On certain family of B-modules

Piotr Pragacz (IM PAN, Warszawa) joint with Witold Kraśkiewicz with results of Masaki Watanabe

Schur functors

Issai Schur's dissertation (Berlin, 1901): classification of irreducible polynomial representations of GL_n :

Homomorphisms $GL_n \to GL_N$ sending X to a matrix $[P_{ij}(X)]$, where P_{ij} is a polynomial in the entries of X.

Two actions on $E^{\otimes n}$ (*E* vector space over a field *K* of char. 0).

- of the symmetric group S_n via permutations of the factors,
- the diagonal action of GL(E).

Irreductible representations S^{λ} of the symmetric group S_n are labeled by partitions of n.

Partition of n: $\lambda = (\lambda_1 \ge \cdots \ge \lambda_k \ge 0)$ s.t. $\lambda_1 + \cdots + \lambda_k = n$. Graphical presentation for 8742:

Schur module:

$$V_{\lambda}(E) := \operatorname{Hom}_{\mathbb{Z}[S_n]}(S^{\lambda}, E^{\otimes n})$$

 $V_{\lambda}(-)$ is a functor: if E, F are R-modules, $f : E \to F$ is an R-homomorphism, then f induces an R-homomorphism $V_{\lambda}(E) \to V_{\lambda}(F)$. In this way, we get all irreducible polynomial representations of GL_n .

Let us label the boxes of the diagram with $1, \ldots, n$.

1	15	19	3	10	5	21	13
11	8	18	9	6	17	4	
7	20	12	16				
16	2						

P:= sum of the permutations preserving the rows ($P \in \mathbb{Z}[S_n]$),

N:= sum of the permutations with their signs, preserving the columns.

$$e(\lambda) := N \circ P - ext{the Young idempotent};$$

 $V_{\lambda}(E) = e(\lambda)E^{\otimes n}.$

Example: $V_{(n)}(E) = S^n(E)$, $V_{(1^n)}(E) = \bigwedge_{a=1}^n (E)$

Let T be the subgroup of diagonal matrices in GL_n :

Consider the action of T on $V_{\lambda}(E)$ induced from the action of GL_n via restriction.

Main result of Schur's Thesis:

The trace of the action of T on $V_{\lambda}(E)$ is equal to the Schur function:

$$s_{\lambda}(x_1,\ldots,x_n) = \det \left(s_{\lambda_p-p+q}(x_1,\ldots,x_n)\right)_{1\leq p,q\leq k}$$

where $s_i(x_1, \ldots, x_n)$ is the *i*th complete symmetric function.

Schubert polynomials

Permutation: bijection $\mathbb{N} \to \mathbb{N},$ which is the identity off a finite set.

$$A := \mathbb{Z}[x_1, x_2, \ldots].$$

We define $\partial_i : A \to A$ $\partial_i(f) := \frac{f(x_1, \dots, x_i, x_{i+1}, \dots) - f(x_1, \dots, x_{i+1}, x_i, \dots)}{x_i - x_{i+1}}$. For a simple reflection $s_i = 1, \dots, i-1, i+1, i, i+2, \dots$, we

put $\partial_{s_i} := \partial_i$.

Let $w = s_1 \cdots s_k = t_1 \cdots t_k$ be two reduced words of w. Then $\partial_{s_1} \circ \cdots \circ \partial_{s_k} = \partial_{t_1} \circ \cdots \circ \partial_{t_k}$. Thus for any permutation w, we can define ∂_w as $\partial_{s_1} \circ \cdots \circ \partial_{s_k}$ independently of a reduced word of w. Let n be a natural number such that w(k) = k for k > n.

Schubert polynomial (Lascoux-Schützenberger 1982):

$$\mathfrak{S}_{w} := \partial_{w^{-1}w_0}(x_1^{n-1}x_2^{n-2}\cdots x_{n-1}^1x_n^0)$$

where w_0 is the permutation (n, n - 1, ..., 2, 1), n + 1, n + 2, ...

