Equivariant quantum cohomology and puzzles

Anders Skoysted Buch

arXiv:1401.3065

Collaborators on subject:

A. Kresch, L. Mihalcea, K. Purbhoo, H. Tamvakis

Two-step flag varieties

Fix $0 \le a \le b \le n$.

$$Y = \operatorname{Fl}(a, b; n) = \{(A, B) \mid A \subset B \subset \mathbb{C}^n ; \dim(A) = a; \dim(B) = b\}$$

Two-step flag varieties

Fix $0 \le a \le b \le n$.

$$Y = FI(a, b; n) = \{(A, B) \mid A \subset B \subset \mathbb{C}^n; \dim(A) = a; \dim(B) = b\}$$

Def: A **012-string** for Y is a permutation of $0^a 1^{b-a} 2^{n-b}$.

$$\mathbb{C}^n$$
 has basis $\{e_1, e_2, \dots, e_n\}$. $u = (u_1, u_2, \dots, u_n)$ 012-string.
Def. $(A_u, B_u) \in Y$ by $A_u = \text{Span}\{e_i : u_i = 0\}$ and $B_u = \text{Span}\{e_i : u_i \le 1\}$.

Example: Y = Fl(1, 3; 5) u = 10212 $(A_1, B_2) = (Ce_1 \oplus Ce_2 \oplus Ce_3 \oplus Ce_4)$

Example:
$$Y = FI(1,3;5)$$
. $u = 10212$. $(A_u, B_u) = (\mathbb{C}e_2, \mathbb{C}e_1 \oplus \mathbb{C}e_2 \oplus \mathbb{C}e_4)$.

Two-step flag varieties

Fix $0 \le a \le b \le n$.

$$Y = FI(a, b; n) = \{(A, B) \mid A \subset B \subset \mathbb{C}^n ; \dim(A) = a ; \dim(B) = b\}$$

Def: A **012-string** for Y is a permutation of $0^a 1^{b-a} 2^{n-b}$.

$$\mathbb{C}^n$$
 has basis $\{e_1, e_2, \dots, e_n\}$. $u = (u_1, u_2, \dots, u_n)$ 012-string.

Def. $(A_u, B_u) \in Y$ by $A_u = \text{Span}\{e_i : u_i = 0\}$ and $B_u = \text{Span}\{e_i : u_i \le 1\}$.

Example:
$$Y = \text{Fl}(1,3;5)$$
. $u = 10212$. $(A_u, B_u) = (\mathbb{C}e_2, \mathbb{C}e_1 \oplus \mathbb{C}e_2 \oplus \mathbb{C}e_4)$.

 $\mathbf{B}^+\subset \mathsf{GL}(\mathbb{C}^n)$ upper triangular ; $\mathbf{B}^-\subset \mathsf{GL}(\mathbb{C}^n)$ lower triangular matrices.

Schubert varieties:
$$Y_u = \overline{\mathbf{B}^+.(A_u,B_u)}$$
 ; $Y^u = \overline{\mathbf{B}^-.(A_u,B_u)}$ $\subset Y$

 $\dim(Y_u) = \operatorname{codim}(Y^u, Y) = \ell(u) = \#\{i < j \mid u_i > u_j\}$

Equivariant cohomology

 $T \subset \mathsf{GL}(\mathbb{C}^n)$ max. torus of diagonal matrices.

$$\Lambda := H_T^*(\mathsf{point}; \mathbb{Z}) = \mathbb{Z}[y_1, \dots, y_n]$$
, where $y_i = -c_1(\mathbb{C}e_i)$.

$$H_T^*(Y;\mathbb{Z}) = \bigoplus \Lambda \cdot [Y^u]$$
 is an algebra over Λ .

Equivariant cohomology

 $T \subset GL(\mathbb{C}^n)$ max. torus of diagonal matrices.

$$\Lambda := H_T^*(\mathsf{point}; \mathbb{Z}) = \mathbb{Z}[y_1, \dots, y_n]$$
, where $y_i = -c_1(\mathbb{C}e_i)$.
 $H_T^*(Y; \mathbb{Z}) = \bigoplus \Lambda \cdot [Y^u]$ is an algebra over Λ .

Equivariant Schubert structure constants
$$C_{\mu,\nu}^w \in \Lambda$$
:

Equivariant Schubert structure constants
$$C_{u,v}^w \in \Lambda$$

$$[Y^u] \cdot [Y^v] = \sum_{w} C^w_{u,v} [Y^w]$$

Poincare duality:
$$C_{u,v}^w = \int_Y [Y^u] \cdot [Y^v] \cdot [Y_w]$$

Equivariant cohomology

 $T \subset GL(\mathbb{C}^n)$ max. torus of diagonal matrices.

$$\Lambda:=H_T^*(\mathsf{point};\mathbb{Z}) = \mathbb{Z}[y_1,\ldots,y_n]$$
 , where $y_i=-c_1(\mathbb{C}e_i)$.

$$H_T^*(Y;\mathbb{Z}) = \bigoplus_u \Lambda \cdot [Y^u]$$
 is an algebra over Λ .
Equivariant Schubert structure constants $C_{u,v}^w \in \Lambda$:

 $[Y^u] \cdot [Y^v] = \sum_{u,v} C^w_{u,v} [Y^w]$

Poincare duality:
$$C_{u,v}^w = \int_Y [Y^u] \cdot [Y^v] \cdot [Y_w]$$

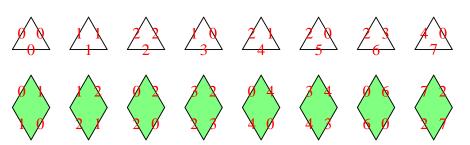
Poincare duality:
$$C_{u,v}^w = \int_Y [Y^u] \cdot [Y^v] \cdot [Y_w]$$

 $C_{u,v}^w \in \mathbb{Z}[y_1, \dots, y_n]$ is homogeneous of degree $\ell(u) + \ell(v) - \ell(w)$.

$$\ell(u) + \ell(v) = \ell(w) \Rightarrow$$
 $C_{u,v}^w = \#(Y^u \cap g.Y^v \cap Y_w) \text{ for } g \in \mathsf{GL}(\mathbb{C}^n) \text{ general.}$

Theorem (Graham)
$$C_{u,v}^w \in \mathbb{Z}_{\geq 0}[y_2 - y_1, \dots, y_n - y_{n-1}]$$

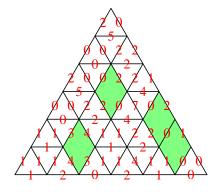
Puzzle pieces



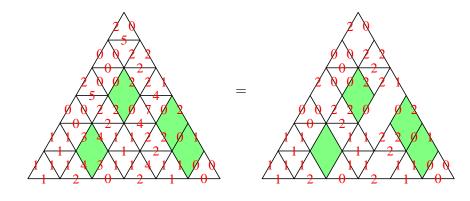
Simple labels: 0, 1, 2

Composed labels: 3=10, 4=21, 5=20, 6=2(10), 7=(21)0

Equivariant puzzles

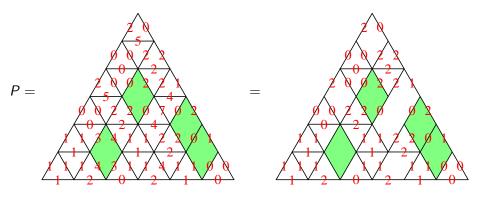


Equivariant puzzles



Note: The composed labels are uniquely determined by the simple labels.

