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m 0 € f71(0) isolated hypersurface singularity:
m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.
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m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.

= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.
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m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.

= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.

m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that ®({f =0}) = {g = 0}.
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m 0 € f71(0) isolated hypersurface singularity:

m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.

= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.

m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that &({f =0}) = {g = 0}.

Zariski multiplicity conjecture ('71) - OPEN

If f,g: (C",0) — (C,0) are topologically equivalent then vs = v,.
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m 0 € f71(0) isolated hypersurface singularity:
m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.

= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.

m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that ®({f =0}) = {g = 0}.

Zariski multiplicity conjecture ('71) - OPEN
If f,g: (C",0) — (C,0) are topologically equivalent then vs = v,.

Known in particular cases:
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m 0 € f71(0) isolated hypersurface singularity:
m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.

= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.

m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that &({f =0}) = {g = 0}.

Zariski multiplicity conjecture ('71) - OPEN

If f,g: (C",0) — (C,0) are topologically equivalent then vs = v,.

Known in particular cases:

m vr =1 [A’Campo '73]
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m 0 € f71(0) isolated hypersurface singularity:
m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.

= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.

m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that &({f =0}) = {g = 0}.

Zariski multiplicity conjecture ('71) - OPEN

If f,g: (C",0) — (C,0) are topologically equivalent then vs = v,.

Known in particular cases:

m vr =1 [A’Campo '73]
m h - log resolution, Exch = Zj E;, m; - multiplicity of E; in (ho f)*(0), mj > vf
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m 0 € f71(0) isolated hypersurface singularity:
m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.

= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.

m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that &({f =0}) = {g = 0}.

Zariski multiplicity conjecture ('71) - OPEN

If f,g: (C",0) — (C,0) are topologically equivalent then vs = v,.

Known in particular cases:

m vr =1 [A’Campo '73]

m h - log resolution, Exch = Zj E;, m; - multiplicity of E; in (ho f)*(0), mj > vf
m F = f~1(8) N B - Milnor fiber, ¢: F~1(5) — f~1(J) - monodromy
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m 0 € f71(0) isolated hypersurface singularity:
m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.

= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.

m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that &({f =0}) = {g = 0}.

Zariski multiplicity conjecture ('71) - OPEN

If f,g: (C",0) — (C,0) are topologically equivalent then vs = v,.

Known in particular cases:

m vr =1 [A’Campo '73]
m h - log resolution, Exch = Zj E;, m; - multiplicity of E; in (ho f)*(0), mj > vf

m F = f~1(6) NB. - Milnor fiber, ¢: F1(8) — f~1(5) - monodromy
# A(@T) =3 i Mi X(EY), where ES = E; \ (Exch — E;).
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m 0 € f71(0) isolated hypersurface singularity:
m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.

= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.

m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that ®({f =0}) = {g = 0}.

Zariski multiplicity conjecture ('71) - OPEN
If f,g: (C",0) — (C,0) are topologically equivalent then vs = v,.

Known in particular cases:
m vr =1 [A’Campo '73]
m h - log resolution, Exch = Zj E;, m; - multiplicity of E; in (ho f)*(0), mj > vf
m F = f~1(8) N B. - Milnor fiber, ¢: F~1(5) — f~1(J) - monodromy
n A(p™) = me‘m mj - xX(E?), where E? = E; \ (Exch — E;).
m If m < vr then the sum is empty, so A(¢™) = 0.
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m 0 € f71(0) isolated hypersurface singularity:
m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.

= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.

m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that ®({f =0}) = {g = 0}.

Zariski multiplicity conjecture ('71) - OPEN
If f,g: (C",0) — (C,0) are topologically equivalent then vs = v,.

Known in particular cases:
m vr =1 [A’Campo '73]
m h - log resolution, Exch = Zj E;, m; - multiplicity of E; in (ho f)*(0), mj > vf
m F = f~1(8) N B. - Milnor fiber, ¢: F~1(5) — f~1(J) - monodromy
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m If m < vr then the sum is empty, so A(¢™) = 0.
m If vr =1 then A(¢) = A(id) = 1.
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m 0 € f71(0) isolated hypersurface singularity:
m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.
= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.
m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that ®({f = 0}) = {g = 0}.

Zariski multiplicity conjecture ('71) - OPEN
If f,g: (C",0) — (C,0) are topologically equivalent then vs = v,.

Known in particular cases:
m vr =1 [A’Campo '73]
m h - log resolution, Exch = Zj E;, m; - multiplicity of E; in (ho f)*(0), mj > vf
m F = f~1(8) N B. - Milnor fiber, ¢: F~1(5) — f~1(J) - monodromy
n A(p™) = Zm,‘m mj - xX(E?), where E? = E; \ (Exch — E;).
m If m < vr then the sum is empty, so A(¢™) = 0.
m If vr =1 then A(¢) = A(id) = 1.
m Dream: A(¢¥7) # 0.
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m 0 € f71(0) isolated hypersurface singularity:
m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.
= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.
m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that ®({f = 0}) = {g = 0}.

Zariski multiplicity conjecture ('71) - OPEN
If f,g: (C",0) — (C,0) are topologically equivalent then vs = v,.

Known in particular cases:
m vr =1 [A’Campo '73]
m h - log resolution, Exch = Zj E;, m; - multiplicity of E; in (ho f)*(0), mj > vf
m F = f~1(8) N B. - Milnor fiber, ¢: F~1(5) — f~1(J) - monodromy
n A(p™) = Zm,‘m mj - xX(E?), where E? = E; \ (Exch — E;).
m If m < vr then the sum is empty, so A(¢™) = 0.
m If vr =1 then A(¢) = A(id) = 1.
m Dream: A(¢”7) # 0.
m False: f =22+ .-+ 22, A(¢?) = A(id) = 0 if 2|n.
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m 0 € f71(0) isolated hypersurface singularity:
m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.

= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.

m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that &({f =0}) = {g = 0}.

Zariski multiplicity conjecture ('71) - OPEN

If f,g: (C",0) — (C,0) are topologically equivalent then vs = v,.

Known in particular cases:

m vr =1 [A’Campo '73]

m & is C* [Ephraim '76]
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m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
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m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.

= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.

m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that &({f =0}) = {g = 0}.
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m vr =1 [A’Campo '73]

m & is C* [Ephraim '76]

mf=WVogod for d, ¥ - bilipschitz [Risler—Trotman '97]
m n =2 [Zariski '32]

m n =3, vr = 2 [Navarro-Aznar '80]
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m 0 € f71(0) isolated hypersurface singularity:
m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.

= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.

m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that &({f =0}) = {g = 0}.

Zariski multiplicity conjecture ('71) - OPEN

If f,g: (C",0) — (C,0) are topologically equivalent then vs = v,.

Known in particular cases:

m vr =1 [A’Campo '73]

m & is C* [Ephraim '76]

mf=WVogod for d, ¥ - bilipschitz [Risler—Trotman '97]

= n =2 [Zariski '32]

m n =3, vr = 2 [Navarro-Aznar '80]

m n =3, f - quasi-homogeneous [Xu—Yau '89]

n=3, f(x,y,z) = p(x,y) + zX [Mendras—Némethi '05]
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m 0 € f71(0) isolated hypersurface singularity:
m f: (C",0) — (C,0) holomorphic germ; f € C[z, ..., z,]
m 0 € C" isolated critical point of f; Sing f~1(0) = {0}, f~1(d) - smooth for § # 0.

= Multiplicity: vr = min; deg fj, where f =3 f;, f; - homogeneous.

m f, g are topologically equivalent (f ~p g) if 3 germ of a homeomorphism
®: (C",0) — (C",0) such that &({f =0}) = {g = 0}.

Zariski multiplicity conjecture ('71) - OPEN

If f,g: (C",0) — (C,0) are topologically equivalent then vs = v,.

Known in particular cases:

m vr =1 [A’Campo '73]

m & is C* [Ephraim '76]

mf=WVogod for d, ¥ - bilipschitz [Risler—Trotman '97]

= n =2 [Zariski '32]

m n =3, vr = 2 [Navarro-Aznar '80]

m n =3, f - quasi-homogeneous [Xu—Yau '89]

m n=3, f(x,y,z) = p(x,y) + z" [Mendras—-Némethi '05]

mn>3 pu<2"—1,0orn=3and u<26; or n=3, p; <3 [Yau-Zhuo '18§]
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m Continuous (or holomorphic) family of isolated hypersurface singularities:
m f; € Czi,...,z,] isolated hypersurface singularity, f; = ZL a/(t)z*,
m each a,: [0,1] — C is continuous (or: a,: D — C is holomorphic)
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m Continuous (or holomorphic) family of isolated hypersurface singularities:
m f; € Czi,...,z,] isolated hypersurface singularity, f; = ZL a/(t)z*,
m each a,: [0,1] — C is continuous (or: a,: D — C is holomorphic)

m A family is equimultiple if Vt : v, = vg; topologically trivial if Vt : fo ~iop fe.
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m Continuous (or holomorphic) family of isolated hypersurface singularities:

m f; € Czi,...,z,] isolated hypersurface singularity, f; = ZL a/(t)z*,
m each a,: [0,1] — C is continuous (or: a,: D — C is holomorphic)

m A family is equimultiple if Vt : v, = vg; topologically trivial if Vt : fo ~iop fe.
Zariski multiplicity conjecture for families ('71)

Every topologically trivial family is equimultiple.
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m Continuous (or holomorphic) family of isolated hypersurface singularities:

m f; € Czi,...,z,] isolated hypersurface singularity, f; = ZL a/(t)z*,
m each a,: [0,1] — C is continuous (or: a,: D — C is holomorphic)

m A family is equimultiple if Vt : v, = vg; topologically trivial if Vt : fo ~iop fe.
Zariski multiplicity conjecture for families ('71)
Every topologically trivial family is equimultiple.

It is convenient to generalize this question to u-constant families.
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m Continuous (or holomorphic) family of isolated hypersurface singularities:

m f; € Czi,...,z,] isolated hypersurface singularity, f; = ZL a/(t)z*,
m each a,: [0,1] — C is continuous (or: a,: D — C is holomorphic)

m A family is equimultiple if Vt : v, = vg; topologically trivial if Vt : fo ~iop fe.
Zariski multiplicity conjecture for families ('71)

Every topologically trivial family is equimultiple.