We define the *k*th *inversion set* of *w*:

$$I_k(w) := \{I : I > k, w(k) > w(I)\}$$
 $k = 1, 2, ...$

Code of w (c(w)): sequence $i_k = |I_k(w)|$, k = 1, 2, ...

 $c(5,2,1,6,4,3,7,8,\ldots)$ is equal to $(4,1,0,2,1,0,\ldots)$.

- Schubert polynomial \mathfrak{S}_w is symmetric in x_k i x_{k+1} if and only if w(k) < w(k+1) (or equivalently if $i_k \leq i_{k+1}$).

- If
$$w(1) < w(2) < \cdots < w(k) > w(k+1) < w(k+2) < \cdots$$

(or $i_1 \le i_2 \le \cdots \le i_k$, $0 = i_{k+1} = i_{k+2} = \cdots$), then \mathfrak{S}_w is equal to $s_{i_k,\dots,i_2,i_1}(x_1,\dots,x_k)$.

- If
$$i_1 \ge i_2 \ge \cdots$$
, then $\mathfrak{S}_w = x_1^{i_1} x_2^{i_2} \cdots$ is a monomial.

If the sets $I_k(w)$ form a chain (w.r.t. inclusion), then w is called a *vexillary* permutation.

Theorem

(Lascoux-Schützenberger, Wachs) If w is a vexillary permutation with code $(i_1, i_2, ..., i_n > 0, 0...)$, then $\mathfrak{S}_w = s_{(i_1,...,i_n)^{\geq}} (\min I_1(w) - 1, ..., \min I_n(w) - 1)^{\leq}$.

Flag Schur function: For two sequences of natural numbers $i_1 \geq \cdots \geq i_k$ and $0 < b_1 \leq \cdots \leq b_k$,

$$m{s}_{i_1,\ldots,i_k}(b_1,\ldots,b_k):= \detig(s_{i_p-p+q}(x_1,\ldots,x_{b_p})ig)_{1\leq p,q\leq k}$$

イロト イポト イヨト イヨト 三国

Functors asked by Lascoux

R – commutative \mathbb{Q} -algebra, $E_1 \subset E_2 \subset \cdots$ a flag of R-modules. Suppose that $\mathcal{I} = [i_{k,l}]$, $k, l = 1, 2, \ldots$, is a matrix of 0's and 1's s.t.

$$-i_{k,l}=0$$
 for $k\geq l$;

$$-\sum_{l} i_{k,l}$$
 is finite for any k;

– ${\mathcal I}$ has a finite number of nonzero rows.

Such a matrix \mathcal{I} is called a *shape*:

 $egin{array}{cccc} 0 & 0 & 0 \ 0 & 0 & 0 \ imes & 0 & imes \end{array} \ egin{array}{cccc} & 0 & 0 & 0 \ & imes & 0 & imes \end{array} \end{array}$ 0 0 0 0 0 0 × × 0 × 0 0 0 0 0 0 → ≥ → 0 ≥ →

Shape of permutation w is the matrix:

$$\mathcal{I}_w = [i_{k,l}] := [\chi_k(l)], \ k, l = 1, 2, \dots$$

where χ_k is the characteristic function of $I_k(w)$. For $w = 5, 2, 1, 6, 4, 3, 7, 8, \dots$, the shape \mathcal{I}_w is equal to

We define a module $S_w(E)$, associated with a permutation w and a flag E. as $S_{\mathcal{I}_w}(E)$; this leads to a functor $S_w(-)$.

(1日) (日) (日)

From now on, let *E*. be a flag of *K*-vector spaces with dim $E_i = i$. Let *B* be the Borel group of linear endomorphisms of $E := \bigcup E_i$, which preserve *E*.. The modules used in the definition of $S_w(E.)$ are $\mathbb{Z}[B]$ -modules, and maps are homomorphisms of $\mathbb{Z}[B]$ -modules. Let $\{u_i : i = 1, 2, ...\}$ be a basis of *E* such that $u_1, u_2, ..., u_k$ span E_k . Then $S_w(E)$ as a cyclic $\mathbb{Z}[B]$ -submodule in $\bigotimes_i \bigwedge^{\tilde{i}_i} E_i$, generated by the element

$$u_{\mathsf{w}} := \otimes_{I} u_{k_{1,I}} \wedge u_{k_{2,I}} \wedge \cdots \wedge u_{k_{i_{I},I}}$$

where $k_{1,l} < k_{2,l} < \cdots < k_{i_l,l}$ are precisely those indices for which $i_{k_{r,l},l} = 1$.

