Lines on quartic surfaces

Sławomir Rams

Jagiellonian University
Kraków
current address: Leibniz University
Hannover

joint work with:
M. Schütt (Leibniz University Hannover) - smooth case
V. González-Alonso (Leibniz University Hannover) - singular case
arXiv:1212.3511 + 1303.1304 + 1409.7485 + work in progress
Outline

Classical results.

Segre’s argument in modern language.

A counterexample.

Main results.

Sketch of the proof.
Cubics

Basic notions:

- A line in $\mathbb{P}^3 :=$ set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface := a smooth degree-d algebraic hypersurface $Z(f) \subset \mathbb{P}^3(K)$.

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-d surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later):

Answer: Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}_3$.

If S_3 is not a cone, but $\text{sing}(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Proof: Computation of the degree and ramification locus of a cover.
Basic notions:

- A line in $\mathbb{P}^3 :=$ set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface := a smooth degree-d algebraic hypersurface $Z(f) \subset \mathbb{P}^3(K)$.

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-d surface?

Cubics:

$d=3$: 1847 - Cayley/Salmon + Clebsch (later):

Answer: Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}^3$.

If S_3 is not a cone, but $\text{sing}(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Proof: Computation of the degree and ramification locus of a cover.
Basic notions:

- A line in \mathbb{P}^3 := set of zeroes of two linearly independent linear forms.

- A smooth degree-d surface := a smooth degree-d algebraic hypersurface $Z(f) \subset \mathbb{P}^3(K)$.

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-d surface?

Cubics:

$d=3$: 1847 - Cayley/Salmon + Clebsch (later):

Answer: Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}^3$.

If S_3 is not a cone, but $\text{sing}(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Proof: Computation of the degree and ramification locus of a cover.
Basic notions:

- A line in \mathbb{P}^3 is the set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface is a smooth degree-d algebraic hypersurface $Z(f) \subset \mathbb{P}_3(K)$.

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-d surface?

Cubics:

$d=3$: 1847 - Cayley/Salmon + Clebsch (later):

Answer: Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}_3$.

If S_3 is not a cone, but $\text{sing}(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Proof: Computation of the degree and ramification locus of a cover.
Basic notions:

- A line in $\mathbb{P}_3 :=$ set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface := a smooth degree-d algebraic hypersurface $Z(f) \subset \mathbb{P}_3(K)$.

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-d surface?

Cubics:

$d=3$: 1847 - Cayley/Salmon + Clebsch (later):

Answer: Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}_3$.

If S_3 is not a cone, but $\text{sing}(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Proof: Computation of the degree and ramification locus of a cover.
Basic notions:

- A line in $\mathbb{P}_3 :=$ set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface := a smooth degree-d algebraic hypersurface $Z(f) \subset \mathbb{P}_3(\mathbb{K})$.

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-d surface?

Cubics:

$d=3$: 1847 - Cayley/Salmon + Clebsch (later):

Answer: Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}_3$.

If S_3 is not a cone, but $\text{sing}(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Proof: Computation of the degree and ramification locus of a cover.
Cubics

Basic notions:

- A line in \mathbb{P}^3 := set of zeroes of two linearly independent linear forms.

- A smooth degree-d surface := a smooth degree-d algebraic hypersurface $Z(f) \subset \mathbb{P}^3(K)$.

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-d surface?

Cubics:

$d=3$: 1847 - Cayley/Salmon + Clebsch (later):

Answer: Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}_3$.

If S_3 is not a cone, but $\text{sing}(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Proof: Computation of the degree and ramification locus of a cover.
Basic notions:

- A line in \mathbb{P}_3 := set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface := a smooth degree-d algebraic hypersurface $Z(f) \subset \mathbb{P}_3(\mathbb{K})$.

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-d surface?

Cubics:

$d=3$: 1847 - Cayley/Salmon + Clebsch (later):

Answer: Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}_3$.

If S_3 is not a cone, but $\text{sing}(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Proof: Computation of the degree and ramification locus of a cover.
Higher-degree surfaces

any $d \geq 3$: 1860 - Salmon/Clebsch:

Thm. There exists a degree-$(11d - 24)$ polynomial F_d such that

$$Z(F_d) \cap S_d = \{ P \in S_d; \text{ there exists a line } L \text{ with } i_P(S_d, L) \geq 4 \},$$

where $i_P(S_d, L)$ is the multiplicity of vanishing of $f|_L$ in the point P.

Flecnodal divisor $\mathcal{F}_d :=$ the cycle of zeroes of F_d on the surface S_d.

Corollary.

$$(\text{Number of lines on degree-d surfaces}) \leq \deg(\mathcal{F}_d) = d \cdot (11d - 24)$$

Example. The Fermat surface $Z(x_1^d + x_2^d + x_3^d + x_4^d)$ contains $3d^2$ lines.
Higher-degree surfaces

any \(d \geq 3 \): 1860 - Salmon/Clebsch:

Thm. There exists a degree-\((11d - 24)\) polynomial \(F_d \) such that

\[
Z(F_d) \cap S_d = \{ P \in S_d; \text{ there exists a line } L \text{ with } i_P(S_d, L) \geq 4 \},
\]

where \(i_P(S_d, L) \) is the multiplicity of vanishing of \(f|_L \) in the point \(P \).

Flecnodal divisor \(\mathcal{F}_d := \) the cycle of zeroes of \(F_d \) on the surface \(S_d \).

Corollary.

(Number of lines on degree-\(d \) surfaces) \(\leq \) \(\deg(\mathcal{F}_d) = d \cdot (11d - 24) \)

Example. The Fermat surface \(Z(x_1^d + x_2^d + x_3^d + x_4^d) \) contains \(3d^2 \) lines.
Higher-degree surfaces

any $d \geq 3$: 1860 - Salmon/Clebsch:

Thm. There exists a degree-$(11d - 24)$ polynomial F_d such that

$$Z(F_d) \cap S_d = \{ P \in S_d; \text{ there exists a line } L \text{ with } i_P(S_d, L) \geq 4 \},$$

where $i_P(S_d, L)$ is the multiplicity of vanishing of $f|_L$ in the point P.

Flecnodal divisor $\mathcal{F}_d :=$ the cycle of zeroes of F_d on the surface S_d.

