
Lines on quartic surfaces

Sławomir Rams

Jagiellonian University
Kraków

current address: Leibniz University
Hannover

joint work with:
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Cubics

Basic notions:

I A line in P3 := set of zeroes of two linearly independent linear
forms.

I A smooth degree-d surface := a smooth degree-d algebraic
hypersurface Z(f ) ⊂ P3(K).

Fix d ∈ N.
Question. What is the maximal number of lines on a smooth projective
algebraic degree-d surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later):
Answer: Exactly 27 lines on every smooth S3 ⊂ P3.
If S3 is not a cone, but sing(S3) 6= ∅, then S3 contains strictly less than
27 lines.

Proof: Computation of the degree and ramification locus of a cover.
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Higher-degree surfaces

any d ≥ 3: 1860 - Salmon/Clebsch:

Thm. There exists a degree-(11d − 24) polynomial Fd such that

Z(Fd) ∩ Sd = {P ∈ Sd ; there exists a line L with iP(Sd , L) ≥ 4},

where iP(Sd , L) is the multiplicity of vanishing of f |L in the point P.

Flecnodal divisor Fd := the cycle of zeroes of Fd on the surface Sd .

Corollary.

(Number of lines on degree-d surfaces) ≤ deg(Fd) = d · (11d − 24)

Example. The Fermat surface Z(xd1 + xd2 + xd3 + xd4 ) contains 3d2 lines.
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Higher-degree surfaces II

Lefschetz Thm. For very general smooth Sd ⊂ P3(C) with d ≥ 4

ρ(Sd) = 1 and NS(Sd) = ZOSd (1)

Consequently: no lines on Sd .

Example. [Shioda 81] For certain d ≥ 4 the surface
Z(xd4 + x1x

d−1
2 + x2x

d−1
3 + x3x

d−1
1 ) has Picard number one. In particular,

it contains no lines.

d=4: 1882 - Schur:
The quartic surface Z(x41 − x1x32 − x43 + x3x34 ) ⊂ P3 contains exactly 64
lines.

1943 - Segre claims to show:
• a line on a smooth quartic is never met by more than 18 other lines.
• maximal number of lines on smooth complex quartics = 64.
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Segre’s argument in modern language I

Step 1. S a smooth quartic surface, ` ⊂ S a line. Then ` is met by at
most 18 other lines on S .

Step 2. If there exists a plane Π such that Π ∩ S consists of four lines,
then S contains at most 64 lines.

Step 3. If there exists a line ` ⊂ S met by at least 13 other lines, then
there exists a plane Π such that Π ∩ S consists of four lines.

Assumption A: Each line on S met by at most 12 other lines, no four of
them coplanar.
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Segre’s argument in modern language II

Step 4. If there exist coplanar lines `1, `1 ⊂ S such that the conic
C2 ∈ |OS(1)− `1 − `2| is no component of the flecnodal divisor FS , then
S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in
supp(FS).

Step 5. If S contains at least 9 pairs of coplanar lines, then it contains
at most 62 lines.

Assumption C: S contains N ≤ 8 pairs of coplanar lines.

Step 6. The pairs of lines span a sublattice of NS(S) of rank ≥ (N + 1).
The number of lines is bounded by

2N + 22− (N + 1) = 21 + N ≤ 29 .

�
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A counterexample

Example [R-S 2012]
The quartic S given by vanishing of

x31 x3 + x1x2x23 + x32 x4 + rx33 x4 − x1x2x24 − rx3x34

with r = −16/27,
- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line {x3 = x4 = 0},
- contains 20 other lines that meet the line {x3 = x4 = 0}.
Over C, we obtain a K3 surface with Picard number ρ = 20.

The claim of Step 1 is false.
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Main results I

Assumption: K is alg closed.

Thm 1 [R-S, 2012].

1. A line ` on a smooth quartic surface S in P3(K) intersects at most
20 other lines provided that char(K) 6= 2, 3.

2. If ` meets more than 18 lines on S , then S can be given by a quartic
polynomial

x3x31 + x4x32 + x1x2q(x3, x4) + x3g(x3, x4)

where q, g ∈ K[x3, x4] are homogeneous of degree 2 resp. 3.

3. The line ` = {x3 = x4 = 0} meets 20 lines on S if and only if x4 | g .

Thm 2 [R-S, 2012]. Let K be an alg. closed field with char(K) 6= 2, 3.
A smooth quartic S ⊂ P3(K) contains at most 64 lines.

9 / 21
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Main results II

Different approach is needed to deal with char(K) ∈ {2, 3}, because
flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic S ⊂ P3(K)
may meet at most 48 lines on S .

Thm 4 [R-S, 2014]. Let char(K) = 3.
(a) A smooth quartic S ⊂ P3(K) contains at most 112 lines.
(b) Up to the action of PGL(4) there is a unique smooth quartic surface
in P3(K) containing 112 lines.

Example The quartic

S3 = {x41 + x42 + x43 + x44 = 0} ⊂ P3(K).

contains exactly 112 lines (each defined over F9).
It was known already to B. Segre.
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Main results III

Remark: On the quartic from the example a line on S3 is met by 30
other lines.

