \ (\text{mod } t^{m+1}) \}$
- There is a spectral sequence converging to $H_c^*(\mathcal{X}_m)$, with the same first page as the one converging to $HF^*(\phi^m)$, up to a degree shift [BFdBLN '20]

- $\nu_f = \min\{m : \mathsf{HF}^*(\phi^m) \neq 0\}$ for ϕ monodromy of the Milnor fiber of f
 - This equality, in a Milnor ball, was first proved by McLean ('19)

Multiplicity depends only on the embedded contact type of the link.

- Let $P = \{ \text{in } f = 0 \} \subseteq \mathbb{P}^n$: projectivized tangent cone
- Zariski question B: (f_t) μ -constant $\implies P_0 \cong_{homeo} P_t$?
- Answer: **NO**, even if (f_t) is Whitney equisingular [F. de Bobadilla '05]

$$f_t = \begin{pmatrix} y_1 & y_2 \end{pmatrix} \begin{pmatrix} x_3 & x_2 \\ x_2 & tx_1 - x_3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + x_1^4 + x_2^4 + x_3^4 : (\mathbb{C}^5, 0) \to (\mathbb{C}, 0).$$

Nonetheless...

- **Proof**: $\mathsf{HF}^{*-2n\nu_f-n+1}(\phi^{\nu_f}) = H_{2(n\nu_f-1)-*}(P)$ [BFdBLN '20]; and $\nu_{f_0} = \nu_{f_t}$.
- In fact, $H_{2(dm-1)-1-}(P) = H_c^*(\mathcal{X}_m(f,0))$
 - $\mathbb{Z}_m(f,0) = \{ \gamma \colon \operatorname{Spec} \mathbb{C}[t]/(t^{m+1}) \to \mathbb{C}^n : \gamma(0) = 0, \ f(\gamma) \equiv t^m \ (\text{mod } t^{m+1}) \}$
- There is a spectral sequence converging to $H_c^*(\mathcal{X}_m)$, with the same first page as the one converging to $HF^*(\phi^m)$, up to a degree shift [BFdBLN '20]
- Conjecture: $HF^*(\phi^m) = H_c^{*+2mn+n-1}(\mathcal{X}_m)$.

■ In a topological setting, such a model was constructed by A'Campo ('73)

- In a topological setting, such a model was constructed by A'Campo ('73)
- Idea: endow A'Campo's model with a structure of an acob

- In a topological setting, such a model was constructed by A'Campo ('73)
- Idea: endow A'Campo's model with a structure of an acob
 - see [Campesato–Fichou–Parusiński '21] for a similar idea in a motivic setting.

- In a topological setting, such a model was constructed by A'Campo ('73)
- Idea: endow A'Campo's model with a structure of an acob
 - see [Campesato-Fichou-Parusiński '21] for a similar idea in a motivic setting.
- $f: X \to \mathbb{C}$ holomorphic, $f^*(0) = \sum_{i=1}^N m_i D_i$, $f^*(0)_{\text{red}}$ snc.

$$\bullet X_I^{\circ} = \bigcap_{i \in I} D_i \setminus \bigcup_{j \notin I} D_j.$$

- In a topological setting, such a model was constructed by A'Campo ('73)
- Idea: endow A'Campo's model with a structure of an acob
 - see [Campesato-Fichou-Parusiński '21] for a similar idea in a motivic setting.
- $f: X \to \mathbb{C}$ holomorphic, $f^*(0) = \sum_{i=1}^N m_i D_i$, $f^*(0)_{\text{red}}$ snc.
 - $\blacksquare X_I^{\circ} = \bigcap_{i \in I} D_i \setminus \bigcup_{j \notin I} D_j.$

Step 1: extend polar coordinates to "radius zero"

- In a topological setting, such a model was constructed by A'Campo ('73)
- Idea: endow A'Campo's model with a structure of an acob
 - see [Campesato–Fichou–Parusiński '21] for a similar idea in a motivic setting.
- $f: X \to \mathbb{C}$ holomorphic, $f^*(0) = \sum_{i=1}^N m_i D_i$, $f^*(0)_{\text{red}}$ snc.
 - $X_I^{\circ} = \bigcap_{i \in I} D_i \setminus \bigcup_{j \notin I} D_j.$

Step 1: extend polar coordinates to "radius zero"

■ Replace each D_i by an \mathbb{S}^1 -bundle over D_i (cf. eg. [Mumford '61] for n=3)

- In a topological setting, such a model was constructed by A'Campo ('73)
- Idea: endow A'Campo's model with a structure of an acob
 - see [Campesato–Fichou–Parusiński '21] for a similar idea in a motivic setting.
- $f: X \to \mathbb{C}$ holomorphic, $f^*(0) = \sum_{i=1}^N m_i D_i$, $f^*(0)_{\text{red}}$ snc. ■ $X_i^\circ = \bigcap_{i \in I} D_i \setminus \bigcup_{i \notin I} D_i$.

Step 1: extend polar coordinates to "radius zero"

- Replace each D_i by an \mathbb{S}^1 -bundle over D_i (cf. eg. [Mumford '61] for n=3)
- lacktriangle Convenient language: Kato-Nakayama space $X_{log} = (X, D)_{log}$

- In a topological setting, such a model was constructed by A'Campo ('73)
- Idea: endow A'Campo's model with a structure of an acob
 - see [Campesato–Fichou–Parusiński '21] for a similar idea in a motivic setting.
- $f: X \to \mathbb{C}$ holomorphic, $f^*(0) = \sum_{i=1}^N m_i D_i$, $f^*(0)_{\text{red}}$ snc. ■ $X_i^{\circ} = \bigcap_{i \in I} D_i \setminus \bigcup_{i \not\in I} D_j$.

- Replace each D_i by an \mathbb{S}^1 -bundle over D_i (cf. eg. [Mumford '61] for n=3)
- Convenient language: Kato–Nakayama space $X_{log} = (X, D)_{log}$
- lacksquare $\mathbb{C}_{log}=(\mathbb{C},0)_{log}=\mathbb{S}^1 imes[0,\infty)$: replace $0\in\mathbb{C}$ by a "radius zero" circle.

- In a topological setting, such a model was constructed by A'Campo ('73)
- Idea: endow A'Campo's model with a structure of an acob
 - see [Campesato–Fichou–Parusiński '21] for a similar idea in a motivic setting.
- $f: X \to \mathbb{C}$ holomorphic, $f^*(0) = \sum_{i=1}^N m_i D_i$, $f^*(0)_{\text{red}}$ snc. • $X_i^\circ = \bigcap_{i \in I} D_i \setminus \bigcup_{i \notin I} D_i$.

Step 1: extend polar coordinates to "radius zero"

- Replace each D_i by an \mathbb{S}^1 -bundle over D_i (cf. eg. [Mumford '61] for n=3)
- Convenient language: Kato-Nakayama space $X_{log} = (X, D)_{log}$
- lacksquare $\mathbb{C}_{log}=(\mathbb{C},0)_{log}=\mathbb{S}^1 imes[0,\infty)$: replace $0\in\mathbb{C}$ by a "radius zero" circle.

- In a topological setting, such a model was constructed by A'Campo ('73)
- Idea: endow A'Campo's model with a structure of an acob
 - see [Campesato–Fichou–Parusiński '21] for a similar idea in a motivic setting.
- $f: X \to \mathbb{C}$ holomorphic, $f^*(0) = \sum_{i=1}^N m_i D_i$, $f^*(0)_{red}$ snc. ■ $X_i^{\circ} = \bigcap_{i \in I} D_i \setminus \bigcup_{i \not\in I} D_j$.

Step 1: extend polar coordinates to "radius zero"

- Replace each D_i by an \mathbb{S}^1 -bundle over D_i (cf. eg. [Mumford '61] for n=3)
- Convenient language: Kato-Nakayama space $X_{log} = (X, D)_{log}$
- lacksquare $\mathbb{C}_{log}=(\mathbb{C},0)_{log}=\mathbb{S}^1 imes[0,\infty)$: replace $0\in\mathbb{C}$ by a "radius zero" circle.