E.g.
$$S_{5,2,1,6,4,3,7,\ldots}(E.)$$
 is generated over $\mathbb{Z}[B]$ by

 $u_1 \otimes u_1 \wedge u_2 \otimes u_1 \wedge u_4 \otimes u_1 \wedge u_4 \wedge u_5$.

Theorem

(K-P) The trace of the action of a maximal torus $T \subset B$ on $S_w(E.)$ is equal to the Schubert polynomial \mathfrak{S}_w .

About the proof: we study multiplicative properties of $S_w(E_{\cdot})$.

$$t_{p,q}(\ldots w(p)\ldots w(q)\ldots) = (\ldots w(q)\ldots w(p)\ldots)$$

Chevalley-Monk formula for multiplication by \mathfrak{S}_{s_k} :

$$\mathfrak{S}_{w}\cdot(x_{1}+\cdots+x_{k})=\sum\mathfrak{S}_{w\circ t_{p,q}},$$

the sum over p, q s.t. $p \leq k, q > k$ and $l(w \circ t_{p,q}) = l(w) + 1$. For example

 $\mathfrak{S}_{246315879\dots} \cdot (x_1 + x_2) = \mathfrak{S}_{346215879\dots} + \mathfrak{S}_{264315879\dots} + \mathfrak{S}_{256314879\dots} \cdot$

Transition formula: Let (j, s) be a pair of positive integers s.t.

$$-j < s$$
 and $w(j) > w(s)$,

- for any
$$i \in]j, s[, w(i) \notin [w(s), w(j)],$$

- for any r > j, if w(s) < w(r) then there exists $i \in]j, r[$ s.t. $w(i) \in [w(s), w(r)]$.

Then $\mathfrak{S}_w = \mathfrak{S}_v \cdot x_j + \sum_{p=1}^m \mathfrak{S}_{v_p}$,

where $v = w \circ t_{j,s}$, $v_p = w \circ t_{j,s} \circ t_{k_p,j}$, the sum over k_p s.t.

・ロン ・回と ・ヨン ・ヨン

$$-k_p < j$$
 and $w(k_p) < w(s)$,

- if $i \in]k_p, j[$ then $w(i) \notin [w(k_p), w(s)].$

Such a pair (j, s) always exists for a nontrivial permutation: it suffices to take the maximal pair in the lexicographical order s.t. w(j) > w(s).

E.g. $\mathfrak{S}_{521863479} =$

$$=\mathfrak{S}_{521843679...}\cdot x_5 + \mathfrak{S}_{524813679...} + \mathfrak{S}_{541823679...}$$

- maximal transition

 $=\mathfrak{S}_{521763489...}\cdot x_4 + \mathfrak{S}_{527163489...} + \mathfrak{S}_{571263489...} + \mathfrak{S}_{721563489...}$

イロト イポト イヨト イヨト

$$=\mathfrak{S}_{512864379\ldots}\cdot x_2.$$

We prove that for the maximal transition, there exists a filtration of $\mathbb{Z}[B]$ -modules

$$0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_k \subset \mathcal{F} = S_w(E_{\cdot})$$

and isomorphisms $\mathcal{F}/\mathcal{F}_k \simeq S_v(E.) \otimes E_j/E_{j-1}$ and $\mathcal{F}_p/\mathcal{F}_{p-1} \simeq S_{v_p}(E.)$ for $p = 1, \ldots, m$. \Box

There exist *flag Schur functors* $S_{\lambda}(-)$, for which we have

Theorem

(K-P) If w is a vexillary permutation with code

$$(i_1, i_2, \ldots, i_n > 0, 0 \ldots)$$
, then
 $S_w(E_{\cdot}) = S_{(i_1, \ldots, i_n) \geq} (E_{\min I_1(w)-1}, \ldots, E_{\min I_n(w)-1})^{\leq}$.