It is convenient to generalize this question to u-constant families.

m Milnor number p = dim¢ C[zl,...,znﬂ/(g—z’;, ce g;)
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m Continuous (or holomorphic) family of isolated hypersurface singularities:

m f; € Czi,...,z,] isolated hypersurface singularity, f; = ZL a/(t)z*,

m each a,: [0,1] — C is continuous (or: a,: D — C is holomorphic)
m A family is equimultiple if Vt : v, = vg; topologically trivial if Vt : fo ~iop f
Zariski multiplicity conjecture for families ('71)

Every topologically trivial family is equimultiple.

It is convenient to generalize this question to u-constant families.

m Milnor number = dimc¢ C[[z, . . z,,]]/((921 ey g;)

m Milnor radius € > 0 such that 36 > 0 Ve’ € (0,¢),6’ € D}, f

( )mgs/
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m Continuous (or holomorphic) family of isolated hypersurface singularities:
m f; € Czi,...,z,] isolated hypersurface singularity, f; = ZL a,(t)z
m each a,: [0,1] — C is continuous (or: a,: D — C is holomorphic)
m A family is equimultiple if Vt : v, = vg; topologically trivial if Vt : fo ~iop fe.

Zariski multiplicity conjecture for families ('71)
Every topologically trivial family is equimultiple.

It is convenient to generalize this question to u-constant families.
m Milnor number = dimc¢ C[[z, . . z,,]]/((921 ey g;)
m Milnor radius € > 0 such that 3§ > 0 Ve’ € (0,¢),8" € Df, f~1(8') th Se

(Sa) NB. — Ss, Milnor fiber: F = f~ (5) N B..

m Milnor fibration f] :
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m Continuous (or holomorphic) family of isolated hypersurface singularities:
m f; € Czi,...,z,] isolated hypersurface singularity, f; = ZL a,(t)z
m each a,: [0,1] — C is continuous (or: a,: D — C is holomorphic)

m A family is equimultiple if Vt : v, = vg; topologically trivial if Vt : fo ~iop fe.
Zariski multiplicity conjecture for families ('71)

Every topologically trivial family is equimultiple.

It is convenient to generalize this question to u-constant families.

m Milnor number = dimc¢ C[[z, . . z,,]]/((921 ey g;)
m Milnor radius € > 0 such that 3§ > 0 Ve’ € (0,¢),8" € Df, f~1(8') th Se
m Milnor fibration f] : (Sa) NB. — Ss, Milnor fiber: F = f~ (5) N B..

B F \/H st [Milnor '68]. Hence topologically trivial = p-constant.
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m Continuous (or holomorphic) family of isolated hypersurface singularities:
m f; € Czi,...,z,] isolated hypersurface singularity, f; = ZL a,(t)z
m each a,: [0,1] — C is continuous (or: a,: D — C is holomorphic)

m A family is equimultiple if Vt : v, = vg; topologically trivial if Vt : fo ~iop fe.
Zariski multiplicity conjecture for families ('71)

Every topologically trivial family is equimultiple.

It is convenient to generalize this question to u-constant families.

m Milnor number = dim¢ C[[z, . .. z,,]]/((921 ey g;)
m Milnor radius € > 0 such that 3§ > 0 Ve’ € (0,¢),8" € Df, f~1(8') th Se
m Milnor fibration f| : f7*(Ss) N B. — S5, Milnor fiber: F = f~1(5) N B..
B F g Vu st [Milnor '68]. Hence topologically trivial = p-constant.
homologically trivial
} cobordism
Milnor ball for f — >) Milnor ball for f;
£7(0) I 0
IBEU BEQ
) el A (V)
t=0 t#£0 t
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m Continuous (or holomorphic) family of isolated hypersurface singularities:
m f; € Czi,...,z,] isolated hypersurface singularity, f; = ZL a,(t)z
m each a,: [0,1] — C is continuous (or: a,: D — C is holomorphic)

m A family is equimultiple if Vt : v, = vg; topologically trivial if Vt : fo ~iop fe.
Zariski multiplicity conjecture for families ('71)

Every topologically trivial family is equimultiple.

It is convenient to generalize this question to u-constant families.

m Milnor number = dim¢ C[[z, . .. z,,]]/((921 ey g;)
m Milnor radius € > 0 such that 3§ > 0 Ve’ € (0,¢),8" € Df, f~1(8') th Se
m Milnor fibration f| : f7*(Ss) N B. — S5, Milnor fiber: F = f~1(5) N B..
B F g Vu st [Milnor '68]. Hence topologically trivial = p-constant.
homologically trivial
} cobordism
Milnor ball for f — >) Milnor ball for f;
£7(0) I £71(6)
B-, B-,
) % f1(0)
t=0 t#£0 t

m If n # 3, u-constant = topologically trivial [Lé&~Ramanujam '76]
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m Continuous (or holomorphic) family of isolated hypersurface singularities:
m f; € Czi,...,z,] isolated hypersurface singularity, f; = ZL a,(t)z
m each a,: [0,1] — C is continuous (or: a,: D — C is holomorphic)

m A family is equimultiple if Vt : v, = vg; topologically trivial if Vt : fo ~iop fe.
Zariski multiplicity conjecture for families ('71)

Every topologically trivial family is equimultiple.

It is convenient to generalize this question to u-constant families.

m Milnor number = dim¢ C[[z, . .. z,,]]/((921 ey g;)
m Milnor radius € > 0 such that 3§ > 0 Ve’ € (0,¢),8" € Df, f~1(8') th Se
m Milnor fibration f| : f7*(Ss) N B. — S5, Milnor fiber: F = f~1(5) N B..
B F g Vu st [Milnor '68]. Hence topologically trivial = p-constant.
homologically trivial
} cobordism
Milnor ball for f — >) Milnor ball for f;
£7(0) I £71(6)
B-, B-,
) % f1(0)
t=0 t#£0 t

m If n # 3, u-constant = topologically trivial [Lé&~Ramanujam '76]
m Case n= 3 is OPEN.
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Zariski multiplicity conjecture for p-constant families (Teissier '74)

Every p-constant family is equimultiple.

m Implies the original Zariski multiplicity conjecture for families.
m Known in particular cases:

m (f;) Whitney equisingular [Hironaka '69]

m fy is quasi-homogeneous [Greuel '86, O'Shea '87]

m all f; are Newton-nondegenerate [Abderrahmane '16]

mfi=f+tg+t?h f,g,h € C[z,...,z)] and Sing{in(f) = 0} Z {in(h) = 0}
[Plenat—Trotman '13]

m Remark: weak Whitney = equimultiple [Trotman—van Straten '16]
m one can assume that the family is holomorphic (even algebraic).

Theorem (Fernandez de Bobadilla, P. '21)

Zariski multiplicity conjecture for p-constant families is true.

Proof.

m ¢; - symplectic monodromy of the Milnor fibration of f; ~~ HF*(¢{")
m v, = min{m : HF*(¢") # 0} [McLean '19]
= HF'(4F) = HF" (47)
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Zariski multiplicity conjecture for p-constant families (Teissier '74)

Every p-constant family is equimultiple.

m Implies the original Zariski multiplicity conjecture for families.
m Known in particular cases:

m (f;) Whitney equisingular [Hironaka '69]

m fy is quasi-homogeneous [Greuel '86, O'Shea '87]

m all f; are Newton-nondegenerate [Abderrahmane '16]

mfi=f+tg+t?h f,g,h € C[z,...,z)] and Sing{in(f) = 0} Z {in(h) = 0}
[Plenat—Trotman '13]

m Remark: weak Whitney = equimultiple [Trotman—van Straten '16]
m one can assume that the family is holomorphic (even algebraic).

Theorem (Fernandez de Bobadilla, P. '21)

Zariski multiplicity conjecture for p-constant families is true.

m ¢; - symplectic monodromy of the Milnor fibration of f; ~~ HF*(¢{")

m v, = min{m : HF*(¢7) # 0} [McLean '19]

= HF'(4F) = HF" (47)

Problem: cannot isotope ¢o to ¢:, because the Milnor radius can shrink! O
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m M - smooth manifold
B w € Q*(M) is symplectic if dw = 0 and w is nondegenerate
® w is nondegenerate if w(v,-): TM — T*M is an isomorphism Vv € TM.
m J € End(TM) is an almost complex structure if J?> = —id
m For p: M — R, define a real 1-form d“p = doo J € T*M.
m 0: M — R is strictly plurisubharmonic (spsh) if —ddo(v, Jv) > 0 Vv # 0.
m In particular, —dd€p is symplectic.
m Example: M = C" with coordinates z, ..., z,
m Polar coordinates: z; = r;0;, r; = |z, 0; € St if z; # 0
n of2) = Ll = 2+ )
= do=3 ), nd, —do= 337, r?do,
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m M - smooth manifold
B w € Q*(M) is symplectic if dw = 0 and w is nondegenerate
® w is nondegenerate if w(v,-): TM — T*M is an isomorphism Vv € TM.
m J € End(TM) is an almost complex structure if J> = —id
m For p: M — R, define a real 1-form d“p = doo J € T*M.
m 0: M — R is strictly plurisubharmonic (spsh) if —ddo(v, Jv) > 0 Vv # 0.
m In particular, —dd€p is symplectic.
m Example: M = C" with coordinates z, ..., z,
m Polar coordinates: z; = r;0;, r; = |z, 0; € St if z; # 0
o(z) = 3llzIP = 2(F +-+17)
_1 _1
do= 33, ndr, —d0 =33 r’df,
—ddp = Zj rjdrj A\ df; - standard area form on C".
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m In particular, —dd€p is symplectic.

m Example: M = C" with coordinates z, ..., z,
m Polar coordinates: z; = r;0;, r; = |z, 0; € St if z; # 0
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mdo= % Zj ridrj, —dp = % Zj rj2d9j,
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m Liouville vector field: va: (dA)(va, ) = A.
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m M - smooth manifold