Equivariant puzzles



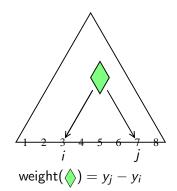
Note: The composed labels are uniquely determined by the simple labels.

Boundary: $\partial P = \triangle_w^{u,v}$ where u = 110202, v = 021210, w = 120210.

Equivariant puzzle formula

Theorem

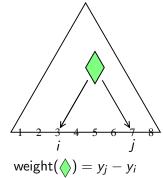
$$C_{u,v}^{w} = \sum_{\partial P = \triangle_{w}^{u,v}} \prod_{\bigotimes \in P} \mathsf{weight}(\bigotimes)$$



Equivariant puzzle formula

Theorem

$$C_{u,v}^{w} = \sum_{\partial P = \triangle_{w}^{u,v}} \prod_{\lozenge \in P} \mathsf{weight}(\lozenge)$$



$$\mathsf{weight}(\diamondsuit) = y_j - y$$

Known cases:

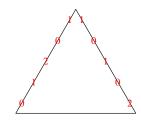
Puzzle rule for $H^*(Gr(m, n))$ (Knutson, Tao, Woodward)

Puzzle rule for $H_T^*(Gr(m, n))$ (Knutson, Tao)

Puzzle rule for $H^*(FI(a, b; n))$ (conjectured by Knutson, proof in [B-Kresch-Purbhoo-Tamvakis], different positive formula by Coskun.)

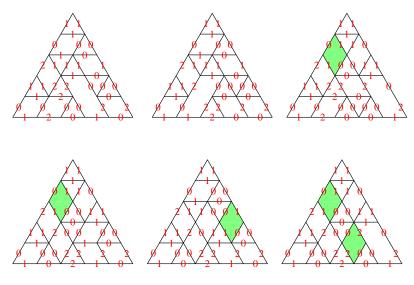
Example: Let Y = FI(2,4;5). In $H_T^*(Y)$ we have:

 $[Y^{01201}] \cdot [Y^{10102}] =$?



Example: Let Y = FI(2, 4; 5). In $H_T^*(Y)$ we have:

 $[Y^{01201}] \cdot [Y^{10102}] = ?$



Example: Let Y = FI(2, 4; 5). In $H_T^*(Y)$ we have: $[Y^{01201}] \cdot [Y^{10102}] =$

$$[Y^{12010}] + [Y^{11200}] + (y_4 - y_1)[Y^{12001}]$$

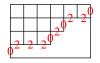
$$+ (y_5 + y_4 - y_3 - y_1)[Y^{10210}] + (y_4 - y_3)(y_4 - y_1)[Y^{10201}]$$

$$X = \operatorname{Gr}(m, n) = \{V \subset \mathbb{C}^n \mid \dim(V) = m\} = \operatorname{Fl}(m, m; n)$$

$$X^{0222020220} \longleftrightarrow 0222020220 \longleftrightarrow$$

$$X = \operatorname{Gr}(m, n) = \{V \subset \mathbb{C}^n \mid \dim(V) = m\} = \operatorname{Fl}(m, m; n)$$

$$X^{0222020220} \longleftrightarrow 0222020220 \longleftrightarrow$$



$$X = \operatorname{Gr}(m,n) = \{V \subset \mathbb{C}^n \mid \dim(V) = m\} = \operatorname{Fl}(m,m;n)$$

Schubert varieties \longleftrightarrow 02-strings \longleftrightarrow Young diagrams λ
 $X^{0222020220} \longleftrightarrow 0222020220 \longleftrightarrow \sqrt{2 \cdot 2 \cdot 2 \cdot 2}$

Def: A (rational) **curve** $C \subset X$ is any image of a polynomial map $\mathbb{P}^1 \to X$.

Degree: $deg(C) = \#(C \cap g.X^{\square})$

$$X = \operatorname{Gr}(m, n) = \{V \subset \mathbb{C}^n \mid \dim(V) = m\} = \operatorname{Fl}(m, m; n)$$

Schubert varieties \longleftrightarrow 02-strings \longleftrightarrow Young diagrams λ
 $X^{0222020220} \longleftrightarrow 0222020220 \longleftrightarrow 0222020220$

Def: A (rational) curve $C \subset X$ is any image of a polynomial map $\mathbb{P}^1 \to X$.

Degree:
$$deg(C) = \#(C \cap g.X^{\square})$$

Def: Given λ , μ , ν with $|\lambda| + |\mu| = |\nu| + nd$, define $\langle [X^{\lambda}], [X^{\mu}], [X_{\nu}] \rangle_d = \# \text{ curves } C \subset X \text{ of degree } d \text{ meeting } X^{\lambda}, \ g.X^{\mu}, \ \text{and } X_{\nu}.$

Kontsevich moduli space

$$\overline{\mathcal{M}}_{0,3}(X,d) = \{ \text{stable } f: C \to X \mid f_*[C] = d \text{ [line]} \}$$

Evaluation maps: $\operatorname{ev}_i: \overline{\mathcal{M}}_{0,3}(X,d) \to X$ $\operatorname{ev}_i(f) = f(i\text{-th marked point})$

Kontsevich moduli space

$$\overline{\mathcal{M}}_{0,3}(X,d) = \{ \mathsf{stable}\ f: C \to X \mid f_*[C] = d\ [\mathsf{line}] \}$$

Evaluation maps: $\operatorname{ev}_i: \overline{\mathcal{M}}_{0,3}(X,d) \to X$

$$ev_i(f) = f(i-th \text{ marked point})$$

Equivariant Gromov-Witten invariant:

Given
$$\alpha_1, \alpha_2, \alpha_3 \in H_T^*(X; \mathbb{Z})$$
 define

Given
$$\alpha_1, \alpha_2, \alpha_3 \in H^*_T(X; \mathbb{Z})$$
 define $\langle \alpha_1, \alpha_2, \alpha_3 \rangle_d = \int_{\overline{\mathcal{M}}_{0,3}(X,d)} \operatorname{ev}_1^*(\alpha_1) \cdot \operatorname{ev}_2^*(\alpha_2) \cdot \operatorname{ev}_3^*(\alpha_3) \in \Lambda$

Kontsevich moduli space

$$\overline{\mathcal{M}}_{0,3}(X,d) = \{ \text{stable } f: C \to X \mid f_*[C] = d \text{ [line]} \}$$

C = $\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$

Evaluation maps:
$$\operatorname{ev}_i: \overline{\mathcal{M}}_{0,3}(X,d) \to X$$

 $\operatorname{ev}_i(f) = f(i\text{-th marked point})$

Equivariant Gromov-Witten invariant:

Given
$$\alpha_1, \alpha_2, \alpha_3 \in H_T^*(X; \mathbb{Z})$$
 define

$$\langle \alpha_1, \alpha_2, \alpha_3 \rangle_d = \int_{\overline{\mathcal{M}}_{0,3}(X,d)} \operatorname{ev}_1^*(\alpha_1) \cdot \operatorname{ev}_2^*(\alpha_2) \cdot \operatorname{ev}_3^*(\alpha_3) \in \Lambda$$

Note:
$$\langle [X^{\lambda}], [X^{\mu}], [X_{\nu}] \rangle_d \in \mathbb{Z}[y_1, \dots, y_n]$$
 is homogeneous of degree $|\lambda| + |\mu| - |\nu| - nd$.

