On certain family of B-modules

Piotr Pragacz
(IM PAN, Warszawa)
joint with Witold Kraśkiewicz with results of Masaki Watanabe

Schur functors

Issai Schur's dissertation (Berlin, 1901): classification of irreducible polynomial representations of $G L_{n}$:

Homomorphisms $G L_{n} \rightarrow G L_{N}$ sending X to a matrix $\left[P_{i j}(X)\right]$, where $P_{i j}$ is a polynomial in the entries of X.

Two actions on $E^{\otimes n}$ (E vector space over a field K of char. 0$)$.

- of the symmetric group S_{n} via permutations of the factors,
- the diagonal action of $G L(E)$.

Irreductible representations S^{λ} of the symmetric group S_{n} are labeled by partitions of n.

Partition of $n: \lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{k} \geq 0\right)$ s.t. $\lambda_{1}+\cdots+\lambda_{k}=n$. Graphical presentation for 8742:

Schur module:

$$
V_{\lambda}(E):=\operatorname{Hom}_{\mathbb{Z}\left[S_{n}\right]}\left(S^{\lambda}, E^{\otimes n}\right)
$$

$V_{\lambda}(-)$ is a functor: if E, F are R-modules, $f: E \rightarrow F$ is an R-homomorphism, then f induces an R-homomorphism $V_{\lambda}(E) \rightarrow V_{\lambda}(F)$. In this way, we get all irreducible polynomial representations of $G L_{n}$.

Let us label the boxes of the diagram with $1, \ldots, n$.
$P:=$ sum of the permutations preserving the rows $\left(P \in \mathbb{Z}\left[S_{n}\right]\right)$,
$N:=$ sum of the permutations with their signs, preserving the columns.

$$
\begin{gathered}
e(\lambda):=N \circ P-\text { the Young idempotent } ; \\
V_{\lambda}(E)=e(\lambda) E^{\otimes n} .
\end{gathered}
$$

Example: $V_{(n)}(E)=S^{n}(E), \quad V_{\left(1^{n}\right)}(E)=\wedge^{n}(E)$.

Let T be the subgroup of diagonal matrices in $G L_{n}$:

$$
\left(\begin{array}{llll}
x_{1} & & & \\
& x_{2} & & 0 \\
& & x_{3} & \\
& 0 & & \ddots
\end{array}\right)
$$

Consider the action of T on $V_{\lambda}(E)$ induced from the action of $G L_{n}$ via restriction.

Main result of Schur's Thesis:

The trace of the action of T on $V_{\lambda}(E)$ is equal to the Schur function:

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(s_{\lambda_{p}-p+q}\left(x_{1}, \ldots, x_{n}\right)\right)_{1 \leq p, q \leq k}
$$

where $s_{i}\left(x_{1}, \ldots, x_{n}\right)$ is the i th complete symmetric function.

Schubert polynomials

Permutation: bijection $\mathbb{N} \rightarrow \mathbb{N}$, which is the identity off a finite set.
$A:=\mathbb{Z}\left[x_{1}, x_{2}, \ldots\right]$.
We define $\partial_{i}: A \rightarrow A$

$$
\partial_{i}(f):=\frac{f\left(x_{1}, \ldots, x_{i}, x_{i+1}, \ldots\right)-f\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots\right)}{x_{i}-x_{i+1}} .
$$

For a simple reflection $s_{i}=1, \ldots, i-1, i+1, i, i+2, \ldots$, we put $\partial_{s_{i}}:=\partial_{i}$.

Let $w=s_{1} \cdots s_{k}=t_{1} \cdots t_{k}$ be two reduced words of w. Then

$$
\partial_{s_{1}} \circ \cdots \circ \partial_{s_{k}}=\partial_{t_{1}} \circ \cdots \circ \partial_{t_{k}} .
$$

Thus for any permutation w, we can define ∂_{w} as $\partial_{s_{1}} \circ \cdots \circ \partial_{s_{k}}$ independently of a reduced word of w. Let n be a natural number such that $w(k)=k$ for $k>n$.