- \rightarrow Smooth manifold $A = (X, D)_{AC}$ with boundary
 - Smooth map $\pi: A \to X$, $\pi|: A \setminus \partial A \to X \setminus D$ diffeomorphism

- In a topological setting, such a model was constructed by A'Campo ('73)
- Idea: endow A'Campo's model with a structure of an acob
 - see [Campesato–Fichou–Parusiński '21] for a similar idea in a motivic setting.
- $f: X \to \mathbb{C}$ holomorphic, $f^*(0) = \sum_{i=1}^N m_i D_i$, $f^*(0)_{\text{red}}$ snc. • $X_i^\circ = \bigcap_{i \in I} D_i \setminus \bigcup_{i \notin I} D_i$.

Step 1: extend polar coordinates to "radius zero"

- Replace each D_i by an \mathbb{S}^1 -bundle over D_i (cf. eg. [Mumford '61] for n=3)
- Convenient language: Kato–Nakayama space $X_{log} = (X, D)_{log}$
- \blacksquare $\mathbb{C}_{log} = (\mathbb{C}, 0)_{log} = \mathbb{S}^1 \times [0, \infty)$: replace $0 \in \mathbb{C}$ by a "radius zero" circle.

- \rightarrow Smooth manifold $A = (X, D)_{AC}$ with boundary
 - Smooth map $\pi: A \to X$, $\pi|: A \setminus \partial A \to X \setminus D$ diffeomorphism
 - f lifts to $f_{AC}: A \to \mathbb{C}_{log}, f|: \partial A \to \partial \mathbb{C}_{log}$ has required monodromy.

$$\Delta_D \overset{\longleftarrow}{\longleftarrow} \partial A \overset{\longrightarrow}{\longleftarrow} A \overset{\pi}{\longrightarrow} X$$
 $f_{AC} \overset{\longrightarrow}{\downarrow} f_{AC} \overset{\downarrow}{\downarrow} f$
 $\mathbb{S}^1 \overset{\frown}{\longleftarrow} \mathbb{C}_{\log} \overset{\frown}{\longrightarrow} \mathbb{C}$

- In a topological setting, such a model was constructed by A'Campo ('73)
- Idea: endow A'Campo's model with a structure of an acob
 - see [Campesato–Fichou–Parusiński '21] for a similar idea in a motivic setting.
- $f: X \to \mathbb{C}$ holomorphic, $f^*(0) = \sum_{i=1}^N m_i D_i$, $f^*(0)_{\text{red}}$ snc. • $X_i^\circ = \bigcap_{i \in I} D_i \setminus \bigcup_{i \notin I} D_i$.

Step 1: extend polar coordinates to "radius zero"

- Replace each D_i by an \mathbb{S}^1 -bundle over D_i (cf. eg. [Mumford '61] for n=3)
- Convenient language: Kato–Nakayama space $X_{log} = (X, D)_{log}$
- lacksquare $\mathbb{C}_{log}=(\mathbb{C},0)_{log}=\mathbb{S}^1 imes[0,\infty)$: replace $0\in\mathbb{C}$ by a "radius zero" circle.

Step 2: for each $\emptyset \neq I \subseteq \{1, ..., N\}$, multiply X_I° by the face Δ_I of Δ^{N-1}

- \rightarrow Smooth manifold $A = (X, D)_{AC}$ with boundary
 - Smooth map $\pi: A \to X$, $\pi|: A \setminus \partial A \to X \setminus D$ diffeomorphism
 - f lifts to $f_{AC}: A \to \mathbb{C}_{log}, f|: \partial A \to \partial \mathbb{C}_{log}$ has required monodromy.

lacksquare $\mu \colon \partial A o \Delta^N$, $\mu(\partial A)$ - dual complex of D, i.e. $\Delta_D = \bigcup_{X_I
eq \emptyset} \Delta_I$

- In a topological setting, such a model was constructed by A'Campo ('73)
- Idea: endow A'Campo's model with a structure of an acob
 - see [Campesato–Fichou–Parusiński '21] for a similar idea in a motivic setting.
- $f: X \to \mathbb{C}$ holomorphic, $f^*(0) = \sum_{i=1}^N m_i D_i$, $f^*(0)_{\text{red}}$ snc. ■ $X_I^{\circ} = \bigcap_{i \in I} D_i \setminus \bigcup_{i \notin I} D_i$.

Step 1: extend polar coordinates to "radius zero"

- Replace each D_i by an \mathbb{S}^1 -bundle over D_i (cf. eg. [Mumford '61] for n=3)
- Convenient language: Kato–Nakayama space $X_{log} = (X, D)_{log}$
- lacksquare $\mathbb{C}_{log}=(\mathbb{C},0)_{log}=\mathbb{S}^1 imes[0,\infty)$: replace $0\in\mathbb{C}$ by a "radius zero" circle.

- \rightarrow Smooth manifold $A = (X, D)_{AC}$ with boundary
 - Smooth map $\pi: A \to X$, $\pi|: A \setminus \partial A \to X \setminus D$ diffeomorphism
 - f lifts to $f_{AC}: A \to \mathbb{C}_{log}, f|: \partial A \to \partial \mathbb{C}_{log}$ has required monodromy.

- $\mu : \partial A \to \Delta^N$, $\mu(\partial A)$ dual complex of D, i.e. $\Delta_D = \bigcup_{X \to \emptyset} \Delta_I$
- \blacksquare $(\pi,\mu)|: X_I^{\circ} \to X_I^{\circ} \times \Delta_I$ is an $(\mathbb{S}^1)^{\#I}$ -bundle.

- In a topological setting, such a model was constructed by A'Campo ('73)
- Idea: endow A'Campo's model with a structure of an acob
 - see [Campesato–Fichou–Parusiński '21] for a similar idea in a motivic setting.
- $f: X \to \mathbb{C}$ holomorphic, $f^*(0) = \sum_{i=1}^N m_i D_i$, $f^*(0)_{red}$ snc. ■ $X_i^{\circ} = \bigcap_{i \in I} D_i \setminus \bigcup_{i \not\in I} D_j$.

Step 1: extend polar coordinates to "radius zero"

- Replace each D_i by an \mathbb{S}^1 -bundle over D_i (cf. eg. [Mumford '61] for n=3)
- Convenient language: Kato–Nakayama space $X_{log} = (X, D)_{log}$
- lacksquare $\mathbb{C}_{log}=(\mathbb{C},0)_{log}=\mathbb{S}^1 imes[0,\infty)$: replace $0\in\mathbb{C}$ by a "radius zero" circle.

Step 2: for each $\emptyset \neq I \subseteq \{1, ..., N\}$, multiply X_I° by the face Δ_I of Δ^{N-1}

- \rightarrow Smooth manifold $A = (X, D)_{AC}$ with boundary
 - Smooth map π : $A \to X$, π |: $A \setminus \partial A \to X \setminus D$ diffeomorphism
 - f lifts to $f_{AC}: A \to \mathbb{C}_{log}$, $f|: \partial A \to \partial \mathbb{C}_{log}$ has required monodromy.

- lacksquare $\mu\colon\partial A o\Delta^N$, $\mu(\partial A)$ dual complex of D, i.e. $\Delta_D=\bigcup_{X_I\neq\emptyset}\Delta_I$
- \blacksquare $(\pi,\mu)|: X_I^{\circ} \to X_I^{\circ} \times \Delta_I$ is an $(\mathbb{S}^1)^{\#I}$ -bundle.

Principle: passing to radius zero makes the choices irrelevant.

lacksquare X - smooth complex manifold, $D\subseteq X$ - snc divisor

- X smooth complex manifold, $D \subseteq X$ snc divisor
- We will use language of log geometry (Kato '89, Fontaine–Ilusie, ..., Ogus)
 - Very general framework, used e.g. to compare étale and de Rham cohomologies.
 - We will use it for log structure $\mathcal{O}_X^* \hookrightarrow \mathcal{M} = \mathcal{O}_X \cap \mathcal{O}_{X \setminus D}^*$

- **X** smooth complex manifold, $D \subseteq X$ snc divisor
- We will use language of log geometry (Kato '89, Fontaine–Ilusie, ..., Ogus)
 - Very general framework, used e.g. to compare étale and de Rham cohomologies.
 - We will use it for log structure $\mathcal{O}_X^* \hookrightarrow \mathcal{M} = \mathcal{O}_X \cap \mathcal{O}_{X \setminus D}^*$
- lacksquare Let $\mathcal{M}_{\scriptscriptstyle X}^{\sf gp}$ group associated to the monoid $\mathcal{M}_{\scriptscriptstyle X}$