Note:
$$C_{\lambda,\mu}^{\nu} = \int_{X} [X^{\lambda}] \cdot [X^{\mu}] \cdot [X_{\nu}] = \langle [X^{\lambda}], [X^{\mu}], [X_{\nu}] \rangle_{0}$$

Small equivariant quantum ring

 $QH_T(X)$ is an algebra over $\Lambda[q]$.

As
$$\Lambda[q]$$
-module: $QH_T(X) = H_T^*(X; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}[q] = \bigoplus_{\lambda} \Lambda[q] \cdot [X^{\lambda}]$

Quantum product:
$$[X^{\lambda}] \star [X^{\mu}] = \sum_{\nu, d > 0} \langle [X^{\lambda}], [X^{\mu}], [X_{\nu}] \rangle_d q^d [X^{\nu}]$$

Small equivariant quantum ring

 $QH_T(X)$ is an algebra over $\Lambda[q]$.

As
$$\Lambda[q]$$
-module: $QH_T(X) = H_T^*(X; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}[q] = \bigoplus_{\lambda} \Lambda[q] \cdot [X^{\lambda}]$

Quantum product:
$$[X^{\lambda}] \star [X^{\mu}] = \sum_{\nu,d \geq 0} \langle [X^{\lambda}], [X^{\mu}], [X_{\nu}] \rangle_d q^d [X^{\nu}]$$

 $QH_T(X)$ is associative!

Small equivariant quantum ring

 $QH_T(X)$ is an algebra over $\Lambda[q]$.

As
$$\Lambda[q]$$
-module: $QH_T(X) = H_T^*(X; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}[q] = \bigoplus_{\lambda} \Lambda[q] \cdot [X^{\lambda}]$

Quantum product:
$$[X^{\lambda}] \star [X^{\mu}] = \sum_{\nu,d \geq 0} \langle [X^{\lambda}], [X^{\mu}], [X_{\nu}] \rangle_d q^d [X^{\nu}]$$

Theorem (Ruan–Tian, Kontsevich–Manin, Kim):

$$QH_T(X)$$
 is associative!

Mihalcea: $\langle [X^{\lambda}], [X^{\mu}], [X_{\nu}] \rangle_d \in \mathbb{Z}_{\geq 0}[y_2 - y_1, \dots, y_n - y_{n-1}]$

Kernel and Span

Let $C \subset X = Gr(m, n)$ be a curve.

Def: (B)
$$\operatorname{Ker}(C) = \bigcap_{V \in C} V \subset \mathbb{C}^n$$
 and $\operatorname{Span}(C) = \sum_{V \in C} V \subset \mathbb{C}^n$

Obs: $\dim Ker(C) \ge m - \deg(C)$ and $\dim Span(C) \le m + \deg(C)$

Application (B) Simpler proofs of structure theorems for QH(X) first proved by Bertram.

Quantum = classical theorem

Def:
$$Y_d = FI(m-d, m+d; n)$$

= $\{(A, B) \mid A \subset B \subset \mathbb{C}^n , \dim(A) = m-d , \dim(B) = m+d\}$

Given subvariety $\Omega \subset X$, define

$$\widetilde{\Omega} = \{ (A, B) \in Y_d \mid \exists V \in \Omega : A \subset V \subset B \}$$

Quantum = classical theorem

Def:
$$Y_d = FI(m-d, m+d; n)$$

= $\{(A, B) \mid A \subset B \subset \mathbb{C}^n , \dim(A) = m-d , \dim(B) = m+d\}$

Given subvariety $\Omega \subset X$, define

$$\widetilde{\Omega} = \{ (A, B) \in Y_d \mid \exists V \in \Omega : A \subset V \subset B \}$$

Theorem (B, Kresch, Tamvakis) Assume that $|\lambda| + |\mu| = |\nu| + nd$.

$$\left\{ \begin{array}{l} \text{curves } C \subset X \text{ of degree } d \\ \text{meeting } X^{\lambda} \text{ , } g.X^{\mu} \text{ , } X_{\nu} \end{array} \right\} \longleftrightarrow \widetilde{X}^{\lambda} \cap g.\widetilde{X}^{\mu} \cap \widetilde{X}_{\nu} \subset Y_{d} \\
C \mapsto \left(\text{Ker}(C), \text{Span}(C) \right)$$

Cor:
$$\langle [X^{\lambda}], [X^{\mu}], [X_{\nu}] \rangle_d = \int_{Y_d} [\widetilde{X}^{\lambda}] \cdot [\widetilde{X}^{\mu}] \cdot [\widetilde{X}_{\nu}]$$

$$X = Gr(m, n) = \{V\}$$

$$Z_d \xrightarrow{p} X \qquad Y_d = Fl(m - d, m + d; n) = \{(A, B)\}$$

$$Z_d = Fl(m - d, m, m + d; n) = \{(A, V, B)\}$$

$$Y_d$$

Note:
$$\widetilde{\Omega} = q(p^{-1}(\Omega))$$

Theorem (B, Mihalcea) Let
$$\alpha, \beta, \gamma \in H_T^*(X; \mathbb{Z})$$
. Then

$$\langle \alpha, \beta, \gamma \rangle_d = \int_{Y_d} q_*(p^*(\alpha)) \cdot q_*(p^*(\beta)) \cdot q_*(p^*(\gamma))$$

