Lines on quartic surfaces

Sławomir Rams
Jagiellonian University
Kraków
current address: Leibniz University
Hannover

joint work with:
M. Schütt (Leibniz University Hannover) - smooth case
V. González-Alonso (Leibniz University Hannover) - singular case arXiv:1212.3511 $+1303.1304+1409.7485+$ work in progress

Outline

Classical results.

Segre's argument in modern language.

A counterexample.

Main results.

Sketch of the proof.

Cubics

Basic notions:

\Rightarrow A line in $\mathbb{P}_{3}:=$ set of zeroes of two linearly independent linear forms.

- A smooth degree-d surface $:=$ a smooth degree-d algebraic hypersurface $Z(f) \subset \mathbb{P}_{3}(\mathbb{K})$.

Fix $d \in \mathbb{N}$.
Question. What is the maximal number of lines on a smooth projective algebraic degree- d surface?

Cubics:

$\mathrm{d}=$ 3: 1847 - Cayley/Salmon + Clebsch (later):
Answer: Exactly 27 lines on every smooth $S_{3} \subset \mathbb{P}_{3}$.
If S_{3} is not a cone, but $\operatorname{sing}\left(S_{3}\right) \neq \emptyset$, then S_{3} contains strictly less than
27 lines.
Proof: Computation of the degree and ramification locus of a cover.

Cubics

Basic notions:

- A line in $\mathbb{P}_{3}:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface $:=$ a smooth degree-d algebraic hypersurface $Z(f) \subset \mathbb{P}_{3}(\mathbb{K})$.

Fix $d \in \mathbb{N}$.
Question. What is the maximal number of lines on a smooth projective algebraic degree-d surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later):
Answer: Exactly 27 lines on every smooth $S_{3} \subset \mathbb{P}_{3}$.
If S_{3} is not a cone, but $\operatorname{sing}\left(S_{3}\right) \neq \emptyset$, then S_{3} contains strictly less than
27 lines.
Proof: Computation of the degree and ramification locus of a cover.

Cubics

Basic notions:

- A line in $\mathbb{P}_{3}:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree- d surface $:=$ a smooth degree- d algebraic hypersurface $Z(f) \subset \mathbb{P}_{3}(\mathbb{K})$.

Fix $d \in \mathbb{N}$.
Question. What is the maximal number of lines on a smooth projective algebraic degree- d surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later):
Answer: Exactly 27 lines on every smooth $S_{3} \subset \mathbb{P}_{3}$.
If S_{3} is not a cone, but $\operatorname{sing}\left(S_{3}\right) \neq \emptyset$, then S_{3} contains strictly less than
27 lines.
Proof: Computation of the degree and ramification locus of a cover.

Cubics

Basic notions:

- A line in $\mathbb{P}_{3}:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree- d surface $:=$ a smooth degree- d algebraic hypersurface $Z(f) \subset \mathbb{P}_{3}(\mathbb{K})$.

Fix $d \in \mathbb{N}$.
Question. What is the maximal number of lines on a smooth projective algebraic degree- d surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later):
Answer: Exactly 27 lines on every smooth $S_{3} \subset \mathbb{P}_{3}$.
If S_{3} is not a cone, but $\operatorname{sing}\left(S_{3}\right) \neq \emptyset$, then S_{3} contains strictly less than
27 lines.

Proof: Computation of the degree and ramification locus of a cover.

Cubics

Basic notions:

- A line in $\mathbb{P}_{3}:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree- d surface $:=$ a smooth degree- d algebraic hypersurface $Z(f) \subset \mathbb{P}_{3}(\mathbb{K})$.

Fix $d \in \mathbb{N}$.
Question. What is the maximal number of lines on a smooth projective algebraic degree- d surface?

Cubics:

Cubics

Basic notions:

- A line in $\mathbb{P}_{3}:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree- d surface $:=$ a smooth degree- d algebraic hypersurface $Z(f) \subset \mathbb{P}_{3}(\mathbb{K})$.

Fix $d \in \mathbb{N}$.
Question. What is the maximal number of lines on a smooth projective algebraic degree- d surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later):
Answer: Exactly 27 lines on every smooth $S_{3} \subset \mathbb{P}_{3}$.

Cubics

Basic notions:

- A line in $\mathbb{P}_{3}:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree- d surface $:=$ a smooth degree- d algebraic hypersurface $Z(f) \subset \mathbb{P}_{3}(\mathbb{K})$.

Fix $d \in \mathbb{N}$.
Question. What is the maximal number of lines on a smooth projective algebraic degree- d surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later):
Answer: Exactly 27 lines on every smooth $S_{3} \subset \mathbb{P}_{3}$.
If S_{3} is not a cone, but $\operatorname{sing}\left(S_{3}\right) \neq \emptyset$, then S_{3} contains strictly less than 27 lines.

Proof: Computation of the degree and ramification locus of a cover.

Cubics

Basic notions:

- A line in $\mathbb{P}_{3}:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree- d surface := a smooth degree- d algebraic hypersurface $Z(f) \subset \mathbb{P}_{3}(\mathbb{K})$.

Fix $d \in \mathbb{N}$.
Question. What is the maximal number of lines on a smooth projective algebraic degree- d surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later):
Answer: Exactly 27 lines on every smooth $S_{3} \subset \mathbb{P}_{3}$.
If S_{3} is not a cone, but $\operatorname{sing}\left(S_{3}\right) \neq \emptyset$, then S_{3} contains strictly less than 27 lines.

Proof: Computation of the degree and ramification locus of a cover.

Higher-degree surfaces
any d ≥ 3 : 1860 - Salmon/Clebsch:
Thm. There exists a degree-(11d - 24) polynomial F_{d} such that

$$
\mathrm{Z}\left(F_{d}\right) \cap S_{d}=\left\{P \in S_{d} ; \text { there exists a line } L \text { with } i_{P}\left(S_{d}, L\right) \geq 4\right\}
$$

where $i_{P}\left(S_{d}, L\right)$ is the multiplicity of vanishing of $\left.f\right|_{L}$ in the point P.
Flecnodal divisor $\mathcal{F}_{d}:=$ the cycle of zeroes of F_{d} on the surface S_{d}.
Corollary.
(Number of lines on degree-d surfaces) $\leq \operatorname{deg}\left(F_{d}\right)=d \cdot(11 d-24)$

Example. The Fermat surface $Z\left(x_{1}^{d}+x_{2}^{d}+x_{3}^{d}+x_{4}^{d}\right)$ contains $3 d^{2}$ lines.

Higher-degree surfaces

any d ≥ 3 : 1860 - Salmon/Clebsch:
Thm. There exists a degree-(11d -24$)$ polynomial F_{d} such that $\mathrm{Z}\left(F_{d}\right) \cap S_{d}=\left\{P \in S_{d}\right.$; there exists a line L with $\left.i_{P}\left(S_{d}, L\right) \geq 4\right\}$,
where $i_{P}\left(S_{d}, L\right)$ is the multiplicity of vanishing of $f l_{L}$ in the point P
Flecnodal divisor $\mathcal{F}_{d}:=$ the cycle of zeroes of F_{d} on the surface S_{d}.
Corollary.
(Number of lines on degree-d surfaces) $\leq \operatorname{deg}\left(F_{d}\right)=d \cdot(11 d-24)$

Example. The Fermat surface $Z\left(x_{1}^{d}+x_{2}^{d}+x_{3}^{d}+x_{4}^{d}\right)$ contains $3 d^{2}$ lines.

Higher-degree surfaces

any d ≥ 3 : 1860 - Salmon/Clebsch:
Thm. There exists a degree- $(11 d-24)$ polynomial F_{d} such that $Z\left(F_{d}\right) \cap S_{d}=\left\{P \in S_{d} ;\right.$ there exists a line L with $\left.i_{P}\left(S_{d}, L\right) \geq 4\right\}$, where $i_{P}\left(S_{d}, L\right)$ is the multiplicity of vanishing of $\left.f\right|_{L}$ in the point P.

Flecnodal divisor $\mathcal{F}_{d}:=$ the cycle of zeroes of F_{d} on the surface S_{d}.

Corollary.

(Number of lines on degree-d surfaces) $\leq \operatorname{deg}\left(\mathcal{F}_{d}\right)=d \cdot(11 d-24)$

Example. The Fermat surface $Z\left(x_{1}^{d}+x_{2}^{d}+x_{3}^{d}+x_{4}^{d}\right)$ contains $3 d^{2}$ lines.

Higher-degree surfaces

any d ≥ 3 : 1860 - Salmon/Clebsch:
Thm. There exists a degree- $(11 d-24)$ polynomial F_{d} such that $Z\left(F_{d}\right) \cap S_{d}=\left\{P \in S_{d}\right.$; there exists a line L with $\left.i_{P}\left(S_{d}, L\right) \geq 4\right\}$, where $i_{P}\left(S_{d}, L\right)$ is the multiplicity of vanishing of $\left.f\right|_{L}$ in the point P.

Flecnodal divisor $\mathcal{F}_{d}:=$ the cycle of zeroes of F_{d} on the surface S_{d}.
Corollary.
(Number of lines on degree-d surfaces) $\leq \operatorname{deg}\left(F_{d}\right)=d \cdot(11 d-24)$

Example. The Fermat surface $Z\left(x_{1}^{d}+x_{2}^{d}+x_{3}^{d}+x_{4}^{d}\right)$ contains $3 d^{2}$ lines.

Higher-degree surfaces

any d ≥ 3 : 1860 - Salmon/Clebsch:
Thm. There exists a degree- $(11 d-24)$ polynomial F_{d} such that $Z\left(F_{d}\right) \cap S_{d}=\left\{P \in S_{d}\right.$; there exists a line L with $\left.i_{P}\left(S_{d}, L\right) \geq 4\right\}$, where $i_{P}\left(S_{d}, L\right)$ is the multiplicity of vanishing of $\left.f\right|_{L}$ in the point P.

Flecnodal divisor $\mathcal{F}_{d}:=$ the cycle of zeroes of F_{d} on the surface S_{d}.

Corollary.

(Number of lines on degree-d surfaces) $\leq \operatorname{deg}\left(\mathcal{F}_{d}\right)=d \cdot(11 d-24)$

Example. The Fermat surface $Z\left(x_{1}^{d}+x_{2}^{d}+x_{3}^{d}+x_{4}^{d}\right)$ contains $3 d^{2}$ lines.

Higher-degree surfaces

any d ≥ 3 : 1860 - Salmon/Clebsch:
Thm. There exists a degree- $(11 d-24)$ polynomial F_{d} such that $Z\left(F_{d}\right) \cap S_{d}=\left\{P \in S_{d}\right.$; there exists a line L with $\left.i_{P}\left(S_{d}, L\right) \geq 4\right\}$, where $i_{P}\left(S_{d}, L\right)$ is the multiplicity of vanishing of $\left.f\right|_{L}$ in the point P.

Flecnodal divisor $\mathcal{F}_{d}:=$ the cycle of zeroes of F_{d} on the surface S_{d}.