- X smooth complex manifold, $D \subseteq X$ snc divisor
- We will use language of log geometry (Kato '89, Fontaine-Ilusie, ..., Ogus)
 - Very general framework, used e.g. to compare étale and de Rham cohomologies.
 - We will use it for log structure $\mathcal{O}_X^* \hookrightarrow \mathcal{M} = \mathcal{O}_X \cap \mathcal{O}_{X \setminus D}^*$
- lacksquare Let $\mathcal{M}_{\scriptscriptstyle X}^{\sf gp}$ group associated to the monoid $\mathcal{M}_{\scriptscriptstyle X}$
- - $T: X_{\log} \ni (x,h) \mapsto x \in X$

- **X** smooth complex manifold, $D \subseteq X$ snc divisor
- We will use language of log geometry (Kato '89, Fontaine–Ilusie, ..., Ogus)
 - Very general framework, used e.g. to compare étale and de Rham cohomologies.
 - We will use it for log structure $\mathcal{O}_X^* \hookrightarrow \mathcal{M} = \mathcal{O}_X \cap \mathcal{O}_{X \setminus D}^*$
- Let $\mathcal{M}_{\scriptscriptstyle X}^{\sf gp}$ group associated to the monoid $\mathcal{M}_{\scriptscriptstyle X}$
- $\quad \blacksquare \ X_{\log} = \{(x,h): x \in X, \ h \in \operatorname{Hom}(\mathcal{M}_x^{\operatorname{gp}}, \mathbb{S}^1), \ h = \tfrac{f(x)}{|f(x)|} \ \text{if} \ f \in \mathcal{O}_{X,x}^*\},$
 - $\tau: X_{\log} \ni (x, h) \mapsto x \in X$
 - $\mathbb{C}_{\log} = (\mathbb{C}, 0)_{\log} = \{(z, 1 \mapsto \frac{z}{|z|}) : z \in \mathbb{C}^*\} \sqcup \{(0, 1 \mapsto \theta) : \theta \in \mathbb{S}^1\} = \mathbb{C}^* \sqcup \mathbb{S}^1$

- **X** smooth complex manifold, $D \subseteq X$ snc divisor
- We will use language of log geometry (Kato '89, Fontaine–Ilusie, ..., Ogus)
 - Very general framework, used e.g. to compare étale and de Rham cohomologies.
 - We will use it for log structure $\mathcal{O}_X^* \hookrightarrow \mathcal{M} = \mathcal{O}_X \cap \mathcal{O}_{X \setminus D}^*$
- Let $\mathcal{M}_{\mathsf{x}}^{\mathsf{gp}}$ group associated to the monoid \mathcal{M}_{x}
- - $au: X_{\log} \ni (x, h) \mapsto x \in X$
 - $\blacksquare \ \mathbb{C}_{\mathsf{log}} \stackrel{\mathsf{z}}{=} (\mathbb{C}, 0)_{\mathsf{log}} = \{(z, 1 \mapsto \frac{z}{|z|}) : z \in \mathbb{C}^*\} \sqcup \{(0, 1 \mapsto \theta) : \theta \in \mathbb{S}^1\} = \mathbb{C}^* \sqcup \mathbb{S}^1 \}$
 - $\mathbb{C}_{log} = [0, \infty) \times \mathbb{S}^1$

- X smooth complex manifold, $D \subseteq X$ snc divisor
- We will use language of log geometry (Kato '89, Fontaine–Ilusie, ..., Ogus)
 - Very general framework, used e.g. to compare étale and de Rham cohomologies.
 - We will use it for log structure $\mathcal{O}_X^* \hookrightarrow \mathcal{M} = \mathcal{O}_X \cap \mathcal{O}_{X \setminus D}^*$
- Let $\mathcal{M}_{\mathsf{x}}^{\mathsf{gp}}$ group associated to the monoid \mathcal{M}_{x}
- - $au: X_{\log} \ni (x, h) \mapsto x \in X$
 - $\blacksquare \ \mathbb{C}_{\log} = (\mathbb{C},0)_{\log} = \{(z,1\mapsto \tfrac{z}{|z|}): z\in\mathbb{C}^*\} \sqcup \{(0,1\mapsto\theta): \theta\in\mathbb{S}^1\} = \mathbb{C}^*\sqcup\mathbb{S}^1$
 - $\mathbb{C}_{\log} = [0, \infty) \times \mathbb{S}^1$

■ In general, we put the following topology on X_{log} :

- **X** smooth complex manifold, $D \subseteq X$ snc divisor
- We will use language of log geometry (Kato '89, Fontaine–Ilusie, ..., Ogus)
 - Very general framework, used e.g. to compare étale and de Rham cohomologies.
 - We will use it for log structure $\mathcal{O}_X^* \hookrightarrow \mathcal{M} = \mathcal{O}_X \cap \mathcal{O}_{X \setminus D}^*$
- Let $\mathcal{M}_{\mathsf{x}}^{\mathsf{gp}}$ group associated to the monoid \mathcal{M}_{x}
- - \bullet $\tau: X_{log} \ni (x, h) \mapsto x \in X$
 - $\blacksquare \ \mathbb{C}_{\mathsf{log}} \stackrel{\text{\tiny log}}{=} \{ (\mathbb{C},0)_{\mathsf{log}} = \{ (z,1 \mapsto \frac{z}{|z|}) : z \in \mathbb{C}^* \} \sqcup \{ (0,1 \mapsto \theta) : \theta \in \mathbb{S}^1 \} = \mathbb{C}^* \sqcup \mathbb{S}^1 \}$
 - $\mathbb{C}_{\log} = [0, \infty) \times \mathbb{S}^1$

- In general, we put the following topology on X_{log} :
 - $U \subseteq X$, holomorphic chart $(z_1, \ldots, z_n) \colon U \to \mathbb{D}^n$, $D \cap U = \{z_1 \cdot \ldots \cdot z_k = 0\}$

- X smooth complex manifold, $D \subseteq X$ snc divisor
- We will use language of log geometry (Kato '89, Fontaine-Ilusie, ..., Ogus)
 - Very general framework, used e.g. to compare étale and de Rham cohomologies.
 - We will use it for log structure $\mathcal{O}_X^* \hookrightarrow \mathcal{M} = \mathcal{O}_X \cap \mathcal{O}_{X \setminus D}^*$
- Let \mathcal{M}_{x}^{gp} group associated to the monoid \mathcal{M}_{x}
- - \bullet $\tau: X_{log} \ni (x, h) \mapsto x \in X$
 - $\quad \blacksquare \ \mathbb{C}_{\mathrm{log}} = (\mathbb{C}, 0)_{\mathrm{log}} = \{(z, 1 \mapsto \frac{z}{|z|}) : z \in \mathbb{C}^*\} \sqcup \{(0, 1 \mapsto \theta) : \theta \in \mathbb{S}^1\} = \mathbb{C}^* \sqcup \mathbb{S}^1$
 - $\mathbb{C}_{log} = [0, \infty) \times \mathbb{S}^1$

- In general, we put the following topology on X_{log} :
 - $U \subseteq X$, holomorphic chart $(z_1, \ldots, z_n) \colon U \to \mathbb{D}^n$, $D \cap U = \{z_1 \cdot \ldots \cdot z_k = 0\}$ Define a chart $\tau^{-1}(U) \to [0,1)^k \times (\mathbb{S}^1)^k \times \mathbb{D}^{n-k}$ by

$$(x,h)\mapsto (r_1,\ldots,r_k;\theta_1,\ldots,\theta_k;z_{k+1},\ldots,z_n),\quad \text{where}\quad r_j=|z_j|,\theta_j=h(z_j).$$

- **X** smooth complex manifold, $D \subseteq X$ snc divisor
- We will use language of log geometry (Kato '89, Fontaine–Ilusie, ..., Ogus)
 - Very general framework, used e.g. to compare étale and de Rham cohomologies.
 - We will use it for log structure $\mathcal{O}_X^* \hookrightarrow \mathcal{M} = \mathcal{O}_X \cap \mathcal{O}_{X \setminus D}^*$
- Let $\mathcal{M}_{\mathsf{x}}^{\mathsf{gp}}$ group associated to the monoid \mathcal{M}_{x}
- - $au: X_{\log} \ni (x, h) \mapsto x \in X$
 - $\blacksquare \ \mathbb{C}_{\log} = (\mathbb{C}, 0)_{\log} = \{(z, 1 \mapsto \frac{z}{|z|}) : z \in \mathbb{C}^*\} \sqcup \{(0, 1 \mapsto \theta) : \theta \in \mathbb{S}^1\} = \mathbb{C}^* \sqcup \mathbb{S}^1$
 - $\mathbb{C}_{\log} = [0, \infty) \times \mathbb{S}^1$

- In general, we put the following topology on X_{log} :
 - $U \subseteq X$, holomorphic chart $(z_1, \ldots, z_n) \colon U \to \mathbb{D}^n$, $D \cap U = \{z_1 \cdot \ldots \cdot z_k = 0\}$ ■ Define a chart $\tau^{-1}(U) \to [0,1)^k \times (\mathbb{S}^1)^k \times \mathbb{D}^{n-k}$ by
 - $(x,h)\mapsto (r_1,\ldots,r_k;\theta_1,\ldots,\theta_k;z_{k+1},\ldots,z_n),\quad \text{where}\quad r_j=|z_j|,\theta_j=h(z_j).$
- \blacksquare X_{log} becomes a manifold with corners.