$\label{Generalized quantum = classical theorem} \textbf{Generalized quantum} = \textbf{classical theorem}$

$$M_{d} \qquad M_{d} = \overline{\mathcal{M}}_{0,3}(X,d)$$

$$\downarrow^{\operatorname{ev}_{i}} \qquad X = \operatorname{Gr}(m,n) = \{V\}$$

$$Z_{d} \xrightarrow{p} X \qquad Y_{d} = \operatorname{Fl}(m-d,m+d;n) = \{(A,B)\}$$

$$\downarrow^{q} \qquad Z_{d} = \operatorname{Fl}(m-d,m,m+d;n) = \{(A,V,B)\}$$

$$Y_{d} = \operatorname{Fl}(m-d,m,m+d;n) = \{(A,V,B)\}$$

Note:
$$\widetilde{\Omega} = q(p^{-1}(\Omega))$$

Theorem (B, Mihalcea) Let
$$\alpha, \beta, \gamma \in H_T^*(X; \mathbb{Z})$$
. Then

$$\langle \alpha, \beta, \gamma \rangle_d = \int_{Y_d} q_*(p^*(\alpha)) \cdot q_*(p^*(\beta)) \cdot q_*(p^*(\gamma))$$

$$B\ell_{d} \xrightarrow{\pi} M_{d} \qquad M_{d} = \overline{M}_{0,3}(X,d)$$

$$\downarrow^{\phi} \qquad \downarrow^{\text{ev}_{i}} \qquad X = \text{Gr}(m,n) = \{V\}$$

$$Z_{d}^{(3)} \xrightarrow{e_{i}} Z_{d} \xrightarrow{p} X \qquad Y_{d} = \text{Fl}(m-d,m+d;n) = \{(A,B)\}$$

$$Z_{d} = \text{Fl}(m-d,m,m+d;n) = \{(A,V,B)\}$$

$$Y_{d} \qquad B\ell_{d} = \left\{ (f,A,B) \in M_{d} \times Y_{d} : \\ A \subset \text{Ker}(f) \text{ and } \text{Span}(f) \subset B \right\}$$

$$Z_{d}^{(3)} = \left\{ (V_{1},V_{2},V_{3},A,B) \in X^{3} \times Y_{d} : \\ A \subset V_{i} \subset B \right\}$$

$$\pi(f,A,B) = f$$

$$\phi(f, A, B) = (ev_1(f), ev_2(f), ev_3(f), A, B)$$

$$e_i(V_1, V_2, V_3, A, B) = (A, V_i, B)$$

$$\begin{array}{cccc}
& & & & & & & \\
\downarrow_{\phi} & & & & & \\
\downarrow_{\phi} & & & & \\
\downarrow_{ev_{i}} & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$

Facts:

- (1) π is birational. (A general curve has kernel and span of expected dimensions.)
- (2) ϕ is birational. (A general curve is determined by 3 points for $d \leq \min(m, n m)$.)
- $(3) \quad Z_d^{(3)} = Z_d \times_{Y_d} Z_d \times_{Y_d} Z_d$

Let
$$\alpha, \beta, \gamma \in H_T^*(X; \mathbb{Z})$$
.

$$\int_{M_d} \operatorname{ev}_1^*(\alpha) \cdot \operatorname{ev}_2^*(\beta) \cdot \operatorname{ev}_3^*(\gamma) = \int_{\operatorname{B}\ell_d} (\operatorname{ev}_1 \pi)^*(\alpha) \cdot (\operatorname{ev}_2 \pi)^*(\beta) \cdot (\operatorname{ev}_3 \pi)^*(\gamma)$$

Let
$$\alpha, \beta, \gamma \in H_T^*(X; \mathbb{Z})$$

$$\int_{M_d} \operatorname{ev}_1^*(\alpha) \cdot \operatorname{ev}_2^*(\beta) \cdot \operatorname{ev}_3^*(\gamma) = \int_{\operatorname{B}\ell_d} (\operatorname{ev}_1 \pi)^*(\alpha) \cdot (\operatorname{ev}_2 \pi)^*(\beta) \cdot (\operatorname{ev}_3 \pi)^*(\gamma)$$

$$= \int_{Z_3^{(3)}} e_1^*(p^*\alpha) \cdot e_2^*(p^*\beta) \cdot e_3^*(p^*\gamma)$$

$$B\ell_{d} \xrightarrow{\pi} M_{d}$$

$$\downarrow_{\phi} \qquad \downarrow_{\text{ev}_{i}} \qquad B\ell_{d} = \left\{ (f, A, B) \in M_{d} \times Y_{d} : \\ A \subset \text{Ker}(f) \text{ and } \text{Span}(f) \subset B \right\}$$

$$Z_{d}^{(3)} \xrightarrow{e_{i}} Z_{d} \xrightarrow{p} X$$

$$\downarrow_{q} \qquad Z_{d}^{(3)} = \left\{ (V_{1}, V_{2}, V_{3}, A, B) \in X^{3} \times Y_{d} : \\ A \subset V_{i} \subset B \right\}$$

$$Let \alpha, \beta, \gamma \in H_{T}^{*}(X; \mathbb{Z}).$$

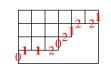
$$\int_{M_d} \operatorname{ev}_1^*(\alpha) \cdot \operatorname{ev}_2^*(\beta) \cdot \operatorname{ev}_3^*(\gamma) = \int_{\operatorname{B}\ell_d} (\operatorname{ev}_1 \pi)^*(\alpha) \cdot (\operatorname{ev}_2 \pi)^*(\beta) \cdot (\operatorname{ev}_3 \pi)^*(\gamma) \\
= \int_{Z_d^{(3)}} e_1^*(p^*\alpha) \cdot e_2^*(p^*\beta) \cdot e_3^*(p^*\gamma) \\
= \int_{Y_d} q_* p^*(\alpha) \cdot q_* p^*(\beta) \cdot q_* p^*(\gamma)$$

Littlewood-Richardson rule for $QH_T(X)$

Let $\lambda(d)$ is the 012-string obtained from λ by replacing the first d occurrences of 2 and the last d occurrences of 0 with 1.

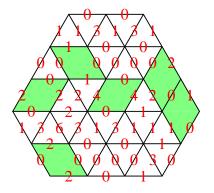
Then
$$\widetilde{X}^{\lambda} = Y_d^{\lambda(d)}$$
.

$$\lambda = 0222020220$$
 and $d = 2$ gives $\lambda(d) = 0112021221$.

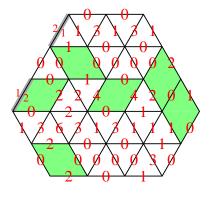


Corollary:

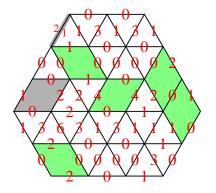
$$\langle [X^{\lambda}], [X^{\mu}], [X_{\nu^{\vee}}] \rangle_{d} \ = \ C_{\lambda(d), \mu(d)}^{\nu(d)^{\vee}} \ = \ \sum_{\partial P = \triangle_{\nu(d)^{\vee}}^{\lambda(d), \mu(d)}} \ \prod_{\lozenge \in P} \mathsf{weight}(\lozenge)$$



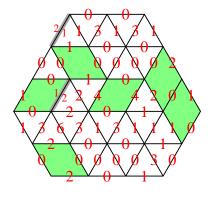
- Puzzle: Shape is a hexagon.
 - All pieces may be rotated.
 - Boundary labels are simple.