Corollary.

(Number of lines on degree-d surfaces) $\leq \operatorname{deg}\left(\mathcal{F}_{d}\right)=d \cdot(11 d-24)$

Example. The Fermat surface $Z\left(x_{1}^{d}+x_{2}^{d}+x_{3}^{d}+x_{4}^{d}\right)$ contains $3 d^{2}$ lines.

Higher-degree surfaces II

Lefschetz Thm. For very general smooth $S_{d} \subset \mathbb{P}^{3}(\mathbb{C})$ with $d \geq 4$

$$
\rho\left(S_{d}\right)=1 \text { and } \mathrm{NS}\left(S_{d}\right)=\mathbb{Z} \mathcal{O}_{S_{d}}(1)
$$

Consequently: no lines on S_{d}.
Example. [Shioda 81] For certain $d \geq 4$ the surface
$Z\left(x_{4}^{d}+x_{1} x_{2}^{d-1}+x_{2} x_{3}^{d-1}+x_{3} x_{1}^{d-1}\right)$ has Picard number one. In particular, it contains no lines.
d=4: 1882 - Schur:
The quartic surface $Z\left(x_{1}^{4}-x_{1} x_{2}^{3}-x_{3}^{4}+x_{3} x_{4}^{3}\right) \subset \mathbb{P}_{3}$ contains exactly 64 lines.

1943 - Segre claims to show:

- a line on a smooth quartic is never met by more than 18 other lines.
- maximal number of lines on smooth complex quartics $=64$.

Higher-degree surfaces II

Lefschetz Thm. For very general smooth $S_{d} \subset \mathbb{P}^{3}(\mathbb{C})$ with $d \geq 4$

$$
\rho\left(S_{d}\right)=1 \text { and } \operatorname{NS}\left(S_{d}\right)=\mathbb{Z} \mathcal{O}_{S_{d}}(1)
$$

Consequently: no lines on S_{d}.

Example. [Shioda 81] For certain $d \geq 4$ the surface
 $Z\left(x_{4}^{d}+x_{1} x_{2}^{d-1}+x_{2} x_{3}^{d-1}+x_{3} x_{1}^{d-1}\right)$ has Picard number one. In particular, it contains no lines.

d=4: 1882 - Schur:
The quartic surface $Z\left(x_{1}^{4}-x_{1} x_{2}^{3}-x_{3}^{4}+x_{3} x_{4}^{3}\right) \subset \mathbb{P}_{3}$ contains exactly 64 lines.

1943 - Segre claims to show:

- a line on a smooth quartic is never met by more than 18 other lines.
- maximal number of lines on smooth complex quartics $=64$.

Higher-degree surfaces II

Lefschetz Thm. For very general smooth $S_{d} \subset \mathbb{P}^{3}(\mathbb{C})$ with $d \geq 4$

$$
\rho\left(S_{d}\right)=1 \text { and } \operatorname{NS}\left(S_{d}\right)=\mathbb{Z} \mathcal{O}_{S_{d}}(1)
$$

Consequently: no lines on S_{d}.
Example. [Shioda 81] For certain $d \geq 4$ the surface $\mathrm{Z}\left(x_{4}^{d}+x_{1} x_{2}^{d-1}+x_{2} x_{3}^{d-1}+x_{3} x_{1}^{d-1}\right)$ has Picard number one. In particular, it contains no lines.
d=4: 1882 - Schur:
The quartic surface $Z\left(x_{1}^{4}-x_{1} x_{2}^{3}-x_{3}^{4}+x_{3} x_{4}^{3}\right) \subset \mathbb{P}_{3}$ contains exactly 64 lines.

1943 - Segre claims to show:

- a line on a smooth quartic is never met by more than 18 other lines.
- maximal number of lines on smooth complex quartics $=64$.

Higher-degree surfaces II

Lefschetz Thm. For very general smooth $S_{d} \subset \mathbb{P}^{3}(\mathbb{C})$ with $d \geq 4$

$$
\rho\left(S_{d}\right)=1 \text { and } \mathrm{NS}\left(S_{d}\right)=\mathbb{Z} \mathcal{O}_{S_{d}}(1)
$$

Consequently: no lines on S_{d}.
Example. [Shioda 81] For certain $d \geq 4$ the surface $\mathrm{Z}\left(x_{4}^{d}+x_{1} x_{2}^{d-1}+x_{2} x_{3}^{d-1}+x_{3} x_{1}^{d-1}\right)$ has Picard number one. In particular, it contains no lines.
d=4: 1882 - Schur:
The quartic surface $Z\left(x_{1}^{4}-x_{1} x_{2}^{3}-x_{3}^{4}+x_{3} x_{4}^{3}\right) \subset \mathbb{P}_{3}$ contains exactly 64 lines.

1943 - Segre claims to show:

- a line on a smooth quartic is never met by more than 18 other lines.
- maximal number of lines on smooth complex quartics $=64$.

Higher-degree surfaces II

Lefschetz Thm. For very general smooth $S_{d} \subset \mathbb{P}^{3}(\mathbb{C})$ with $d \geq 4$

$$
\rho\left(S_{d}\right)=1 \text { and } \operatorname{NS}\left(S_{d}\right)=\mathbb{Z} \mathcal{O}_{S_{d}}(1)
$$

Consequently: no lines on S_{d}.
Example. [Shioda 81] For certain $d \geq 4$ the surface $\mathrm{Z}\left(x_{4}^{d}+x_{1} x_{2}^{d-1}+x_{2} x_{3}^{d-1}+x_{3} x_{1}^{d-1}\right)$ has Picard number one. In particular, it contains no lines.
d=4: 1882-Schur:
The quartic surface $Z\left(x_{1}^{4}-x_{1} x_{2}^{3}-x_{3}^{4}+x_{3} x_{4}^{3}\right) \subset \mathbb{P}_{3}$ contains exactly 64 lines.

1943 - Segre claims to show:

- a line on a smooth quartic is never met by more than 18 other lines.
- maximal number of lines on smooth complex quartics $=64$.

Higher-degree surfaces II

Lefschetz Thm. For very general smooth $S_{d} \subset \mathbb{P}^{3}(\mathbb{C})$ with $d \geq 4$

$$
\rho\left(S_{d}\right)=1 \text { and } \operatorname{NS}\left(S_{d}\right)=\mathbb{Z} \mathcal{O}_{S_{d}}(1)
$$

Consequently: no lines on S_{d}.
Example. [Shioda 81] For certain $d \geq 4$ the surface $Z\left(x_{4}^{d}+x_{1} x_{2}^{d-1}+x_{2} x_{3}^{d-1}+x_{3} x_{1}^{d-1}\right)$ has Picard number one. In particular, it contains no lines.
d=4: 1882-Schur:
The quartic surface $Z\left(x_{1}^{4}-x_{1} x_{2}^{3}-x_{3}^{4}+x_{3} x_{4}^{3}\right) \subset \mathbb{P}_{3}$ contains exactly 64 lines.

1943 - Segre claims to show:

- a line on a smooth quartic is never met by more than 18 other lines.
- maximal number of lines on smooth complex quartics $=64$.

Higher-degree surfaces II

Lefschetz Thm. For very general smooth $S_{d} \subset \mathbb{P}^{3}(\mathbb{C})$ with $d \geq 4$

$$
\rho\left(S_{d}\right)=1 \text { and } \operatorname{NS}\left(S_{d}\right)=\mathbb{Z} \mathcal{O}_{S_{d}}(1)
$$

Consequently: no lines on S_{d}.
Example. [Shioda 81] For certain $d \geq 4$ the surface $\mathrm{Z}\left(x_{4}^{d}+x_{1} x_{2}^{d-1}+x_{2} x_{3}^{d-1}+x_{3} x_{1}^{d-1}\right)$ has Picard number one. In particular, it contains no lines.
d=4: 1882 - Schur:
The quartic surface $Z\left(x_{1}^{4}-x_{1} x_{2}^{3}-x_{3}^{4}+x_{3} x_{4}^{3}\right) \subset \mathbb{P}_{3}$ contains exactly 64 lines.

1943 - Segre claims to show:

- a line on a smooth quartic is never met by more than 18 other lines.
- maximal number of lines on smooth complex quartics $=64$.

Segre's argument in modern language I

Step 1. S a smooth quartic surface, $\ell \subset S$ a line. Then ℓ is met by at most 18 other lines on S.

Step 2. If there exists a plane Π such that $\Pi \cap S$ consists of four lines, then S contains at most 64 lines.

Step 3. If there exists a line $\ell \subset S$ met by at least 13 other lines, then there exists a plane Π such that $\Pi \cap S$ consists of four lines.

Assumption A: Each line on S met by at most 12 other lines, no four of them coplanar.

Segre's argument in modern language I

Step 1. S a smooth quartic surface, $\ell \subset S$ a line. Then ℓ is met by at most 18 other lines on S.

Step 2. If there exists a plane Π such that $\Pi \cap S$ consists of four lines, then S contains at most 64 lines.

Step 3. If there exists a line $\ell \subset S$ met by at least 13 other lines, then there exists a plane Π such that $\Pi \cap S$ consists of four lines.

Assumption A: Each line on S met by at most 12 other lines, no four of them coplanar.

Segre's argument in modern language I

Step 1. S a smooth quartic surface, $\ell \subset S$ a line. Then ℓ is met by at most 18 other lines on S.

Step 2. If there exists a plane Π such that $\Pi \cap S$ consists of four lines, then S contains at most 64 lines.

Step 3. If there exists a line $\ell \subset S$ met by at least 13 other lines, then there exists a plane Π such that $\Pi \cap S$ consists of four lines.

Assumption A: Each line on S met by at most 12 other lines, no four of

 them coplanar.
Segre's argument in modern language I

Step 1. S a smooth quartic surface, $\ell \subset S$ a line. Then ℓ is met by at most 18 other lines on S.

Step 2. If there exists a plane Π such that $\Pi \cap S$ consists of four lines, then S contains at most 64 lines.

Step 3. If there exists a line $\ell \subset S$ met by at least 13 other lines, then there exists a plane Π such that $\Pi \cap S$ consists of four lines.

Assumption A: Each line on S met by at most 12 other lines, no four of them coplanar.

Segre's argument in modern language I

Step 1. S a smooth quartic surface, $\ell \subset S$ a line. Then ℓ is met by at most 18 other lines on S.

Step 2. If there exists a plane Π such that $\Pi \cap S$ consists of four lines, then S contains at most 64 lines.

Step 3. If there exists a line $\ell \subset S$ met by at least 13 other lines, then there exists a plane Π such that $\Pi \cap S$ consists of four lines.

Assumption A: Each line on S met by at most 12 other lines, no four of them coplanar.

Segre's argument in modern language II

Step 4. If there exist coplanar lines $\ell_{1}, \ell_{1} \subset S$ such that the conic $C_{2} \in\left|\mathcal{O}_{S}(1)-\ell_{1}-\ell_{2}\right|$ is no component of the flecnodal divisor \mathcal{F}_{S}, then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $\operatorname{supp}\left(\mathcal{F}_{S}\right)$.