Corollary.

(Number of lines on degree-d surfaces) $\leq \deg(\mathcal{F}_d) = d \cdot (11d - 24)$

Example. The Fermat surface $Z(x_1^d + x_2^d + x_3^d + x_4^d)$ contains $3d^2$ lines.
Higher-degree surfaces

any $d \geq 3$: 1860 - Salmon/Clebsch:

Thm. There exists a degree-$(11d - 24)$ polynomial F_d such that

$$Z(F_d) \cap S_d = \{P \in S_d; \text{ there exists a line } L \text{ with } i_P(S_d, L) \geq 4\},$$

where $i_P(S_d, L)$ is the multiplicity of vanishing of $f|_L$ in the point P.

Flecnodal divisor $\mathcal{F}_d :=$ the cycle of zeroes of F_d on the surface S_d.

Corollary.

$$(\text{Number of lines on degree-}d \text{ surfaces}) \leq \deg(\mathcal{F}_d) = d \cdot (11d - 24)$$

Example. The Fermat surface $Z(x_1^d + x_2^d + x_3^d + x_4^d)$ contains $3d^2$ lines.
Higher-degree surfaces

Any \(d \geq 3 \): 1860 - Salmon/Clebsch:

Thm. There exists a degree-\((11d - 24)\) polynomial \(F_d \) such that

\[
Z(F_d) \cap S_d = \{ P \in S_d; \text{ there exists a line } L \text{ with } i_P(S_d, L) \geq 4 \},
\]

where \(i_P(S_d, L) \) is the multiplicity of vanishing of \(f|_L \) in the point \(P \).

Flecnodal divisor \(\mathcal{F}_d := \) the cycle of zeroes of \(F_d \) on the surface \(S_d \).

Corollary.

(Number of lines on degree-d surfaces) \(\leq \) \(\deg(\mathcal{F}_d) = d \cdot (11d - 24) \)

Example. The Fermat surface \(Z(x_1^d + x_2^d + x_3^d + x_4^d) \) contains \(3d^2 \) lines.
Higher-degree surfaces

any $d \geq 3$: 1860 - Salmon/Clebsch:

Thm. There exists a degree-$(11d - 24)$ polynomial F_d such that

$$Z(F_d) \cap S_d = \{ P \in S_d; \text{ there exists a line } L \text{ with } i_P(S_d, L) \geq 4 \},$$

where $i_P(S_d, L)$ is the multiplicity of vanishing of $f|_L$ in the point P.

Flecnodal divisor $\mathcal{F}_d :=$ the cycle of zeroes of F_d on the surface S_d.

Corollary.

(Number of lines on degree-d surfaces) $\leq \deg(\mathcal{F}_d) = d \cdot (11d - 24)$

Example. The Fermat surface $Z(x_1^d + x_2^d + x_3^d + x_4^d)$ contains $3d^2$ lines.
Higher-degree surfaces II

Lefschetz Thm. For very general smooth $S_d \subset \mathbb{P}^3(\mathbb{C})$ with $d \geq 4$

$$\rho(S_d) = 1 \text{ and } NS(S_d) = \mathbb{Z} \mathcal{O}_{S_d}(1)$$

Consequently: no lines on S_d.

Example. [Shioda 81] For certain $d \geq 4$ the surface $Z(x_4^d + x_1x_2^{d-1} + x_2x_3^{d-1} + x_3x_1^{d-1})$ has Picard number one. In particular, it contains no lines.

$d=4$: 1882 - Schur:
The quartic surface $Z(x_1^4 - x_1x_2^3 - x_3^4 + x_3x_4^3) \subset \mathbb{P}_3$ contains exactly 64 lines.

1943 - Segre claims to show:
• a line on a smooth quartic is never met by more than 18 other lines.
• maximal number of lines on smooth complex quartics = 64.
Lefschetz Thm. For very general smooth $S_d \subset \mathbb{P}^3(\mathbb{C})$ with $d \geq 4$

$$ \rho(S_d) = 1 \text{ and } \text{NS}(S_d) = \mathbb{Z} \mathcal{O}_{S_d}(1) $$

Consequently: no lines on S_d.

Example. [Shioda 81] For certain $d \geq 4$ the surface $Z(x_4^d + x_1x_2^{d-1} + x_2x_3^{d-1} + x_3x_1^{d-1})$ has Picard number one. In particular, it contains no lines.

d=4: 1882 - Schur:
The quartic surface $Z(x_1^4 - x_1x_2^3 - x_3^4 + x_3x_4^3) \subset \mathbb{P}^3$ contains exactly 64 lines.

1943 - Segre claims to show:
- a line on a smooth quartic is never met by more than 18 other lines.
- maximal number of lines on smooth complex quartics = 64.
Higher-degree surfaces II

Lefschetz Thm. For very general smooth $S_d \subset \mathbb{P}^3(\mathbb{C})$ with $d \geq 4$

\[\rho(S_d) = 1 \text{ and } \text{NS}(S_d) = \mathbb{Z} \mathcal{O}_{S_d}(1) \]

Consequently: no lines on S_d.

Example. [Shioda 81] For certain $d \geq 4$ the surface $Z(x_4^d + x_1x_2^{d-1} + x_2x_3^{d-1} + x_3x_1^{d-1})$ has Picard number one. In particular, it contains no lines.

$d=4$: 1882 - Schur:
The quartic surface $Z(x_4^4 - x_1x_2^3 - x_3^4 + x_3x_4^3) \subset \mathbb{P}_3$ contains exactly 64 lines.

1943 - Segre claims to show:
- a line on a smooth quartic is never met by more than 18 other lines.
- maximal number of lines on smooth complex quartics $= 64$.
Higher-degree surfaces II

Lefschetz Thm. For very general smooth $S_d \subset \mathbb{P}^3(\mathbb{C})$ with $d \geq 4$

$$\rho(S_d) = 1 \text{ and } \text{NS}(S_d) = \mathbb{Z} \mathcal{O}_{S_d}(1)$$

Consequently: no lines on S_d.

Example. [Shioda 81] For certain $d \geq 4$ the surface $Z(x_4^d + x_1x_2^{d-1} + x_2x_3^{d-1} + x_3x_1^{d-1})$ has Picard number one. In particular, it contains no lines.