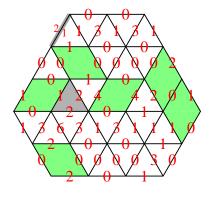
Flawed puzzle containing the gash pair:



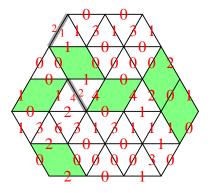
Remove problematic piece.



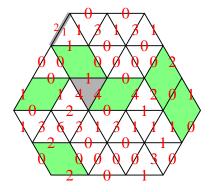
Replace with:



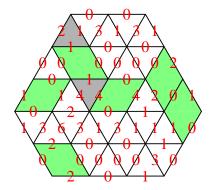
Replace with OR ?

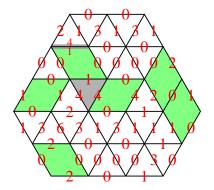


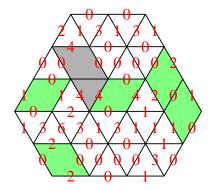
The piece fits. Always at most one choice !!!

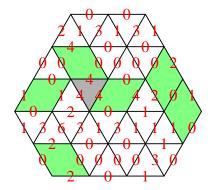


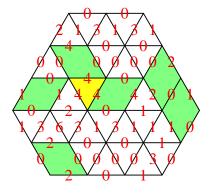
But no puzzle piece fits this time.



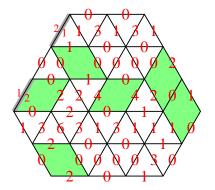


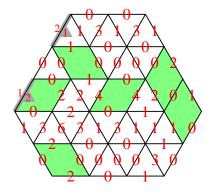






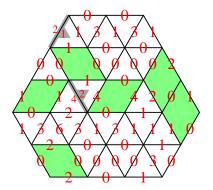
Flawed puzzle containing the **temporary puzzle piece**:

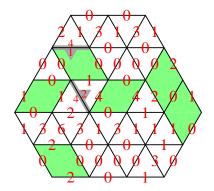


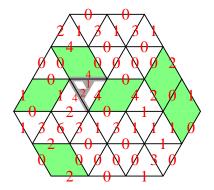


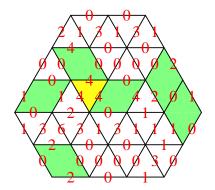
Use directed gashes.

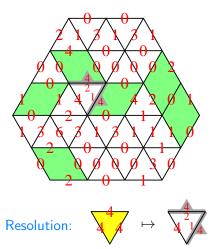


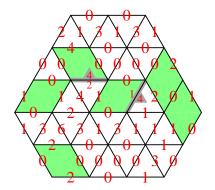


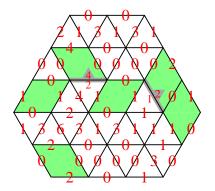


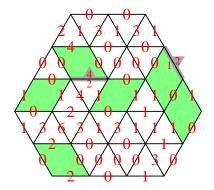


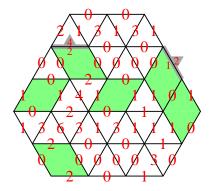


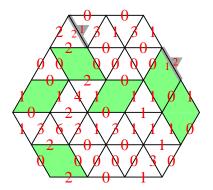


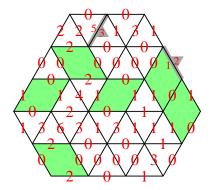


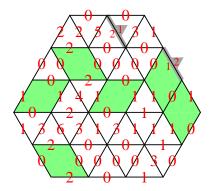


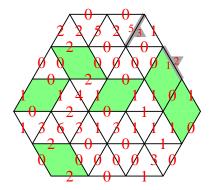


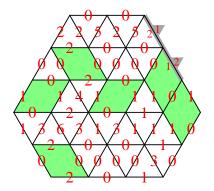


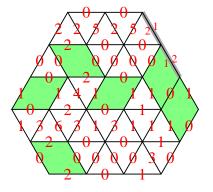




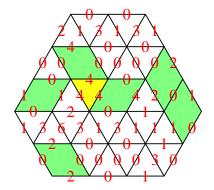


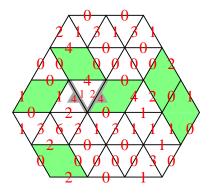


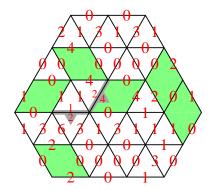


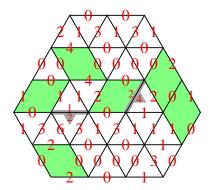


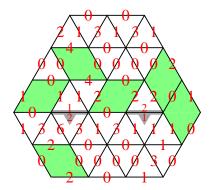
Flawed puzzle containing a gash pair.

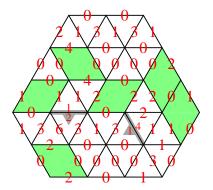


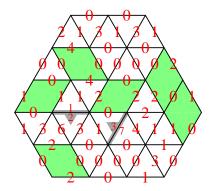


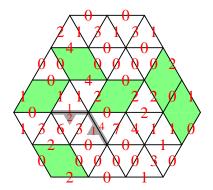


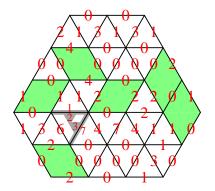


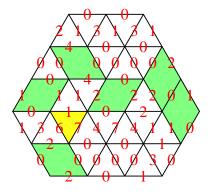




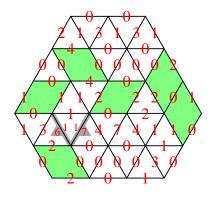


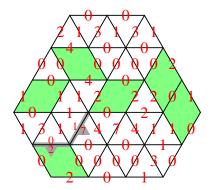


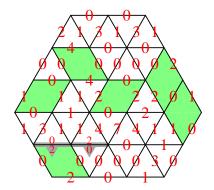


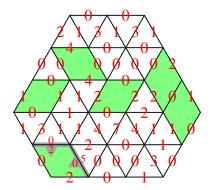


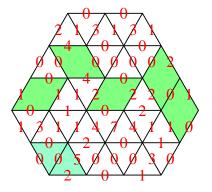
Flawed puzzle containing the **temporary puzzle piece**:



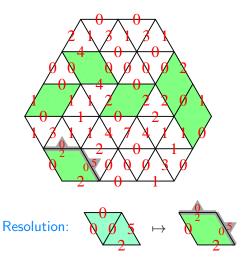




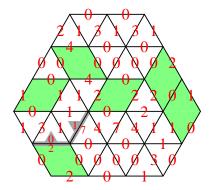


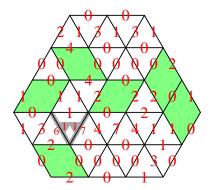


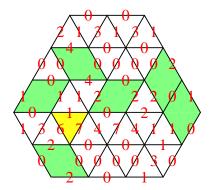
Flawed puzzle containing the marked scab:

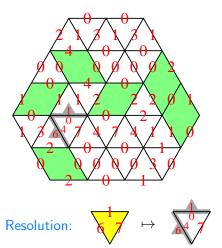


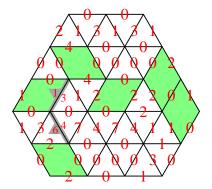


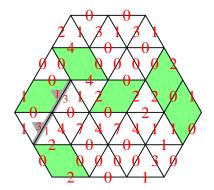


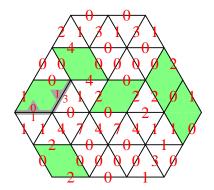


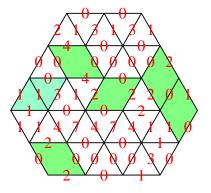






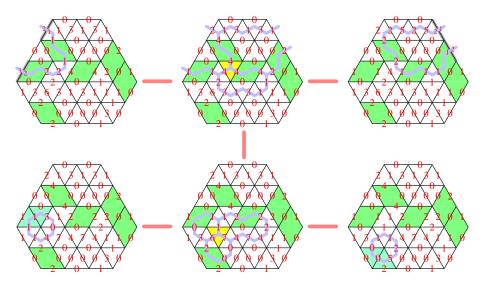




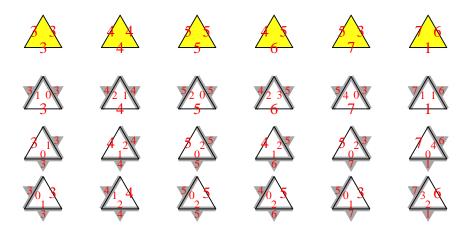


Flawed puzzle containing a marked scab.

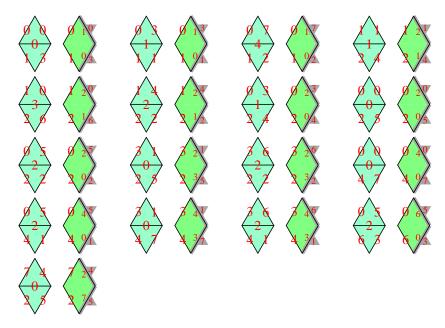
Component of the mutation graph:



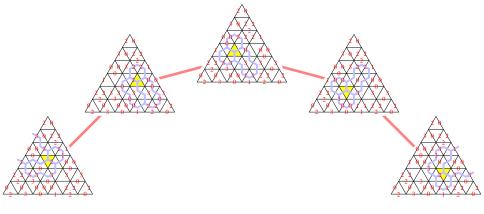
Resolutions of temporary puzzle pieces:

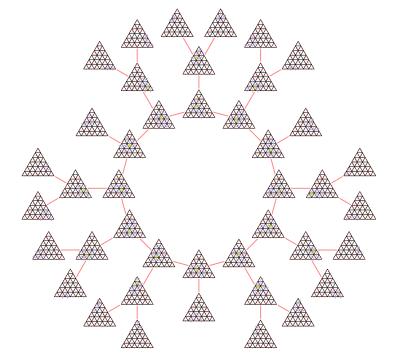


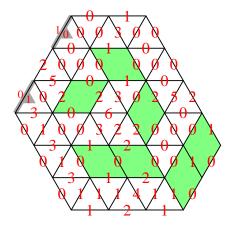
Resolutions of marked scabs:

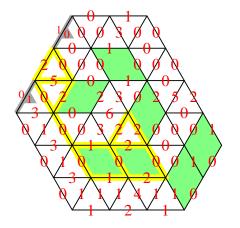


Example:

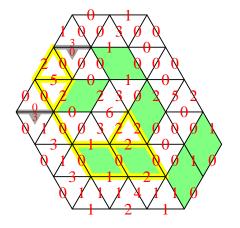




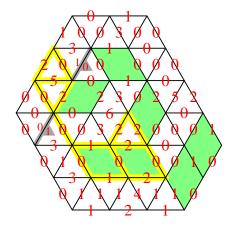




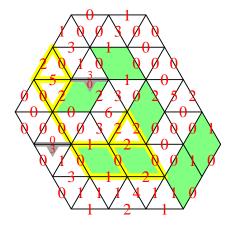
Consider connected component of the edges:



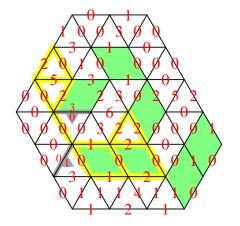
Consider connected component of the edges:



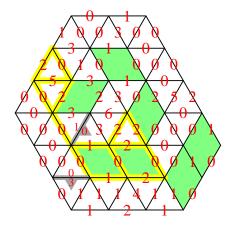
Consider connected component of the edges:



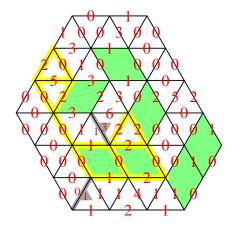
Consider connected component of the edges:



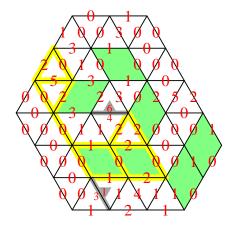
Consider connected component of the edges:



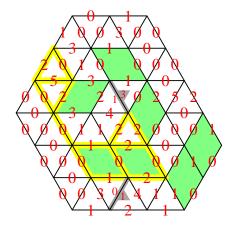
Consider connected component of the edges:



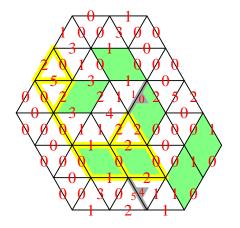
Consider connected component of the edges:



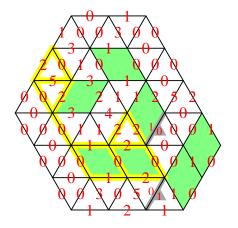
Consider connected component of the edges:



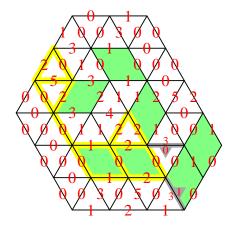
Consider connected component of the edges:



Consider connected component of the edges:

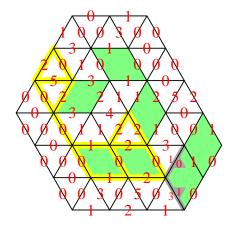


Consider connected component of the edges:



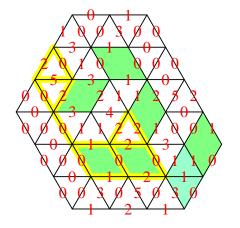
Consider connected component of the edges:

1 1 2 -5 -7 2 2



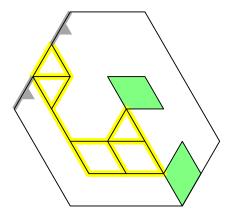
Consider connected component of the edges:

1 1 2 -5 -7 2 2



Consider connected component of the edges:

1 1 2 -5 -7 2 2



Technical result: The two gashes will propagate to the same location.