Step 5. If S contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C: S contains $N \leq 8$ pairs of coplanar lines.
Step 6. The pairs of lines span a sublattice of $N S(S)$ of rank $\geq(N+1)$. The number of lines is bounded by

$$
2 N+22-(N+1)=21+N \leq 29
$$

Segre's argument in modern language II

Step 4. If there exist coplanar lines $\ell_{1}, \ell_{1} \subset S$ such that the conic $C_{2} \in\left|\mathcal{O}_{S}(1)-\ell_{1}-\ell_{2}\right|$ is no component of the flecnodal divisor \mathcal{F}_{S}, then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $\operatorname{supp}\left(\mathcal{F}_{S}\right)$.

Step 5. If S contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption $\mathrm{C}: ~ \mathrm{~S}$ contains $N \leq 8$ pairs of coplanar lines.
Step 6. The pairs of lines span a sublattice of NS(S) of rank $\geq(N+1)$ The number of lines is bounded by

$$
2 N+22-(N+1)=21+N \leq 29 .
$$

Segre's argument in modern language II

Step 4. If there exist coplanar lines $\ell_{1}, \ell_{1} \subset S$ such that the conic $C_{2} \in\left|\mathcal{O}_{S}(1)-\ell_{1}-\ell_{2}\right|$ is no component of the flecnodal divisor \mathcal{F}_{S}, then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $\operatorname{supp}\left(\mathcal{F}_{S}\right)$.

Step 5. If S contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C: S contains $\mathrm{N} \leq 8$ pairs of coplanar lines.
Step 6. The pairs of lines span a sublattice of $\mathrm{NS}(S)$ of rank $\geq(N+1)$. The number of lines is bounded by

$$
2 N+22-(N+1)=21+N \leq 29 .
$$

Segre's argument in modern language II

Step 4. If there exist coplanar lines $\ell_{1}, \ell_{1} \subset S$ such that the conic $C_{2} \in\left|\mathcal{O}_{S}(1)-\ell_{1}-\ell_{2}\right|$ is no component of the flecnodal divisor \mathcal{F}_{S}, then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $\operatorname{supp}\left(\mathcal{F}_{S}\right)$.

Step 5. If S contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C : S contains $N \leq 8$ pairs of coplanar lines.
Step 6. The pairs of lines span a sublattice of $\mathrm{NS}(S)$ of rank $\geq(N+1)$ The number of lines is bounded by

$$
2 N+22-(N+1)=21+N \leq 29 .
$$

Segre's argument in modern language II

Step 4. If there exist coplanar lines $\ell_{1}, \ell_{1} \subset S$ such that the conic $C_{2} \in\left|\mathcal{O}_{S}(1)-\ell_{1}-\ell_{2}\right|$ is no component of the flecnodal divisor \mathcal{F}_{S}, then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $\operatorname{supp}\left(\mathcal{F}_{S}\right)$.

Step 5. If S contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C : S contains $N \leq 8$ pairs of coplanar lines.
Step 6. The pairs of lines span a sublattice of NS(S) of rank $\geq(N+1)$ The number of lines is bounded by

$$
2 N+22-(N+1)=21+N \leq 29 .
$$

Segre's argument in modern language II

Step 4. If there exist coplanar lines $\ell_{1}, \ell_{1} \subset S$ such that the conic $C_{2} \in\left|\mathcal{O}_{S}(1)-\ell_{1}-\ell_{2}\right|$ is no component of the flecnodal divisor \mathcal{F}_{S}, then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $\operatorname{supp}\left(\mathcal{F}_{S}\right)$.

Step 5. If S contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C : S contains $N \leq 8$ pairs of coplanar lines.
Step 6. The pairs of lines span a sublattice of $\mathrm{NS}(S)$ of rank $\geq(N+1)$. The number of lines is bounded by

$$
2 N+22-(N+1)=21+N \leq 29 .
$$

A counterexample

Example [R-S 2012]

The quartic S given by vanishing of

$$
x_{1}^{3} x_{3}+x_{1} x_{2} x_{3}^{2}+x_{2}^{3} x_{4}+r x_{3}^{3} x_{4}-x_{1} x_{2} x_{4}^{2}-r x_{3} x_{4}^{3}
$$

with $r=-16 / 27$,

- is smooth outside characteristics 2,3,5,
- contains 60 lines,
- contains the line $\left\{x_{3}=x_{4}=0\right\}$,
- contains 20 other lines that meet the line $\left\{x_{3}=x_{4}=0\right\}$

Over \mathbb{C}, we obtain a K3 surface with Picard number $\rho=20$.
The claim of Step 1 is false.

A counterexample

Example [R-S 2012]

The quartic S given by vanishing of

$$
x_{1}^{3} x_{3}+x_{1} x_{2} x_{3}^{2}+x_{2}^{3} x_{4}+r x_{3}^{3} x_{4}-x_{1} x_{2} x_{4}^{2}-r x_{3} x_{4}^{3}
$$

with $r=-16 / 27$,

- is smooth outside characteristics $2,3,5$,
- contains 60 lines,
- contains the line $\left\{x_{3}=x_{4}=0\right\}$,
- contains 20 other lines that meet the line $\left\{x_{3}=x_{4}=0\right\}$

Over \mathbb{C}, we obtain a $K 3$ surface with Picard number $\rho=20$.
The claim of Step 1 is false.

A counterexample

Example [R-S 2012]

The quartic S given by vanishing of

$$
x_{1}^{3} x_{3}+x_{1} x_{2} x_{3}^{2}+x_{2}^{3} x_{4}+r x_{3}^{3} x_{4}-x_{1} x_{2} x_{4}^{2}-r x_{3} x_{4}^{3}
$$

with $r=-16 / 27$,

- is smooth outside characteristics $2,3,5$,
- contains 60 lines,
- contains the line $\left\{x_{3}=x_{4}=0\right\}$,
- contains 20 other lines that meet the line $\left\{x_{3}=x_{4}=0\right\}$ Over \mathbb{C}, we obtain a K3 surface with Picard number $\rho=20$.

The claim of Step 1 is false.

A counterexample

Example [R-S 2012]

The quartic S given by vanishing of

$$
x_{1}^{3} x_{3}+x_{1} x_{2} x_{3}^{2}+x_{2}^{3} x_{4}+r x_{3}^{3} x_{4}-x_{1} x_{2} x_{4}^{2}-r x_{3} x_{4}^{3}
$$

with $r=-16 / 27$,

- is smooth outside characteristics $2,3,5$,
- contains 60 lines,
- contains the line $\left\{x_{3}=x_{4}=0\right\}$,
- contains 20 other lines that meet the line $\left\{x_{3}=x_{4}=0\right\}$ Over \mathbb{C}, we obtain a K3 surface with Picard number $\rho=20$.

The claim of Step 1 is false.

A counterexample

Example [R-S 2012]

The quartic S given by vanishing of

$$
x_{1}^{3} x_{3}+x_{1} x_{2} x_{3}^{2}+x_{2}^{3} x_{4}+r x_{3}^{3} x_{4}-x_{1} x_{2} x_{4}^{2}-r x_{3} x_{4}^{3}
$$

with $r=-16 / 27$,

- is smooth outside characteristics $2,3,5$,
- contains 60 lines,
- contains the line $\left\{x_{3}=x_{4}=0\right\}$,
- contains 20 other lines that meet the line $\left\{x_{3}=x_{4}=0\right\}$ Over \mathbb{C}, we obtain a K3 surface with Picard number $\rho=20$.

The claim of Step 1 is false.

A counterexample

Example [R-S 2012]
The quartic S given by vanishing of

$$
x_{1}^{3} x_{3}+x_{1} x_{2} x_{3}^{2}+x_{2}^{3} x_{4}+r x_{3}^{3} x_{4}-x_{1} x_{2} x_{4}^{2}-r x_{3} x_{4}^{3}
$$

with $r=-16 / 27$,

- is smooth outside characteristics $2,3,5$,
- contains 60 lines,
- contains the line $\left\{x_{3}=x_{4}=0\right\}$,
- contains 20 other lines that meet the line $\left\{x_{3}=x_{4}=0\right\}$.

Over \mathbb{C}, we obtain a K3 surface with Picard number $\rho=20$.
The claim of Step 1 is false.

A counterexample

Example [R-S 2012]
The quartic S given by vanishing of

$$
x_{1}^{3} x_{3}+x_{1} x_{2} x_{3}^{2}+x_{2}^{3} x_{4}+r x_{3}^{3} x_{4}-x_{1} x_{2} x_{4}^{2}-r x_{3} x_{4}^{3}
$$

with $r=-16 / 27$,

- is smooth outside characteristics $2,3,5$,
- contains 60 lines,
- contains the line $\left\{x_{3}=x_{4}=0\right\}$,
- contains 20 other lines that meet the line $\left\{x_{3}=x_{4}=0\right\}$.

Over \mathbb{C}, we obtain a K3 surface with Picard number $\rho=20$.
The claim of Step 1 is false.

A counterexample

Example [R-S 2012]
The quartic S given by vanishing of

$$
x_{1}^{3} x_{3}+x_{1} x_{2} x_{3}^{2}+x_{2}^{3} x_{4}+r x_{3}^{3} x_{4}-x_{1} x_{2} x_{4}^{2}-r x_{3} x_{4}^{3}
$$

with $r=-16 / 27$,

- is smooth outside characteristics $2,3,5$,
- contains 60 lines,
- contains the line $\left\{x_{3}=x_{4}=0\right\}$,
- contains 20 other lines that meet the line $\left\{x_{3}=x_{4}=0\right\}$.

Over \mathbb{C}, we obtain a K3 surface with Picard number $\rho=20$.
The claim of Step 1 is false.

Main results I

Assumption: \mathbb{K} is alg closed.
Thm 1 [R-S, 2012$].$

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^{3}(\mathbb{K})$ intersects at most 20 other lines provided that $\operatorname{char}(\mathbb{K}) \neq 2,3$.
2. If ℓ meets more than 18 lines on S then S can be given by a quartic polynomial

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+x_{3} g\left(x_{3}, x_{4}\right)
$$

where $q, g \in \mathbb{K}\left[x_{3}, x_{4}\right]$ are homogeneous of degree 2 resp. 3.
3. The line $\ell=\left\{x_{3}=x_{4}=0\right\}$ meets 20 lines on S if and only if $x_{4} \mid g$.

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2,3$. A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 64 lines.

Main results I

Assumption: \mathbb{K} is alg closed.
Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^{3}(\mathbb{K})$ intersects at most 20 other lines provided that $\operatorname{char}(\mathbb{K}) \neq 2,3$.
2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+x_{3} g\left(x_{3}, x_{4}\right)
$$

where $q, g \in \mathbb{K}\left[x_{3}, x_{4}\right]$ are homogeneous of degree 2 resp. 3.
3. The line $\ell=\left\{x_{3}=x_{4}=0\right\}$ meets 20 lines on S if and only if $x_{1} \mid g$.