$d=4$: 1882 - Schur:
The quartic surface $Z(x_1^4 - x_1x_2^3 - x_3^4 + x_3x_4^3) \subset \mathbb{P}_3$ contains exactly 64 lines.

1943 - Segre claims to show:
- a line on a smooth quartic is never met by more than 18 other lines.
- maximal number of lines on smooth complex quartics $= 64$.
Higher-degree surfaces II

Lefschetz Thm. For very general smooth $S_d \subset \mathbb{P}^3(\mathbb{C})$ with $d \geq 4$

$$\rho(S_d) = 1 \text{ and } \text{NS}(S_d) = \mathbb{Z} \mathcal{O}_{S_d}(1)$$

Consequently: no lines on S_d.

Example. [Shioda 81] For certain $d \geq 4$ the surface $Z(x_4^d + x_1 x_2^{d-1} + x_2 x_3^{d-1} + x_3 x_1^{d-1})$ has Picard number one. In particular, it contains no lines.

d=4: 1882 - Schur:
The quartic surface $Z(x_4^4 - x_1 x_2^3 - x_3^4 + x_3 x_4^3) \subset \mathbb{P}_3$ contains exactly 64 lines.

1943 - Segre claims to show:
- a line on a smooth quartic is never met by more than 18 other lines.
- maximal number of lines on smooth complex quartics = 64.
Higher-degree surfaces II

Lefschetz Thm. For very general smooth $S_d \subset \mathbb{P}^3(\mathbb{C})$ with $d \geq 4$

$$\rho(S_d) = 1 \text{ and } \text{NS}(S_d) = \mathbb{Z} \mathcal{O}_{S_d}(1)$$

Consequently: no lines on S_d.

Example. [Shioda 81] For certain $d \geq 4$ the surface $Z(x_4^d + x_1x_2^{d-1} + x_2x_3^{d-1} + x_3x_1^{d-1})$ has Picard number one. In particular, it contains no lines.

d=4: 1882 - Schur:
The quartic surface $Z(x_4^4 - x_1x_2^3 - x_3^4 + x_3x_4^3) \subset \mathbb{P}_3$ contains exactly 64 lines.

1943 - Segre claims to show:
- a line on a smooth quartic is never met by more than 18 other lines.
- maximal number of lines on smooth complex quartics = 64.
Higher-degree surfaces II

Lefschetz Thm. For very general smooth $S_d \subset \mathbb{P}^3(\mathbb{C})$ with $d \geq 4$

$$\rho(S_d) = 1 \text{ and } \text{NS}(S_d) = \mathbb{Z} \mathcal{O}_{S_d}(1)$$

Consequently: no lines on S_d.

Example. [Shioda 81] For certain $d \geq 4$ the surface $Z(x_4^d + x_1x_2^{d-1} + x_2x_3^{d-1} + x_3x_1^{d-1})$ has Picard number one. In particular, it contains no lines.

$d=4$: 1882 - Schur:
The quartic surface $Z(x_4^4 - x_1x_2^3 - x_3^4 + x_3x_4^3) \subset \mathbb{P}_3$ contains exactly 64 lines.

1943 - Segre claims to show:
- a line on a smooth quartic is never met by more than 18 other lines.
- maximal number of lines on smooth complex quartics $= 64$.
Segre’s argument in modern language I

Step 1. \(S \) a smooth quartic surface, \(l \subset S \) a line. Then \(l \) is **met by at most** 18 other lines on \(S \).

Step 2. If there exists a plane \(\Pi \) such that \(\Pi \cap S \) consists of four lines, then \(S \) contains at most 64 lines.

Step 3. If there exists a line \(l \subset S \) met by **at least** 13 other lines, then there exists a plane \(\Pi \) such that \(\Pi \cap S \) consists of four lines.

Assumption A: Each line on \(S \) met by at most 12 other lines, no four of them coplanar.
Segre’s argument in modern language I

Step 1. S a smooth quartic surface, $l \subset S$ a line. Then l is met by at most 18 other lines on S.

Step 2. If there exists a plane Π such that $\Pi \cap S$ consists of four lines, then S contains at most 64 lines.

Step 3. If there exists a line $l \subset S$ met by at least 13 other lines, then there exists a plane Π such that $\Pi \cap S$ consists of four lines.

Assumption A: Each line on S met by at most 12 other lines, no four of them coplanar.
Segre’s argument in modern language I

Step 1. S a smooth quartic surface, $\ell \subset S$ a line. Then ℓ is met by at most 18 other lines on S.

Step 2. If there exists a plane Π such that $\Pi \cap S$ consists of four lines, then S contains at most 64 lines.

Step 3. If there exists a line $\ell \subset S$ met by at least 13 other lines, then there exists a plane Π such that $\Pi \cap S$ consists of four lines.

Assumption A: Each line on S met by at most 12 other lines, no four of them coplanar.
Segre’s argument in modern language I

Step 1. S a smooth quartic surface, $\ell \subset S$ a line. Then ℓ is met by at most 18 other lines on S.

Step 2. If there exists a plane Π such that $\Pi \cap S$ consists of four lines, then S contains at most 64 lines.

Step 3. If there exists a line $\ell \subset S$ met by at least 13 other lines, then there exists a plane Π such that $\Pi \cap S$ consists of four lines.

Assumption A: Each line on S met by at most 12 other lines, no four of them coplanar.
Segre’s argument in modern language I

Step 1. S a smooth quartic surface, $\ell \subset S$ a line. Then ℓ is met by at most 18 other lines on S.

Step 2. If there exists a plane Π such that $\Pi \cap S$ consists of four lines, then S contains at most 64 lines.

Step 3. If there exists a line $\ell \subset S$ met by at least 13 other lines, then there exists a plane Π such that $\Pi \cap S$ consists of four lines.

Assumption A: Each line on S met by at most 12 other lines, no four of them coplanar.
Step 4. If there exist coplanar lines $l_1, l_1 \subset S$ such that the conic $C_2 \in |\mathcal{O}_S(1) - l_1 - l_2|$ is no component of the flecnodal divisor \mathcal{F}_S, then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $\text{supp}(\mathcal{F}_S)$.

Step 5. If S contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C: S contains $N \leq 8$ pairs of coplanar lines.