In particular, the above situation is impossible !!

Aura of semi-labeled edges

An aura is a linear form in $R = \mathbb{C}[\delta_0, \delta_1, \delta_2]$. $\uparrow \in \mathbb{C}$ is a unit vector.

Aura of semi-labeled edges

An aura is a linear form in $R = \mathbb{C}[\delta_0, \delta_1, \delta_2]$. $\uparrow \in \mathbb{C}$ is a unit vector.

Def:
$$\mathcal{A}(\frac{0}{}) = \bigwedge^{\delta_0} \qquad \mathcal{A}(\frac{1}{}) = \bigwedge^{\delta_1} \qquad \mathcal{A}(\frac{2}{}) = \bigwedge^{\delta_2}$$

If $\underset{\sim}{\overset{\sim}{\bigvee}}$ is a puzzle piece, then $\mathcal{A}(\underset{\sim}{\bigvee}) + \mathcal{A}(\underset{\sim}{\bigvee}) + \mathcal{A}(\frac{2}{}) = 0$.

Aura of semi-labeled edges

An **aura** is a linear form in $R = \mathbb{C}[\delta_0, \delta_1, \delta_2]$. $\uparrow \in \mathbb{C}$ is a unit vector.

Def:
$$\mathcal{A}(\frac{0}{-}) = \bigwedge^{\delta_0} \qquad \mathcal{A}(\frac{1}{-}) = \bigwedge^{\delta_1} \qquad \mathcal{A}(\frac{2}{-}) = \bigwedge^{\delta_2}$$

If $\underset{\sim}{\overset{\times}{\searrow}}$ is a puzzle piece, then $\mathcal{A}(\underset{\times}{/}\times) + \mathcal{A}(\underset{\times}{\nearrow}\times) + \mathcal{A}(\underset{\times}{\overset{\times}{\searrow}}) = 0$.

$$\mathcal{A}(\frac{3}{}) = \delta_1 \qquad \delta_0 \qquad \mathcal{A}(\frac{4}{}) = \delta_2 \qquad \delta_1 \qquad \mathcal{A}(\frac{5}{}) = \delta_2 \qquad \delta_0$$

$$\mathcal{A}(\frac{6}{}) = \delta_2 \qquad \delta_0 \qquad \mathcal{A}(\frac{7}{}) = \delta_0 \qquad \delta_0$$

Definition:
$$A(\frac{x}{y}) = A(\frac{x}{y}) + A(\frac{y}{y})$$

Definition:
$$\mathcal{A}(\frac{x}{y}) = \mathcal{A}(\frac{x}{y}) + \mathcal{A}(\frac{y}{y})$$

Example: $\mathcal{A}(\frac{0}{4}) = \mathcal{A}(\frac{0}{4}) + \mathcal{A}(\frac{1}{4}) = \delta_1$

$$\delta_0$$
 δ_2

Definition:
$$\mathcal{A}(\frac{x}{y}) = \mathcal{A}(\frac{x}{y}) + \mathcal{A}(\frac{y}{y})$$

Example: $\mathcal{A}(\frac{0}{4}) = \mathcal{A}(\frac{0}{4}) + \mathcal{A}(\frac{1}{4}) = \delta_1$

Properties:

The aura of a gash is invariant under propagations.

Definition:
$$A(\frac{x}{y}) = A(\frac{x}{y}) + A(\frac{y}{y})$$

Example:
$$A(\frac{0}{4}) = A(\frac{0}{4}) + A(\frac{1}{4}) = \delta_1$$

Properties:

- The aura of a gash is invariant under propagations.
- Sum of auras of gashes of any resolution is zero.

$$\mathcal{A}(\frac{4}{2}) + \mathcal{A}(\frac{2}{2}) = 0$$

Definition:
$$A(\frac{x}{y}) = A(\frac{x}{y}) + A(\frac{y}{y})$$

Example: $A(\frac{0}{4}) = A(\frac{0}{4}) + A(\frac{1}{4}) = \delta_1$

Properties:

- The aura of a gash is invariant under propagations.
- Sum of auras of gashes of any resolution is zero.

$$\mathcal{A}(\frac{4}{2}) + \mathcal{A}(\frac{1}{2}) = 0$$

Sum of auras of right gashes of resolutions of temporary piece is zero.

$$\mathcal{A}(\frac{4}{0}) + \mathcal{A}(\frac{1}{6}) = 0$$

Aura of puzzles

Let \widetilde{P} be a resolution of a flawed puzzle P.

Def:
$$\mathcal{A}(\widetilde{P}) = \mathcal{A}(\text{ right gash in } \widetilde{P})$$

$$\mathcal{A}(\frac{\sqrt[3]{0}}{\sqrt[3]{0}}) = \mathcal{A}(\sqrt[9]{1}) \qquad \mathcal{A}(\frac{\sqrt[3]{0}}{\sqrt[3]{0}}) = \mathcal{A}(-\frac{5}{0}) \qquad \mathcal{A}(\sqrt[3]{\frac{3}{0}}) = \mathcal{A}(\sqrt[3]{2})$$

Aura of puzzles

Let \widetilde{P} be a resolution of a flawed puzzle P.

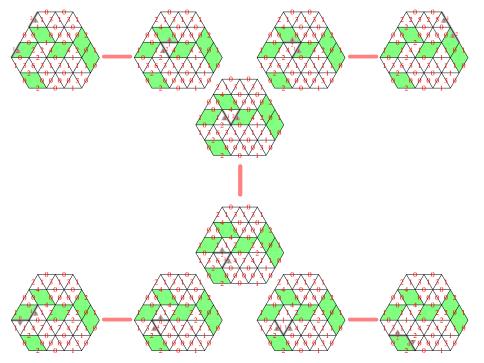
Def: $\mathcal{A}(\widetilde{P}) = \mathcal{A}(\text{ right gash in } \widetilde{P})$

$$\mathcal{A}(\frac{1}{2}) = \mathcal{A}(\frac{9}{1}) \qquad \mathcal{A}(\frac{5}{2}) = \mathcal{A}(\frac{5}{0}) \qquad \mathcal{A}(\frac{5}{2}) = \mathcal{A}(\frac{5}{0})$$

If \widetilde{P} is the only resolution of P, then set $\mathcal{A}(P) = \mathcal{A}(\widetilde{P})$.

Key identity: Let *S* be any finite set of flawed puzzles that is closed under mutations. Then

$$\sum_{P \in \mathcal{S}_{\mathrm{scab}}} \mathcal{A}(P) \ + \sum_{P \in \mathcal{S}_{\mathrm{gash}}} \mathcal{A}(P) \ = \ 0$$



From now on: • All puzzles are triangles.