B w € Q*(M) is symplectic if dw = 0 and w is nondegenerate
® w is nondegenerate if w(v,-): TM — T*M is an isomorphism Vv € TM.

m J € End(TM) is an almost complex structure if J?> = —id

m For p: M — R, define a real 1-form d“p = doo J € T*M.

m 0: M — R is strictly plurisubharmonic (spsh) if —ddo(v, Jv) > 0 Vv # 0.
m In particular, —dd€p is symplectic.

m Example: M = C" with coordinates z, ..., z, .
m Polar coordinates: zj = rj0;, rj = |z|, 0 € St if z;#0
mo(2)=gllzIP= (R +-+rd)

do=3 ), ndy, —de =33, r7do,
m —ddp = Zj rjdrj A\ df; - standard area form on C".

m )\ € Q'(M) is a Liouville form if d) is symplectic

m Liouville vector field: va: (dA)(va, ) = A.

m Liouville domain: (M, ), A € Q' Liouville, v points outwards dM.
m Example: M =B, A = \gq = % i rj2d9j, vy = %Zj rj(%;

m Milnor fiber: M =Be N F1(8), A = Aad
m In general: Y - Stein o: Y — R spsh; M = g~ !(—o00,c], A = —dp, va = Vo.
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m M - smooth manifold

B w € Q*(M) is symplectic if dw = 0 and w is nondegenerate
® w is nondegenerate if w(v,-): TM — T*M is an isomorphism Vv € TM.

m J € End(TM) is an almost complex structure if J> = —id

m For p: M — R, define a real 1-form d“p = doo J € T*M.

m 0: M — R is strictly plurisubharmonic (spsh) if —ddo(v, Jv) > 0 Vv # 0.
m In particular, —dd€p is symplectic.

m Example: M = C" with coordinates z, ..., z,
m Polar coordinates: z; = r;0;, r; = |z, 0; € St if z; # 0
w o(z) = gllzIP = 3(F +-+17)
mdo= % Zj ridrj, —dp = % Zj rj2d9j,
m —ddo = Zj rjdrj A\ df; - standard area form on C".

m )\ € Q'(M) is a Liouville form if d) is symplectic

m Liouville vector field: va: (dA)(va, ) = A.

m Liouville domain: (M, ), A € Q' Liouville, v points outwards dM.
m Example: M =B, A = Agg = % ; rj2d9j, vy = %Zj rj(%;

m Milnor fiber: M =Be N F1(8), A = Aad
m In general: Y - Stein o: Y — R spsh; M = g~ !(—o00,c], A = —dp, va = Vo.

m (OM, )\) is a contact manifold, i.e. A A (dA\)"™* # 0.
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GOAL: define symplectic monodromy.

m g: M — B fibration (i.e. surjective submersion), w € Q*(M),
B w € Q*(M) is fiberwise symplectic if w|g-1(p) is symplectic for all b € B.
TM=V&H=kerDg® {v:Vw € ker Dg: w(v,w) =0}, Dg:H> TB.
m For any vg € (B, TB) there is a unique symplectic lift v € [(M, TM)

= (Dg)(vB) = v.

m v is w-orthogonal to the fibers of g
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GOAL: define symplectic monodromy.

m g: M — B fibration (i.e. surjective submersion), w € Q*(M),

B w € Q*(M) is fiberwise symplectic if w|g-1(p) is symplectic for all b € B.
TM=V&H=kerDg® {v:Vw € ker Dg: w(v,w) =0}, Dg:H> TB.

m For any vg € (B, TB) there is a unique symplectic lift v € [(M, TM)
m (Dg)(vg) =v.
m v is w-orthogonal to the fibers of g

m (M,w) - symplectic, H;: M — R - smooth (time-dependent Hamiltonian)
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m Hamiltonian vector field vp,: w(-,vh,) = dH:

Tomasz Petka Zariski multiplicity conjecture



GOAL: define symplectic monodromy.
m g: M — B fibration (i.e. surjective submersion), w € Q*(M),
B w € Q*(M) is fiberwise symplectic if w|g-1(p) is symplectic for all b € B.

TM=V&H=kerDg® {v:Vw € ker Dg: w(v,w) =0}, Dg:H> TB.
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m Time 7 flow ¥ of vy, is automatically a symplectomorphism.
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m g: M — B fibration (i.e. surjective submersion), w € Q*(M),
B w € Q*(M) is fiberwise symplectic if w|g-1(p) is symplectic for all b € B.

TM=V&H=kerDg® {v:Vw € ker Dg: w(v,w) =0}, Dg:H> TB.

m For any vg € (B, TB) there is a unique symplectic lift v € [(M, TM)
m (Dg)(vg) =v.
m v is w-orthogonal to the fibers of g

m (M,w) - symplectic, H;: M — R - smooth (time-dependent Hamiltonian)
m Hamiltonian vector field vp,: w(-,vh,) = dH:

m Time 7 flow ¥ of vy, is automatically a symplectomorphism.
L) w = Ly w = duy, w+ t, do=d(dH) +0=0
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GOAL: define symplectic monodromy.

m (M, )\, @) is an abstract contact open book (acob) if
m (M, ) - Liouville domain
m ¢: M — M - diffeomorphism, ¢|c = id¢ for some neighborhood C of OM
m ¢*X\ — X\ = dagy for some smooth a,: M — R (action).
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m (M, ) - Liouville domain
m ¢: M — M - diffeomorphism, ¢|c = id¢ for some neighborhood C of OM
m ¢*X\ — X\ = dagy for some smooth a,: M — R (action).
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m binding L = OM x {*}, 7: N\ L — S!: second projection.
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GOAL: define symplectic monodromy.
m (M, )\, @) is an abstract contact open book (acob) if
m (M, ) - Liouville domain
m ¢: M — M - diffeomorphism, ¢|c = id¢ for some neighborhood C of OM
m ¢*X\ — X\ = dagy for some smooth a,: M — R (action).
m Isotopy: (M, \,¢) ~ (M', X, ¢') if 3 smooth families (\:) C Q' (M), é::
m Vt: (M, ¢, ¢t) is an acob, ¢¢|c = idc¢ for a fixed nbhd C of M
B (Mo, d0) = (N, 6); (A1, é1) = (WA, WL o ¢y o W) for a diffeo W: M/ — M.

m {acobs}/. > (M, A, ¢) Jerow 20 (N, a, ) € {contact open books}/~

= N=(M>x[0,1]) / [(x,0) ~ (fb(X) D, (7,0) ~(y. 1) : y € OM]
m binding L = OM x {x}, m: N\ L — S': second projection.

m o= \+cdt

m ~~ contact pair (N, L).

m B C M is a codimension zero family of fixed points if:

=
[ ] ¢|B =id 5
m B - submanifold with boundary (and corners), codimy, B =0, ~—
m 3 N - neighborhood of B, H: N — (—o0, 0] smooth:

, :
m B=HY0)
B |y is the time one Hamiltonian flow of H.
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Recall: f: (C",0) — (C,0) - holomorphic germ, 0 € C" unique critical pt
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m Milnor fibration: f|: f}(S§)NB. — S}, w = dAsa, 1> >0, ¢ > 0.
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Recall: f: (C",0) — (C,0) - holomorphic germ, 0 € C" unique critical pt
m Milnor fibration: f|: f}(S§)NB. — S}, w = dAsa, 1> >0, ¢ > 0.
m Monodromy: ¢: f~*(§) — f*(5): time one flow of the symplectic lift of 2
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Recall: f: (C",0) — (C,0) - holomorphic germ, 0 € C" unique critical pt

m Milnor fibration: f|: f}(S§)NB. — S}, w = dAsa, 1> >0, ¢ > 0.

m Monodromy: ¢: f~*(§) — f*(5): time one flow of the symplectic lift of 2
m Lemma: 3y > 0 and a closed B C C" such that V§ € (0, do)

m F1(0)NB=f"10)NB., (F=f"1(8)N B, Aad|) - Liouville domain
m (F, Asdl, ¢|) - acob, whose isotopy type does not depend on §.
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m (F, Asdl, ¢|) - acob, whose isotopy type does not depend on §.

m This lemma can be done in families. Resulting acobs are isotopic for all t.
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Recall: f: (C",0) — (C,0) - holomorphic germ, 0 € C" unique critical pt
m Milnor fibration: f|: f}(S§)NB. — S}, w = dAsa, 1> >0, ¢ > 0.
m Monodromy: ¢: f~*(§) — f*(5): time one flow of the symplectic lift of 2
m Lemma: 3y > 0 and a closed B C C" such that V§ € (0, do)

m F1(0)NB=f"10)NB., (F=f"1(8)N B, Aad|) - Liouville domain
m (F, Asdl, ¢|) - acob, whose isotopy type does not depend on §.

m This lemma can be done in families. Resulting acobs are isotopic for all t.

[Giroux '20]
NGO
N =S¢
L

- link

£
[f]

)

®m ¢ - Milnor radius = associated contact pair (N, L) = (Se,Se N £71(0)).
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(M, X, ¢) - acob ~» HF*(¢) - fixed point Floer cohomology
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(M, X, ¢) - acob ~» HF*(¢) - fixed point Floer cohomology
m Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
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(M, X, ¢) - acob ~» HF*(¢) - fixed point Floer cohomology
m Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
B p~ popl () - a.c. structures, ¢*Jr = Jri1; (He, J:) - generic.

+ small positive slope near OM.
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m CF*(¢) = @XeFiX(¢) Zy(x), Z-graded by the Conley—Zehnder index
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(M, X, ¢) - acob ~» HF*(¢) - fixed point Floer cohomology
m Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
B p~ popl () - a.c. structures, ¢*Jr = Jri1; (He, J:) - generic.

+ small positive slope near OM.

m CF*(¢) = @XeFiX(¢) Zy(x), Z-graded by the Conley—Zehnder index
m J(x) = ECZ(X)*CZ(_}/):I #{Floer trajectories u joining x and y}/r - (y)
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(M, X, ¢) - acob ~» HF*(¢) - fixed point Floer cohomology
m Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
B p~ popl () - a.c. structures, ¢*Jr = Jri1; (He, J:) - generic.