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2,3$.
A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 64 lines.

Main results I

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^{3}(\mathbb{K})$ intersects at most 20 other lines provided that $\operatorname{char}(\mathbb{K}) \neq 2,3$
2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+x_{3} g\left(x_{3}, x_{4}\right)
$$

where $q, g \in \mathbb{K}\left[x_{3}, x_{4}\right]$ are homogeneous of degree 2 resp. 3 .
3. The line $\ell=\left\{x_{3}-x_{4}=0\right\}$ meets 20 lines on S if and only if $x_{4} \mid g$.

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2,3$. A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 64 lines.

Main results I

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^{3}(\mathbb{K})$ intersects at most 20 other lines provided that char $(\mathbb{K}) \neq 2,3$
2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+x_{3} g\left(x_{3}, x_{4}\right)
$$

where $q, g \in \mathbb{K}\left[x_{3}, x_{4}\right]$ are homogeneous of degree 2 resp. 3.
3. The line $\ell=\left\{x_{3}=x_{4}=0\right\}$ meets 20 lines on S if and only if $x_{4} g$.

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2,3$. A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 64 lines.

Main results I

Assumption: \mathbb{K} is alg closed.
Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^{3}(\mathbb{K})$ intersects at most 20 other lines provided that $\operatorname{char}(\mathbb{K}) \neq 2,3$.
2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+x_{3} g\left(x_{3}, x_{4}\right)
$$

where $q, g \in \mathbb{K}\left[x_{3}, x_{4}\right]$ are homogeneous of degree 2 resp. 3.
3. The line $\ell=\left\{x_{3}=x_{4}=0\right\}$ meets 20 lines on S if and only if $x_{4} \mid g$

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2,3$. A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 64 lines.

Main results I

Assumption: \mathbb{K} is alg closed.
Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^{3}(\mathbb{K})$ intersects at most 20 other lines provided that $\operatorname{char}(\mathbb{K}) \neq 2,3$.
2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+x_{3} g\left(x_{3}, x_{4}\right)
$$

where $q, g \in \mathbb{K}\left[x_{3}, x_{4}\right]$ are homogeneous of degree 2 resp. 3.
3. The line $\ell=\left\{x_{3}=x_{4}=0\right\}$ meets 20 lines on S if and only if $x_{4} \mid g$

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2,3$. A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 64 lines.

Main results I

Assumption: \mathbb{K} is alg closed.
Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^{3}(\mathbb{K})$ intersects at most 20 other lines provided that $\operatorname{char}(\mathbb{K}) \neq 2,3$.
2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+x_{3} g\left(x_{3}, x_{4}\right)
$$

where $q, g \in \mathbb{K}\left[x_{3}, x_{4}\right]$ are homogeneous of degree 2 resp. 3.

Thm $2[R-S, 2012]$. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2$, 3 . A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 64 lines.

Main results I

Assumption: \mathbb{K} is alg closed.
Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^{3}(\mathbb{K})$ intersects at most 20 other lines provided that $\operatorname{char}(\mathbb{K}) \neq 2,3$.
2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+x_{3} g\left(x_{3}, x_{4}\right)
$$

where $q, g \in \mathbb{K}\left[x_{3}, x_{4}\right]$ are homogeneous of degree 2 resp. 3 .
3. The line $\ell=\left\{x_{3}=x_{4}=0\right\}$ meets 20 lines on S if and only if $x_{4} \mid g$

Thm $2[R-S, 2012]$. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2$, 3 . A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 64 lines.

Main results I

Assumption: \mathbb{K} is alg closed.
Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^{3}(\mathbb{K})$ intersects at most 20 other lines provided that $\operatorname{char}(\mathbb{K}) \neq 2,3$.
2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+x_{3} g\left(x_{3}, x_{4}\right)
$$

where $q, g \in \mathbb{K}\left[x_{3}, x_{4}\right]$ are homogeneous of degree 2 resp. 3.
3. The line $\ell=\left\{x_{3}=x_{4}=0\right\}$ meets 20 lines on S if and only if $x_{4} \mid g$.

Thm $2[R-S, 2012]$. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2,3$.
A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 64 lines.

Main results I

Assumption: \mathbb{K} is alg closed.
Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^{3}(\mathbb{K})$ intersects at most 20 other lines provided that $\operatorname{char}(\mathbb{K}) \neq 2,3$.
2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+x_{3} g\left(x_{3}, x_{4}\right)
$$

where $q, g \in \mathbb{K}\left[x_{3}, x_{4}\right]$ are homogeneous of degree 2 resp. 3.
3. The line $\ell=\left\{x_{3}=x_{4}=0\right\}$ meets 20 lines on S if and only if $x_{4} \mid g$.

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2,3$. A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 64 lines.

Main results II

Different approach is needed to deal with $\operatorname{char}(\mathbb{K}) \in\{2,3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ may meet at most 48 lines on S.

Thm $4[R-S, 2014]$. Let $\operatorname{char}(\mathbb{K})=3$.
(a) A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 112 lines.
(b) Up to the action of $\mathrm{PGL}(4)$ there is a unique smooth quartic surface in $\mathbb{P}^{3}(\mathbb{K})$ containing 112 lines.
Example The quartic

$$
S_{3}=\left\{x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}=0\right\} \subset \mathbb{P}^{3}(\mathbb{K})
$$

contains exactly 112 lines (each defined over \mathbb{F}_{9}).
It was known already to B. Segre.

Main results II

Different approach is needed to deal with $\operatorname{char}(\mathbb{K}) \in\{2,3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ may meet at most 48 lines on S.
Thm 4 [R-S, 2014]. Let char $(\mathbb{K})=3$.
(a) A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 112 lines.
(b) Up to the action of PGL(4) there is a unique smooth quartic surface
in $\mathbb{P}^{3}(\mathbb{K})$ containing 112 lines.
Example The quartic

contains exactly 112 lines (each defined over \mathbb{F}_{9}).
It was known already to B. Segre.

Main results II

Different approach is needed to deal with $\operatorname{char}(\mathbb{K}) \in\{2,3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ may meet at most 48 lines on S.
Thm $4[R-S, 2014]$. Let char $(\mathbb{K})=3$.
(a) A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 112 lines.
(b) Up to the action of PGL(4) there is a unique smooth quartic surface
in $\mathbb{P}^{3}(\mathbb{K})$ containing 112 lines. Example The quartic

$$
S_{3}=\left\{x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}=0\right\} \subset \mathbb{P}^{3}(\mathbb{K}) .
$$

contains exactly 112 lines (each defined over \mathbb{F}_{9}).
It was known already to B. Segre.

Main results II

Different approach is needed to deal with $\operatorname{char}(\mathbb{K}) \in\{2,3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ may meet at most 48 lines on S.
Thm 4 [R-S, 2014]. Let char $(\mathbb{K})=3$.
(a) A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 112 lines.
(b) Up to the action of $P G L(4)$ there is a unique smooth quartic surface
in $\mathbb{P}^{3}(\mathbb{K})$ containing 112 lines.

Example The quartic

$$
S_{3}=\left\{x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}=0\right\} \subset \mathbb{P}^{3}(\mathbb{K}) .
$$

contains exactly 112 lines (each defined over \mathbb{F}_{9}).
It was known already to B. Segre.

Main results II

Different approach is needed to deal with $\operatorname{char}(\mathbb{K}) \in\{2,3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ may meet at most 48 lines on S.
Thm 4 [R-S, 2014]. Let char $(\mathbb{K})=3$.
(a) A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 112 lines.
(b) Up to the action of PGL(4) there is a unique smooth quartic surface
in $\mathbb{P}^{3}(\mathbb{K})$ containing 112 lines.

Example The quartic

$$
S_{3}=\left\{x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}=0\right\} \subset \mathbb{P}^{3}(\mathbb{K}) .
$$

contains exactly 112 lines (each defined over \mathbb{F}_{9}).
It was known already to B. Segre.

Main results II

Different approach is needed to deal with $\operatorname{char}(\mathbb{K}) \in\{2,3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ may meet at most 48 lines on S.
Thm 4 [R-S, 2014]. Let char $(\mathbb{K})=3$.
(a) A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 112 lines.
(b) Up to the action of $\mathrm{PGL}(4)$ there is a unique smooth quartic surface in $\mathbb{P}^{3}(\mathbb{K})$ containing 112 lines.
Example The quartic

contains exactly 112 lines (each defined over \mathbb{F}_{9}).
It was known already to B. Segre.

Main results II

Different approach is needed to deal with $\operatorname{char}(\mathbb{K}) \in\{2,3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ may meet at most 48 lines on S.
Thm 4 [R-S, 2014]. Let char $(\mathbb{K})=3$.
(a) A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 112 lines.
(b) Up to the action of PGL(4) there is a unique smooth quartic surface in $\mathbb{P}^{3}(\mathbb{K})$ containing 112 lines.
Example The quartic

$$
S_{3}=\left\{x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}=0\right\} \subset \mathbb{P}^{3}(\mathbb{K})
$$

contains exactly 112 lines (each defined over \mathbb{F}_{9}).

Main results II

Different approach is needed to deal with $\operatorname{char}(\mathbb{K}) \in\{2,3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ may meet at most 48 lines on S.
Thm $4[R-S, 2014]$. Let $\operatorname{char}(\mathbb{K})=3$.
(a) A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 112 lines.
(b) Up to the action of PGL(4) there is a unique smooth quartic surface in $\mathbb{P}^{3}(\mathbb{K})$ containing 112 lines.
Example The quartic

$$
S_{3}=\left\{x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}=0\right\} \subset \mathbb{P}^{3}(\mathbb{K})
$$

contains exactly 112 lines (each defined over \mathbb{F}_{9}).
It was known already to B. Segre.

Main results III

Remark: On the quartic from the example a line on S_{3} is met by 30 other lines.

Question: What for characteristic 2? (work in progress)
Thm 4 [R-S, 2014]. Let char $(\mathbb{K})=2$. A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 84 lines.

Best known example (inspired by Barth quintic): 60 lines.

Main results III

Remark: On the quartic from the example a line on S_{3} is met by 30 other lines.

Question: What for characteristic 2? (work in progress)

Thm $4\left[\right.$ R-S, 2014]. Let char $(\mathbb{K})=2$. A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 84 lines.

Best known example (inspired by Barth quintic): 60 lines.

Main results III

Remark: On the quartic from the example a line on S_{3} is met by 30 other lines.

Question: What for characteristic 2? (work in progress)
Thm $4\left[\right.$ R-S, 2014]. Let char $(\mathbb{K})=2$. A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 84 lines.

Best known example (inspired by Barth quintic): 60 lines.

Main results III

Remark: On the quartic from the example a line on S_{3} is met by 30 other lines.

Question: What for characteristic 2? (work in progress)
Thm $4[R-S, 2014]$. Let char $(\mathbb{K})=2$. A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 84 lines.