Step 6. The pairs of lines span a sublattice of $\text{NS}(S)$ of rank $\geq (N + 1)$. The number of lines is bounded by

$$2N + 22 - (N + 1) = 21 + N \leq 29.$$
Segre’s argument in modern language II

Step 4. If there exist coplanar lines $\ell_1, \ell_1 \subset S$ such that the conic $C_2 \in |\mathcal{O}_S(1) - \ell_1 - \ell_2|$ is no component of the flecnodal divisor \mathcal{F}_S, then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $\text{supp}(\mathcal{F}_S)$.

Step 5. If S contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C: S contains $N \leq 8$ pairs of coplanar lines.

Step 6. The pairs of lines span a sublattice of $\text{NS}(S)$ of rank $\geq (N + 1)$. The number of lines is bounded by

$$2N + 22 - (N + 1) = 21 + N \leq 29.$$
Step 4. If there exist coplanar lines $\ell_1, \ell_1 \subset S$ such that the conic $C_2 \in |\mathcal{O}_S(1) - \ell_1 - \ell_2|$ is no component of the flecnodal divisor \mathcal{F}_S, then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $\text{supp}(\mathcal{F}_S)$.

Step 5. If S contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C: S contains $N \leq 8$ pairs of coplanar lines.

Step 6. The pairs of lines span a sublattice of $\text{NS}(S)$ of rank $\geq (N + 1)$. The number of lines is bounded by

$$2N + 22 - (N + 1) = 21 + N \leq 29.$$

\square
Step 4. If there exist coplanar lines \(l_1, l_1 \subset S \) such that the conic \(C_2 \in |O_S(1) - l_1 - l_2| \) is no component of the flecnodal divisor \(F_S \), then \(S \) contains at most 60 lines.

Assumption B: Each pair of coplanar lines on \(S \) defines a conic in \(\text{supp}(F_S) \).

Step 5. If \(S \) contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C: \(S \) contains \(N \leq 8 \) pairs of coplanar lines.

Step 6. The pairs of lines span a sublattice of \(NS(S) \) of rank \(\geq (N + 1) \). The number of lines is bounded by

\[
2N + 22 - (N + 1) = 21 + N \leq 29.
\]
Segre’s argument in modern language II

Step 4. If there exist coplanar lines \(\ell_1, \ell_1 \subset S \) such that the conic
\(C_2 \in |\mathcal{O}_S(1) - \ell_1 - \ell_2| \) is no component of the flecnodal divisor \(\mathcal{F}_S \), then
\(S \) contains at most 60 lines.

Assumption B: Each pair of coplanar lines on \(S \) defines a conic in
\(\text{supp}(\mathcal{F}_S) \).

Step 5. If \(S \) contains at least 9 pairs of coplanar lines, then it contains
at most 62 lines.

Assumption C: \(S \) contains \(N \leq 8 \) pairs of coplanar lines.

Step 6. The pairs of lines span a sublattice of \(\text{NS}(S) \) of rank \(\geq (N + 1) \).
The number of lines is bounded by
\[
2N + 22 - (N + 1) = 21 + N \leq 29.
\]
\(\square \)
Step 4. If there exist coplanar lines $\ell_1, \ell_1 \subset S$ such that the conic $C_2 \in |\mathcal{O}_S(1) - \ell_1 - \ell_2|$ is no component of the flecnodal divisor \mathcal{F}_S, then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $\text{supp}(\mathcal{F}_S)$.

Step 5. If S contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C: S contains $N \leq 8$ pairs of coplanar lines.

Step 6. The pairs of lines span a sublattice of $\text{NS}(S)$ of rank $\geq (N + 1)$. The number of lines is bounded by

$$2N + 22 - (N + 1) = 21 + N \leq 29.$$
A counterexample

Example [R-S 2012]
The quartic S given by vanishing of

$$x_1^3 x_3 + x_1 x_2 x_3^2 + x_2^3 x_4 + r x_3^3 x_4 - x_1 x_2 x_4^2 - r x_3 x_4^3$$

with $r = -16/27$,
- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line $\{x_3 = x_4 = 0\}$,
- contains 20 other lines that meet the line $\{x_3 = x_4 = 0\}$.

Over \mathbb{C}, we obtain a K3 surface with Picard number $\rho = 20$.

The claim of Step 1 is false.
Example [R-S 2012]
The quartic S given by vanishing of

$$x_1^3 x_3 + x_1 x_2 x_3^2 + x_2^3 x_4 + r x_3^3 x_4 - x_1 x_2 x_4^2 - r x_3 x_4^3$$

with $r = -16/27$,
- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line $\{x_3 = x_4 = 0\}$,
- contains 20 other lines that meet the line $\{x_3 = x_4 = 0\}$.

Over \mathbb{C}, we obtain a K3 surface with Picard number $\rho = 20$.

The claim of Step 1 is false.
A counterexample

Example [R-S 2012]
The quartic \(S \) given by vanishing of

\[
x_1^3 x_3 + x_1 x_2 x_3^2 + x_2^3 x_4 + r x_3^3 x_4 - x_1 x_2 x_4^2 - r x_3 x_4^3
\]

with \(r = -16/27 \),
- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line \(\{x_3 = x_4 = 0\} \),
- contains 20 other lines that meet the line \(\{x_3 = x_4 = 0\} \).

Over \(\mathbb{C} \), we obtain a K3 surface with Picard number \(\rho = 20 \).

The claim of Step 1 is false.
Example [R-S 2012]
The quartic S given by vanishing of

$$x_1^3 x_3 + x_1 x_2 x_3^2 + x_2^3 x_4 + r x_3^3 x_4 - x_1 x_2 x_4^2 - r x_3 x_4^3$$

with $r = -16/27$,
- is smooth outside characteristics $2, 3, 5$,
- contains 60 lines,
- contains the line $\{x_3 = x_4 = 0\}$,
- contains 20 other lines that meet the line $\{x_3 = x_4 = 0\}$.

Over \mathbb{C}, we obtain a K3 surface with Picard number $\rho = 20$.