+ small positive slope near OM.
u CF*((;S) = @Xeﬁx Z>(x), Z-graded by the Conley—Zehnder index
= Dz cz(y)—1 F#1Floer trajectories u joining x and y}/k - (y)

U RxR— M, u(s t) = p(u(s, t + 1)), u(s, t) = x, u(s, t) T4y
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(M, X, ¢) - acob ~» HF*(¢) - fixed point Floer cohomology
m Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
B p~ popl () - a.c. structures, ¢*Jr = Jri1; (He, J:) - generic.

+ small positive slope near OM.
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(M, X, ¢) - acob ~» HF*(¢) - fixed point Floer cohomology
m Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
B p~ popl () - a.c. structures, ¢*Jr = Jri1; (He, J:) - generic.

+ small positive slope near OM.
u CF*((;S) = @Xeﬁx Z>(x), Z-graded by the Conley—Zehnder index
= Dz cz(y)—1 F#1Floer trajectories u joining x and y}/k - (y)
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n aqurJtatu—O

= HF*(¢) = H*(CF"(¢))
Property 1: HF*(¢) is invariant under isotopy of acobs.
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(M, X, ¢) - acob ~» HF*(¢) - fixed point Floer cohomology
m Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
B p~ popl () - a.c. structures, ¢*Jr = Jri1; (He, J:) - generic.

+ small positive slope near OM.
u CF*((;S) = @Xeﬁx Z>(x), Z-graded by the Conley—Zehnder index
= Dz cz(y)—1 F#1Floer trajectories u joining x and y}/k - (y)

U RxR— M, u(s t) = p(u(s, t + 1)), u(s, t) = x, u(s, t) T4y
n aqurJtatu—O

= HF*(¢) = H*(CF"(¢))

Property 1: HF*(¢) is invariant under isotopy of acobs.

m In fact, HF*(¢) depends only on the associated contact pair [McLean '19].
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fixed point Floer cohomology

(M, X, ¢) - acob ~~ HF*(¢) -
m Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].

B p~ popl () - a.c. structures, ¢*Jr = Jri1; (He, J:) - generic.

+ small positive slope near OM.

] CF*((;S) = @XeFiX Zy(x), Z-graded by the Conley—Zehnder index

ECZ(X) cz(y
U RxR— M, u(s t) = p(u(s, t + 1)), u(s, t) = x, u(s, t) T4y
n aqurJtatu—O
= HF"(¢) = H*(CF"(¢))
Property 1: HF*(¢) is invariant under isotopy of acobs.
m In fact, HF*(¢) depends only on the associated contact pair [McLean '19]

_, #1{Floer trajectories u joining x and y}/r - (y)

Property 2: (Morse—Bott-type spectral sequence)
m Assume Fix(¢) = |_|I€, Bi, B; - codimension zero family [ <
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(M, X, ¢) - acob ~» HF*(¢) - fixed point Floer cohomology
m Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
B p~ popl () - a.c. structures, ¢*Jr = Jri1; (He, J:) - generic.

+ small positive slope near OM.
u CF*((;S) = @Xeﬁx Z>(x), Z-graded by the Conley—Zehnder index
= Dz cz(y)—1 F#1Floer trajectories u joining x and y}/k - (y)

U RxR— M, u(s t) = p(u(s, t + 1)), u(s, t) = x, u(s, t) T4y
n aqurJtatu—O

= HF*(¢) = H*(CF"(¢))

Property 1: HF*(¢) is invariant under isotopy of acobs.

m In fact, HF*(¢) depends only on the associated contact pair [McLean '19].
Property 2: (Morse—Bott-type spectral sequence)

m Assume Fix(¢) = |_|I.€, Bi, B; - codimension zero family [ <

m Fix ¢: {ay), : i €I} = Z - increasing function.
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(M, X, ¢) - acob ~» HF*(¢) - fixed point Floer cohomology
m Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].
B~ o q/)f", (4e) - a.c. structures, ¢*Jy = Jpy1; (He, Je) - generic.

+ small positive slope near OM.

] CF*((;S) = @XeFiX Zy(x), Z-graded by the Conley—Zehnder index

= D 200 cz(y)-1 #1{Floer trajectories u joining x and y}/r - (y)
U RxR— M, u(s t) = p(u(s, t + 1)), u(s, t) = x, u(s, t) T4y
n aqurJtatu—O
= HF*(¢) = H*(CF"(¢))
Property 1: HF*(¢) is invariant under isotopy of acobs.

m In fact, HF*(¢) depends only on the associated contact pair [McLean '19].
Property 2: (Morse—Bott-type spectral sequence)

m Assume Fix(¢) = |_|I.€, Bi, B; - codimension zero family [ <
m Fix ¢: {ay), : i €I} = Z - increasing function.

m 3 spectral sequence = HF*(¢) with first page:

EPY = @ Haim M—(p+q)—cz(8,)(Bi, Bi N OM).
(i) =p}
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(M, X, ¢) - acob ~» HF*(¢) - fixed point Floer cohomology
m Z-graded abelian group, defined by [Seidel '01, Uljarevic '17, McLean '19].

B p~ ol (Uh) - ac. structures, ¢*Jr = Jri1; (He, J:i) - generic.
+ small positive slope near OM.

u CF*((;S) = @Xeﬁx Z»(x), Z-graded by the Conley—Zehnder index
= Dz cz(y)—1 F#1Floer trajectories u joining x and y}/k - (y)

U RxR— M, u(s t) = p(u(s, t + 1)), u(s, t) 2 x, u(s, t) T4y
n aqurJtatu—O

= HF"(¢) = H*(CF"(¢))

Property 1: HF*(¢) is invariant under isotopy of acobs.

m In fact, HF*(¢) depends only on the associated contact pair [McLean '19].

Property 2: (Morse—Bott-type spectral sequence)

m Assume Fix(¢) = |_]I.€, B;, Bi - codimension zero family

m Fix ¢: {ay), : i €1} = Z - increasing function.

forbidden

m 3 spectral sequence = HF*(¢) with first page:

EPY = @ Haim M—(p+q)—cz(8,)(Bi, Bi N OM).
(i) =p}

independent of time
—> gradient lines
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GOAL: find a symplectic monodromy ¢ with Fix(¢) = | | codim 0 families.
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GOAL: find a symplectic monodromy ¢ with Fix(¢) = | | codim 0 families.
m Recall: we need to work with F = f~*(§) N B. for ¢ > Milnor radius.
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GOAL: find a symplectic monodromy ¢ with Fix(¢) =

| | codim 0 families.
m Recall: we need to work with F = f~

1(8) N B- for £ > Milnor radius.

Key Lemma

m Y - Stein space with only isolated singularities,

m f: Y — C holomorphic with only isolated critical points; 0 € C - crit. value
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GOAL: find a symplectic monodromy ¢ with Fix(¢) =

| | codim 0 families.
m Recall: we need to work with F = f~

1(8) N B- for £ > Milnor radius.

Key Lemma

m Y - Stein space with only isolated singularities,

m f: Y — C holomorphic with only isolated critical points; 0 € C - crit. value
m (F=f"%)NB,—d,¢) - monodromy acob.
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GOAL: find a symplectic monodromy ¢ with Fix(¢) = | | codim 0 families.
m Recall: we need to work with F = f~*(§) N B. for ¢ > Milnor radius.

Key Lemma

m Y - Stein space with only isolated singularities,

m f: Y — C holomorphic with only isolated critical points; 0 € C - crit. value

m (F=f"%)NB,—d,¢) - monodromy acob.

m Fix m > 1. Let h: (X, D) — (Y, f*(0)) be an m-separated log resolution
m D = (foh)*(0)eq - snc, (foh)*(0 )_Zim,-D,-, DinD; #0 = mj+ m; > m.
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GOAL: find a symplectic monodromy ¢ with Fix(¢) = | | codim 0 families.
m Recall: we need to work with F = f~*(§) N B. for ¢ > Milnor radius.

Key Lemma

m Y - Stein space with only isolated singularities,

m f: Y — C holomorphic with only isolated critical points; 0 € C - crit. value

m (F=f"%)NB,—d,¢) - monodromy acob.

m Fix m > 1. Let h: (X, D) — (Y, f*(0)) be an m-separated log resolution
= D= (foh)*(0)ed - snc, (Fo h)*(0) =>". m;D;, DiND; #0 = mi+m; > m.

Then (F,—d9,¢™) ~ (Fac, Aac, PAc) such that:

Fix(pac) = |_|{i:m,-\m} B;, B; - codim 0 family of fixed points.
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GOAL: find a symplectic monodromy ¢ with Fix(¢) = | | codim 0 families.
m Recall: we need to work with F = f~*(§) N B. for ¢ > Milnor radius.

Key Lemma

m Y - Stein space with only isolated singularities,

m f: Y — C holomorphic with only isolated critical points; 0 € C - crit. value

m (F=f"%)NB,—d,¢) - monodromy acob.

m Fix m > 1. Let h: (X, D) — (Y, f*(0)) be an m-separated log resolution
m D = (foh)*(0)eq - snc, (foh)*(0 )_Zim,-D,-, DinD; #0 = mj+ m; > m.

Then (F,—d9,¢™) ~ (Fac, Aac, PAc) such that:

Fix(pac) = |_|{l._m_‘m} B;, B; - codim 0 family of fixed points.

B 3 -fold covering B; — D}, where D7 = (D \ (D — D)) Nh=*(B).
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GOAL: find a symplectic monodromy ¢ with Fix(¢) = | | codim 0 families.

m Recall: we need to work with F = f~*(§) N B. for ¢ > Milnor radius.