Best known example (inspired by Barth quintic): 60 lines.

Main results III

Remark: On the quartic from the example a line on S_{3} is met by 30 other lines.

Question: What for characteristic 2? (work in progress)
Thm 4 [R-S, 2014]. Let char $(\mathbb{K})=2$. A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 84 lines.

Best known example (inspired by Barth quintic): 60 lines.

Main results III

Remark: On the quartic from the example a line on S_{3} is met by 30 other lines.

Question: What for characteristic 2? (work in progress)
Thm $4[R-S, 2014]$. Let char $(\mathbb{K})=2$. A smooth quartic $S \subset \mathbb{P}^{3}(\mathbb{K})$ contains at most 84 lines.

Best known example (inspired by Barth quintic): 60 lines.

Main results IV

Question: What for complex quartics with singularities?
Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.

Main results IV

Question: What for complex quartics with singularities?
Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.

Main results IV

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.

Main results IV

Question: What for complex quartics with singularities?
Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic
surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.

Main results IV

Question: What for complex quartics with singularities?
Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic
surface. If S is not ruled by lines, then it contains at most 48 lines.
Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}$ (C) be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.

Main results IV

Question: What for complex quartics with singularities?
Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.

Main results IV

Question: What for complex quartics with singularities?
Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic

surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.

Main results IV

Question: What for complex quartics with singularities?
Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.

Main results IV

Question: What for complex quartics with singularities?
Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.

Main results IV

Question: What for complex quartics with singularities?
Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.

Main results IV

Question: What for complex quartics with singularities?
Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.

Main results IV

Question: What for complex quartics with singularities?
Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point.
contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.

Main results IV

Question: What for complex quartics with singularities?
Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines.
Then S contains at most 64 lines.

Main results IV

Question: What for complex quartics with singularities?
Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines.

Main results IV

Question: What for complex quartics with singularities?
Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a $K 3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_{3}(\mathbb{C})$ is a non- $K 3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_{3}(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
(b) Let $S \subset \mathbb{C}^{3}$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.

Sketch of the proof I

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $H_{\lambda} \cap S=: \ell+F_{\lambda}$
- for general $\lambda \in \mathbb{P}_{1}$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

$$
\pi: S \supset C_{\lambda} \ni P \mapsto \lambda \in \mathbb{P}_{1},
$$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z\left(f_{\lambda}\right)$ only in the points where the determinant of Hessian of f_{λ} does not vanish.
Lemma $\mathbf{0}$. If ℓ of the first kind, then ℓ is met by at most 18 other lines.
Proof: Computation of the resultant of the equation of $\left.F_{\lambda}\right|_{\ell}$ and of its Hessian ${ }_{\ell}$.

Sketch of the proof I

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $H_{\lambda} \cap S=: \ell+F_{\lambda}$
- for general $\lambda \in \mathbb{P}_{1}$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

$$
\pi: S \supset C_{\lambda} \ni P \mapsto \lambda \in \mathbb{P}_{1},
$$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z\left(f_{\lambda}\right)$ only in the points where the determinant of Hessian of f_{λ} does not vanish.

Lemma 0. If ℓ of the first kind, then ℓ is met by at most 18 other lines.
Proof: Computation of the resultant of the equation of $F_{\lambda} l_{n}$ and of its Hessian|e.

Sketch of the proof I

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $H_{\lambda} \cap S=: \ell+F_{\lambda}$
- for general $\lambda \in \mathbb{P}_{1}$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

$$
\pi: S \supset C_{\lambda} \supset P \mapsto \lambda \in \mathbb{P}_{1},
$$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z\left(f_{\lambda}\right)$ only in the points where the determinant of Hessian of f_{λ} does not vanish.

Lemma 0. If ℓ of the first kind, then ℓ is met by at most 18 other lines.
Proof: Computation of the resultant of the equation of $F_{\lambda} l_{n}$ and of its Hessian|e.

Sketch of the proof I

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $H_{\lambda} \cap S=: \ell+F_{\lambda}$
- for general $\lambda \in \mathbb{P}_{1}$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z\left(f_{\lambda}\right)$ only in the points where the determinant of Hessian of f_{λ} does not vanish.

Lemma $\mathbf{0}$. If ℓ of the first kind, then ℓ is met by at most 18 other lines.
Proof: Computation of the resultant of the equation of $\left.F_{\lambda}\right|_{\ell}$ and of its Hessian|e

Sketch of the proof I

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $H_{\lambda} \cap S=: \ell+F_{\lambda}$
- for general $\lambda \in \mathbb{P}_{1}$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z\left(f_{\lambda}\right)$ only in the points where the determinant of Hessian of f_{λ} does not vanish.

Lemma $\mathbf{0}$. If ℓ of the first kind, then ℓ is met by at most 18 other lines.
Proof: Computation of the resultant of the equation of $\left.F_{\lambda}\right|_{\ell}$ and of its Hessian|e

Sketch of the proof I

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $H_{\lambda} \cap S=: \ell+F_{\lambda}$
- for general $\lambda \in \mathbb{P}_{1}$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

$$
\pi: S \supset C_{\lambda} \ni P \mapsto \lambda \in \mathbb{P}_{1},
$$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z\left(f_{\lambda}\right)$ only in the points where the determinant of Hessian of f_{λ} does not vanish.

Lemma 0 . If ℓ of the first kind, then ℓ is met by at most 18 other lines.
Proof: Computation of the resultant of the equation of $F_{\lambda} l_{n}$ and of its Hessian ${ }_{\ell}$

Sketch of the proof I

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $H_{\lambda} \cap S=: \ell+F_{\lambda}$
- for general $\lambda \in \mathbb{P}_{1}$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

$$
\pi: S \supset C_{\lambda} \ni P \mapsto \lambda \in \mathbb{P}_{1},
$$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z\left(f_{\lambda}\right)$ only in the points where the determinant of Hessian of f_{λ} does not vanish.
Lemma 0 . If ℓ of the first kind, then ℓ is met by at most 18 other lines.
Proof: Computation of the resultant of the equation of $\left.F_{\lambda}\right|_{\ell}$ and of its Hessian ${ }_{\ell}$

Sketch of the proof I

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $H_{\lambda} \cap S=: \ell+F_{\lambda}$
- for general $\lambda \in \mathbb{P}_{1}$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

$$
\pi: S \supset C_{\lambda} \ni P \mapsto \lambda \in \mathbb{P}_{1}
$$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z\left(f_{\lambda}\right)$ only in the points where the determinant of Hessian of f_{λ} does not vanish.
Lemma $\mathbf{0}$. If ℓ of the first kind, then ℓ is met by at most 18 other lines.
Proof: Computation of the resultant of the equation of $\left.F_{\lambda}\right|_{\ell}$ and of its Hessian

Sketch of the proof I

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $H_{\lambda} \cap S=: \ell+F_{\lambda}$
- for general $\lambda \in \mathbb{P}_{1}$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

$$
\pi: S \supset C_{\lambda} \ni P \mapsto \lambda \in \mathbb{P}_{1}
$$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z\left(f_{\lambda}\right)$ only in the points where the determinant of Hessian of f_{λ} does not vanish.
Lemma $\mathbf{0}$. If ℓ of the first kind, then ℓ is met by at most 18 other lines.
Proof: Computation of the resultant of the equation of $\left.F_{\lambda}\right|_{\ell}$ and of its Hessian ${ }_{\ell}$.

Sketch of the proof II

We consider the restriction $\left.\pi\right|_{\ell}: \ell \rightarrow \mathbb{P}^{1}$ and get a degree-3 morphism.
Definition. The line ℓ is of ramification type 1^{4} (resp. $2,1^{2}$), (resp. 2^{2}) iff $\left.\pi\right|_{\ell}$ has 4, (resp. 3) or (resp. 2) ramification points.

Definition. The line ℓ is of the second kind iff it intersects all smooth fibres $Z\left(f_{\lambda}\right)$ in the points where Hessian of f_{λ} vanishes.

Support of the closure of the inflection points of smooth fibers:

Sketch of the proof II

We consider the restriction $\left.\pi\right|_{\ell}: \ell \rightarrow \mathbb{P}^{1}$ and get a degree-3 morphism. Definition. The line ℓ is of ramification type 1^{4} (resp. $2,1^{2}$), (resp. 2^{2}) iff $\left.\pi\right|_{\ell}$ has 4, (resp. 3) or (resp. 2) ramification points.

Definition. The line ℓ is of the second kind iff it intersects all smooth fibres $Z\left(f_{\lambda}\right)$ in the points where Hessian of f_{λ} vanishes.

Support of the closure of the inflection points of smooth fibers:

Sketch of the proof II

We consider the restriction $\left.\pi\right|_{\ell}: \ell \rightarrow \mathbb{P}^{1}$ and get a degree-3 morphism. Definition. The line ℓ is of ramification type 1^{4} (resp. $2,1^{2}$), (resp. 2^{2}) iff $\left.\pi\right|_{\ell}$ has 4 , (resp. 3) or (resp. 2) ramification points.

Definition. The line ℓ is of the second kind iff it intersects all smooth fibres $Z\left(f_{\lambda}\right)$ in the points where Hessian of f_{λ} vanishes.

Support of the closure of the inflection points of smooth fibers:

Sketch of the proof II

We consider the restriction $\left.\pi\right|_{\ell}: \ell \rightarrow \mathbb{P}^{1}$ and get a degree-3 morphism.
Definition. The line ℓ is of ramification type 1^{4} (resp. $2,1^{2}$), (resp. 2^{2}) iff $\left.\pi\right|_{\ell}$ has 4 , (resp. 3) or (resp. 2) ramification points.

Definition. The line ℓ is of the second kind iff it intersects all smooth fibres $Z\left(f_{\lambda}\right)$ in the points where Hessian of f_{λ} vanishes.

Support of the closure of the inflection points of smooth fibers:

fibre type	configuration
I_{1}	3 smooth points, the node
I_{2}	3 smooth points of one component, both nodes
I_{3}	3 smooth points on each component
II	1 smooth point, the cusp
III	1 smooth point of one component, the node
IV	1 smooth point on each component, the node

Sketch of the proof III

Assumption: ℓ of the second kind.
Definition A fiber F of π is (un)ramified iff $\left.\pi\right|_{\ell}$ (un)ramified at F.
Lemma 1. Let F a singular fibre of π. If F is unramified, then F has type I_{1}, I_{3} or $I V$.

Proof: ℓ meets F is 3 smooth points, so F contains 3 smooth flex points. Table $\Rightarrow F$ of type I_{1}, I_{2}, I_{3} or $I V$.
ℓ meets each component of F, so I_{2} excluded.

Lemma 2. Let F a ramified fibre of π. Then F has type $I_{1}, I_{2}, I /$ or $I V$, according to the ramification type as follows:

Proof: Tate's algorithm + base changes. \square

Sketch of the proof III

Assumption: ℓ of the second kind.
Definition A fiber F of π is (un)ramified iff $\left.\pi\right|_{\ell}$ (un)ramified at F.
Lemma 1. Let F a singular fibre of π. If F is unramified, then F has type I_{1}, l_{3} or $I V$.