The claim of Step 1 is false.
A counterexample

Example [R-S 2012]
The quartic S given by vanishing of

$$x_1^3x_3 + x_1x_2x_3^2 + x_2^3x_4 + rx_3^3x_4 - x_1x_2x_4^2 - rx_3x_4^3$$

with $r = -16/27$,
- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line $\{x_3 = x_4 = 0\}$,
- contains 20 other lines that meet the line $\{x_3 = x_4 = 0\}$.

Over \mathbb{C}, we obtain a K3 surface with Picard number $\rho = 20$.

The claim of Step 1 is false.
A counterexample

Example [R-S 2012]
The quartic S given by vanishing of

$$x_1^3 x_3 + x_1 x_2 x_3^2 + x_2^3 x_4 + r x_3^3 x_4 - x_1 x_2 x_4^2 - rx_3 x_4^3$$

with $r = -16/27$,
- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line \(\{ x_3 = x_4 = 0 \} \),
- contains 20 other lines that meet the line \(\{ x_3 = x_4 = 0 \} \).

Over \mathbb{C}, we obtain a K3 surface with Picard number $\rho = 20$.

The claim of Step 1 is false.
A counterexample

Example [R-S 2012]
The quartic S given by vanishing of

$$x_1^3 x_3 + x_1 x_2 x_3^2 + x_2^3 x_4 + r x_3^3 x_4 - x_1 x_2 x_4^2 - r x_3 x_4^3$$

with $r = -16/27$,
- is smooth outside characteristics $2, 3, 5$,
- contains 60 lines,
- contains the line $\{x_3 = x_4 = 0\}$,
- contains 20 other lines that meet the line $\{x_3 = x_4 = 0\}$.

Over \mathbb{C}, we obtain a K3 surface with Picard number $\rho = 20$.

The claim of Step 1 is false.
A counterexample

Example [R-S 2012]
The quartic S given by vanishing of

$$x_1^3x_3 + x_1x_2x_3^2 + x_2^3x_4 + r x_3^3x_4 - x_1x_2x_4^2 - rx_3x_4^3$$

with $r = -16/27$,
- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line $\{x_3 = x_4 = 0\}$,
- contains 20 other lines that meet the line $\{x_3 = x_4 = 0\}$.

Over \mathbb{C}, we obtain a K3 surface with Picard number $\rho = 20$.

The claim of Step 1 is false.
Main results I

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^3(\mathbb{K})$ intersects at most 20 other lines provided that $\text{char}(\mathbb{K}) \neq 2, 3$.

2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

 $$x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$$

 where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on S if and only if $x_4 \mid g$.

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\text{char}(\mathbb{K}) \neq 2, 3$. A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 64 lines.
Main results I

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^3(\mathbb{K})$ intersects at most 20 other lines provided that $\text{char}(\mathbb{K}) \neq 2, 3$.

2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on S if and only if $x_4 \mid g$.

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\text{char}(\mathbb{K}) \neq 2, 3$. A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 64 lines.
Main results I

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^3(\mathbb{K})$ intersects at most 20 other lines provided that $\text{char}(\mathbb{K}) \neq 2, 3$.

2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on S if and only if $x_4 \mid g$.

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\text{char}(\mathbb{K}) \neq 2, 3$. A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 64 lines.
Main results I

Assumption: \(\mathbb{K} \) is alg closed.

Thm 1 [R-S, 2012].

1. A line \(\ell \) on a smooth quartic surface \(S \) in \(\mathbb{P}^3(\mathbb{K}) \) intersects at most 20 other lines provided that \(\text{char}(\mathbb{K}) \neq 2, 3 \).

2. If \(\ell \) meets more than 18 lines on \(S \), then \(S \) can be given by a quartic polynomial

\[
x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)
\]

where \(q, g \in \mathbb{K}[x_3, x_4] \) are homogeneous of degree 2 resp. 3.

3. The line \(\ell = \{x_3 = x_4 = 0\} \) meets 20 lines on \(S \) if and only if \(x_4 \mid g \).

Thm 2 [R-S, 2012]. Let \(\mathbb{K} \) be an alg. closed field with \(\text{char}(\mathbb{K}) \neq 2, 3 \).
A smooth quartic \(S \subset \mathbb{P}^3(\mathbb{K}) \) contains at most 64 lines.
Main results I

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^3(\mathbb{K})$ intersects at most 20 other lines provided that $\text{char}(\mathbb{K}) \neq 2, 3$.

2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$x_3 x_1^3 + x_4 x_2^3 + x_1 x_2 q(x_3, x_4) + x_3 g(x_3, x_4)$$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on S if and only if $x_4 | g$.

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\text{char}(\mathbb{K}) \neq 2, 3$. A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 64 lines.
Main results I

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^3(\mathbb{K})$ intersects at most 20 other lines provided that $\text{char}(\mathbb{K}) \neq 2, 3$.

2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on S if and only if $x_4 | g$.

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\text{char}(\mathbb{K}) \neq 2, 3$. A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 64 lines.
Main results 1

Assumption: \(\mathbb{K} \) is alg closed.

Thm 1 [R-S, 2012].

1. A line \(\ell \) on a smooth quartic surface \(S \) in \(\mathbb{P}^3(\mathbb{K}) \) intersects at most 20 other lines provided that \(\text{char}(\mathbb{K}) \neq 2, 3 \).

2. If \(\ell \) meets more than 18 lines on \(S \), then \(S \) can be given by a quartic polynomial

\[
x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)
\]

where \(q, g \in \mathbb{K}[x_3, x_4] \) are homogeneous of degree 2 resp. 3.

3. The line \(\ell = \{x_3 = x_4 = 0\} \) meets 20 lines on \(S \) if and only if \(x_4 \mid g \).

Thm 2 [R-S, 2012]. Let \(\mathbb{K} \) be an alg. closed field with \(\text{char}(\mathbb{K}) \neq 2, 3 \). A smooth quartic \(S \subset \mathbb{P}^3(\mathbb{K}) \) contains at most 64 lines.
Main results I

Assumption: \(\mathbb{K} \) is alg closed.

Thm 1 [R-S, 2012].

1. A line \(\ell \) on a smooth quartic surface \(S \) in \(\mathbb{P}^3(\mathbb{K}) \) intersects at most 20 other lines provided that \(\text{char}(\mathbb{K}) \neq 2, 3 \).