Filtrations of weight modules

Let \mathfrak{b} be the Lie algebra of $n \times n$ upper matrices, \mathfrak{t} that of diagonal matrices, and $U(\mathfrak{b})$ the enveloping algebra of \mathfrak{b} .

$$M$$
 a $U(\mathfrak{b})$ -module, $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{Z}^n$,

$$egin{aligned} &\mathcal{M}_\lambda = \{m \in \mathcal{M}: hm = <\lambda, h>m\} \text{ weight space of } \lambda, \ &<\lambda, h> = \sum\lambda_i h_i \end{aligned}$$

If M is a direct sum of its weight spaces and each weight space has finite dimension, then M is called a *weight module*

イロト イヨト イヨト イヨト

$$ch(M) := \sum_{\lambda} \dim M_{\lambda} x^{\lambda}$$
, where $x^{\lambda} = x_1^{\lambda_1} \cdots x_n^{\lambda_n}$

Let e_{ij} be the matrix with 1 at the (i, j)-position and 0 elsewhere.

Let K_{λ} be a 1-dim'l $U(\mathfrak{b})$ -module, where h acts by $\langle \lambda, h \rangle$ and the matrices e_{ij} , where $i \langle j$, acts by zero. Any finite dim'l weight module admits a filtration by these 1 dim'l modules.

$$w \in S_{\infty}^{(n)} := \{w : w(n+1) < w(n+2) < ...\}.$$

$$E = \bigoplus_{1 \le i \le n} K u_i.$$
For each $j \in \mathbb{N}$, let $\{i < j : w(i) > w(j)\} = \{i_1 < ... < i_{l_j}\}$

$$u_w^{(j)} = u_{i_1} \land \cdots \land u_{i_{l_j}} \in \Lambda^{l_j} E$$

$$u_w = u_w^1 \otimes u_w^2 \otimes \cdots$$

$$S_w = U(\mathfrak{b}) u_w \quad \text{The weight of } u_w \text{ is } c(w) \in \mathbb{R}$$
First Preserve (IM PAN, Warstewa) joint with Widold Kraśkie On certain family of B-modules

Thm (K-P) For any $w \in S_{\infty}^{(n)}$, S_w is a weight module and $ch(S_w) = \mathfrak{S}_w$.

What is the annihilator of u_w ?

$$\begin{split} &1 \leq i < j \leq n \rightarrow m_{ij}(w) = \#\{k > j : w(i) < w(k) < w(j)\}\\ &e_{ij}^{m_{ij}+1} \text{ annihilates } u_w. \end{split}$$

Let $I_w \subset U(\mathfrak{b})$ be the ideal generated by $h - \langle c(w), h \rangle$, $h \in \mathfrak{t}$ and $e_{ij}^{m_{ij}(w)+1}$, i < j.

・ロト ・回ト ・ヨト ・ヨト

There exists $U(\mathfrak{b})/I_w \twoheadrightarrow S_w$ s.t. 1 mod $I_w \mapsto u_w$.

Theorem

(W) This surjection is an isomorphism.

For $\lambda \in \mathbb{Z}_{\geq 0}^n$ we set $S_{\lambda} := S_w$ where $c(w) = \lambda$. For $\lambda \in \mathbb{Z}^n$ take k s.t. $\lambda + k\mathbf{1} \in \mathbb{Z}_{\geq 0}^n$ ($\mathbf{1} = (1, ..., 1)$ *n* times), and set $S_{\lambda} = K_{-k\mathbf{1}} \otimes S_{\lambda+k\mathbf{1}}$. Similarly for \mathfrak{S}_{λ} .

QUESTIONS: 1. When a weighted module admits a filtration with subquotients isomorphic to some S_{λ} 's?