- **X** smooth complex manifold, $D \subseteq X$ snc divisor
- We will use language of log geometry (Kato '89, Fontaine–Ilusie, ..., Ogus)
 - Very general framework, used e.g. to compare étale and de Rham cohomologies.
 - We will use it for log structure $\mathcal{O}_X^* \hookrightarrow \mathcal{M} = \mathcal{O}_X \cap \mathcal{O}_{X \setminus D}^*$
- Let $\mathcal{M}_{\mathsf{x}}^{\mathsf{gp}}$ group associated to the monoid \mathcal{M}_{x}
- - $au: X_{log} \ni (x, h) \mapsto x \in X$
 - $\blacksquare \ \mathbb{C}_{\log} = (\mathbb{C}, 0)_{\log} = \{(z, 1 \mapsto \frac{z}{|z|}) : z \in \mathbb{C}^*\} \sqcup \{(0, 1 \mapsto \theta) : \theta \in \mathbb{S}^1\} = \mathbb{C}^* \sqcup \mathbb{S}^1$
 - $\mathbb{C}_{\log} = [0, \infty) \times \mathbb{S}^1$

- In general, we put the following topology on X_{log} :
 - $U \subseteq X$, holomorphic chart $(z_1, \ldots, z_n) \colon U \to \mathbb{D}^n$, $D \cap U = \{z_1 \cdot \ldots \cdot z_k = 0\}$ ■ Define a chart $\tau^{-1}(U) \to [0,1)^k \times (\mathbb{S}^1)^k \times \mathbb{D}^{n-k}$ by
 - Define a chart $\tau^{-1}(0) \to [0,1)^n \times (\mathbb{S}^+)^n \times \mathbb{D}^n$ by $(x,h) \mapsto (r_1,\ldots,r_k;\theta_1,\ldots,\theta_k;z_{k+1},\ldots,z_n),$ where $r_i=|z_i|,\theta_i=h(z_i).$
- \blacksquare X_{log} becomes a manifold with corners.
- τ |: $X_{log} \setminus \partial X_{log} \to X \setminus D$: diffeomorphism

- **X** smooth complex manifold, $D \subseteq X$ snc divisor
- We will use language of log geometry (Kato '89, Fontaine–Ilusie, ..., Ogus)
 - Very general framework, used e.g. to compare étale and de Rham cohomologies.
 - We will use it for log structure $\mathcal{O}_X^* \hookrightarrow \mathcal{M} = \mathcal{O}_X \cap \mathcal{O}_{X \setminus D}^*$
- Let $\mathcal{M}_{\mathsf{x}}^{\mathsf{gp}}$ group associated to the monoid \mathcal{M}_{x}
- - \bullet $\tau: X_{log} \ni (x, h) \mapsto x \in X$
 - $\blacksquare \ \mathbb{C}_{\mathsf{log}} \stackrel{\cdot}{=} (\mathbb{C},0)_{\mathsf{log}} \stackrel{\cdot}{=} \{(z,1 \mapsto \frac{z}{|z|}) : z \in \mathbb{C}^*\} \sqcup \{(0,1 \mapsto \theta) : \theta \in \mathbb{S}^1\} = \mathbb{C}^* \sqcup \mathbb{S}^1$
 - $\mathbb{C}_{\log} = [0, \infty) \times \mathbb{S}^1$

- In general, we put the following topology on X_{log} :
 - $U \subseteq X$, holomorphic chart $(z_1, \ldots, z_n) \colon U \to \mathbb{D}^n$, $D \cap U = \{z_1 \cdot \ldots \cdot z_k = 0\}$ ■ Define a chart $\tau^{-1}(U) \to [0, 1)^k \times (\mathbb{S}^1)^k \times \mathbb{D}^{n-k}$ by
 - Define a chart $\tau^{-1}(U) \to [0,1)^n \times (\mathbb{S}^1)^n \times \mathbb{D}^{n-n}$ by $(x,h) \mapsto (r_1,\ldots,r_k;\theta_1,\ldots,\theta_k;z_{k+1},\ldots,z_n),$ where $r_j=|z_j|,\theta_j=h(z_j).$
- \blacksquare X_{log} becomes a manifold with corners.
- τ |: $X_{log} \setminus \partial X_{log} \to X \setminus D$: diffeomorphism
- lacksquare $au|: au^{-1}(X_I^\circ) o X_I^\circ$ is an $(\mathbb{S}^1)^{\#I}$ -bundle

■ Fix a convenient embedding of the simplex:

■ Fix an atlas $\{(z_1^p,\ldots,z_n^p)\colon U^p\to\mathbb{D}^n\}_p$, $f|_{U^p}=(z_1^p)^{m_1}\cdot\ldots\cdot(z_k)^{m_k}$

- Fix an atlas $\{(z_1^p,\ldots,z_n^p)\colon U^p\to\mathbb{D}^n\}_p$, $f|_{U^p}=(z_1^p)^{m_1}\cdot\ldots\cdot(z_k)^{m_k}$
 - $z_j^p = r_j^p \cdot \theta_j^p$ coordinates in X_{log}

- lacksquare Fix an atlas $\{(z_1^p,\ldots,z_n^p)\colon U^p o\mathbb{D}^n\}_p$, $f|_{U^p}=(z_1^p)^{m_1}\cdot\ldots\cdot(z_k)^{m_k}$
 - $z_i^p = r_i^p \cdot \theta_i^p$ coordinates in X_{log}
 - tropical coordinates $t_j^p = (-m_j \log r_j^p)^{-1}$; $t = (-\log |f|)^{-1} = (\sum_j (t_j^p)^{-1})^{-1}$.

- lacksquare Fix an atlas $\{(z_1^p,\ldots,z_n^p)\colon U^p o\mathbb{D}^n\}_p$, $f|_{U^p}=(z_1^p)^{m_1}\cdot\ldots\cdot(z_k)^{m_k}$
 - $z_i^p = r_i^p \cdot \theta_i^p$ coordinates in X_{log}
 - tropical coordinates $t_i^p = (-m_i \log r_i^p)^{-1}$; $t = (-\log |f|)^{-1} = (\sum_i (t_i^p)^{-1})^{-1}$.
 - $u_j^p = \eta(t \cdot (t_j^p)^{-1})$

- Fix an atlas $\{(z_1^p,\ldots,z_n^p)\colon U^p\to\mathbb{D}^n\}_p$, $f|_{U^p}=(z_1^p)^{m_1}\cdot\ldots\cdot(z_k)^{m_k}$
 - $z_i^p = r_i^p \cdot \theta_i^p$ coordinates in X_{log}
 - tropical coordinates $t_j^{\rho} = (-m_j \log r_j^{\rho})^{-1}$; $t = (-\log |f|)^{-1} = (\sum_i (t_i^{\rho})^{-1})^{-1}$.
 - $u_j^p = \eta(t \cdot (t_j^p)^{-1})$
 - Fix a partition of unity: $\tau^p \colon X \to [0,1], \ \tau^p = 0 \ \text{on} \ X \setminus U^p, \ \sum_n \tau^p = 1$

- lacksquare Fix an atlas $\{(z_1^p,\ldots,z_n^p)\colon U^p o\mathbb{D}^n\}_p$, $f|_{U^p}=(z_1^p)^{m_1}\cdot\ldots\cdot(z_k)^{m_k}$
 - $z_i^p = r_i^p \cdot \theta_i^p$ coordinates in X_{log}
 - tropical coordinates $t_j^{\rho} = (-m_j \log r_j^{\rho})^{-1}$; $t = (-\log |f|)^{-1} = (\sum_i (t_i^{\rho})^{-1})^{-1}$.
 - $u_j^p = \eta(t \cdot (t_j^p)^{-1})$
 - Fix a partition of unity: $\tau^p \colon X \to [0,1]$, $\tau^p = 0$ on $X \setminus U^p$, $\sum_n \tau^p = 1$
 - lacksquare Define $u_j = \sum_p au^p u_j^p$ relative speed of convergence to D_j