Proof: ℓ meets F is 3 smooth points, so F contains 3 smooth flex points. Table $\Rightarrow F$ of type I_{1}, I_{2}, I_{3} or IV.
ℓ meets each component of F, so I_{2} excluded.

Lemma 2. Let F a ramified fibre of π. Then F has type $I_{1}, I_{2}, I /$ or $I V$, according to the ramification type as follows:

Proof: Tate's algorithm + base changes. \square

Sketch of the proof III

Assumption: ℓ of the second kind.
Definition A fiber F of π is (un)ramified iff $\left.\pi\right|_{\ell}$ (un)ramified at F.
Lemma 1. Let F a singular fibre of π. If F is unramified, then F has type I_{1}, I_{3} or $I V$.

Proof: ℓ meets F is 3 smooth points, so F contains 3 smooth flex points. Table $\Rightarrow F$ of type I_{1}, I_{2}, I_{3} or $I V$.
ℓ meets each component of F, so I_{2} excluded.

Lemma 2. Let F a ramified fibre of π. Then F has type $I_{1}, I_{2}, I /$ or $I V$, according to the ramification type as follows:

Proof: Tate's algorithm + base changes. \square

Sketch of the proof III

Assumption: ℓ of the second kind.
Definition A fiber F of π is (un)ramified iff $\left.\pi\right|_{\ell}$ (un)ramified at F.
Lemma 1. Let F a singular fibre of π. If F is unramified, then F has type I_{1}, I_{3} or $I V$.

Proof: ℓ meets F is 3 smooth points, so F contains 3 smooth flex points. Table $\Rightarrow F$ of type I_{1}, I_{2}, I_{3} or $I V$.
ℓ meets each component of F, so I_{2} excluded.

Lemma 2. Let F a ramified fibre of π. Then F has type $I_{1}, I_{2}, I /$ or $I V$, according to the ramification type as follows:

Proof: Tate's algorithm + base changes. \square

Sketch of the proof III

Assumption: ℓ of the second kind.
Definition A fiber F of π is (un)ramified iff $\left.\pi\right|_{\ell}$ (un)ramified at F.
Lemma 1. Let F a singular fibre of π. If F is unramified, then F has type I_{1}, I_{3} or $I V$.
Proof: ℓ meets F is 3 smooth points, so F contains 3 smooth flex points. Table $\Rightarrow F$ of type I_{1}, I_{2}, I_{3} or $I V$.
ℓ meets each component of F, so I_{2} excluded.
Lemma 2. Let F a ramified fibre of π. Then F has type $I_{1}, I_{2}, I I$ or $I V$, according to the ramification type as follows:

Proof: Tate's algorithm + base changes. \square

Sketch of the proof III

Assumption: ℓ of the second kind.
Definition A fiber F of π is (un)ramified iff $\left.\pi\right|_{\ell}$ (un)ramified at F.
Lemma 1. Let F a singular fibre of π. If F is unramified, then F has type I_{1}, I_{3} or $I V$.
Proof: ℓ meets F is 3 smooth points, so F contains 3 smooth flex points. Table $\Rightarrow F$ of type I_{1}, I_{2}, I_{3} or $I V$.
ℓ meets each component of F, so I_{2} excluded.
Lemma 2. Let F a ramified fibre of π. Then F has type $I_{1}, I_{2}, I I$ or $I V$, according to the ramification type as follows:

$$
\begin{array}{c|cc}
\text { fibre type } & I I & I_{1}, I_{2}, I V \\
\text { ramification type } & 1 & 2
\end{array}
$$

Proof: Tate's algorithm + base changes. \square

Sketch of the proof III

Assumption: ℓ of the second kind.
Definition A fiber F of π is (un)ramified iff $\left.\pi\right|_{\ell}$ (un)ramified at F.
Lemma 1. Let F a singular fibre of π. If F is unramified, then F has type I_{1}, I_{3} or $I V$.
Proof: ℓ meets F is 3 smooth points, so F contains 3 smooth flex points. Table $\Rightarrow F$ of type I_{1}, I_{2}, I_{3} or $I V$.
ℓ meets each component of F, so I_{2} excluded.
Lemma 2. Let F a ramified fibre of π. Then F has type $I_{1}, I_{2}, I I$ or $I V$, according to the ramification type as follows:

$$
\begin{array}{c|cc}
\text { fibre type } & I I & I_{1}, I_{2}, I V \\
\text { ramification type } & 1 & 2
\end{array}
$$

Proof: Tate's algorithm + base changes. \square

Sketch of the proof IV

Lemma 3. Semi-stable fibres on S occur in pairs $\left(I_{1}, l_{3}\right)$ and triples $\left(I_{2}, I_{3}, I_{3}\right)$.

Proposition 4. Let R be the ramification type of ℓ. Let G_{R} be defined as follows:

R	1^{4}	$2,1^{2}$	2^{2}
G_{R}	$\{12\}$	$\{15,16\}$	$\{18,19,20\}$

Then l meets exactly N other lines contained in S, where $N \in G_{R}$.
Proof: Case-by-case analysis of ramification types,
e.g. for $R=1^{4}$ we have 4 type-II fibers by Lemma 2. This gives Euler
number 8 .
Lemma 1 implies remaining fibers of type I_{1}, I_{3} or $I V$
By Lemma 3 we get:

$$
(24-8) / 4 \cdot 3 \text { lines }
$$

Sketch of the proof IV

Lemma 3. Semi-stable fibres on S occur in pairs $\left(I_{1}, I_{3}\right)$ and triples $\left(I_{2}, I_{3}, I_{3}\right)$.

Proposition 4. Let R be the ramification type of ℓ. Let G_{R} be defined as follows:

$$
\begin{array}{c|ccc}
R & 1^{4} & 2,1^{2} & 2^{2} \\
\hline G_{R} & \{12\} & \{15,16\} & \{18,19,20\}
\end{array}
$$

Then ℓ meets exactly N other lines contained in S, where $N \in G_{R}$.
Proof: Case-by-case analysis of ramification types,
e.g. for $\boldsymbol{R}=1^{4}$ we have 4 type-II fibers by Lemma 2. This gives Euler
number 8 .
Lemma 1 implies remaining fibers of type I_{1}, l_{3} or $/ \mathrm{V}$ By Lemma 3 we get:
$(24-8) / 4 \cdot 3$ lines

Sketch of the proof IV

Lemma 3. Semi-stable fibres on S occur in pairs $\left(I_{1}, I_{3}\right)$ and triples $\left(I_{2}, I_{3}, I_{3}\right)$.

Proposition 4. Let R be the ramification type of ℓ. Let G_{R} be defined as follows:

R	1^{4}	$2,1^{2}$	2^{2}
G_{R}	$\{12\}$	$\{15,16\}$	$\{18,19,20\}$

Then ℓ meets exactly N other lines contained in S, where $N \in G_{R}$.
Proof: Case-by-case analysis of ramification types,
number 8 .
Lemma 1 implies remaining fibers of type I_{1}, I_{3} or $/ \mathrm{V}$. By Lemma 3 we get:
$(24-8) / 4 \cdot 3$ lines

Sketch of the proof IV

Lemma 3. Semi-stable fibres on S occur in pairs $\left(I_{1}, I_{3}\right)$ and triples $\left(I_{2}, I_{3}, I_{3}\right)$.

Proposition 4. Let R be the ramification type of ℓ. Let G_{R} be defined as follows:

$$
\begin{array}{c|ccc}
R & 1^{4} & 2,1^{2} & 2^{2} \\
\hline G_{R} & \{12\} & \{15,16\} & \{18,19,20\}
\end{array}
$$

Then ℓ meets exactly N other lines contained in S, where $N \in G_{R}$.
Proof: Case-by-case analysis of ramification types, e.g. for $R=1^{4}$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8.

By Lemma 3 we get:
$(24-8) / 4 \cdot 3$ lines

Sketch of the proof IV

Lemma 3. Semi-stable fibres on S occur in pairs $\left(I_{1}, I_{3}\right)$ and triples $\left(I_{2}, I_{3}, I_{3}\right)$.

Proposition 4. Let R be the ramification type of ℓ. Let G_{R} be defined as follows:

R	1^{4}	$2,1^{2}$	2^{2}
G_{R}	$\{12\}$	$\{15,16\}$	$\{18,19,20\}$

Then ℓ meets exactly N other lines contained in S, where $N \in G_{R}$.
Proof: Case-by-case analysis of ramification types, e.g. for $R=1^{4}$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8.
Lemma 1 implies remaining fibers of type I_{1}, l_{3} or $I V$.
$(24-8) / 4 \cdot 3$ lines

Sketch of the proof IV

Lemma 3. Semi-stable fibres on S occur in pairs $\left(I_{1}, I_{3}\right)$ and triples $\left(I_{2}, I_{3}, I_{3}\right)$.

Proposition 4. Let R be the ramification type of ℓ. Let G_{R} be defined as follows:

R	1^{4}	$2,1^{2}$	2^{2}
G_{R}	$\{12\}$	$\{15,16\}$	$\{18,19,20\}$

Then ℓ meets exactly N other lines contained in S, where $N \in G_{R}$.
Proof: Case-by-case analysis of ramification types, e.g. for $R=1^{4}$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8.
Lemma 1 implies remaining fibers of type I_{1}, l_{3} or $I V$. By Lemma 3 we get:

$$
(24-8) / 4 \cdot 3 \text { lines }
$$

Sketch of the proof V

Lemma 5. Let ℓ be of the ramification type $R=2^{2}$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

$$
\left\{x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+g\left(x_{3}, x_{4}\right)=0\right\}
$$

where $q \in k\left[x_{3}, x_{4}\right]$ (resp. $g \in k\left[x_{3}, x_{4}\right]$) is a polynomial of degree 2 (resp. 4).
Proof: After a linear transformation,
$-\ell$ given by $x_{3}=x_{4}=0$,

- the ramification occurs at $x_{3}=0, x_{4}=0$. After further normalisation the equation:

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{3}^{2} q_{1}+x_{3} x_{4} q_{2}+x_{4}^{2} q_{3}=0
$$

where the q_{j} are homogeneous quadratic forms in x_{1}, \ldots, x_{4}. Solve for ℓ to be a line of the second kind, i.e. for the Hessian to vanish identically on ℓ

Sketch of the proof V

Lemma 5. Let ℓ be of the ramification type $R=2^{2}$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

$$
\left\{x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+g\left(x_{3}, x_{4}\right)=0\right\},
$$

where $q \in k\left[x_{3}, x_{4}\right]$ (resp. $g \in k\left[x_{3}, x_{4}\right]$) is a polynomial of degree 2 (resp. 4).
Proof: After a linear transformation,

- the ramification occurs at $x_{3}=0, x_{4}=0$. After further normalisation the equation:

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{3}^{2} q_{1}+x_{3} x_{4} q_{2}+x_{4}^{2} q_{3}=0
$$

where the q_{j} are homogeneous quadratic forms in x_{1}, \ldots, x_{4}. Solve for ℓ to be a line of the second kind, i.e. for the Hessian to vanish identically on ℓ

Sketch of the proof V

Lemma 5. Let ℓ be of the ramification type $R=2^{2}$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

$$
\left\{x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+g\left(x_{3}, x_{4}\right)=0\right\},
$$

where $q \in k\left[x_{3}, x_{4}\right]$ (resp. $g \in k\left[x_{3}, x_{4}\right]$) is a polynomial of degree 2 (resp. 4).
Proof: After a linear transformation,

- ℓ given by $x_{3}=x_{4}=0$,
- the ramification occurs at $x_{3}=0, x_{4}=0$.