Schubert polynomial (Lascoux-Schützenberger 1982):

$$
\mathfrak{S}_{w}:=\partial_{w^{-1} w_{0}}\left(x_{1}^{n-1} x_{2}^{n-2} \cdots x_{n-1}^{1} x_{n}^{0}\right)
$$

where w_{0} is the permutation $(n, n-1, \ldots, 2,1), n+1, n+2, \ldots$

We define the k th inversion set of w :

$$
I_{k}(w):=\{I: I>k, w(k)>w(I)\} \quad k=1,2, \ldots
$$

Code of $w(c(w)):$ sequence $i_{k}=\left|I_{k}(w)\right|, k=1,2, \ldots$. $c(5,2,1,6,4,3,7,8, \ldots)$ is equal to $(4,1,0,2,1,0, \ldots)$.

- Schubert polynomial \mathfrak{S}_{w} is symmetric in $x_{k} i x_{k+1}$ if and only if $w(k)<w(k+1)$ (or equivalently if $\left.i_{k} \leq i_{k+1}\right)$.
- If $w(1)<w(2)<\cdots<w(k)>w(k+1)<w(k+2)<\cdots$ (or $i_{1} \leq i_{2} \leq \cdots \leq i_{k}, 0=i_{k+1}=i_{k+2}=\cdots$), then \mathfrak{S}_{w} is equal to $s_{i_{k}, \ldots, i_{2}, i_{1}}\left(x_{1}, \ldots, x_{k}\right)$.
- If $i_{1} \geq i_{2} \geq \cdots$, then $\mathfrak{S}_{w}=x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots$ is a monomial.

If the sets $I_{k}(w)$ form a chain (w.r.t. inclusion), then w is called a vexillary permutation.

Theorem

(Lascoux-Schützenberger, Wachs) If w is a vexillary permutation with code $\left(i_{1}, i_{2}, \ldots, i_{n}>0,0 \ldots\right)$, then $\mathfrak{S}_{w}=S_{\left(i_{1}, \ldots, j_{n}\right) \geq}\left(\min I_{1}(w)-1, \ldots, \min I_{n}(w)-1\right)^{\leq}$.

Flag Schur function: For two sequences of natural numbers $i_{1} \geq \cdots \geq i_{k}$ and $0<b_{1} \leq \cdots \leq b_{k}$,

$$
s_{i_{1}, \ldots, i_{k}}\left(b_{1}, \ldots, b_{k}\right):=\operatorname{det}\left(s_{i_{p}-p+q}\left(x_{1}, \ldots, x_{b_{p}}\right)\right)_{1 \leq p, q \leq k}
$$

Functors asked by Lascoux

R - commutative \mathbb{Q}-algebra, $E .: E_{1} \subset E_{2} \subset \cdots$ a flag of R-modules. Suppose that $\mathcal{I}=\left[i_{k, l}\right], k, I=1,2, \ldots$, is a matrix of 0 's and 1's s.t.
$-i_{k, l}=0$ for $k \geq l$;
$-\sum_{l} i_{k, l}$ is finite for any k;

- \mathcal{I} has a finite number of nonzero rows.

Such a matrix \mathcal{I} is called a shape:

0	0	0	0	0	0	0	0	\cdots		0	0	0	0	0	0
0	0	0	0	0	0	0	0	\cdots			0	0	0	0	0
0	0	0	1	0	1	0	0	\cdots				\times	0	\times	0
0	0	0	0	1	0	1	0	\cdots	$=$				\times	0	\times
0	0	0	0	0	1	0	0	\cdots						\times	0
0	0	0	0	0	0	0	0	\cdots							
								0							

Shape of permutation w is the matrix:

$$
\mathcal{I}_{w}=\left[i_{k, l}\right]:=\left[\chi_{k}(I)\right], \quad k, I=1,2, \ldots
$$

where χ_{k} is the characteristic function of $I_{k}(w)$. For $w=5,2,1,6,4,3,7,8, \ldots$, the shape \mathcal{I}_{w} is equal to

We define a module $S_{w}(E$.$) , associated with a permutation w$ and a flag E. as $S_{\mathcal{I}_{w}}(E$.$) ; this leads to a functor S_{w}(-)$.