2. If \(\ell \) meets more than 18 lines on \(S \), then \(S \) can be given by a quartic polynomial

\[
x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)
\]

where \(q, g \in \mathbb{K}[x_3, x_4] \) are homogeneous of degree 2 resp. 3.

3. The line \(\ell = \{x_3 = x_4 = 0\} \) meets 20 lines on \(S \) if and only if \(x_4 \mid g \).

Thm 2 [R-S, 2012]. Let \(\mathbb{K} \) be an alg. closed field with \(\text{char}(\mathbb{K}) \neq 2, 3 \). A smooth quartic \(S \subset \mathbb{P}^3(\mathbb{K}) \) contains at most 64 lines.
Main results I

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^3(\mathbb{K})$ intersects at most 20 other lines provided that $\text{char}(\mathbb{K}) \neq 2, 3$.

2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on S if and only if $x_4 \mid g$.

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\text{char}(\mathbb{K}) \neq 2, 3$. A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 64 lines.
Main results I

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

1. A line ℓ on a smooth quartic surface S in $\mathbb{P}^3(\mathbb{K})$ intersects at most 20 other lines provided that $\text{char}(\mathbb{K}) \neq 2, 3$.

2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on S if and only if $x_4 \mid g$.

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\text{char}(\mathbb{K}) \neq 2, 3$. A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 64 lines.
Different approach is needed to deal with $\text{char}(\mathbb{K}) \in \{2, 3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ may meet at most 48 lines on S.

Thm 4 [R-S, 2014]. Let $\text{char}(\mathbb{K}) = 3$.

(a) A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 112 lines.

(b) Up to the action of $\text{PGL}(4)$ there is a unique smooth quartic surface in $\mathbb{P}^3(\mathbb{K})$ containing 112 lines.

Example The quartic

$$S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(\mathbb{K}).$$

contains exactly 112 lines (each defined over \mathbb{F}_9).

It was known already to B. Segre.
Main results II

Different approach is needed to deal with \(\text{char}(\mathbb{K}) \in \{2, 3\} \), because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic \(S \subset \mathbb{P}^3(\mathbb{K}) \) may meet at most 48 lines on \(S \).

Thm 4 [R-S, 2014]. Let \(\text{char}(\mathbb{K}) = 3 \).
(a) A smooth quartic \(S \subset \mathbb{P}^3(\mathbb{K}) \) contains at most 112 lines.
(b) Up to the action of \(\text{PGL}(4) \) there is a unique smooth quartic surface in \(\mathbb{P}^3(\mathbb{K}) \) containing 112 lines.

Example The quartic

\[
S_3 = \{ x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0 \} \subset \mathbb{P}^3(\mathbb{K}).
\]

contains exactly 112 lines (each defined over \(\mathbb{F}_9 \)).

It was known already to B. Segre.
Main results II

Different approach is needed to deal with $\text{char}(\mathbb{K}) \in \{2, 3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ may meet at most 48 lines on S.

Thm 4 [R-S, 2014]. Let $\text{char}(\mathbb{K}) = 3$.

(a) A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 112 lines.
(b) Up to the action of $\text{PGL}(4)$ there is a unique smooth quartic surface in $\mathbb{P}^3(\mathbb{K})$ containing 112 lines.

Example The quartic

$$S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(\mathbb{K}).$$

contains exactly 112 lines (each defined over \mathbb{F}_9).

It was known already to B. Segre.
Main results II

Different approach is needed to deal with $\text{char}(\mathbb{K}) \in \{2, 3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ may meet at most 48 lines on S.

Thm 4 [R-S, 2014]. Let $\text{char}(\mathbb{K}) = 3$.
(a) A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 112 lines.
(b) Up to the action of $\text{PGL}(4)$ there is a unique smooth quartic surface in $\mathbb{P}^3(\mathbb{K})$ containing 112 lines.

Example The quartic

$$S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(\mathbb{K})$$

contains exactly 112 lines (each defined over \mathbb{F}_9).
It was known already to B. Segre.
Different approach is needed to deal with $\text{char}(\mathbb{K}) \in \{2, 3\}$, because flecnodeal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ may meet at most 48 lines on S.

Thm 4 [R-S, 2014]. Let $\text{char}(\mathbb{K}) = 3$.
(a) A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 112 lines.
(b) Up to the action of $\text{PGL}(4)$ there is a unique smooth quartic surface in $\mathbb{P}^3(\mathbb{K})$ containing 112 lines.

Example The quartic

$$S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(\mathbb{K}).$$

contains exactly 112 lines (each defined over \mathbb{F}_9). It was known already to B. Segre.
Different approach is needed to deal with $\text{char}(K) \in \{2, 3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(K)$ may meet at most 48 lines on S.

Thm 4 [R-S, 2014]. Let $\text{char}(K) = 3$.
(a) A smooth quartic $S \subset \mathbb{P}^3(K)$ contains at most 112 lines.
(b) Up to the action of $\text{PGL}(4)$ there is a unique smooth quartic surface in $\mathbb{P}^3(K)$ containing 112 lines.

Example The quartic

$$S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(K).$$

contains exactly 112 lines (each defined over \mathbb{F}_9).
It was known already to B. Segre.
Main results II

Different approach is needed to deal with $\text{char}(K) \in \{2, 3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(K)$ may meet at most 48 lines on S.

Thm 4 [R-S, 2014]. Let $\text{char}(K) = 3$.
(a) A smooth quartic $S \subset \mathbb{P}^3(K)$ contains at most 112 lines.
(b) Up to the action of $\text{PGL}(4)$ there is a unique smooth quartic surface in $\mathbb{P}^3(K)$ containing 112 lines.

Example The quartic

$$S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(K).$$

contains exactly 112 lines (each defined over \mathbb{F}_9).

It was known already to B. Segre.
Different approach is needed to deal with $\text{char}(K) \in \{2, 3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(K)$ may meet at most 48 lines on S.

Thm 4 [R-S, 2014]. Let $\text{char}(K) = 3$.
(a) A smooth quartic $S \subset \mathbb{P}^3(K)$ contains at most 112 lines.
(b) Up to the action of $\text{PGL}(4)$ there is a unique smooth quartic surface in $\mathbb{P}^3(K)$ containing 112 lines.

Example The quartic

$$S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(K).$$

contains exactly 112 lines (each defined over \mathbb{F}_9).