Question: What for characteristic 2? (work in progress)

Thm 4 [R-S, 2014]. Let char(K) = 2. A smooth quartic S ⊂ P3(K)
contains at most 84 lines.

Best known example (inspired by Barth quintic): 60 lines.
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Main results IV

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that S ⊂ P3(C) is a K3 quartic
surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that S ⊂ P3(C) is a non-K3 quartic
surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let S ⊂ P3(C) be a quartic surface with at
most isolated singularities, none of which is a fourfold point. Then S
contains at most 64 lines.

(b) Let S ⊂ C3 be an affine quartic surface that is not ruled by lines.
Then S contains at most 64 lines.
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Sketch of the proof I

Set-up. ` ⊂ S a line,

I We consider the family of planes Hλ ⊃ `.
I Hλ ∩ S =: `+ Fλ
I for general λ ∈ P1 the cubic Fλ is smooth.

We constructed an genus-1 fibration

π : S ⊃ Cλ 3 P 7→ λ ∈ P1 ,

Definition. The line ` is of the first kind iff it intersects at least one
smooth fibre Z(fλ) only in the points where the determinant of Hessian
of fλ does not vanish.

Lemma 0. If ` of the first kind, then ` is met by at most 18 other lines.

Proof: Computation of the resultant of the equation of Fλ|` and of its
Hessian|`. �
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Lemma 0. If ` of the first kind, then ` is met by at most 18 other lines.
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Sketch of the proof II

We consider the restriction π|` : `→ P1 and get a degree-3 morphism.

Definition. The line ` is of ramification type 14 (resp. 2, 12), (resp. 22)
iff π|` has 4, (resp. 3) or (resp. 2) ramification points.

Definition. The line ` is of the second kind iff it intersects all smooth
fibres Z(fλ) in the points where Hessian of fλ vanishes.

Support of the closure of the inflection points of smooth fibers:

fibre type configuration
I1 3 smooth points, the node
I2 3 smooth points of one component, both nodes
I3 3 smooth points on each component
II 1 smooth point, the cusp
III 1 smooth point of one component, the node
IV 1 smooth point on each component, the node
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Sketch of the proof III

Assumption: ` of the second kind.

Definition A fiber F of π is (un)ramified iff π|` (un)ramified at F .

Lemma 1. Let F a singular fibre of π. If F is unramified, then F has
type I1, I3 or IV .

Proof: ` meets F is 3 smooth points, so F contains 3 smooth flex points.
Table ⇒ F of type I1, I2, I3 or IV .
` meets each component of F , so I2 excluded. �

Lemma 2. Let F a ramified fibre of π. Then F has type I1, I2, II or IV ,
according to the ramification type as follows:

fibre type II I1, I2, IV
ramification type 1 2

Proof: Tate’s algorithm + base changes. �
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Sketch of the proof IV

Lemma 3. Semi-stable fibres on S occur in pairs (I1, I3) and triples
(I2, I3, I3).

Proposition 4. Let R be the ramification type of `. Let GR be defined
as follows:

R 14 2, 12 22

GR {12} {15, 16} {18, 19, 20}

Then ` meets exactly N other lines contained in S , where N ∈ GR .

Proof: Case-by-case analysis of ramification types,
e.g. for R = 14 we have 4 type-II fibers by Lemma 2. This gives Euler
number 8.
Lemma 1 implies remaining fibers of type I1, I3 or IV .
By Lemma 3 we get:

(24− 8)/4 · 3 lines

�
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Sketch of the proof V

Lemma 5. Let ` be of the ramification type R = 22. Then S is
projectively equivalent to a quartic in the family Z

{x3x31 + x4x32 + x1x2q(x3, x4) + g(x3, x4) = 0} ,

where q ∈ k[x3, x4] (resp. g ∈ k[x3, x4]) is a polynomial of degree 2
(resp. 4).

Proof: After a linear transformation,
- ` given by x3 = x4 = 0,
- the ramification occurs at x3 = 0, x4 = 0.
After further normalisation the equation:

x3x31 + x4x32 + x23q1 + x3x4q2 + x24q3 = 0

where the qj are homogeneous quadratic forms in x1, . . . , x4.
Solve for ` to be a line of the second kind, i.e. for the Hessian to vanish
identically on ` . �
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Sketch of the proof VI

We study quartics given by

{x3x31 + x4x32 + x1x2q(x3, x4) + g(x3, x4) = 0} ,

Lemma 6. A surface S ∈ Z is a smooth quartic such that the fibration
π : S → P1 attains a fibre of Kodaira type I2 (necessarily at 0 or ∞) iff
x3 or x4 divides g . The ramified fibres degenerate to Kodaira type IV iff
x3 or x4 divides q.

Proof: Generically, there are six singular fibres of Kodaira type I1 located
at 0,∞ and at the zeroes of g .
Formulas for the Jacobian of the fibration π give 6 fibres of Kodaira type
I3 at the zeroes of q3 + 27x3x4g . �

That is the way we found our counterexample:

x3x31 + x4x32 + x1x2x23 − x1x2x24 + rx33 x4 − rx3x34
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Sketch of the proof VII - 66 lines

We fix S ∈ Z and the line `0 of the second kind with induced elliptic
fibration

π0 : S → P1

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π0 is of the second kind iff S is the Schur
quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If S lies away from Z we are done.