From now on, let E. be a flag of K-vector spaces with $\operatorname{dim} E_{i}=i$. Let B be the Borel group of linear endomorphisms of $E:=\bigcup E_{i}$, which preserve E.. The modules used in the definition of $S_{w}(E$.$) are \mathbb{Z}[B]$-modules, and maps are homomorphisms of $\mathbb{Z}[B]$-modules. Let $\left\{u_{i}: i=1,2, \ldots\right\}$ be a basis of E such that $u_{1}, u_{2}, \ldots, u_{k}$ span E_{k}. Then $S_{w}(E)$ as a cyclic $\mathbb{Z}[B]$-submodule in $\bigotimes_{1} \bigwedge^{\tilde{i}_{l}} E_{l}$, generated by the element

$$
u_{w}:=\otimes_{l} u_{k_{1, l}} \wedge u_{k_{2, l}} \wedge \cdots \wedge u_{k_{i, l}}
$$

where $k_{1, I}<k_{2, I}<\cdots<k_{i, l}$ are precisely those indices for which $i_{k_{r, l}, l}=1$.
E.g. $S_{5,2,1,6,4,3,7, \ldots}(E$.$) is generated over \mathbb{Z}[B]$ by

$$
u_{1} \otimes u_{1} \wedge u_{2} \otimes u_{1} \wedge u_{4} \otimes u_{1} \wedge u_{4} \wedge u_{5}
$$

Theorem

(K-P) The trace of the action of a maximal torus $T \subset B$ on $S_{w}(E$.$) is equal to the Schubert polynomial \mathfrak{S}_{w}$.

About the proof: we study multiplicative properties of $S_{w}(E$.$) .$
$t_{p, q}(\ldots w(p) \ldots w(q) \ldots)=(\ldots w(q) \ldots w(p) \ldots)$
Chevalley-Monk formula for multiplication by $\mathfrak{S}_{s_{k}}$:

$$
\mathfrak{S}_{w} \cdot\left(x_{1}+\cdots+x_{k}\right)=\sum \mathfrak{S}_{w \circ t_{p, q}},
$$

the sum over p, q s.t. $p \leq k, q>k$ and $I\left(w \circ t_{p, q}\right)=I(w)+1$. For example
$\mathfrak{S}_{246315879 \ldots} \cdot\left(x_{1}+x_{2}\right)=\mathfrak{S}_{346215879 \ldots}+\mathfrak{S}_{264315879 \ldots}+\mathfrak{S}_{256314879 \ldots}$.

Transition formula: Let (j, s) be a pair of positive integers s.t.
$-j<s$ and $w(j)>w(s)$,

- for any $i \in] j, s[, w(i) \notin[w(s), w(j)]$,
- for any $r>j$, if $w(s)<w(r)$ then there exists $i \in] j, r[$ s.t. $w(i) \in[w(s), w(r)]$.

Then $\quad \mathfrak{S}_{w}=\mathfrak{S}_{v} \cdot x_{j}+\sum_{p=1}^{m} \mathfrak{S}_{v_{p}}$,
where $v=w \circ t_{j, s}, v_{p}=w \circ t_{j, s} \circ t_{k_{p}, j}$, the sum over k_{p} s.t.
$-k_{p}<j$ and $w\left(k_{p}\right)<w(s)$,

- if $i \in] k_{p}, j\left[\right.$ then $w(i) \notin\left[w\left(k_{p}\right), w(s)\right]$.

Such a pair (j, s) always exists for a nontrivial permutation: it suffices to take the maximal pair in the lexicographical order s.t. $w(j)>w(s)$.
E.g. $\mathfrak{S}_{521863479}=$
$=\mathfrak{S}_{521843679 \ldots} \cdot x_{5}+\mathfrak{S}_{524813679 \ldots}+\mathfrak{S}_{541823679 \ldots}$

- maximal transition
$=\mathfrak{S}_{521763489 \ldots} \cdot x_{4}+\mathfrak{S}_{527163489 \ldots}+\mathfrak{S}_{571263489 \ldots}+\mathfrak{S}_{721563489 \ldots}$
$=\mathfrak{S}_{512864379 \ldots} \cdot x_{2}$.