Key Lemma

m Y - Stein space with only isolated singularities,
m f: Y — C holomorphic with only isolated critical points; 0 € C - crit. value
m (F=f"%)NB,—d,¢) - monodromy acob.
m Fix m > 1. Let h: (X, D) — (Y, f*(0)) be an m-separated log resolution
= D= (foh)*(0)ed - snc, (Fo h)*(0) =>". m;D;, DiND; #0 = mi+m; > m.
Then (F,—d9,¢™) ~ (Fac, Aac, PAc) such that:

Fix(pac) = |_|{l._m_‘m} B;, B; - codim 0 family of fixed points.
B 3 -fold covering B; — D}, where D7 = (D \ (D — D)) Nh=*(B).
B |agp | = wig, where — >, wiD; is very ample.
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m (f;): (C",0) — (C,0) - p-constant family, t € [0, %], 1> to >0

symplectic ____y
trivialization ]

H*(Bo, By N BFL») =0
Milnor ball for fop — Milnor ball for f;

Fo Fi
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m Fo = f; }(8) N B - Milnor fiber

symplectic ____y
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m (f;): (C",0) — (C,0) - p-constant family, t € [0,t], 1 > to > 0
m Fo = f; }(8) N B - Milnor fiber
m (F: = £,71(8) N B, Astd, ¢+) - monodromy acobs, isotopic Vt

symplectic ____y
trivialization ]

H*(Bo, By N BFt) =0
Milnor ball for fop — Milnor ball for f;

Fo Fi
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m (f;): (C",0) — (C,0) - p-constant family, t € [0, %], 1> to >0
m Fo = f; }(8) N B - Milnor fiber

m (F: = £,71(8) N B, Astd, ¢+) - monodromy acobs, isotopic Vt

m Fix m > 1. We have HF*(¢g") = HF"(¢7") for all t € [0, to]

symplectic ____y
trivialization ]

H*(Bo, By N BFt) =0
Milnor ball for fop — Milnor ball for f;

Fo Fi
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m (f;): (C",0) — (C,0) - p-constant family, t € [0, %], 1> to >0
m Fo = f; }(8) N B - Milnor fiber

m (F: = £,71(8) N B, Astd, ¢+) - monodromy acobs, isotopic Vt

m Fix m > 1. We have HF*(¢g") = HF"(¢7") for all t € [0, to]

symplectic ____y
trivialization ]

H*(Bo, By N aFt) =0
Milnor ball for fop — Milnor ball for f;

Fo Fi

t=0 ££0 ¢

m Fix t € [0, to]. Let h- m- separated resolution of f;; (ho f;)*(0) =Y m;D
m say Dy - proper transform of £, 1(0).
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m (f;): (C",0) — (C,0) - p-constant family, t € [0, %], 1> to >0
m Fo = f; }(8) N B - Milnor fiber

m (F: = £,71(8) N B, Astd, ¢+) - monodromy acobs, isotopic Vt

m Fix m > 1. We have HF*(¢g") = HF"(¢7") for all t € [0, to]

symplectic ____y
trivialization ]

H*(Bo, By N 8Ft) =0
Milnor ball for fop — Milnor ball for f;

Fo Fi

t=0 ££0 ¢

m Fix t € [0, to]. Let h- m- separated resolution of f;; (ho f;)*(0) =Y m;D
m say Dy - proper transform of £, 1(0).
m Key lemma ~~ EP7 = HF*(¢{") such that
EY = H2n,2,(p+q),2% (o, (Bis

. m
Lizmilm, p=—-wi}

BiN 8Ft)
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m (f;): (C",0) — (C,0) - p-constant family, t € [0, %], 1> to >0
m Fo = f; }(8) N B - Milnor fiber

m (F: = £,71(8) N B, Astd, ¢+) - monodromy acobs, isotopic Vt

m Fix m > 1. We have HF*(¢g") = HF"(¢7") for all t € [0, to]

symplectic ____y
trivialization ]

H*(Bo, By N 8Ft) =0
Milnor ball for fop — Milnor ball for f;

Fo Fi

t=0 ££0 ¢

m Fix t € [0, to]. Let h- m- separated resolution of f;; (ho f;)*(0) =Y m;D
m say Dy - proper transform of £, 1(0).
m Key lemma ~~ EP7 = HF*(¢{") such that
P _
= fﬁn—2—(p+w72iﬁldoa(3“
(izmi|m, p=— " wi}

m Case i = 0 (proper transform) : H.(Bo, Bo N OF;) = 0.

BiN 8Ft)
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m (f;): (C",0) — (C,0) - p-constant family, t € [0, %], 1> to >0
m Fo = f; }(8) N B - Milnor fiber

m (F: = £,71(8) N B, Astd, ¢+) - monodromy acobs, isotopic Vt

m Fix m > 1. We have HF*(¢g") = HF"(¢7") for all t € [0, to]

symplectic ____y
trivialization ]

H*(Bo, By N 8Ft) =0
Milnor ball for fop — Milnor ball for f;

Fo Fi

t=0 ££0 ¢

m Fix t € [0, to]. Let h- m- separated resolution of f;; (ho f;)*(0) =Y m;D
m say Dy - proper transform of £, 1(0).
m Key lemma ~~ EP7 = HF*(¢{") such that
EY = Hyn 2 (pra)—22 1y (B
{imilm, p=— 1w}
m Case i = 0 (proper transform) : H.(By, Bo N 0F;) = 0.
m Case i # 0: m; > vg, Hi(Bi, BiN0F;) = H.(B;) # 0.
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m (f;): (C",0) — (C,0) - p-constant family, t € [0, %], 1> to >0
m Fo = f; }(8) N B - Milnor fiber

m (F: = £,71(8) N B, Astd, ¢+) - monodromy acobs, isotopic Vt

m Fix m > 1. We have HF*(¢g") = HF"(¢7") for all t € [0, to]

symplectic ____y
trivialization ]

H*(Bo, By N 8Ft) =0
Milnor ball for fop — Milnor ball for f;

Fo Fi

t=0 ££0 ¢

m Fix t € [0, to]. Let h- m- separated resolution of f;; (ho f;)*(0) =Y m;D
m say Dy - proper transform of £, 1(0).
m Key lemma ~~ EP7 = HF*(¢{") such that
EY = o2 (pra)-22 o) (B
(izmi|m, p=— " wi}
m Case i = 0 (proper transform) : H.(By, Bo N 0F;) = 0.
m Case i # 0: m; > vg, Hi(Bi, BiN0F;) = H.(B;) # 0.
m Therefore, E{*? = 0 for m < vg; E["? has a nonzero column if m; = m.

BiN 8Ft)
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m (f;): (C",0) — (C,0) - p-constant family, t € [0, %], 1> to >0
m Fo = f; }(8) N B - Milnor fiber

m (F: = £,71(8) N B, Astd, ¢+) - monodromy acobs, isotopic Vt

m Fix m > 1. We have HF*(¢g") = HF"(¢7") for all t € [0, to]

symplectic ____y
trivialization ]

H*(Bo, By N 8Ft) =0
Milnor ball for fop — Milnor ball for f;

Fo Fi

t=0 ££0 ¢

m Fix t € [0, to]. Let h- m- separated resolution of f;; (ho f;)*(0) =Y m;D
m say Dy - proper transform of £, 1(0).
m Key lemma ~~ EP7 = HF*(¢{") such that
EY = Hyn 2 (pra)—22 1y (B
{imilm, p=— 1w}
m Case i = 0 (proper transform) : H.(By, Bo N 0F;) = 0.
m Case i # 0: m; > vg, Hi(Bi, BiN0F;) = H.(B;) # 0.
m Therefore, E{*? = 0 for m < vg; E["? has a nonzero column if m; = m.
v, = min{m : HF*(¢{") # 0} = min{m : HF"(¢g') # 0} = vy,

BiN 8Ft)
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m vf = min{m : HF*(¢™) # 0} for ¢ - monodromy of the Milnor fiber of f
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m vf = min{m : HF*(¢™) # 0} for ¢ - monodromy of the Milnor fiber of f
m This equality, in a Milnor ball, was first proved by McLean ('19)
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m vf = min{m : HF*(¢™) # 0} for ¢ - monodromy of the Milnor fiber of f
m This equality, in a Milnor ball, was first proved by McLean ('19)

Corollary (McLean '19)

Multiplicity depends only on the embedded contact type of the link.
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m This equality, in a Milnor ball, was first proved by McLean ('19)

Corollary (McLean '19)
Multiplicity depends only on the embedded contact type of the link.

m Let P = {inf = 0} C P": projectivized tangent cone
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m vf = min{m : HF*(¢™) # 0} for ¢ - monodromy of the Milnor fiber of f
m This equality, in a Milnor ball, was first proved by McLean ('19)

Corollary (McLean '19)

Multiplicity depends only on the embedded contact type of the link.

m Let P = {inf = 0} C P": projectivized tangent cone
m Zariski question B: (f;) - p-constant = Py Zhomeo Pt?

Tomasz Petka Zariski multiplicity conjecture



m vf = min{m : HF*(¢™) # 0} for ¢ - monodromy of the Milnor fiber of f
m This equality, in a Milnor ball, was first proved by McLean ('19)

Corollary (McLean '19)

Multiplicity depends only on the embedded contact type of the link.

m Let P = {inf = 0} C P": projectivized tangent cone
m Zariski question B: (f;) - p-constant = Py Zhomeo Pt?
m Answer: NO, even if (;) is Whitney equisingular [F. de Bobadilla '05]
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m vf = min{m : HF*(¢™) # 0} for ¢ - monodromy of the Milnor fiber of f
m This equality, in a Milnor ball, was first proved by McLean ('19)

Corollary (McLean '19)

Multiplicity depends only on the embedded contact type of the link.

m Let P = {inf = 0} C P": projectivized tangent cone
m Zariski question B: (f;) - p-constant = Py Zhomeo Pt?
m Answer: NO, even if (;) is Whitney equisingular [F. de Bobadilla '05]

x X;
fi = (yl yz) <xz tx, i)@) <£> +x{ +x +x3: (C°,0) = (C,0).
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m vf = min{m : HF*(¢™) # 0} for ¢ - monodromy of the Milnor fiber of f
m This equality, in a Milnor ball, was first proved by McLean ('19)

Corollary (McLean '19)

Multiplicity depends only on the embedded contact type of the link.

m Let P = {inf = 0} C P": projectivized tangent cone
m Zariski question B: (f;) - p-constant = Py Zhomeo Pt?
m Answer: NO, even if (f;) is Whitney equisingular [F. de Bobadilla '05]

x X;
fi = (yl yz) <xz tx, i)@) <£> +x{ +x +x3: (C°,0) = (C,0).

Nonetheless...