It was known already to B. Segre.
Remark: On the quartic from the example a line on S_3 is met by 30 other lines.

Question: What for characteristic 2? (work in progress)

Thm 4 [R-S, 2014]. Let $\text{char}(\mathbb{K}) = 2$. A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 84 lines.

Best known example (inspired by Barth quintic): 60 lines.
Remark: On the quartic from the example a line on S_3 is met by 30 other lines.

Question: What for characteristic 2? (work in progress)

Thm 4 [R-S, 2014]. Let $\text{char}(K) = 2$. A smooth quartic $S \subset \mathbb{P}^3(K)$ contains at most 84 lines.

Best known example (inspired by Barth quintic): 60 lines.
Main results III

Remark: On the quartic from the example a line on S_3 is met by 30 other lines.

Question: What for characteristic 2? (work in progress)

Thm 4 [R-S, 2014]. Let $\text{char}(K) = 2$. A smooth quartic $S \subset \mathbb{P}^3(K)$ contains at most 84 lines.

Best known example (inspired by Barth quintic): 60 lines.
Main results III

Remark: On the quartic from the example a line on S_3 is met by 30 other lines.

Question: What for characteristic 2? (work in progress)

Thm 4 [R-S, 2014]. Let $\text{char}(K) = 2$. A smooth quartic $S \subset \mathbb{P}^3(K)$ contains at most 84 lines.

Best known example (inspired by Barth quintic): 60 lines.
Main results III

Remark: On the quartic from the example a line on S_3 is met by 30 other lines.

Question: What for characteristic 2? (work in progress)

Thm 4 [R-S, 2014]. Let $\text{char}(K) = 2$. A smooth quartic $S \subset \mathbb{P}^3(K)$ contains at most 84 lines.

Best known example (inspired by Barth quintic): 60 lines.
Main results III

Remark: On the quartic from the example a line on S_3 is met by 30 other lines.

Question: What for characteristic 2? (work in progress)

Thm 4 [R-S, 2014]. Let $\text{char}(K) = 2$. A smooth quartic $S \subset \mathbb{P}^3(K)$ contains at most 84 lines.

Best known example (inspired by Barth quintic): 60 lines.
Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a $K3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-$K3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

(b) Let $S \subset \mathbb{C}^3$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.
Main results IV

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a $K3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-$K3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

(b) Let $S \subset \mathbb{C}^3$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.
Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a $K3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-$K3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

(b) Let $S \subset \mathbb{C}^3$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.
Main results IV

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a $K3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-$K3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

(b) Let $S \subset \mathbb{C}^3$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.
Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a $K3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-$K3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

(b) Let $S \subset \mathbb{C}^3$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.
Main results IV

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a $K3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-$K3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

(b) Let $S \subset \mathbb{C}^3$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.
Main results IV

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a $K3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-$K3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

(b) Let $S \subset \mathbb{C}^3$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.
Main results IV

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a $K3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-$K3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

(b) Let $S \subset \mathbb{C}^3$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.
Main results IV

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a $K3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-$K3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

(b) Let $S \subset \mathbb{C}^3$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.
Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

(b) Let $S \subset \mathbb{C}^3$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.
Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that \(S \subset \mathbb{P}_3(\mathbb{C}) \) is a \(K3 \) quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that \(S \subset \mathbb{P}_3(\mathbb{C}) \) is a non-\(K3 \) quartic surface. If \(S \) is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let \(S \subset \mathbb{P}_3(\mathbb{C}) \) be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then \(S \) contains at most 64 lines.

(b) Let \(S \subset \mathbb{C}^3 \) be an affine quartic surface that is not ruled by lines. Then \(S \) contains at most 64 lines.
Main results IV

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a $K3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-$K3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

(b) Let $S \subset \mathbb{C}^3$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.
Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a $K3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-$K3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

(b) Let $S \subset \mathbb{C}^3$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.
Main results IV

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a $K3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-$K3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

(b) Let $S \subset \mathbb{C}^3$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.
Main results IV

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a $K3$ quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-$K3$ quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

(b) Let $S \subset \mathbb{C}^3$ be an affine quartic surface that is not ruled by lines. Then S contains at most 64 lines.
Sketch of the proof I

Set-up. \(\ell \subset S \) a line,

- We consider the family of planes \(H_\lambda \supset \ell \).
- \(H_\lambda \cap S =: \ell + F_\lambda \)
- for general \(\lambda \in \mathbb{P}_1 \) the cubic \(F_\lambda \) is smooth.

We constructed an genus-1 fibration

\[
\pi : S \supset C_\lambda \ni P \mapsto \lambda \in \mathbb{P}_1,
\]

Definition. The line \(\ell \) is of the first kind iff it intersects at least one smooth fibre \(Z(f_\lambda) \) only in the points where the determinant of Hessian of \(f_\lambda \) does not vanish.

Lemma 0. If \(\ell \) of the first kind, then \(\ell \) is met by at most 18 other lines.

Proof: Computation of the resultant of the equation of \(F_\lambda|_\ell \) and of its Hessian\(|_\ell \). \qed

Sketch of the proof I

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_\lambda \supset \ell$.
- $H_\lambda \cap S =: \ell + F_\lambda$
- for general $\lambda \in \mathbb{P}_1$ the cubic F_λ is smooth.

We constructed an genus-1 fibration

$$
\pi : S \supset C_\lambda \ni P \mapsto \lambda \in \mathbb{P}_1,
$$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z(f_\lambda)$ only in the points where the determinant of Hessian of f_λ does not vanish.

Lemma 0. If ℓ of the first kind, then ℓ is met by at most 18 other lines.

Proof: Computation of the resultant of the equation of $F_\lambda|_\ell$ and of its Hessian $|_\ell$. \qed
Sketch of the proof I

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_\lambda \ni \ell$.
- $H_\lambda \cap S =: \ell + F_\lambda$
 - for general $\lambda \in \mathbb{P}_1$ the cubic F_λ is smooth.

We constructed an genus-1 fibration

$$
\pi : S \ni C_\lambda \ni P \mapsto \lambda \in \mathbb{P}_1,
$$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z(f_\lambda)$ only in the points where the determinant of Hessian of f_λ does not vanish.