- Fix an atlas $\{(z_1^p,\ldots,z_n^p)\colon U^p\to\mathbb{D}^n\}_p$, $f|_{U^p}=(z_1^p)^{m_1}\cdot\ldots\cdot(z_k)^{m_k}$
 - $z_i^p = r_i^p \cdot \theta_i^p$ coordinates in X_{log}
 - tropical coordinates $t_i^p = (-m_i \log r_i^p)^{-1}$; $t = (-\log |f|)^{-1} = (\sum_i (t_i^p)^{-1})^{-1}$.
 - $u_i^{\rho} = \eta(t \cdot (t_i^{\rho})^{-1})$
 - Fix a partition of unity: $\tau^p \colon X \to [0,1], \ \tau^p = 0 \ \text{on} \ X \setminus U^p, \ \sum_n \tau^p = 1$
 - Define $u_j = \sum_p \tau^p u_i^p$ relative speed of convergence to D_j
- \longrightarrow smooth map $\mu = (u_1, \ldots, u_N) \colon X \setminus D \to \mathbb{R}^N$

- lacksquare Fix an atlas $\{(z_1^p,\ldots,z_n^p)\colon U^p o\mathbb{D}^n\}_p$, $f|_{U^p}=(z_1^p)^{m_1}\cdot\ldots\cdot(z_k)^{m_k}$
 - $z_i^p = r_i^p \cdot \theta_i^p$ coordinates in X_{log}
 - $\ \, \text{tropical coordinates} \,\, t_j^{\, \rho} = (-m_j \log r_j^{\, \rho})^{-1}; \,\, t = (-\log |f|)^{-1} = (\sum_i (t_j^{\, \rho})^{-1})^{-1}.$
 - $u_i^{\rho} = \eta(t \cdot (t_i^{\rho})^{-1})$
 - Fix a partition of unity: $\tau^p \colon X \to [0,1], \ \tau^p = 0 \ \text{on} \ X \setminus U^p, \ \sum_p \tau^p = 1$
 - Define $u_j = \sum_p \tau^p u_i^p$ relative speed of convergence to D_j
- \leadsto smooth map $\mu = (u_1, \dots, u_N) \colon X \setminus D \to \mathbb{R}^N$
 - Put $\Gamma = \overline{\operatorname{graph}(\mu)} \subseteq X \times \mathbb{R}^N$

- Fix an atlas $\{(z_1^p,\ldots,z_n^p)\colon U^p\to\mathbb{D}^n\}_p$, $f|_{U^p}=(z_1^p)^{m_1}\cdot\ldots\cdot(z_k)^{m_k}$
 - $z_i^p = r_i^p \cdot \theta_i^p$ coordinates in X_{log}
 - tropical coordinates $t_j^p = (-m_j \log r_j^p)^{-1}$; $t = (-\log |f|)^{-1} = (\sum_i (t_i^p)^{-1})^{-1}$.
 - $u_i^{\rho} = \eta(t \cdot (t_i^{\rho})^{-1})$
 - Fix a partition of unity: $\tau^p \colon X \to [0,1], \ \tau^p = 0 \ \text{on} \ X \setminus U^p, \ \sum_{n} \tau^p = 1$
 - Define $u_i = \sum_{p} \tau^p u_i^p$ relative speed of convergence to D_i
- \leadsto smooth map $\mu = (u_1, \ldots, u_N) \colon X \setminus D \to \mathbb{R}^N$
- Put $\Gamma = \overline{\operatorname{graph}(\mu)} \subseteq X \times \mathbb{R}^N$
- A'Campo space $A := X_{log} \times_X \Gamma$, $\partial A = \pi^{-1}(D)$.

$$\begin{array}{ccc}
A & \xrightarrow{f_{AC}} & \mathbb{C}_{lo_{l}} \\
\downarrow^{\pi} & & \downarrow^{\tau} \\
X & \xrightarrow{f} & \mathbb{C}
\end{array}$$

$$\begin{array}{ccccc}
A & \longrightarrow & \Gamma & \longleftarrow & X \times \mathbb{R}^{N} & & & & & & & & \\
\downarrow & & \downarrow & & & & \downarrow & & & \downarrow \\
\downarrow & & & \downarrow & & & \downarrow & & \downarrow \\
X_{\log} & \xrightarrow{\tau} & X & \xrightarrow{-\mu} & & & \downarrow \mathbb{R}^{N} & & & & X & \xrightarrow{f} & \mathbb{C}
\end{array}$$

■ **Recall:** locally, on U^p : $D_j = \{t_j^p = 0\}, u_j^p = \eta(t \cdot (t_j^p)^{-1})$

$$\begin{array}{ccccc}
A & \longrightarrow & \Gamma & \longleftarrow & X \times \mathbb{R}^{N} & & & A & \xrightarrow{f_{AC}} & \mathbb{C}_{lo_{i}} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
X_{log} & \xrightarrow{\tau} & X & \xrightarrow{f_{u_{1}, \dots, u_{N}}} & \mathbb{R}^{N} & & & X & \xrightarrow{f} & \mathbb{C}
\end{array}$$

- **Recall:** locally, on U^p : $D_j = \{t_j^p = 0\}, u_j^p = \eta(t \cdot (t_j^p)^{-1})$
 - $lacksymbol{u}_i^p
 ightarrow 0$ (resp. 1) if we approach D_j slower (resp. faster) than all $D_i,\ i
 eq j$

$$\begin{array}{ccccc}
A & \longrightarrow & \Gamma & \longleftarrow & X \times \mathbb{R}^{N} & & & & & & A & \xrightarrow{f_{AC}} & \mathbb{C}_{loi} \\
\downarrow & & & & \downarrow & & & \downarrow & & & \downarrow \\
X_{log} & \xrightarrow{\tau} & X & \xrightarrow{\tau}_{(\tau_{1}, \dots, \tau_{N})} & \mathbb{R}^{N} & & & & X & \xrightarrow{f} & \mathbb{C}
\end{array}$$

- **Recall:** locally, on U^p : $D_j = \{t_j^p = 0\}, u_j^p = \eta(t \cdot (t_j^p)^{-1})$
 - $lacksquare u_i^p o 0$ (resp. 1) if we approach D_j slower (resp. faster) than all $D_i,\ i
 eq j$
 - $\mu(\partial A)$ is the dual complex of D

$$\begin{array}{ccccc}
A & \longrightarrow & \Gamma & \longleftarrow & X \times \mathbb{R}^{N} & & & A & \xrightarrow{f_{AC}} & \mathbb{C}_{loi} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
X_{log} & \xrightarrow{\tau} & X & \xrightarrow{f_{aC}} & \mathbb{R}^{N} & & & X & \xrightarrow{f} & \mathbb{C}
\end{array}$$

- **Recall:** locally, on U^p : $D_j = \{t_j^p = 0\}$, $u_j^p = \eta(t \cdot (t_j^p)^{-1})$
 - $lacksquare u_i^p
 ightarrow 0$ (resp. 1) if we approach D_j slower (resp. faster) than all $D_i, \ i
 eq j$
 - $\mu(\partial A)$ is the dual complex of D
- $v_j^p = t_j^p u_j^p$

- **Recall:** locally, on U^p : $D_j = \{t_i^p = 0\}, u_i^p = \eta(t \cdot (t_i^p)^{-1})$
 - $lacksquare u_i^p
 ightarrow 0$ (resp. 1) if we approach D_j slower (resp. faster) than all $D_i, i
 eq j$
 - $\mu(\partial A)$ is the dual complex of D
- $\mathbf{v}_{i}^{p} = t_{i}^{p} u_{i}^{p}$
- Put $U_i^p = \pi^{-1}(U^p) \cap \{t \cdot (t_i^p)^{-1} > \frac{1}{n+1}\}$ covering of $\pi^{-1}(U^p)$