We prove that for the maximal transition, there exists a filtration of $\mathbb{Z}[B]$-modules

$$
0=\mathcal{F}_{0} \subset \mathcal{F}_{1} \subset \cdots \subset \mathcal{F}_{k} \subset \mathcal{F}=S_{w}(E .)
$$

and isomorphisms $\mathcal{F} / \mathcal{F}_{k} \simeq S_{v}(E.) \otimes E_{j} / E_{j-1}$ and $\mathcal{F}_{p} / \mathcal{F}_{p-1} \simeq S_{v_{p}}(E$.$) for p=1, \ldots, m$.

There exist flag Schur functors $S_{\lambda}(-)$, for which we have

Theorem

(K-P) If w is a vexillary permutation with code $\left(i_{1}, i_{2}, \ldots, i_{n}>0,0 \ldots\right)$, then
$S_{w}(E)=.S_{\left(i_{1}, \ldots, i_{n}\right) \geq}\left(E_{\min I_{1}(w)-1}, \ldots, E_{\min I_{n}(w)-1}\right)^{\leq}$.

Filtrations of weight modules

Let \mathfrak{b} be the Lie algebra of $n \times n$ upper matrices, \mathfrak{t} that of diagonal matrices, and $U(\mathfrak{b})$ the enveloping algebra of \mathfrak{b}.
M a $U(\mathfrak{b})$-module, $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$,
$M_{\lambda}=\{m \in M: h m=<\lambda, h>m\}$ weight space of λ, $<\lambda, h>=\sum \lambda_{i} h_{i}$

If M is a direct sum of its weight spaces and each weight space has finite dimension, then M is called a weight module
$\operatorname{ch}(M):=\sum_{\lambda} \operatorname{dim} M_{\lambda} x^{\lambda}$, where $x^{\lambda}=x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}}$

Let $e_{i j}$ be the matrix with 1 at the (i, j)-position and 0 elsewhere.

Let K_{λ} be a 1-dim'l $U(\mathfrak{b})$-module, where h acts by $<\lambda, h>$ and the matrices $e_{i j}$, where $i<j$, acts by zero. Any finite dim'l weight module admits a filtration by these 1 dim'l modules.
$w \in S_{\infty}^{(n)}:=\{w: w(n+1)<w(n+2)<\ldots\}$.
$E=\oplus_{1 \leq i \leq n} K u_{i}$.
For each $j \in \mathbb{N}$, let $\{i<j: w(i)>w(j)\}=\left\{i_{1}<\ldots<i_{j}\right\}$ $u_{w}^{(j)}=u_{i_{1}} \wedge \cdots \wedge u_{i_{j}} \in \Lambda^{\prime} E$
$u_{w}=u_{w}^{1} \otimes u_{w}^{2} \otimes \cdots$
$S_{w}=U(\mathfrak{b}) u_{w} \quad$ The weight of u_{w} is $c(w)$.

Thm (K-P) For any $w \in S_{\infty}^{(n)}, S_{w}$ is a weight module and $c h\left(S_{w}\right)=\mathfrak{S}_{w}$.

What is the annihilator of u_{w} ?
$1 \leq i<j \leq n \rightarrow m_{i j}(w)=\#\{k>j: w(i)<w(k)<w(j)\}$
$e_{i j}^{m_{i j}+1}$ annihilates u_{w}.
Let $I_{w} \subset U(\mathfrak{b})$ be the ideal generated by $h-<c(w), h>$, $h \in \mathfrak{t}$ and $e_{i j}^{m_{i j}(w)+1}, i<j$.

There exists $U(\mathfrak{b}) / I_{w} \rightarrow S_{w}$ s.t. $1 \bmod I_{w} \mapsto u_{w}$.
Theorem
(W) This surjection is an isomorphism.

For $\lambda \in \mathbb{Z}_{\geq 0}^{n}$ we set $S_{\lambda}:=S_{w}$ where $c(w)=\lambda$. For $\lambda \in \mathbb{Z}^{n}$ take k s.t. $\lambda+k \mathbf{1} \in \mathbb{Z}_{\geq 0}^{n}(\mathbf{1}=(1, \ldots, 1) n$ times $)$, and set $S_{\lambda}=K_{-k 1} \otimes S_{\lambda+k \mathbf{1}}$. Similarly for \mathfrak{S}_{λ}.