After further normalisation the equation:

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{3}^{2} q_{1}+x_{3} x_{4} q_{2}+x_{4}^{2} q_{3}=0
$$

where the q_{j} are homogeneous quadratic forms in x_{1}, \ldots, x_{4}. Solve for ℓ to be a line of the second kind, i.e. for the Hessian to vanish identically on ℓ

Sketch of the proof V

Lemma 5. Let ℓ be of the ramification type $R=2^{2}$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

$$
\left\{x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+g\left(x_{3}, x_{4}\right)=0\right\}
$$

where $q \in k\left[x_{3}, x_{4}\right]$ (resp. $g \in k\left[x_{3}, x_{4}\right]$) is a polynomial of degree 2 (resp. 4).
Proof: After a linear transformation,

- ℓ given by $x_{3}=x_{4}=0$,
- the ramification occurs at $x_{3}=0, x_{4}=0$.

After further normalisation the equation:

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{3}^{2} q_{1}+x_{3} x_{4} q_{2}+x_{4}^{2} q_{3}=0
$$

where the q_{j} are homogeneous quadratic forms in x_{1}, \ldots, x_{4}. Solve for ℓ to be a line of the second kind, i.e. for the Hessian to vanish identically on ℓ

Sketch of the proof V

Lemma 5. Let ℓ be of the ramification type $R=2^{2}$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

$$
\left\{x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+g\left(x_{3}, x_{4}\right)=0\right\},
$$

where $q \in k\left[x_{3}, x_{4}\right]$ (resp. $g \in k\left[x_{3}, x_{4}\right]$) is a polynomial of degree 2 (resp. 4).
Proof: After a linear transformation,

- ℓ given by $x_{3}=x_{4}=0$,
- the ramification occurs at $x_{3}=0, x_{4}=0$.

After further normalisation the equation:

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{3}^{2} q_{1}+x_{3} x_{4} q_{2}+x_{4}^{2} q_{3}=0
$$

where the q_{j} are homogeneous quadratic forms in x_{1}, \ldots, x_{4}.

Sketch of the proof V

Lemma 5. Let ℓ be of the ramification type $R=2^{2}$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

$$
\left\{x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+g\left(x_{3}, x_{4}\right)=0\right\},
$$

where $q \in k\left[x_{3}, x_{4}\right]$ (resp. $g \in k\left[x_{3}, x_{4}\right]$) is a polynomial of degree 2 (resp. 4).
Proof: After a linear transformation,

- ℓ given by $x_{3}=x_{4}=0$,
- the ramification occurs at $x_{3}=0, x_{4}=0$.

After further normalisation the equation:

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{3}^{2} q_{1}+x_{3} x_{4} q_{2}+x_{4}^{2} q_{3}=0
$$

where the q_{j} are homogeneous quadratic forms in x_{1}, \ldots, x_{4}. Solve for ℓ to be a line of the second kind, i.e. for the Hessian to vanish identically on ℓ.

Sketch of the proof VI

We study quartics given by

$$
\left\{x_{3} x_{1}^{3}+x_{1} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+g\left(x_{3}, x_{4}\right)=0\right\}
$$

Lemma 6. A surface $S \in \mathcal{Z}$ is a smooth quartic such that the fibration $\pi: S \rightarrow \mathbb{P}_{1}$ attains a fibre of Kodaira type I_{2} (necessarily at 0 or ∞) iff x_{3} or x_{4} divides g. The ramified fibres degenerate to Kodaira type $/ V$ iff x_{3} or x_{4} divides q.
Proof: Generically, there are six singular fibres of Kodaira type I_{1} located at $0, \infty$ and at the zeroes of g.
Formulas for the Jacobian of the fibration π give 6 fibres of Kodaira type I_{3} at the zeroes of $q^{3}+27 x_{3} x_{4} g$.

That is the way we found our counterexample:

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} x_{3}^{2}-x_{1} x_{2} x_{4}^{2}+r x_{3}^{3} x_{4}-r x_{3} x_{4}^{3}
$$

Sketch of the proof VI

We study quartics given by

$$
\left\{x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+g\left(x_{3}, x_{4}\right)=0\right\},
$$

Lemma 6. A surface $S \in \mathcal{Z}$ is a smooth quartic such that the fibration $\pi: S \rightarrow \mathbb{P}_{1}$ attains a fibre of Kodaira type I_{2} (necessarily at 0 or ∞) iff x_{3} or x_{4} divides g. The ramified fibres degenerate to Kodaira type IV iff x_{3} or x_{4} divides q.
Proof: Generically, there are six singular fibres of Kodaira type I_{1} located at $0, \infty$ and at the zeroes of g.
Formulas for the Jacobian of the fibration π give 6 fibres of Kodaira type I_{3} at the zeroes of $q^{3}+27 x_{3} x_{4} g$.

That is the way we found our counterexample:

Sketch of the proof VI

We study quartics given by

$$
\left\{x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+g\left(x_{3}, x_{4}\right)=0\right\}
$$

Lemma 6. A surface $S \in \mathcal{Z}$ is a smooth quartic such that the fibration $\pi: S \rightarrow \mathbb{P}_{1}$ attains a fibre of Kodaira type I_{2} (necessarily at 0 or ∞) iff x_{3} or x_{4} divides g. The ramified fibres degenerate to Kodaira type $I V$ iff x_{3} or x_{4} divides q.
Proof: Generically, there are six singular fibres of Kodaira type I_{1} located at $0, \infty$ and at the zeroes of g. Formulas for the Jacobian of the fibration π give 6 fibres of Kodaira type I_{3} at the zeroes of $q^{3}+27 x_{3} x_{4} g$

That is the way we found our counterexample:

Sketch of the proof VI

We study quartics given by

$$
\left\{x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+g\left(x_{3}, x_{4}\right)=0\right\},
$$

Lemma 6. A surface $S \in \mathcal{Z}$ is a smooth quartic such that the fibration $\pi: S \rightarrow \mathbb{P}_{1}$ attains a fibre of Kodaira type I_{2} (necessarily at 0 or ∞) iff x_{3} or x_{4} divides g. The ramified fibres degenerate to Kodaira type $I V$ iff x_{3} or x_{4} divides q.
Proof: Generically, there are six singular fibres of Kodaira type I_{1} located at $0, \infty$ and at the zeroes of g.
Formulas for the Jacobian of the fibration π give 6 fibres of Kodaira type I_{3} at the zeroes of $q^{3}+27 x_{3} x_{4} g$.

That is the way we found our counterexample:

Sketch of the proof VI

We study quartics given by

$$
\left\{x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} q\left(x_{3}, x_{4}\right)+g\left(x_{3}, x_{4}\right)=0\right\},
$$

Lemma 6. A surface $S \in \mathcal{Z}$ is a smooth quartic such that the fibration $\pi: S \rightarrow \mathbb{P}_{1}$ attains a fibre of Kodaira type I_{2} (necessarily at 0 or ∞) iff x_{3} or x_{4} divides g. The ramified fibres degenerate to Kodaira type $I V$ iff x_{3} or x_{4} divides q.
Proof: Generically, there are six singular fibres of Kodaira type I_{1} located at $0, \infty$ and at the zeroes of g.
Formulas for the Jacobian of the fibration π give 6 fibres of Kodaira type I_{3} at the zeroes of $q^{3}+27 x_{3} x_{4} g$.

That is the way we found our counterexample:

$$
x_{3} x_{1}^{3}+x_{4} x_{2}^{3}+x_{1} x_{2} x_{3}^{2}-x_{1} x_{2} x_{4}^{2}+r x_{3}^{3} x_{4}-r x_{3} x_{4}^{3}
$$

Sketch of the proof VII - 66 lines

We fix $S \in \mathcal{Z}$ and the line ℓ_{0} of the second kind with induced elliptic fibration

$$
\pi_{0}: S \rightarrow \mathbb{P}^{1}
$$

By direct, computer-aided computation we get
Lemma 7. A line in a fibre of π_{0} is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.
Proof: If S lies away from \mathcal{Z} we are done.
We can assume we deal with the line $\ell_{0} \subset S$.
By Proposition 4 we can assume ℓ_{0} of ramification type 2^{2}.
By Lemma $6 \pi_{0}$ has an I_{3}-fiber or a type- $I V$ fiber.
By Lemma 7 either S is Schur quartic or number of lines bounded by

$$
17+3 \cdot 15+4=66 .
$$

Sketch of the proof VII - 66 lines

We fix $S \in \mathcal{Z}$ and the line ℓ_{0} of the second kind with induced elliptic fibration

$$
\pi_{0}: S \rightarrow \mathbb{P}^{1}
$$

By direct, computer-aided computation we get
Lemma 7. A line in a fibre of π_{0} is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.
Proof: If S lies away from \mathcal{Z} we are done.
We can assume we deal with the line $\ell_{0} \subset S$
By Proposition 4 we can assume ℓ_{0} of ramification type 2^{2}
By Lemma $6 \pi_{0}$ has an I_{3}-fiber or a type-IV fiber.
By Lemma 7 either S is Schur quartic or number of lines bounded by $17+3 \cdot 15+4=66$.

Sketch of the proof VII - 66 lines

We fix $S \in \mathcal{Z}$ and the line ℓ_{0} of the second kind with induced elliptic fibration

$$
\pi_{0}: S \rightarrow \mathbb{P}^{1}
$$

By direct, computer-aided computation we get
Lemma 7. A line in a fibre of π_{0} is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.
Proof: If S lies away from \mathcal{Z} we are done.
We can assume we deal with the line $\ell_{0} \subset S$
By Proposition 4 we can assume ℓ_{0} of ramification type 2^{2}
By Lemma $6 \pi_{0}$ has an I_{3}-fiber or a type-IV fiber.
By Lemma 7 either S is Schur quartic or number of lines bounded by $17+3 \cdot 15+4=66$.

Sketch of the proof VII - 66 lines

We fix $S \in \mathcal{Z}$ and the line ℓ_{0} of the second kind with induced elliptic fibration

$$
\pi_{0}: S \rightarrow \mathbb{P}^{1}
$$

By direct, computer-aided computation we get
Lemma 7. A line in a fibre of π_{0} is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.
Proof: If S lies away from \mathcal{Z} we are done.
We can assume we deal with the line $\ell_{0} \subset S$
By Proposition 4 we can assume ℓ_{0} of ramification type 2^{2}
By Lemma $6 \pi_{0}$ has an I_{3}-fiber or a type-IV fiber.
By Lemma 7 either S is Schur quartic or number of lines bounded by $17+3 \cdot 15+4=66$.