- **Recall:** locally, on U^p : $D_j = \{t_i^p = 0\}, u_i^p = \eta(t \cdot (t_i^p)^{-1})$
 - $lacksymbol{u}_i^p
 ightarrow 0$ (resp. 1) if we approach D_j slower (resp. faster) than all $D_i,\ i
 eq j$
 - $\mu(\partial A)$ is the dual complex of D
- $\mathbf{v}_{i}^{p} = t_{i}^{p} u_{i}^{p}$
- Put $U_i^p = \pi^{-1}(U^p) \cap \{t \cdot (t_i^p)^{-1} > \frac{1}{n+1}\}$ covering of $\pi^{-1}(U^p)$
- Smooth chart on U_1^p : $(\eta(t), v_2^p, \dots, v_k^p; \theta_1^p, \dots, \theta_k^p; z_{k+1}^p, \dots, z_n^p)$

- **Recall:** locally, on U^p : $D_j = \{t_i^p = 0\}, u_i^p = \eta(t \cdot (t_i^p)^{-1})$
 - $u_i^p \to 0$ (resp. 1) if we approach D_i slower (resp. faster) than all D_i , $i \neq j$
 - $\mu(\partial A)$ is the dual complex of D
- $\mathbf{v}_{i}^{p} = t_{i}^{p} u_{i}^{p}$
- Put $U_i^p = \pi^{-1}(U^p) \cap \{t \cdot (t_i^p)^{-1} > \frac{1}{p+1}\}$ covering of $\pi^{-1}(U^p)$
- Smooth chart on U_1^p : $(\eta(t), v_2^p, \dots, v_k^p; \theta_1^p, \dots, \theta_k^p; z_{k+1}^p, \dots, z_n^p)$
 - \bullet $\partial A = f_{\Lambda C}^{-1}(\partial \mathbb{C}_{log}) = \{\eta(t) = 0\}, \text{ so } \eta(t) \colon A \to \mathbb{C}_{log} \to [0, \infty) \colon \text{submersion}$

$$\begin{array}{ccccc}
A & \longrightarrow & \Gamma & \longrightarrow & X \times \mathbb{R}^{N} & & & A & \xrightarrow{f_{AC}} & \mathbb{C}_{log} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
X_{log} & \xrightarrow{\tau} & X & \xrightarrow{r_{-} - \mu} & & \mathbb{R}^{N} & & & X & \xrightarrow{f} & \mathbb{C}
\end{array}$$

- **Recall:** locally, on U^p : $D_j = \{t_i^p = 0\}$, $u_i^p = \eta(t \cdot (t_i^p)^{-1})$
 - $lacksquare u_i^p o 0$ (resp. 1) if we approach D_j slower (resp. faster) than all D_i , i
 eq j
 - $\mu(\partial A)$ is the dual complex of D
- $\mathbf{v}_{i}^{p} = t_{i}^{p} u_{i}^{p}$
- Put $U_i^p = \pi^{-1}(U^p) \cap \{t \cdot (t_i^p)^{-1} > \frac{1}{p+1}\}$ covering of $\pi^{-1}(U^p)$
- Smooth chart on U_1^p : $(\eta(t), v_2^p, \dots, v_k^p; \theta_1^p, \dots, \theta_k^p; z_{k+1}^p, \dots, z_n^p)$

 - $A_i^\circ = \pi^{-1}(X_i^\circ), (\pi,\mu) \colon A_i^\circ \to X_i^\circ \times \Delta_I (\mathbb{S}^1)^{\#I}$ -bundle

$$\begin{array}{ccccc}
A & \longrightarrow & \Gamma & \longrightarrow & X \times \mathbb{R}^{N} & & & A & \xrightarrow{f_{AC}} & \mathbb{C}_{\log} \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
X_{\log} & \xrightarrow{\tau} & X & \xrightarrow{I_{-1} \dots I_{N}} & \mathbb{R}^{N} & & & X & \xrightarrow{f} & \mathbb{C}
\end{array}$$

- **Recall:** locally, on U^p : $D_j = \{t_i^p = 0\}, u_i^p = \eta(t \cdot (t_i^p)^{-1})$
 - $ullet u_i^p
 ightarrow 0$ (resp. 1) if we approach D_i slower (resp. faster) than all D_i , i
 eq j
- $\mu(\partial A)$ is the dual complex of D
- $\mathbf{v}_{i}^{p} = t_{i}^{p} u_{i}^{p}$
- Put $U_i^p = \pi^{-1}(U^p) \cap \{t \cdot (t_i^p)^{-1} > \frac{1}{p+1}\}$ covering of $\pi^{-1}(U^p)$
- Smooth chart on U_1^p : $(\eta(t), v_2^p, \dots, v_k^p; \theta_1^p, \dots, \theta_k^p; z_{k+1}^p, \dots, z_n^p)$
 - \bullet $\partial A = f_{\Lambda C}^{-1}(\partial \mathbb{C}_{log}) = \{\eta(t) = 0\}, \text{ so } \eta(t) \colon A \to \mathbb{C}_{log} \to [0, \infty) \colon \text{ submersion } f(t) \in A \to \mathbb{C}_{log} \to [0, \infty) \colon f(t) \in A \to \mathbb{C}_{log} \to [0, \infty) \colon f(t) \to [0, \infty) \colon f(t) \to [0, \infty) \colon f(t) \to [0, \infty) \to [0, \infty) \colon f(t) \to [0, \infty) \to [0, \infty)$
 - $lacksquare A_I^\circ = \pi^{-1}(X_I^\circ), \ (\pi,\mu) \colon A_I^\circ \to X_I^\circ \times \Delta_I (\mathbb{S}^1)^{\#I}$ -bundle

lacksquare We have defined *radial coordinates* v_j^p . Put $v_j = \sum_p au^p v_j^p$.

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- The angular coordinates θ_i^p come from X_{log} .

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- The angular coordinates θ_j^p come from X_{log} . Put $\alpha_j = \sum_p \tau^p d\theta_j^p$

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- The angular coordinates θ_j^p come from X_{log} . Put $\alpha_j = \sum_p \tau^p d\theta_j^p$
 - $\quad \quad \alpha_j \in \Omega^1_X(\log D_j), \text{ so } \alpha_j = \Omega^1(X_{\log}) \hookrightarrow \Omega^1(A)$

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- lacksquare The angular coordinates $heta_j^{p}$ come from X_{\log} . Put $lpha_j = \sum_p au^p d heta_j^{p}$
 - $\alpha_j \in \Omega^1_X(\log D_j), \text{ so } \alpha_j = \Omega^1(X_{\log}) \hookrightarrow \Omega^1(A)$
- Fix a Liouville form $\lambda_X \in \Omega^1(X)$, $\omega_X = d\lambda_X$
 - In our case: $h: X \to \mathbb{C}^n$ resolution, $\lambda_X = h^* \lambda_{\mathsf{std}} \varepsilon d^c \log ||s||, 1 \gg \varepsilon > 0$,
 - $s \in H^0(\mathcal{O}_X(-\sum_j w_j D_j))$ with pole of order w_j along D_j .

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- The angular coordinates θ_j^p come from X_{log} . Put $\alpha_j = \sum_p \tau^p d\theta_j^p$
 - $\alpha_j \in \Omega^1_X(\log D_j), \text{ so } \alpha_j = \Omega^1(X_{\log}) \hookrightarrow \Omega^1(A)$
- Fix a Liouville form $\lambda_X \in \Omega^1(X)$, $\omega_X = d\lambda_X$
 - In our case: $h: X \to \mathbb{C}^n$ resolution, $\lambda_X = h^* \lambda_{\mathsf{std}} \varepsilon d^c \log ||s||, 1 \gg \varepsilon > 0$,
 - $s \in H^0(\mathcal{O}_X(-\sum_j w_j D_j))$ with pole of order w_j along D_j .
- Define $\lambda_{AC} = \pi^* \lambda_X + \varepsilon \sum_j v_j d\alpha_j$, $\omega_{AC} = d\lambda_{AC}$.

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- lacksquare The angular coordinates $heta_j^p$ come from X_{\log} . Put $lpha_j = \sum_p au^p d heta_j^p$
 - $\alpha_j \in \Omega^1_X(\log D_j), \text{ so } \alpha_j = \Omega^1(X_{\log}) \hookrightarrow \Omega^1(A)$
- Fix a Liouville form $\lambda_X \in \Omega^1(X)$, $\omega_X = d\lambda_X$
 - In our case: $h: X \to \mathbb{C}^n$ resolution, $\lambda_X = h^* \lambda_{\mathsf{std}} \varepsilon d^c \log ||s||$, $1 \gg \varepsilon > 0$,
 - $s \in H^0(\mathcal{O}_X(-\sum_j w_j D_j))$ with pole of order w_j along D_j .
- Define $\lambda_{AC} = \pi^* \lambda_X + \varepsilon \sum_i v_i d\alpha_i$, $\omega_{AC} = d\lambda_{AC}$.