2. Does $S_{\lambda} \otimes S_{\mu}$ have such a filtration?

 $ho = (n-1, n-2, \dots, 2, 1, 0), \quad K_{
ho}$ "dualizing module"

 \mathcal{C} category of all weight modules, for $\Lambda \subset \mathbb{Z}^n$, \mathcal{C}_{Λ} is the full subcategory of \mathcal{C} consisting of all weight modules whose weights are in Λ .

$$|\Lambda| < \infty \quad \Lambda' = \{\rho - \lambda : \lambda \in \Lambda\} \quad \mathcal{C}_{\Lambda'} \cong \mathcal{C}_{\Lambda}^{op} \quad \mathcal{M} \mapsto \mathcal{M}^* \otimes \mathcal{K}_{\rho}$$

Lemma For any $\Lambda \subset \mathbb{Z}^n$, \mathcal{C}_{Λ} has enough projectives. $\mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}$ Piotr Pragacz (IM PAN, Warszawa) joint with Witold Kraśkie On certain family of B-modules

Orders: $w, v \in S_{\infty}$ $w \leq_{lex} v$ if w = v or there exists i > 0 s.t. w(j) = v(j) for j < i and w(i) < v(i).

For $\lambda \in \mathbb{Z}^n$, define $|\lambda| = \sum \lambda_i$. If $\lambda = c(w)$, $\mu = c(v)$, we write $\lambda \ge \mu$ if $|\lambda| = |\mu|$ and $w^{-1} \le_{lex} v^{-1}$. For general $\lambda, \mu \in \mathbb{Z}^n$ take k s.t. $\lambda + k\mathbf{1}, \mu + k\mathbf{1} \in \mathbb{Z}_{\ge 0}^n$, and define $\lambda \ge \mu$ iff $\lambda + k\mathbf{1} \ge \mu + k\mathbf{1}$.

For
$$\lambda \in \mathbb{Z}^n$$
, set $\mathcal{C}_{\leq \lambda} := \mathcal{C}_{\{\nu: \nu \leq \lambda\}}$. All Ext's over $U(\mathfrak{b})$, in $\mathcal{C}_{\leq \lambda}$.

Prop. For $\lambda \in \mathbb{Z}^n$ the modules S_{λ} and $S^*_{\rho-\lambda} \otimes K_{\rho}$ are in $\mathcal{C}_{\leq \lambda}$. Moreover S_{λ} is projective and $S^*_{\rho-\lambda} \otimes K_{\rho}$ is injective.

Theorem

(W) For
$$\mu, \nu \leq \lambda$$
, $Ext^i(S_\mu, S^*_{\rho-\nu} \otimes K_\rho) = 0$, $i \geq 1$

Theorem

(W) Let $M \in C_{\leq \lambda}$. If $Ext^1(M, S^*_{\rho-\mu} \otimes K_{\rho}) = 0$ for all $\mu \leq \lambda$, then M has a filtration s.t. each of its subquotients is isomorphic to some S_{ν} ($\nu \leq \lambda$).

Cor. (1) If $M = M_1 \oplus \ldots \oplus M_r$, then M has such a filtration iff each M_i has.

(2) If $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ is exact and M, N have such filtrations, then L also has.

Proof (1) $Ext^1(M, N) = \oplus Ext^1(M_i, N)$ for any N.

(2) $Ext^1(M, A) \rightarrow Ext^1(L, A) \rightarrow Ext^2(N, A)$ exact for any A.

・ロト ・回ト ・ヨト ・ヨト - ヨ

Prop. $w \in S_{\infty}^{(n)}$, $1 \le k \le n-1$. Then $S_w \otimes S_{s_k}$ has such a filtration. (KP for k = 1, W in general)

Theorem

(W) $S_w \otimes S_v$ has such a filtration for $w, v \in S_{\infty}^{(n)}$.