Sketch of the proof VII - 66 lines

We fix $S \in \mathcal{Z}$ and the line ℓ_{0} of the second kind with induced elliptic fibration

$$
\pi_{0}: S \rightarrow \mathbb{P}^{1}
$$

By direct, computer-aided computation we get
Lemma 7. A line in a fibre of π_{0} is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.
Proof: If S lies away from \mathcal{Z} we are done.
We can assume we deal with the line $\ell_{0} \subset S$.
By Proposition 4 we can assume ℓ_{0} of ramification type 2^{2}
By Lemma $6 \pi_{0}$ has an I_{3}-fiber or a type-IV fiber.
By Lemma 7 either S is Schur quartic or number of lines bounded by $17+3 \cdot 15+4=66$.

Sketch of the proof VII - 66 lines

We fix $S \in \mathcal{Z}$ and the line ℓ_{0} of the second kind with induced elliptic fibration

$$
\pi_{0}: S \rightarrow \mathbb{P}^{1}
$$

By direct, computer-aided computation we get
Lemma 7. A line in a fibre of π_{0} is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.
Proof: If S lies away from \mathcal{Z} we are done.
We can assume we deal with the line $\ell_{0} \subset S$.
By Proposition 4 we can assume ℓ_{0} of ramification type 2^{2}.
By Lemma $6 \pi_{0}$ has an I_{3}-fiber or a type-IV fiber.
By Lemma 7 either S is Schur quartic or number of lines bounded by
$17+3 \cdot 15+4=66$.

Sketch of the proof VII - 66 lines

We fix $S \in \mathcal{Z}$ and the line ℓ_{0} of the second kind with induced elliptic fibration

$$
\pi_{0}: S \rightarrow \mathbb{P}^{1}
$$

By direct, computer-aided computation we get
Lemma 7. A line in a fibre of π_{0} is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.
Proof: If S lies away from \mathcal{Z} we are done.
We can assume we deal with the line $\ell_{0} \subset S$.
By Proposition 4 we can assume ℓ_{0} of ramification type 2^{2}.
By Lemma $6 \pi_{0}$ has an I_{3}-fiber or a type-IV fiber.
By Lemma 7 either S is Schur quartic or number of lines bounded by $17+3 \cdot 15+4=66$.

Sketch of the proof VII - 66 lines

We fix $S \in \mathcal{Z}$ and the line ℓ_{0} of the second kind with induced elliptic fibration

$$
\pi_{0}: S \rightarrow \mathbb{P}^{1}
$$

By direct, computer-aided computation we get
Lemma 7. A line in a fibre of π_{0} is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.
Proof: If S lies away from \mathcal{Z} we are done.
We can assume we deal with the line $\ell_{0} \subset S$.
By Proposition 4 we can assume ℓ_{0} of ramification type 2^{2}.
By Lemma $6 \pi_{0}$ has an I_{3}-fiber or a type-IV fiber.
By Lemma 7 either S is Schur quartic or number of lines bounded by

$$
17+3 \cdot 15+4=66
$$

Sketch of the proof VIII

Assumption: S contains 65 or 66 lines.

- We fix $S \in \mathcal{Z}$ and the line ℓ_{0} of the second kind with induced elliptic fibration $\pi_{0}: S \rightarrow \mathbb{P}_{1}$.
- By Iemma $6 \pi_{0}$ admits a (ramified) fibre of Kodaira type $/ 2$ (i.e. line + conic). The fibre consists of:
- ℓ_{1} a line of the first kind
- Q a conic, that does not come up in the flecnodal divisor supp (F_{S}).
\Rightarrow The line ℓ_{1} induces a second elliptic fibration $\pi_{1}: S \rightarrow \mathbb{P}_{1}$.
- The quartic S admits the automorphism of order 3

where ϱ is a primitive third root of unity,

Sketch of the proof VIII

Assumption: S contains 65 or 66 lines.

- We fix $S \in \mathcal{Z}$ and the line ℓ_{0} of the second kind with induced elliptic fibration $\pi_{0}: S \rightarrow \mathbb{P}_{1}$.
- By Iemma $6 \pi_{0}$ admits a (ramified) fibre of Kodaira type $/ 2$ (i.e. line + conic). The fibre consists of:
- ℓ_{1} a line of the first kind
- Q a conic, that does not come up in the flecnodal divisor supp (F_{S}).
\Rightarrow The line ℓ_{1} induces a second elliptic fibration $\pi_{1}: S \rightarrow \mathbb{P}_{1}$.
- The quartic S admits the automorphism of order 3

where ϱ is a primitive third root of unity,

Sketch of the proof VIII

Assumption: S contains 65 or 66 lines.

- We fix $S \in \mathcal{Z}$ and the line ℓ_{0} of the second kind with induced elliptic fibration $\pi_{0}: S \rightarrow \mathbb{P}_{1}$.
- By Lemma $6 \pi_{0}$ admits a (ramified) fibre of Kodaira type I_{2} (i.e. line + conic). The fibre consists of: - ℓ_{1} a line of the first kind - Q a conic, that does not come up in the flecnodal divisor $\operatorname{supp}\left(\mathcal{F}_{S}\right)$.
- The line ℓ_{1} induces a second elliptic fibration $\pi_{1}: S \rightarrow \mathbb{P}_{1}$
- The quartic S admits the automornhism of order 3
where ϱ is a primitive third root of unity,

Sketch of the proof VIII

Assumption: S contains 65 or 66 lines.

- We fix $S \in \mathcal{Z}$ and the line ℓ_{0} of the second kind with induced elliptic fibration $\pi_{0}: S \rightarrow \mathbb{P}_{1}$.
- By Lemma $6 \pi_{0}$ admits a (ramified) fibre of Kodaira type I_{2} (i.e. line + conic). The fibre consists of:
- ℓ_{1} a line of the first kind
- Q a conic, that does not come up in the flecnodal divisor $\operatorname{supp}\left(\mathcal{F}_{S}\right)$.
- The line ℓ_{1} induces a second elliptic fibration $\pi_{1}: S \rightarrow \mathbb{P}_{1}$.
- The quartic S admits the automorphism of order 3
where ϱ is a primitive third root of unity,

Sketch of the proof VIII

Assumption: S contains 65 or 66 lines.

- We fix $S \in \mathcal{Z}$ and the line ℓ_{0} of the second kind with induced elliptic fibration $\pi_{0}: S \rightarrow \mathbb{P}_{1}$.
- By Lemma $6 \pi_{0}$ admits a (ramified) fibre of Kodaira type I_{2} (i.e. line + conic). The fibre consists of:
- ℓ_{1} a line of the first kind
- Q a conic, that does not come up in the flecnodal divisor $\operatorname{supp}\left(\mathcal{F}_{S}\right)$.
- The line ℓ_{1} induces a second elliptic fibration $\pi_{1}: S \rightarrow \mathbb{P}_{1}$.
- The quartic S admits the automorphism of order 3
where ϱ is a primitive third root of unity,

Sketch of the proof VIII

Assumption: S contains 65 or 66 lines.

- We fix $S \in \mathcal{Z}$ and the line ℓ_{0} of the second kind with induced elliptic fibration $\pi_{0}: S \rightarrow \mathbb{P}_{1}$.
- By Lemma $6 \pi_{0}$ admits a (ramified) fibre of Kodaira type I_{2} (i.e. line + conic). The fibre consists of:
- ℓ_{1} a line of the first kind
- Q a conic, that does not come up in the flecnodal divisor $\operatorname{supp}\left(\mathcal{F}_{S}\right)$.
- The line ℓ_{1} induces a second elliptic fibration $\pi_{1}: S \rightarrow \mathbb{P}_{1}$.
- The quartic S admits the automorphism of order 3

$$
\sigma: \begin{array}{ccc}
S & \rightarrow & S \\
{\left[x_{1}, x_{2}, x_{3}, x_{4}\right]} & \mapsto & {\left[\varrho x_{1}, \varrho^{2} x_{2}, x_{3}, x_{4}\right]}
\end{array}
$$

where ϱ is a primitive third root of unity,

Sketch of the proof IX

- the lines ℓ_{0}, ℓ_{1} are fixed by σ,
- the resolution of S / σ is a K 3 surface S^{\prime},
$\Rightarrow \pi_{0}, \pi_{1}$ induce elliptic fibrations on S^{\prime}

We exploit the above properties to get:
Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with char $(\mathbb{K}) \neq 2,3$ A smooth quartic $S \subset \mathbb{P}_{3}(\mathbb{K})$ contains at most 64 lines.

Sketch of the proof IX

- the lines ℓ_{0}, ℓ_{1} are fixed by σ,
- the resolution of S / σ is a K 3 surface S^{\prime},
- π_{0}, π_{1} induce elliptic fibrations on S^{\prime}.

We exploit the above properties to get:
Thm $2[R-S, 2012]$. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2,3$. A smooth quartic $S \subset \mathbb{P}_{3}(\mathbb{K})$ contains at most 64 lines.

Sketch of the proof IX

- the lines ℓ_{0}, ℓ_{1} are fixed by σ,
- the resolution of S / σ is a K3 surface S^{\prime},
- π_{0}, π_{1} induce elliptic fibrations on S^{\prime}.

We exploit the above properties to get:
Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2,3$.
A smooth quartic $S \subset \mathbb{P}_{3}(\mathbb{K})$ contains at most 64 lines.

Sketch of the proof IX

- the lines ℓ_{0}, ℓ_{1} are fixed by σ,
- the resolution of S / σ is a K3 surface S^{\prime},
- π_{0}, π_{1} induce elliptic fibrations on S^{\prime}.

We exploit the above properties to get:
Thm $2[R, ~ S, ~ 2012]$. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2,3$. A smooth quartic $S \subset \mathbb{P}_{3}(\mathbb{K})$ contains at most 64 lines.

Sketch of the proof IX

- the lines ℓ_{0}, ℓ_{1} are fixed by σ,
- the resolution of S / σ is a K 3 surface S^{\prime},
- π_{0}, π_{1} induce elliptic fibrations on S^{\prime}.

We exploit the above properties to get:
Thm $2[R-S, 2012]$. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2,3$. A smooth quartic $S \subset \mathbb{P}_{3}(\mathbb{K})$ contains at most 64 lines.

Sketch of the proof IX

- the lines ℓ_{0}, ℓ_{1} are fixed by σ,
- the resolution of S / σ is a K 3 surface S^{\prime},
- π_{0}, π_{1} induce elliptic fibrations on S^{\prime}.

We exploit the above properties to get:
Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\operatorname{char}(\mathbb{K}) \neq 2,3$. A smooth quartic $S \subset \mathbb{P}_{3}(\mathbb{K})$ contains at most 64 lines.