We can assume we deal with the line `0 ⊂ S .

By Proposition 4 we can assume `0 of ramification type 22.

By Lemma 6 π0 has an I3-fiber or a type-IV fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

17 + 3 · 15 + 4 = 66.

�
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Sketch of the proof VIII

Assumption: S contains 65 or 66 lines.

I We fix S ∈ Z and the line `0 of the second kind with induced elliptic
fibration π0 : S → P1.

I By Lemma 6 π0 admits a (ramified) fibre of Kodaira type I2 (i.e. line
+ conic). The fibre consists of:
- `1 a line of the first kind
- Q a conic, that does not come up in the flecnodal divisor supp(FS).

I The line `1 induces a second elliptic fibration π1 : S → P1.
I The quartic S admits the automorphism of order 3

σ : S → S
[x1, x2, x3, x4] 7→ [%x1, %2x2, x3, x4]

where % is a primitive third root of unity,

20 / 21



Sketch of the proof VIII

Assumption: S contains 65 or 66 lines.

I We fix S ∈ Z and the line `0 of the second kind with induced elliptic
fibration π0 : S → P1.

I By Lemma 6 π0 admits a (ramified) fibre of Kodaira type I2 (i.e. line
+ conic). The fibre consists of:
- `1 a line of the first kind
- Q a conic, that does not come up in the flecnodal divisor supp(FS).

I The line `1 induces a second elliptic fibration π1 : S → P1.
I The quartic S admits the automorphism of order 3

σ : S → S
[x1, x2, x3, x4] 7→ [%x1, %2x2, x3, x4]

where % is a primitive third root of unity,

20 / 21



Sketch of the proof VIII

Assumption: S contains 65 or 66 lines.

I We fix S ∈ Z and the line `0 of the second kind with induced elliptic
fibration π0 : S → P1.

I By Lemma 6 π0 admits a (ramified) fibre of Kodaira type I2 (i.e. line
+ conic). The fibre consists of:
- `1 a line of the first kind
- Q a conic, that does not come up in the flecnodal divisor supp(FS).

I The line `1 induces a second elliptic fibration π1 : S → P1.
I The quartic S admits the automorphism of order 3

σ : S → S
[x1, x2, x3, x4] 7→ [%x1, %2x2, x3, x4]

where % is a primitive third root of unity,

20 / 21



Sketch of the proof VIII

Assumption: S contains 65 or 66 lines.

I We fix S ∈ Z and the line `0 of the second kind with induced elliptic
fibration π0 : S → P1.

I By Lemma 6 π0 admits a (ramified) fibre of Kodaira type I2 (i.e. line
+ conic). The fibre consists of:
- `1 a line of the first kind
- Q a conic, that does not come up in the flecnodal divisor supp(FS).

I The line `1 induces a second elliptic fibration π1 : S → P1.
I The quartic S admits the automorphism of order 3

σ : S → S
[x1, x2, x3, x4] 7→ [%x1, %2x2, x3, x4]

where % is a primitive third root of unity,

20 / 21



Sketch of the proof VIII

Assumption: S contains 65 or 66 lines.

I We fix S ∈ Z and the line `0 of the second kind with induced elliptic
fibration π0 : S → P1.

I By Lemma 6 π0 admits a (ramified) fibre of Kodaira type I2 (i.e. line
+ conic). The fibre consists of:
- `1 a line of the first kind
- Q a conic, that does not come up in the flecnodal divisor supp(FS).

I The line `1 induces a second elliptic fibration π1 : S → P1.
I The quartic S admits the automorphism of order 3

σ : S → S
[x1, x2, x3, x4] 7→ [%x1, %2x2, x3, x4]

where % is a primitive third root of unity,

20 / 21



Sketch of the proof VIII

Assumption: S contains 65 or 66 lines.

I We fix S ∈ Z and the line `0 of the second kind with induced elliptic
fibration π0 : S → P1.

I By Lemma 6 π0 admits a (ramified) fibre of Kodaira type I2 (i.e. line
+ conic). The fibre consists of:
- `1 a line of the first kind
- Q a conic, that does not come up in the flecnodal divisor supp(FS).

I The line `1 induces a second elliptic fibration π1 : S → P1.
I The quartic S admits the automorphism of order 3

σ : S → S
[x1, x2, x3, x4] 7→ [%x1, %2x2, x3, x4]

where % is a primitive third root of unity,

20 / 21



Sketch of the proof IX

I the lines `0, `1 are fixed by σ,

I the resolution of S/σ is a K3 surface S ′,

I π0, π1 induce elliptic fibrations on S ′.

We exploit the above properties to get:

Thm 2 [R-S, 2012]. Let K be an alg. closed field with char(K) 6= 2, 3.
A smooth quartic S ⊂ P3(K) contains at most 64 lines.
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