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- lacksquare The angular coordinates $heta_j^{
 ho}$ come from X_{\log} . Put $lpha_j=\sum_{
 ho} au^{
 ho}d heta_j^{
 ho}$
 - $\alpha_j \in \Omega^1_X(\log D_j), \text{ so } \alpha_j = \Omega^1(X_{\log}) \hookrightarrow \Omega^1(A)$
- Fix a Liouville form $\lambda_X \in \Omega^1(X)$, $\omega_X = d\lambda_X$
 - In our case: $h: X \to \mathbb{C}^n$ resolution, $\lambda_X = h^* \lambda_{\mathrm{std}} \varepsilon d^c \log ||s||$, $1 \gg \varepsilon > 0$,
 - $ullet s \in H^0(\mathcal{O}_X(-\sum_j w_j D_j))$ with pole of order w_j along D_j .
- Define $\lambda_{AC} = \pi^* \lambda_X + \varepsilon \sum_i v_j d\alpha_j$, $\omega_{AC} = d\lambda_{AC}$.

lacksquare $\omega_{\mathsf{AC}} = \pi^* \omega_{\mathsf{X}} + arepsilon \sum au^p dv_j^p \wedge d heta_j^p + arepsilon [\mathsf{terms} \ \mathsf{bounded} \ \mathsf{in} \ \mathsf{X}]$

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- lacksquare The angular coordinates $heta_j^p$ come from X_{\log} . Put $lpha_j = \sum_p au^p d heta_j^p$
 - $\alpha_j \in \Omega^1_X(\log D_j), \text{ so } \alpha_j = \Omega^1(X_{\log}) \hookrightarrow \Omega^1(A)$
- Fix a Liouville form $\lambda_X \in \Omega^1(X)$, $\omega_X = d\lambda_X$
 - In our case: $h: X \to \mathbb{C}^n$ resolution, $\lambda_X = h^* \lambda_{\mathsf{std}} \varepsilon d^c \log ||s||$, $1 \gg \varepsilon > 0$,
 - $s \in H^0(\mathcal{O}_X(-\sum_j w_j D_j))$ with pole of order w_j along D_j .
- Define $\lambda_{AC} = \pi^* \lambda_X + \varepsilon \sum_i v_i d\alpha_i$, $\omega_{AC} = d\lambda_{AC}$.

- $\omega_{AC} = \pi^* \omega_X + \varepsilon \sum \tau^p dv_i^p \wedge d\theta_i^p + \varepsilon$ [terms bounded in X]
- $dv_j^p \wedge d\theta_j^p$ amplifies the standard area form near D_j .

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- The angular coordinates θ_j^p come from X_{\log} . Put $\alpha_j = \sum_p \tau^p d\theta_j^p$
 - $\alpha_j \in \Omega^1_X(\log D_j), \text{ so } \alpha_j = \Omega^1(X_{\log}) \hookrightarrow \Omega^1(A)$
- Fix a Liouville form $\lambda_X \in \Omega^1(X)$, $\omega_X = d\lambda_X$
 - In our case: $h: X \to \mathbb{C}^n$ resolution, $\lambda_X = h^* \lambda_{\mathsf{std}} \varepsilon d^c \log ||s||$, $1 \gg \varepsilon > 0$,
 - $ullet s \in H^0(\mathcal{O}_X(-\sum_j w_j D_j))$ with pole of order w_j along D_j .
- Define $\lambda_{AC} = \pi^* \lambda_X + \varepsilon \sum_i v_j d\alpha_j$, $\omega_{AC} = d\lambda_{AC}$.

- $\omega_{AC} = \pi^* \omega_X + \varepsilon \sum \tau^p dv_i^p \wedge d\theta_i^p + \varepsilon$ [terms bounded in X]
- $dv_i^p \wedge d\theta_i^p$ amplifies the standard area form near D_j .
 - Area of a normal disk to D_i w.r.t. $r_i dr_i \wedge d\theta_i$ decreases quadratically

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- lacksquare The angular coordinates $heta_j^p$ come from X_{\log} . Put $lpha_j = \sum_p au^p d heta_j^p$
 - $\alpha_j \in \Omega^1_X(\log D_j), \text{ so } \alpha_j = \Omega^1(X_{\log}) \hookrightarrow \Omega^1(A)$
- Fix a Liouville form $\lambda_X \in \Omega^1(X)$, $\omega_X = d\lambda_X$
 - In our case: $h: X \to \mathbb{C}^n$ resolution, $\lambda_X = h^* \lambda_{\mathsf{std}} \varepsilon d^c \log ||s||, 1 \gg \varepsilon > 0$,
 - $s \in H^0(\mathcal{O}_X(-\sum_j w_j D_j))$ with pole of order w_j along D_j .
- Define $\lambda_{AC} = \pi^* \lambda_X + \varepsilon \sum_i v_j d\alpha_j$, $\omega_{AC} = d\lambda_{AC}$.

- $\omega_{AC} = \pi^* \omega_X + \varepsilon \sum \tau^p dv_i^p \wedge d\theta_i^p + \varepsilon [\text{terms bounded in } X]$
- $dv_i^p \wedge d\theta_i^p$ amplifies the standard area form near D_j .
 - Area of a normal disk to D_i w.r.t. $r_i dr_i \wedge d\theta_i$ decreases quadratically
 - Now, this disk is an annulus, so it should decrease linearly.

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- The angular coordinates θ_j^p come from X_{\log} . Put $\alpha_j = \sum_p \tau^p d\theta_j^p$
 - $\alpha_j \in \Omega^1_X(\log D_j), \text{ so } \alpha_j = \Omega^1(X_{\log}) \hookrightarrow \Omega^1(A)$
- Fix a Liouville form $\lambda_X \in \Omega^1(X)$, $\omega_X = d\lambda_X$
 - In our case: $h: X \to \mathbb{C}^n$ resolution, $\lambda_X = h^* \lambda_{\mathsf{std}} \varepsilon d^c \log ||s||$, $1 \gg \varepsilon > 0$,
 - $s \in H^0(\mathcal{O}_X(-\sum_i w_j D_j))$ with pole of order w_j along D_j .
- Define $\lambda_{AC} = \pi^* \lambda_X + \varepsilon \sum_i v_i d\alpha_i$, $\omega_{AC} = d\lambda_{AC}$.

- $\omega_{AC} = \pi^* \omega_X + \varepsilon \sum \tau^p dv_i^p \wedge d\theta_i^p + \varepsilon [\text{terms bounded in } X]$
- $dv_i^p \wedge d\theta_i^p$ amplifies the standard area form near D_j .
 - Area of a normal disk to D_i w.r.t. $r_i dr_i \wedge d\theta_i$ decreases quadratically
 - Now, this disk is an annulus, so it should decrease linearly.

Lemma 2: On ∂A , the form ω_{AC} is nondegenerate.

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- The angular coordinates θ_j^p come from X_{log} . Put $\alpha_j = \sum_p \tau^p d\theta_j^p$
 - $lpha_j \in \Omega^1_X(\log D_j)$, so $lpha_j = \Omega^1(X_{\log}) \hookrightarrow \Omega^1(A)$
- Fix a Liouville form $\lambda_X \in \Omega^1(X)$, $\omega_X = d\lambda_X$
 - In our case: $h: X \to \mathbb{C}^n$ resolution, $\lambda_X = h^* \lambda_{\mathsf{std}} \varepsilon d^c \log ||s||$, $1 \gg \varepsilon > 0$,
 - $s \in H^0(\mathcal{O}_X(-\sum_j w_j D_j))$ with pole of order w_j along D_j .
- Define $\lambda_{AC} = \pi^* \lambda_X + \varepsilon \sum_i v_i d\alpha_i$, $\omega_{AC} = d\lambda_{AC}$.

- $\omega_{AC} = \pi^* \omega_X + \varepsilon \sum \tau^p dv_i^p \wedge d\theta_i^p + \varepsilon$ [terms bounded in X]
- $dv_i^p \wedge d\theta_i^p$ amplifies the standard area form near D_j .
 - Area of a normal disk to D_i w.r.t. $r_i dr_i \wedge d\theta_i$ decreases quadratically
 - Now, this disk is an annulus, so it should decrease linearly.