Consider a *B*-module $T_w = \bigotimes_{2 \le i \le n} (\Lambda^{l_i(w)} K^{i-1}).$

 ${\cal T}_w$ is a direct sum component of $\otimes_{2\leq i\leq n}S_{s_{i-1}}\otimes\cdots\otimes S_{s_{i-1}}$, $l_i(w)$ times

Prop. $w \in S_n$. Then there is an exact sequence $0 \to S_w \to T_w \to N \to 0$, where N has a filtration whose subquotients are S_u with $u^{-1} >_{lex} w^{-1}$.

- from Cauchy formula $\prod_{i+j \le n} (x_i + y_j) = \sum_{w \in \mathfrak{S}_w} \mathfrak{S}_w(x) \mathfrak{S}_{wwo}(y)$

Proof of the thm

Exact sequence:

 $0 \rightarrow S_w \otimes S_v \rightarrow T_w \otimes S_v \rightarrow N \otimes S_v \rightarrow 0$ filtr. by Cor.(2) filtr. by Prop. filtr. by ind. on lex(w)

Theorem

(W) Let $\lambda \in \mathbb{Z}^n$ and $M \in \mathcal{C}_{\leq \lambda}$. Then we have

 $ch(M) \leq \sum_{\nu \leq \lambda} \dim_{\kappa} (\operatorname{Hom}_{\mathfrak{b}}(M, S_{\rho-\nu} \otimes K_{\rho})) \mathfrak{S}_{\nu}$

The equality holds if and only if M has a filtration with all subquotients isomorphic to S_{μ} , where $\mu \leq \lambda$.

As a corollary, we get a formula for the coefficient of \mathfrak{S}_w in $\mathfrak{S}_u\mathfrak{S}_v$:

Cor. This coefficient is equal to the dimension of

 $\operatorname{Hom}_{\mathfrak{b}}(S_u \otimes S_v, S_{w_0w} \otimes K_{\rho}) = \operatorname{Hom}_{\mathfrak{b}}(S_u \otimes S_v \otimes S_{w_ow}, K_{\rho}).$ Proof We use *ch*:

(ロ) (同) (E) (E) (E)

 $\mathfrak{S}_{u}\mathfrak{S}_{v}=ch(S_{u}\otimes S_{v})=\sum_{w}(S_{u}\otimes S_{v},S_{\rho-\lambda}^{*}\otimes K_{\rho})\mathfrak{S}_{w}$

Some plethysm

Let s_σ denote the Schur functor associated to a partition σ

Prop. $s_{\sigma}(S_{\lambda})$ has a filtration with its subquotients isomorphic to some S_{ν} .

Proof $(S_{\lambda})^{\otimes k}$ has such a filtration for any λ and any k.

Hence $Ext^1((S_{\lambda})^{\otimes k}, S_{\nu}^* \otimes K_{\rho}) = 0$ for any ν .

 $s_{\sigma}(S_{\lambda})$ is a direct sum factor of $(S_{\lambda})^{|\sigma|}$.

Hence $Ext^1(s_{\sigma}(S_{\lambda}), S_{\nu}^* \otimes K_{\rho}) = 0$ for any ν , and $s_{\sigma}(S_{\lambda})$ has the desired filtration.

・ロト ・回ト ・ヨト ・ヨト

Cor. If \mathfrak{S}_w is a sum of monomials $x^{\alpha} + x^{\beta} + \cdots$, then $s_{\sigma}(x^{\alpha}, x^{\beta}, \ldots)$ is a positive sum of Schubert polynomials.

The End

・ロン ・回と ・ヨン ・ヨン

æ

References:

W. Kraśkiewicz, P. Pragacz, Foncteurs de Schubert, C. R. Acad. Sci. Paris , 304(9) (1987), 209-211.

W. Kraśkiewicz, P. Pragacz, Schubert functors and Schubert polynomials, Eur. J. Comb., 25(8) (2004), 1327-1344.

M. Watanabe, Filtrations of b-modules with successive quotients isomorphic to Kraśkiewicz and Pragacz's modules realizing Schubert polynomials as their characters, arXiv:1406.6203v3.

M. Watanabe, Tensor product of Kraśkiewicz and Pragacz's modules, arXiv:1410.7981.

イロト イポト イヨト イヨト