If (f;) is p-constant, then H.(Po) = H.(P¢) for all ¢.
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m vf = min{m : HF*(¢™) # 0} for ¢ - monodromy of the Milnor fiber of f
m This equality, in a Milnor ball, was first proved by McLean ('19)

Corollary (McLean '19)

Multiplicity depends only on the embedded contact type of the link.

m Let P = {inf = 0} C P": projectivized tangent cone
m Zariski question B: (f;) - p-constant = Py Zhomeo Pt?
m Answer: NO, even if (f;) is Whitney equisingular [F. de Bobadilla '05]

X3 X2 i 4 4 4. 5
fo=(n ) <X2 b _X3> <y2> +x1 45 451 (C°,0) = (C,0).
If (f;) is p-constant, then H.(Po) = H.(P¢) for all ¢.
m Proof: HF* 2™ =1 (¢¥7) = Hy(p,,_1y_,(P) [BFABLN '20]; and v = vy,.
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m vf = min{m : HF*(¢™) # 0} for ¢ - monodromy of the Milnor fiber of f
m This equality, in a Milnor ball, was first proved by McLean ('19)

Corollary (McLean '19)

Multiplicity depends only on the embedded contact type of the link.

m Let P = {inf = 0} C P": projectivized tangent cone
m Zariski question B: (f;) - p-constant = Py Zhomeo Pt?
m Answer: NO, even if (f;) is Whitney equisingular [F. de Bobadilla '05]

x X;
fi = (yl yz) <xz tx, i)@) <£> +x{ +x +x3: (C°,0) = (C,0).

If (f;) is p-constant, then H.(Po) = H.(P¢) for all ¢.
m Proof: HF* 2™ =1 (¢¥7) = Hy(p,,_1y_,(P) [BFABLN '20]; and v = vy,.

m In fact, Hz(dmfl),lf(P) = H:(Xm(f, 0))
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m vf = min{m : HF*(¢™) # 0} for ¢ - monodromy of the Milnor fiber of f
m This equality, in a Milnor ball, was first proved by McLean ('19)

Corollary (McLean '19)

Multiplicity depends only on the embedded contact type of the link.

m Let P = {inf = 0} C P": projectivized tangent cone
m Zariski question B: (f;) - p-constant = Py Zhomeo Pt?
m Answer: NO, even if (f;) is Whitney equisingular [F. de Bobadilla '05]

X3 X2 i 4 4 4. 5
fo=(n ) <X2 b _X3> <y2> +x1 45 451 (C°,0) = (C,0).
If (f;) is p-constant, then H.(Po) = H.(P¢) for all ¢.
m Proof: HF* 2™ =1 (¢¥7) = Hy(p,,_1y_,(P) [BFABLN '20]; and v = vy,.

m In fact, Hz(dmfl),lf(P) = H:(Xm(f, 0))
m Xp(f,0) = {v: SpecC[t]/(t™1) — C" : 4(0) =0, f(y) =t™ (mod t™+1)}
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m vf = min{m : HF*(¢™) # 0} for ¢ - monodromy of the Milnor fiber of f
m This equality, in a Milnor ball, was first proved by McLean ('19)

Corollary (McLean '19)

Multiplicity depends only on the embedded contact type of the link.

m Let P = {inf = 0} C P": projectivized tangent cone
m Zariski question B: (f;) - p-constant = Py Zhomeo Pt?
m Answer: NO, even if (f;) is Whitney equisingular [F. de Bobadilla '05]

_ X3 X2 »n 4 4 4. (5
fo=(n ) <X2 b _X3) <y2> +x1 45 451 (C°,0) = (C,0).
Nonetheless...

If (f) is p-constant, then H.(Po) = H.(P¢) for all t.

m Proof: HF* 2™ =1 (¢¥7) = Hy(p,,_1y_,(P) [BFABLN '20]; and v = vy,.

m In fact, Hygm—1)-1—(P) = HZ (Xn(f,0))
m Xp(f,0) = {v: SpecC[t]/(t™1) — C" : 4(0) =0, f(y) =t™ (mod t™+1)}

m There is a spectral sequence converging to HZ(X,), with the same first
page as the one converging to HF*(¢™), up to a degree shift [BFdBLN '20]
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m vf = min{m : HF*(¢™) # 0} for ¢ - monodromy of the Milnor fiber of f
m This equality, in a Milnor ball, was first proved by McLean ('19)

Corollary (McLean '19)

Multiplicity depends only on the embedded contact type of the link.

m Let P = {inf = 0} C P": projectivized tangent cone
m Zariski question B: (f;) - p-constant = Py Zhomeo Pt?
m Answer: NO, even if (f;) is Whitney equisingular [F. de Bobadilla '05]

x X;
fi = (yl yz) <xz tx, i)@) <£> +x{ +x +x3: (C°,0) = (C,0).

Nonetheless...
If (f) is p-constant, then H.(Po) = H.(P¢) for all t.
m Proof: HF* 2™ =1 (¢¥7) = Hy(p,,_1y_,(P) [BFABLN '20]; and v = vy,.

| | In fact, Hz(dmfl),lf(P) = H:(Xm(f, 0))
m Xp(f,0) = {v: SpecC[t]/(t™1) — C" : 4(0) =0, f(y) =t™ (mod t™+1)}
m There is a spectral sequence converging to HZ(X,), with the same first

page as the one converging to HF*(¢™), up to a degree shift [BFdBLN '20]
m Conjecture: HF*(¢™) = HP2m™n=1(x,).
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GOAL: prove the Key Lemma, i.e. construct a nice model for a monodromy.
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GOAL: prove the Key Lemma, i.e. construct a nice model for a monodromy.
m In a topological setting, such a model was constructed by A’Campo ('73)
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GOAL: prove the Key Lemma, i.e. construct a nice model for a monodromy.

m In a topological setting, such a model was constructed by A’Campo ('73)
m ldea: endow A'Campo’s model with a structure of an acob

Tomasz Petka Zariski multiplicity conjecture



GOAL: prove the Key Lemma, i.e. construct a nice model for a monodromy.

m In a topological setting, such a model was constructed by A’Campo ('73)
m ldea: endow A'Campo’s model with a structure of an acob
m see [Campesato—Fichou—Parusifski '21] for a similar idea in a motivic setting.
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GOAL: prove the Key Lemma, i.e. construct a nice model for a monodromy.

m In a topological setting, such a model was constructed by A’Campo ('73)
m ldea: endow A'Campo’s model with a structure of an acob
m see [Campesato—Fichou—Parusifski '21] for a similar idea in a motivic setting.

m f: X — C - holomorphic, f*(0) = Z,N:1 m;D;, £*(0)red - SNC.
= XP =g, Di\ Ujgl b;.
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GOAL: prove the Key Lemma, i.e. construct a nice model for a monodromy.

m In a topological setting, such a model was constructed by A’Campo ('73)
m ldea: endow A'Campo’s model with a structure of an acob
m see [Campesato—Fichou—Parusifski '21] for a similar idea in a motivic setting.

m f: X — C - holomorphic, f*(0) = Z,N:1 m;D;, £*(0)red - SNC.

] XIO = miel D; \ Ujgl D;.
Step 1: extend polar coordinates to “radius zero”
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GOAL: prove the Key Lemma, i.e. construct a nice model for a monodromy.

m In a topological setting, such a model was constructed by A’Campo ('73)
m ldea: endow A'Campo’s model with a structure of an acob

m see [Campesato—Fichou—Parusifski '21] for a similar idea in a motivic setting.

m f: X — C - holomorphic, f*(0) = Z,N:1 m;D;, £*(0)red - SNC.
n XIO = miel D; \ Ujgl Dj.
Step 1: extend polar coordinates to “radius zero”

m Replace each D; by an S'-bundle over D; (cf. eg. [Mumford '61] for n = 3)
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GOAL: prove the Key Lemma, i.e. construct a nice model for a monodromy.

m In a topological setting, such a model was constructed by A’Campo ('73)
m ldea: endow A'Campo’s model with a structure of an acob

m see [Campesato—Fichou—Parusifski '21] for a similar idea in a motivic setting.
m f: X — C - holomorphic, f*(0) = Z,N:1 m;D;, £*(0)red - SNC.

] XIO = miel D; \ Ujgl D;.
Step 1: extend polar coordinates to “radius zero”

m Replace each D; by an S'-bundle over D; (cf. eg. [Mumford '61] for n = 3)
m Convenient language: Kato—Nakayama space Xjog = (X, D)iog
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GOAL: prove the Key Lemma, i.e. construct a nice model for a monodromy.
m In a topological setting, such a model was constructed by A’Campo ('73)
m ldea: endow A'Campo’s model with a structure of an acob

m see [Campesato—Fichou—Parusifski '21] for a similar idea in a motivic setting.
m f: X — C - holomorphic, f*(0) = Z,N:1 m;D;, £*(0)red - SNC.

n XIO = miel D; \ Ujgl Dj.
Step 1: extend polar coordinates to “radius zero”
m Replace each D; by an S'-bundle over D; (cf. eg. [Mumford '61] for n = 3)
m Convenient language: Kato—Nakayama space Xjog = (X, D)iog
B Ciog = (C,0)10g = S x [0,00): replace 0 € C by a “radius zero” circle.
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GOAL: prove the Key Lemma, i.e. construct a nice model for a monodromy.