Lemma 2: On ∂A , the form ω_{AC} is nondegenerate.

Recall: $(\eta(t), \theta) \colon A \to \mathbb{C}_{log}$ - submersion; with the same level sets as f.

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- The angular coordinates θ_j^p come from X_{log} . Put $\alpha_j = \sum_p \tau^p d\theta_j^p$
 - $\alpha_j \in \Omega^1_X(\log D_j), \text{ so } \alpha_j = \Omega^1(X_{\log}) \hookrightarrow \Omega^1(A)$
- Fix a Liouville form $\lambda_X \in \Omega^1(X)$, $\omega_X = d\lambda_X$
 - In our case: $h: X \to \mathbb{C}^n$ resolution, $\lambda_X = h^* \lambda_{\text{std}} \varepsilon d^c \log ||s||$, $1 \gg \varepsilon > 0$,
 - $s \in H^0(\mathcal{O}_X(-\sum_j w_j D_j))$ with pole of order w_j along D_j .
- Define $\lambda_{AC} = \pi^* \lambda_X + \varepsilon \sum_i v_i d\alpha_i$, $\omega_{AC} = d\lambda_{AC}$.

- $\omega_{AC} = \pi^* \omega_X + \varepsilon \sum_i \tau^p dv_i^p \wedge d\theta_i^p + \varepsilon [\text{terms bounded in } X]$
- $dv_i^p \wedge d\theta_i^p$ amplifies the standard area form near D_j .
 - Area of a normal disk to D_i w.r.t. $r_i dr_i \wedge d\theta_i$ decreases quadratically
 - Now, this disk is an annulus, so it should decrease linearly.

Lemma 2: On ∂A , the form ω_{AC} is nondegenerate.

Recall: $(\eta(t), \theta)$: $A \to \mathbb{C}_{log}$ - submersion; with the same level sets as f.

■ Symplectic lift of $\frac{\partial}{\partial r} \rightsquigarrow$ isotopy from radius δ to radius zero

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- The angular coordinates θ_j^p come from X_{log} . Put $\alpha_j = \sum_p \tau^p d\theta_j^p$
 - $\alpha_j \in \Omega^1_X(\log D_j), \text{ so } \alpha_j = \Omega^1(X_{\log}) \hookrightarrow \Omega^1(A)$
- Fix a Liouville form $\lambda_X \in \Omega^1(X)$, $\omega_X = d\lambda_X$
 - In our case: $h: X \to \mathbb{C}^n$ resolution, $\lambda_X = h^* \lambda_{\mathsf{std}} \varepsilon d^c \log ||s||, 1 \gg \varepsilon > 0$,
 - $s \in H^0(\mathcal{O}_X(-\sum_j w_j D_j))$ with pole of order w_j along D_j .
- Define $\lambda_{AC} = \pi^* \lambda_X + \varepsilon \sum_i v_i d\alpha_i$, $\omega_{AC} = d\lambda_{AC}$.

- $\omega_{AC} = \pi^* \omega_X + \varepsilon \sum_i \tau^p dv_i^p \wedge d\theta_i^p + \varepsilon [\text{terms bounded in } X]$
- $dv_i^p \wedge d\theta_i^p$ amplifies the standard area form near D_j .
 - Area of a normal disk to D_i w.r.t. $r_i dr_i \wedge d\theta_i$ decreases quadratically
 - Now, this disk is an annulus, so it should decrease linearly.

Lemma 2: On ∂A , the form ω_{AC} is nondegenerate.

Recall: $(\eta(t), \theta)$: $A \to \mathbb{C}_{log}$ - submersion; with the same level sets as f.

- Symplectic lift of $\frac{\partial}{\partial r} \leadsto$ isotopy from radius δ to radius zero
- Symplectic lift of $\frac{\partial}{\partial \theta} \leadsto$ monodromy ϕ at radius zero.

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- The angular coordinates θ_j^p come from X_{log} . Put $\alpha_j = \sum_p \tau^p d\theta_j^p$
 - $\alpha_j \in \Omega^1_X(\log D_j), \text{ so } \alpha_j = \Omega^1(X_{\log}) \hookrightarrow \Omega^1(A)$
- Fix a Liouville form $\lambda_X \in \Omega^1(X)$, $\omega_X = d\lambda_X$
 - In our case: $h: X \to \mathbb{C}^n$ resolution, $\lambda_X = h^* \lambda_{\mathsf{std}} \varepsilon d^c \log ||s||$, $1 \gg \varepsilon > 0$,
 - $s \in H^0(\mathcal{O}_X(-\sum_j w_j D_j))$ with pole of order w_j along D_j .
- Define $\lambda_{AC} = \pi^* \lambda_X + \varepsilon \sum_i v_i d\alpha_i$, $\omega_{AC} = d\lambda_{AC}$.

- $\omega_{AC} = \pi^* \omega_X + \varepsilon \sum_i \tau^p dv_i^p \wedge d\theta_i^p + \varepsilon [\text{terms bounded in } X]$
- $dv_i^p \wedge d\theta_i^p$ amplifies the standard area form near D_j .
 - Area of a normal disk to D_i w.r.t. $r_i dr_i \wedge d\theta_i$ decreases quadratically
 - Now, this disk is an annulus, so it should decrease linearly.

Lemma 2: On ∂A , the form ω_{AC} is nondegenerate.

Recall: $(\eta(t), \theta)$: $A \to \mathbb{C}_{log}$ - submersion; with the same level sets as f.

- \blacksquare Symplectic lift of $\frac{\partial}{\partial r} \leadsto$ isotopy from radius δ to radius zero
- Symplectic lift of $\frac{\partial}{\partial \theta} \rightsquigarrow$ monodromy ϕ at radius zero.
 - lacksquare On A_j° we have $\omega_{\sf AC}=d{\it v}_j\wedge lpha_j$, so $\phi|_{A_j^\circ}$ is a rotation about $rac{2\pi}{m_j}$

- We have defined radial coordinates v_j^p . Put $v_j = \sum_p \tau^p v_j^p$.
- The angular coordinates θ_j^p come from X_{log} . Put $\alpha_j = \sum_p \tau^p d\theta_j^p$
 - $\alpha_j \in \Omega^1_X(\log D_j), \text{ so } \alpha_j = \Omega^1(X_{\log}) \hookrightarrow \Omega^1(A)$
- Fix a Liouville form $\lambda_X \in \Omega^1(X)$, $\omega_X = d\lambda_X$
 - In our case: $h: X \to \mathbb{C}^n$ resolution, $\lambda_X = h^* \lambda_{\text{std}} \varepsilon d^c \log ||s||$, $1 \gg \varepsilon > 0$,
 - $s \in H^0(\mathcal{O}_X(-\sum_j w_j D_j))$ with pole of order w_j along D_j .
- Define $\lambda_{AC} = \pi^* \lambda_X + \varepsilon \sum_i v_i d\alpha_i$, $\omega_{AC} = d\lambda_{AC}$.

- $\omega_{AC} = \pi^* \omega_X + \varepsilon \sum_i \tau^p dv_i^p \wedge d\theta_i^p + \varepsilon$ [terms bounded in X]
- $dv_i^p \wedge d\theta_i^p$ amplifies the standard area form near D_i .
 - Area of a normal disk to D_i w.r.t. $r_i dr_i \wedge d\theta_i$ decreases quadratically
 - Now, this disk is an annulus, so it should decrease linearly.

Lemma 2: On ∂A , the form ω_{AC} is nondegenerate.

Recall: $(\eta(t), \theta)$: $A \to \mathbb{C}_{log}$ - submersion; with the same level sets as f.

- Symplectic lift of $\frac{\partial}{\partial r} \leadsto$ isotopy from radius δ to radius zero
- Symplectic lift of $\frac{\partial}{\partial \theta} \rightsquigarrow$ monodromy ϕ at radius zero.
 - lacksquare On A_j° we have $\omega_{\mathsf{AC}} = \mathit{dv}_j \wedge \alpha_j$, so $\phi|_{A_j^\circ}$ is a rotation about $\frac{2\pi}{m_j}$
 - *m*-separatedness: ϕ^m has no fixed points on A_I° , $\#I \geqslant 2$.

Example: $f = z_1^2 z_2 : \mathbb{C}^2 \to \mathbb{C}$.

Thank you!