QUESTIONS: 1. When a weighted module admits a filtration with subquotients isomorphic to some S_{λ} 's?
2. Does $S_{\lambda} \otimes S_{\mu}$ have such a filtration?
$\rho=(n-1, n-2, \ldots, 2,1,0), \quad K_{\rho}$ "dualizing module"
\mathcal{C} category of all weight modules, for $\Lambda \subset \mathbb{Z}^{n}, \mathcal{C}_{\Lambda}$ is the full subcategory of \mathcal{C} consisting of all weight modules whose weights are in Λ.
$|\Lambda|<\infty \quad \Lambda^{\prime}=\{\rho-\lambda: \lambda \in \Lambda\} \quad \mathcal{C}_{\Lambda^{\prime}} \cong \mathcal{C}_{\Lambda}^{o p} \quad M \mapsto M^{*} \otimes K_{\rho}$
Lemma For any $\Lambda \subset \mathbb{Z}^{n}, \mathcal{C}_{\Lambda}$ has enough projectives.

Orders: $w, v \in S_{\infty} w \leq_{\text {lex }} v$ if $w=v$ or there exists $i>0$ s.t. $w(j)=v(j)$ for $j<i$ and $w(i)<v(i)$.

For $\lambda \in \mathbb{Z}^{n}$, define $|\lambda|=\sum \lambda_{i}$. If $\lambda=c(w), \mu=c(v)$, we write $\lambda \geq \mu$ if $|\lambda|=|\mu|$ and $w^{-1} \leq_{l e x} v^{-1}$. For general $\lambda, \mu \in \mathbb{Z}^{n}$ take k s.t. $\lambda+k \mathbf{1}, \mu+k \mathbf{1} \in \mathbb{Z}_{\geq 0}^{n}$, and define $\lambda \geq \mu$ iff $\lambda+k \mathbf{1} \geq \mu+k \mathbf{1}$.

For $\lambda \in \mathbb{Z}^{n}$, set $\mathcal{C}_{\leq \lambda}:=\mathcal{C}_{\{\nu: \nu \leq \lambda\}}$. All Ext's over $U(\mathfrak{b})$, in $\mathcal{C}_{\leq \lambda}$.
Prop. For $\lambda \in \mathbb{Z}^{n}$ the modules S_{λ} and $S_{\rho-\lambda}^{*} \otimes K_{\rho}$ are in $\mathcal{C}_{\leq \lambda}$. Moreover S_{λ} is projective and $S_{\rho-\lambda}^{*} \otimes K_{\rho}$ is injective.

Theorem

(W) For $\mu, \nu \leq \lambda, \operatorname{Ext}^{i}\left(S_{\mu}, S_{\rho-\nu}^{*} \otimes K_{\rho}\right)=0, i \geq 1$.

Theorem

(W) Let $M \in \mathcal{C}_{\leq \lambda}$. If $\operatorname{Ext}^{1}\left(M, S_{\rho-\mu}^{*} \otimes K_{\rho}\right)=0$ for all $\mu \leq \lambda$, then M has a filtration s.t. each of its subquotients is isomorphic to some $S_{\nu}(\nu \leq \lambda)$.

Cor. (1) If $M=M_{1} \oplus \ldots \oplus M_{r}$, then M has such a filtration iff each M_{i} has.
(2) If $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is exact and M, N have such filtrations, then L also has.

Proof (1) Ext ${ }^{1}(M, N)=\oplus E x t^{1}\left(M_{i}, N\right)$ for any N.
(2) $E x t^{1}(M, A) \rightarrow E x t^{1}(L, A) \rightarrow E x t^{2}(N, A)$ exact for any A.

Prop. $w \in S_{\infty}^{(n)}, 1 \leq k \leq n-1$. Then $S_{w} \otimes S_{s_{k}}$ has such a filtration. (KP for $k=1, \mathrm{~W}$ in general)

Theorem

(W) $S_{w} \otimes S_{v}$ has such a filtration for $w, v \in S_{\infty}^{(n)}$.