m In a topological setting, such a model was constructed by A’Campo ('73)
m ldea: endow A'Campo’s model with a structure of an acob

m see [Campesato—Fichou—Parusifski '21] for a similar idea in a motivic setting.
m f: X — C - holomorphic, f*(0) = Z,N:1 m;D;, £*(0)red - SNC.
n XIO = miel D; \ Ujgl Dj.
Step 1: extend polar coordinates to “radius zero”
m Replace each D; by an S'-bundle over D; (cf. eg. [Mumford '61] for n = 3)
m Convenient language: Kato—Nakayama space Xjog = (X, D)iog
B Ciog = (C,0)10g = S x [0,00): replace 0 € C by a “radius zero” circle.
Step 2: for each 0 # I C {1,..., N}, multiply X by the face A; of AN~?
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GOAL: prove the Key Lemma, i.e. construct a nice model for a monodromy.
m In a topological setting, such a model was constructed by A’Campo ('73)
m ldea: endow A'Campo’s model with a structure of an acob
m see [Campesato—Fichou—Parusifski '21] for a similar idea in a motivic setting.
m f: X — C - holomorphic, f*(0) = Z,N:1 m;D;, £*(0)red - SNC.
X = ml_el D; \ U,-g: D;.
Step 1: extend polar coordinates to “radius zero”
m Replace each D; by an S'-bundle over D; (cf. eg. [Mumford '61] for n = 3)
m Convenient language: Kato—Nakayama space Xjog = (X, D)iog
B Ciog = (C,0)10g = S x [0,00): replace 0 € C by a “radius zero” circle.
Step 2: for each 0 # I C {1,..., N}, multiply X by the face A; of AN~?
~» Smooth manifold A = (X, D)ac with boundary
m Smooth map m: A — X, 7r|: A\ A — X\ D - diffeomorphism
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GOAL: prove the Key Lemma, i.e. construct a nice model for a monodromy.
m In a topological setting, such a model was constructed by A’Campo ('73)
m ldea: endow A'Campo’s model with a structure of an acob
m see [Campesato—Fichou—Parusifski '21] for a similar idea in a motivic setting.
m f: X — C - holomorphic, f*(0) = Z,N:1 m;D;, £*(0)red - SNC.
= XP =g, Di\ Ujgl b;.
Step 1: extend polar coordinates to “radius zero”
m Replace each D; by an S'-bundle over D; (cf. eg. [Mumford '61] for n = 3)
m Convenient language: Kato—Nakayama space Xjog = (X, D)iog
B Ciog = (C,0)10g = S x [0,00): replace 0 € C by a “radius zero” circle.
Step 2: for each 0 # I C {1,..., N}, multiply X by the face A; of AN~?
~» Smooth manifold A = (X, D)ac with boundary
m Smooth map m: A — X, 7r|: A\ A — X\ D - diffeomorphism
m f lifts to fac: A — Ciog, f|: A — OCieg has required monodromy.

Ap 0A A—— X

radius Zé’OJ/fAC loa lfAC J/f

St e Clopg —— C
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GOAL: prove the Key Lemma, i.e. construct a nice model for a monodromy.
m In a topological setting, such a model was constructed by A’Campo ('73)
m ldea: endow A'Campo’s model with a structure of an acob
m see [Campesato—Fichou—Parusifski '21] for a similar idea in a motivic setting.
m f: X — C - holomorphic, f*(0) = Z,N:1 m;D;, £*(0)red - SNC.
= XP =g, Di\ Ujgl b;.
Step 1: extend polar coordinates to “radius zero”
m Replace each D; by an S'-bundle over D; (cf. eg. [Mumford '61] for n = 3)
m Convenient language: Kato—Nakayama space Xjog = (X, D)iog
B Ciog = (C,0)10g = S x [0,00): replace 0 € C by a “radius zero” circle.
Step 2: for each 0 # I C {1,..., N}, multiply X by the face A; of AN~?
~» Smooth manifold A = (X, D)ac with boundary
m Smooth map m: A — X, 7r|: A\ A — X\ D - diffeomorphism
m f lifts to fac: A — Ciog, f|: A — OCieg has required monodromy.
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B Ciog = (C,0)10g = S x [0,00): replace 0 € C by a “radius zero” circle.
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GOAL: prove the Key Lemma, i.e. construct a nice model for a monodromy.
m In a topological setting, such a model was constructed by A’Campo ('73)
m ldea: endow A'Campo’s model with a structure of an acob
m see [Campesato—Fichou—Parusifski '21] for a similar idea in a motivic setting.
m f: X — C - holomorphic, f*(0) = Z,N:1 m;D;, £*(0)red - SNC.
= XP =g, Di\ Ujgl b;.
Step 1: extend polar coordinates to “radius zero”
m Replace each D; by an S'-bundle over D; (cf. eg. [Mumford '61] for n = 3)
m Convenient language: Kato—Nakayama space Xjog = (X, D)iog
B Ciog = (C,0)10g = S x [0,00): replace 0 € C by a “radius zero” circle.
Step 2: for each 0 # I C {1,..., N}, multiply X by the face A; of AN~?
~» Smooth manifold A = (X, D)ac with boundary
m Smooth map m: A — X, 7r|: A\ A — X\ D - diffeomorphism
m f lifts to fac: A — Ciog, f|: A — OCieg has required monodromy.

Ap 0A A—— X

radius Zé’OJ/fAC loa lfAC J/f

St e Clopg —— C

m o DA — AN, 1(DA) - dual complex of D, i.e. Ap = UX,#@ A
m ()| X7 — X7 x Ayis an (SY)#-bundle.
Principle: passing to radius zero makes the choices irrelevant.
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Step 1: extend polar coordinates to “radius zero”

m X - smooth complex manifold, D C X - snc divisor
m We will use language of log geometry (Kato '89, Fontaine-llusie, ..., Ogus)
m Very general framework, used e.g. to compare étale and de Rham cohomologies.

m We will use it for log structure Oy < M = Ox N O;(\D
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m X - smooth complex manifold, D C X - snc divisor

m We will use language of log geometry (Kato '89, Fontaine-llusie, ..., Ogus)

m Very general framework, used e.g. to compare étale and de Rham cohomologies.

m We will use it for log structure Oy < M = Ox N O;(\D

m Let M2 - group associated to the monoid M

m Xog = {(x,h) : x € X, h € Hom(M®P,S"), h= 4 if f € 0%},
BT Xog O (x,h) —»x€EX
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Step 1: extend polar coordinates to “radius zero”
m X - smooth complex manifold, D C X - snc divisor

m We will use language of log geometry (Kato '89, Fontaine-llusie, ..., Ogus)

m Very general framework, used e.g. to compare étale and de Rham cohomologies.
m We will use it for log structure Oy — M = Ox N O

X\D

m Let M2 - group associated to the monoid M

m Xog = {(x,h) : x € X, h € Hom(M®P,S"), h= 4 if f € 0%},
BT Xog O (x,h) —»x€EX
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Step 1: extend polar coordinates to “radius zero”

m X - smooth complex manifold, D C X - snc divisor

m We will use language of log geometry (Kato '89, Fontaine-llusie, ..., Ogus)
m Very general framework, used e.g. to compare étale and de Rham cohomologies.
m We will use it for log structure Oy < M = Ox N OX\D

m Let M2 - group associated to the monoid M

m Xiog = {(x,h) : x € X, h € Hom(M®,S"), h= ‘;(X)‘ if f e 0%},
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m We will use language of log geometry (Kato '89, Fontaine-llusie, ..., Ogus)
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m In general, we put the following topology on Xio:
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m In general, we put the following topology on Xio:

m U C X, holomorphic chart (z1,...,2z7): U—=D", DNU={z-... -z =0}
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Step 1: extend polar coordinates to “radius zero”
m X - smooth complex manifold, D C X - snc divisor

m We will use language of log geometry (Kato '89, Fontaine-llusie, ..., Ogus)

m Very general framework, used e.g. to compare étale and de Rham cohomologies.
m We will use it for log structure Oy — M = Ox N O

X\D
m Let M2 - group associated to the monoid M
m Xiog = {(x,h) : x € X, h & Hom(MZ,S"), h= 55, if f € Ok .},
BT Xog O (x,h) —»x€EX
® Ciog = (C,0)10g = {(z, 1= ) : z€ C}U{(0,1 0) : )y:0 €St} =Cc*ust
m Ciog = [0,00) x St @ @
Ciog

m In general, we put the following topology on Xio:

m U C X, holomorphic chart (z1,...,2z7): U—=D", DNU={z-... -z =0}
m Define a chart 771(U) — [0, 1)% x (S')k x D"~ by
(x,h) = (ri,... 01,0, 0k; Zks1, - - -, Zn),  where rj =|z|,6; = h(z).

Tomasz Petka Zariski multiplicity conjecture



Step 1: extend polar coordinates to “radius zero”
m X - smooth complex manifold, D C X - snc divisor

m We will use language of log geometry (Kato '89, Fontaine-llusie, ..., Ogus)
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m Xjog becomes a manifold with corners.
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m X - smooth complex manifold, D C X - snc divisor

m We will use language of log geometry (Kato '89, Fontaine-llusie, ..., Ogus)
m Very general framework, used e.g. to compare étale and de Rham cohomologies.
m We will use it for log structure Oy < M = Ox N OX\D

m Let M2 - group associated to the monoid M
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B 7| Xiog \ 0Xog — X \ D: diffeomorphism
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Step 1: extend polar coordinates to “radius zero”
m X - smooth complex manifold, D C X - snc divisor

m We will use language of log geometry (Kato '89, Fontaine-llusie, ..., Ogus)

m Very general framework, used e.g. to compare étale and de Rham cohomologies.

m We will use it for log structure Oy < M = Ox N OX\D

m Let M2 - group associated to the monoid M
m Xiog = {(x,h) : x € X, h € Hom(M®,S"), h= ‘;(X)‘ if f e 0%},

()

BT Xog O (x,h) —»x€EX
® Ciog = (C,0)10g = {(z, 1= ) : z€ C}U{(0,1 0) : )y:0 €St} =Cc*ust

I(C|og7[0 OO)XSl @ @

(Clog

m In general, we put the following topology on Xio:

m U C X, holomorphic chart (z1,...,2z7): U—=D", DNU={z-... -z =0}
m Define a chart 771(U) — [0, 1)% x (S')k x D"~ by

(x,h) = (ri,... 01,0, 0k; Zks1, - - -, Zn),  where rj =|z|,6; = h(z).
m Xjog becomes a manifold with corners.