All equivariant puzzle pieces and scabs are vertical.

Def: For any 012-string $u = (u_1, u_2, \dots, u_n)$ we set

$$C_u := \sum_{i=1}^n \delta_{u_i} y_i \in R[y_1, \dots, y_n]$$

Exercise: $\partial P = \triangle^{u,v}_{w} \Rightarrow$

Exercise:
$$\partial P = \triangle_w^{u,v} \Rightarrow$$

s scab in P

Exercise:
$$\partial P = \triangle_w \Rightarrow$$

$$\sum - \text{weight}(s) A(s) = C_u \cdot \searrow + C_v \cdot \swarrow + C_w \cdot \uparrow$$

From now on: • All puzzles are triangles.

All equivariant puzzle pieces and scabs are vertical.

Def: For any 012-string
$$u = (u_1, u_2, ..., u_n)$$
 we set

$$C_u := \sum_{i=1}^n \delta_{u_i} y_i \in R[y_1, \dots, y_n]$$

Exercise:
$$\partial P = \triangle_{uv}^{u,v} \Rightarrow$$

$$\sum_{\substack{s \text{ scab in } P}} - \text{weight}(s) \mathcal{A}(s) = C_u \cdot \searrow + C_v \cdot \swarrow + C_w \cdot \uparrow$$

Write
$$u \to u'$$
 if $u \le u'$ in Bruhat order and $\ell(u) + 1 = \ell(u')$.

Set
$$\delta(\frac{u}{u'}) = \delta_{u_i} - \delta_{u'_i}$$
 where *i* is minimal with $u_i \neq u'_i$.

From now on: • All puzzles are triangles.

All equivariant puzzle pieces and scabs are vertical.

Def: For any 012-string $u = (u_1, u_2, \dots, u_n)$ we set

$$C_u := \sum_{i=1}^n \delta_{u_i} y_i \in R[y_1, \dots, y_n]$$

Exercise:
$$\partial P = \triangle^{u,v}_{w} \Rightarrow$$

$$\sum_{\substack{s \text{ scab in } P}} -\text{weight}(s) \mathcal{A}(s) = C_u \cdot \searrow + C_v \cdot \swarrow + C_w \cdot \uparrow$$

Write $u \rightarrow u'$ if $u \le u'$ in Bruhat order and $\ell(u) + 1 = \ell(u')$. Examples: $022221 \rightarrow 122220$; $02 \rightarrow 20$; $100002 \rightarrow 200001$

Set $\delta(\frac{u}{u'}) = \delta_{u_i} - \delta_{u'_i}$ where i is minimal with $u_i \neq u'_i$.

Def:
$$\widehat{C}_{u,v}^{w} = \sum_{\partial P = \triangle_{w}^{u,v}} \prod_{\lozenge \in P} \mathsf{weight}(\lozenge)$$

$$(C_{u} \cdot \searrow + C_{v} \cdot \swarrow + C_{w} \cdot \uparrow) \cdot \widehat{C}_{u,v}^{w}$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} \sum_{s \text{ scab in } P} -A(s) \text{ weight}(s) \prod_{\lozenge \in P} \text{ weight}(\lozenge)$$

$$(C_{u} \cdot \searrow + C_{v} \cdot \swarrow + C_{w} \cdot \uparrow) \cdot \widehat{C}_{u,v}^{w}$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} \sum_{s \text{ scab in } P} -A(s) \text{ weight}(s) \prod_{\lozenge \in P} \text{ weight}(\lozenge)$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} -A(P) \text{ weight}(s) \prod_{\lozenge \in P} \text{ weight}(\lozenge)$$

$$P \text{ has marked scab } s$$

$$(C_{u} \cdot \searrow + C_{v} \cdot \swarrow + C_{w} \cdot \uparrow) \cdot \widehat{C}_{u,v}^{w}$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} \sum_{s \text{ scab in } P} -A(s) \text{ weight}(s) \prod_{\diamond} \text{ weight}(\diamond)$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} -A(P) \text{ weight}(s) \prod_{\diamond} \text{ weight}(\diamond)$$

$$P \text{ has marked scab } s$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} A(P) \prod_{\diamond} \text{ weight}(\diamond)$$

$$P \text{ has gash pair}$$

$$(C_{u} \cdot \searrow + C_{v} \cdot \swarrow + C_{w} \cdot \uparrow) \cdot \widehat{C}_{u,v}^{w}$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} \sum_{s \text{ scab in } P} -A(s) \text{ weight}(s) \prod_{\lozenge \in P} \text{ weight}(\lozenge)$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} -A(P) \text{ weight}(s) \prod_{\lozenge \in P} \text{ weight}(\lozenge)$$

$$P \text{ has marked scab } s$$

$$= \sum_{\partial P = \triangle_{w}^{u,v}} A(P) \prod_{\lozenge \in P} \text{ weight}(\lozenge)$$

$$P \text{ has gash pair}$$

Theorem (Method first applied by Molev and Sagan.)

The equivariant Schubert structure constants $C_{u,v}^w \in \mathbb{Z}[y_1,\ldots,y_n]$ of Y = Fl(a,b;n) are uniquely determined by

(1)
$$C_{w,w}^w = \prod_{i < j : w_i > w_j} (y_j - y_i)$$
 (Kostant-Kumar)

$$(2) (C_{u} \cdot \searrow + C_{v} \cdot \swarrow + C_{w} \cdot \uparrow) \cdot C_{u,v}^{w}$$

$$= \bigvee \sum_{u \to u'} \delta(\frac{u}{u'}) C_{u',v}^{w} + \bigvee \sum_{v \to v'} \delta(\frac{v}{v'}) C_{u,v'}^{w} + \bigvee \sum_{w' \to w} \delta(\frac{w'}{w}) C_{u,v}^{w'}$$

Theorem (Method first applied by Molev and Sagan.)

The equivariant Schubert structure constants $C_{u,v}^w \in \mathbb{Z}[y_1,\ldots,y_n]$ of Y = FI(a,b;n) are uniquely determined by

(1)
$$C_{w,w}^w = \prod_{i < j : w_i > w_j} (y_j - y_i)$$
 (Kostant-Kumar)

$$(2) (C_{u} \cdot \searrow + C_{v} \cdot \swarrow + C_{w} \cdot \uparrow) \cdot C_{u,v}^{w}$$

$$= \bigvee \sum_{u \to u'} \delta(\frac{u}{u'}) C_{u',v}^{w} + \bigvee \sum_{v \to v'} \delta(\frac{v}{v'}) C_{u,v'}^{w} + \bigvee \sum_{w' \to w} \delta(\frac{w'}{w}) C_{u,v}^{w'}$$

Consequence:

$$C_{u,v}^w = \widehat{C}_{u,v}^w = \sum_{\partial P = \triangle_w^{u,v}} \prod_{\bigotimes \in P} \mathsf{weight}(\bigotimes)$$