Consider a B-module $T_{w}=\otimes_{2 \leq i \leq n}\left(\Lambda^{i(w)} K^{i-1}\right)$.
T_{w} is a direct sum component of $\otimes_{2 \leq i \leq n} S_{s_{i-1}} \otimes \cdots \otimes S_{s_{i-1}}$, $l_{i}(w)$ times

Prop. $w \in S_{n}$. Then there is an exact sequence $0 \rightarrow S_{w} \rightarrow T_{w} \rightarrow N \rightarrow 0$, where N has a filtration whose subquotients are S_{u} with $u^{-1}>_{\text {lex }} w^{-1}$.

- from Cauchy formula $\prod_{i+j \leq n}\left(x_{i}+y_{j}\right)=\sum_{w} \mathfrak{S}_{w}(x) \mathfrak{S}_{w w_{0}}(y)$

Proof of the thm

Exact sequence:
$0 \rightarrow S_{w} \otimes S_{v} \rightarrow T_{w} \otimes S_{v} \quad \rightarrow \quad N \otimes S_{v} \rightarrow 0$
filtr. by Cor.(2) filtr. by Prop. filtr. by ind. on lex (w)

Theorem

(W) Let $\lambda \in \mathbb{Z}^{n}$ and $M \in \mathcal{C}_{\leq \lambda}$. Then we have $\operatorname{ch}(M) \leq \sum_{\nu \leq \lambda} \operatorname{dim}_{K}\left(\operatorname{Hom}_{\mathfrak{b}}\left(M, S_{\rho-\nu} \otimes K_{\rho}\right)\right) \mathfrak{S}_{\nu}$

The equality holds if and only if M has a filtration with all subquotients isomorphic to S_{μ}, where $\mu \leq \lambda$.

As a corollary, we get a formula for the coefficient of \mathfrak{S}_{w} in $\mathfrak{S}_{u} \mathfrak{S}_{v}$:

Cor. This coefficient is equal to the dimension of
$\operatorname{Hom}_{\mathfrak{b}}\left(S_{u} \otimes S_{v}, S_{w_{0} w} \otimes K_{\rho}\right)=\operatorname{Hom}_{\mathfrak{b}}\left(S_{u} \otimes S_{v} \otimes S_{w_{o} w}, K_{\rho}\right)$.
Proof We use ch:

$$
\mathfrak{S}_{u} \mathfrak{S}_{v}=\operatorname{ch}\left(S_{u} \otimes S_{v}\right)=\sum_{w}\left(S_{u} \otimes S_{v}, S_{\rho-\lambda}^{*} \otimes K_{\rho}\right) \mathfrak{S}_{w} .
$$

Some plethysm

Let s_{σ} denote the Schur functor associated to a partition σ
Prop. $s_{\sigma}\left(S_{\lambda}\right)$ has a filtration with its subquotients isomorphic to some S_{ν}.

Proof $\left(S_{\lambda}\right)^{\otimes k}$ has such a filtration for any λ and any k. Hence Ext ${ }^{1}\left(\left(S_{\lambda}\right)^{\otimes k}, S_{\nu}^{*} \otimes K_{\rho}\right)=0$ for any ν.
$s_{\sigma}\left(S_{\lambda}\right)$ is a direct sum factor of $\left(S_{\lambda}\right)^{|\sigma|}$.
Hence Ext ${ }^{1}\left(s_{\sigma}\left(S_{\lambda}\right), S_{\nu}^{*} \otimes K_{\rho}\right)=0$ for any ν, and $s_{\sigma}\left(S_{\lambda}\right)$ has the desired filtration.

Cor. If \mathfrak{S}_{w} is a sum of monomials $x^{\alpha}+x^{\beta}+\cdots$, then $s_{\sigma}\left(x^{\alpha}, x^{\beta}, \ldots\right)$ is a positive sum of Schubert polynomials.

The End

References:

W. Kraśkiewicz, P. Pragacz, Foncteurs de Schubert, C. R. Acad. Sci. Paris , 304(9) (1987), 209-211.
W. Kraśkiewicz, P. Pragacz, Schubert functors and Schubert polynomials, Eur. J. Comb., 25(8) (2004), 1327-1344.
M. Watanabe, Filtrations of \mathfrak{b}-modules with successive quotients isomorphic to Kraśkiewicz and Pragacz's modules realizing Schubert polynomials as their characters, arXiv:1406.6203v3.
M. Watanabe, Tensor product of Kraśkiewicz and Pragacz's modules, arXiv:1410.7981.