B 7| Xiog \ 0Xog — X \ D: diffeomorphism
w77 H(X?) = X7 is an (S')*'-bundle
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Step 2: Multiply each X by a corresponding face of a dual complex.
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m Fix a convenient embedding of the simplex:
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Step 2: Multiply each X by a corresponding face of a dual complex.
m Fix a convenient embedding of the simplex:

n(t) t2
N -
n+1
ﬁ t : t
m Fix an atlas {(2,...,20): UP = D"},, flue = ()™ - ...« (z)™
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Step 2: Multiply each X by a corresponding face of a dual complex.
m Fix a convenient embedding of the simplex:

n(t) t2
N -
n+1
ﬁ t : t
m Fix an atlas {(2,...,20): UP = D"},, flue = ()™ - ...« (z)™

P _ P P _ ; ;
mz =1 9j coordinates in Xjog
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Step 2: Multiply each X by a corresponding face of a dual complex.
m Fix a convenient embedding of the simplex:

n(t) t2
N -
n+1
ﬁ t : t
m Fix an atlas {(2,...,20): UP = D"},, flue = ()™ - ...« (z)™

P _ P P _ ; ;
mz =1 9j coordinates in Xjog

m tropical coordinates tf = (—mjlogrf)~!; t = (—log|f|)~! = (Zj(tjf’)*l)*l.
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N -
n+1
ﬁ t : t
m Fix an atlas {(2,...,20): UP = D"},, flue = ()™ - ...« (z)™
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Step 2: Multiply each X by a corresponding face of a dual complex.
m Fix a convenient embedding of the simplex:

n(t) t2
N -
n+1
ﬁ t : t
m Fix an atlas {(2,...,20): UP = D"},, flue = ()™ - ...« (z)™

n zf’ = rj" . 9]’.’ - coordinates in Xjog

m tropical coordinates tj’ = (—mjlog rjp)fl; t=(—logl|f[)7t = (Zj(tf)il)il-
w =t (tf)_l)

m Fix a partition of unity: 7P: X — [0,1], 7 =0 on X\ UP”, ZPTP =1
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Step 2: Multiply each X by a corresponding face of a dual complex.
m Fix a convenient embedding of the simplex:

n(t) t2
N -
n+1
ﬁ t : t
m Fix an atlas {(2,...,20): UP = D"},, flue = ()™ - ...« (z)™

sz = rj" . 9]’.’ - coordinates in Xjog
tropical coordinates tj’ = (—mjlog rjp)fl; t=(—logl|f[)7t = (Zj(tf)il)il-
W = (e (¢2) )

Fix a partition of unity: 7°: X — [0,1], 7P =0 on X\ UP, ZPTP =1

Define u; = Zp 7"’uj.y - relative speed of convergence to D;
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N -
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sz = rj" . 9]’.’ - coordinates in Xjog
tropical coordinates tj’ = (—mjlog rjp)fl; t=(—logl|f[)7t = (Zj(tf)il)il-
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m Define uj = Zp 7"’uj.y - relative speed of convergence to D;

~ smooth map = (u1,...,un): X\ D — R
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Step 2: Multiply each X by a corresponding face of a dual complex.
m Fix a convenient embedding of the simplex:

n(t) t2
N -
n+1
ﬁ t : t
m Fix an atlas {(2,...,20): UP = D"},, flue = ()™ - ...« (z)™

n zf = rjp . 9]'.’ - coordinates in Xiog
m tropical coordinates tf = (—mjlogrf)~!; t = (—log|f|)~! = (Zj(tf)*l)*l.
w =t (tjp)_l)
m Fix a partition of unity: 7P: X — [0,1], 7 =0 on X\ UP”, ZPTP =1
m Define uj = Zp 7"’uj.y - relative speed of convergence to D;
~ smooth map = (u1,...,un): X\ D — R
m Put I = graph(g) € X x RV
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Step 2: Multiply each X by a corresponding face of a dual complex.
m Fix a convenient embedding of the simplex:

n(t) t2
N -
n+1
ﬁ t : t
m Fix an atlas {(2,...,20): UP = D"},, flue = ()™ - ...« (z)™

n zf’ = rj" . 9]’.’ - coordinates in Xjog

m tropical coordinates tj’ = (—mjlog rjp)fl; t=(—logl|f[)7t = (Zj(tf)il)il-
w =t (tjp)_l)

m Fix a partition of unity: 7P: X — [0,1], 7 =0 on X\ UP”, ZPTP =1

Define u; = Zp 7"’uj.y - relative speed of convergence to D;

~ smooth map = (u1,...,un): X\ D — R
m Put I = graph(g) € X x RV
m A’Campo space A = Xiog Xxx I', 0A = 77 1(D).

A—5T — XxRV A5 Ciog

I~ |

Xog — X c-t-o3 RV X —5c
[ uy
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A— T —— XxRV
| ] |
Xiog —— X ---i‘--? RV

(u1,...,uy

Zariski multiplicity conjecture
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A— T —— XxR" A Cg

I~ o
Xiog —— X ,,,t‘,,,; RY X —t-c
= Recall: locally, on UP: D; = {t’ =0}, uf =n(t- (t/)™")
[ uj — 0 (resp. 1) if we approach D; slower (resp. faster) than all D;, i # j
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A— 5T —— XxRV A Cig

[~ .

)<Iog —— X ***H***E RN X ;) C
m Recall: locally, on UP: D; = {t” = 0}, u? = n(t- (t/)™")

[ uj — 0 (resp. 1) if we approach D; slower (resp. faster) than all D;, i # j
m ((OA) is the dual complex of D
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AT 5 X xRV A 25 Crog
] ol
Xiog —— X —--*-— o3 RY X —t-c
= Recall: locally, on UP: D; = {tP 0}, uf =n(t-(¢)71)
[ uj — 0 (resp. 1) if we approach D; slower (resp. faster) than all D;, i # j
m ((OA) is the dual complex of D

P _ 4P __ P
BV =ty
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AT 5 X xRV A 25 Crog

I~ ol
Xiog —— X ,,,t‘,,,; RY X —t-c
= Recall: locally, on UP: D; = {t’ =0}, uf =n(t- (t/)™")
[ uj — 0 (resp. 1) if we approach D; slower (resp. faster) than all D;, i # j
m ((OA) is the dual complex of D
P 4P p
BV =Gy

= Put UjP =7 HUP)N{t- (tj”)*1 > - covering of 7~ *(UP)

n+1
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A— 5T —— XxRV A Cig

[~ .

)<Iog —— X ***H***E RN X ;) C
m Recall: locally, on UP: D; = {t” = 0}, u? = n(t- (t/)™")

[ uj — 0 (resp. 1) if we approach D; slower (resp. faster) than all D;, i # j
m ((OA) is the dual complex of D

=g
1 —1 1 : —1

m Put U =7 (UP)N{t-(tf)" > ;ig} - covering of 7~ (UP)

m Smooth chart on Uf: (n(t), v§,..., v 00, ...,00 20, 1,...,2F)
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m Recall: locally, on UP: D; = {t” = 0}, u? = n(t- (t/)™")

[ uj — 0 (resp. 1) if we approach D; slower (resp. faster) than all D;, i # j
m ((OA) is the dual complex of D
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m Put U =7 (UP)N{t-(tf)" > ;ig} - covering of 7~ (UP)

m Smooth chart on Uf: (n(t), v§,..., v 00, ...,00 20, 1,...,2F)

m 0A = fAE1(8C|Og) = {n(t) =0}, so n(t) A — Cjog — [0, 00): submersion
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AT 5 X xRV A 25 Crog

I~ o
Xiog —— X E"L’ RV X —t-c
N py—1
m Recall: locally, on UP: D; = {tf = 0}, uf =n(t-(t)")
[ uJ — 0 (resp. 1) if we approach D; slower (resp. faster) than all D;, i # j
m ((OA) is the dual complex of D

=g
1 —1 : —1

m Put U =7 (UP)N{t-(tf)" > ;ig} - covering of 7~ (UP)

m Smooth chart on Uf: (n(t), v§,..., v 00, ...,00 20, 1,...,2F)

m 0A = fAE1(8C|Og) = {n(t) =0}, so n(t): A— Cjog — [0, 00): submersion
m A = a7 (XP), (m,p): AY = XP X A - (SH)#/-bundle
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AT 5 X xRV A 25 Crog

I~ o
Xiog —— X E"L’ RV X —t-sc
N py—1
m Recall: locally, on UP: D; = {tf = 0}, uf =n(t-(t)")
[ uJ — 0 (resp. 1) if we approach D; slower (resp. faster) than all D;, i # j
m ((OA) is the dual complex of D

=g
m Put U} = a N UP)Y N {t- (tj”)’1 > n}rl - covering of 7~ (UP)
m Smooth chart on Uf: (n(t), v§,..., v 00, ...,00 20, 1,...,2F)

m 0A = fAE1(8C|Og) = {n(t) =0}, so n(t): A— Cjog — [0, 00): submersion
m A = a7 (XP), (m,p): AY = XP X A - (SH)#/-bundle

V2
V2 Al A3
1
o
AS| ASEX\D pif : -
) vi Avals Az W
1.2 1 a0 é{ A3
A2 Vy
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m We have defined radial coordinates v{. Put v; = > 7Pvf.
pl Vi
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m We have defined radial coordinates v{. Put v; = > 7Pvf.
pl Vi

m The angular coordinates 67 come from Xiog.
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m We have defined radial coordinates v{. Put v; = > 7Pvf.
pl Vi

m The angular coordinates 67 come from Xiog. Put o = ZP Pdo;
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m We have defined radial coordinates v{. Put v; = > 7Pvf.
pl Vi

m The angular coordinates 67 come from Xiog. Put o = ZP Pdo;
B o € Q) (log D)), so aj = Q1 (Xiog) — QL(A)
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= We have defined radial coordinates v{. Put v; = ZP v
m The angular coordinates 67 come from Xiog. Put o = ZP Pdo;
B o € Q) (log D)), so aj = Q1 (Xiog) — QL(A)

m Fix a Liouville form Ax € Q(X), wx = dAx
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Recall: (7(t),0): A — Ciog - submersion; with the same level sets as f.
m Symplectic lift of % ~~ isotopy from radius § to radius zero
m Symplectic lift of % ~~ monodromy ¢ at radius zero.

m On Aj‘? we have wac = dvj A o, so ¢\Ajg> is a rotation about fn—”

m m-separatedness: ¢™ has no fixed points on A9, #/ > 2.
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Example: f = z2z: C? — C.

Ar: (1, 602) = (1,02)

(X;)\ogi (01, 1) — (7017 1)
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Thank you!
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