Lemma 0. If ℓ of the first kind, then ℓ is met by at most 18 other lines.

Proof: Computation of the resultant of the equation of $F_\lambda|_\ell$ and of its Hessian $|_\ell$. \qed
Sketch of the proof I

Set-up. \(\ell \subset S \) a line,

- We consider the family of planes \(H_\lambda \supset \ell \).
- \(H_\lambda \cap S =: \ell + F_\lambda \)
- for general \(\lambda \in \mathbb{P}_1 \) the cubic \(F_\lambda \) is smooth.

We constructed an genus-1 fibration

\[\pi : S \supset C_\lambda \ni P \mapsto \lambda \in \mathbb{P}_1, \]

Definition. The line \(\ell \) is of the first kind iff it intersects at least one smooth fibre \(Z(f_\lambda) \) only in the points where the determinant of Hessian of \(f_\lambda \) does not vanish.

Lemma 0. If \(\ell \) of the first kind, then \(\ell \) is met by at most 18 other lines.

Proof: Computation of the resultant of the equation of \(F_\lambda|_\ell \) and of its Hessian|_\ell. \(\square \)
Sketch of the proof I

Set-up. \(\ell \subset S \) a line,

- We consider the family of planes \(H_\lambda \supset \ell \).
- \(H_\lambda \cap S =: \ell + F_\lambda \)
- for general \(\lambda \in \mathbb{P}_1 \) the cubic \(F_\lambda \) is smooth.

We constructed an genus-1 fibration

\[\pi : S \supset C_\lambda \ni P \mapsto \lambda \in \mathbb{P}_1 , \]

Definition. The line \(\ell \) is of the first kind iff it intersects at least one smooth fibre \(Z(f_\lambda) \) only in the points where the determinant of Hessian of \(f_\lambda \) does not vanish.

Lemma 0. If \(\ell \) of the first kind, then \(\ell \) is met by at most 18 other lines.

Proof: Computation of the resultant of the equation of \(F_\lambda|_\ell \) and of its Hessian|\(_\ell \). \(\square \)
Sketch of the proof I

Set-up. \(\ell \subset S \) a line,

- We consider the family of planes \(H_\lambda \supset \ell \).
- \(H_\lambda \cap S =: \ell + F_\lambda \)
- for general \(\lambda \in \mathbb{P}_1 \) the cubic \(F_\lambda \) is smooth.

We constructed an genus-1 fibration

\[
\pi : S \supset C_\lambda \ni P \mapsto \lambda \in \mathbb{P}_1,
\]

Definition. The line \(\ell \) is of the first kind iff it intersects at least one smooth fibre \(Z(f_\lambda) \) only in the points where the determinant of Hessian of \(f_\lambda \) does not vanish.

Lemma 0. If \(\ell \) of the first kind, then \(\ell \) is met by at most 18 other lines.

Proof: Computation of the resultant of the equation of \(F_\lambda|_\ell \) and of its Hessian|_\ell. \qed
Sketch of the proof I

Set-up. \(\ell \subset S \) a line,

- We consider the family of planes \(H_\lambda \supset \ell \).
- \(H_\lambda \cap S =: \ell + F_\lambda \)
- for general \(\lambda \in \mathbb{P}_1 \) the cubic \(F_\lambda \) is smooth.

We constructed an genus-1 fibration

\[
\pi : S \supset C_\lambda \ni P \mapsto \lambda \in \mathbb{P}_1,
\]

Definition. The line \(\ell \) is of the first kind iff it intersects at least one smooth fibre \(Z(f_\lambda) \) only in the points where the determinant of Hessian of \(f_\lambda \) does not vanish.

Lemma 0. If \(\ell \) of the first kind, then \(\ell \) is met by at most 18 other lines.

Proof: Computation of the resultant of the equation of \(F_\lambda|_\ell \) and of its Hessian|_\ell. \(\square \)
Sketch of the proof I

Set-up. \(\ell \subset S \) a line,

- We consider the family of planes \(H_\lambda \supset \ell \).
- \(H_\lambda \cap S =: \ell + F_\lambda \)
- for general \(\lambda \in \mathbb{P}_1 \) the cubic \(F_\lambda \) is smooth.

We constructed an genus-1 fibration

\[
\pi : S \supset C_\lambda \ni P \mapsto \lambda \in \mathbb{P}_1 ,
\]

Definition. The line \(\ell \) is of the first kind iff it intersects at least one smooth fibre \(Z(f_\lambda) \) only in the points where the determinant of Hessian of \(f_\lambda \) does not vanish.

Lemma 0. If \(\ell \) of the first kind, then \(\ell \) is met by at most 18 other lines.

Proof: Computation of the resultant of the equation of \(F_\lambda|_\ell \) and of its Hessian|\(_\ell \). \(\square \)
Sketch of the proof I

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_\lambda \supset \ell$.
- $H_\lambda \cap S =: \ell + F_\lambda$
- for general $\lambda \in \mathbb{P}_1$ the cubic F_λ is smooth.

We constructed an genus-1 fibration

$$\pi : S \supset C_\lambda \ni P \mapsto \lambda \in \mathbb{P}_1,$$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z(f_\lambda)$ only in the points where the determinant of Hessian of f_λ does not vanish.

Lemma 0. If ℓ of the first kind, then ℓ is met by at most 18 other lines.

Proof: Computation of the resultant of the equation of $F_\lambda|_\ell$ and of its Hessian$|_\ell$. \qed
We consider the restriction $\pi|_\ell : \ell \to \mathbb{P}^1$ and get a degree-3 morphism.

Definition. The line ℓ is of **ramification type** 1^4 (resp. $2, 1^2$), (resp. 2^2) iff $\pi|_\ell$ has 4, (resp. 3) or (resp. 2) ramification points.

Definition. The line ℓ is of the **second kind** iff it intersects all smooth fibres $Z(f_\lambda)$ in the points where Hessian of f_λ vanishes.

Support of the closure of the inflection points of smooth fibers:

<table>
<thead>
<tr>
<th>fibre type</th>
<th>configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_1</td>
<td>3 smooth points, the node</td>
</tr>
<tr>
<td>I_2</td>
<td>3 smooth points of one component, both nodes</td>
</tr>
<tr>
<td>I_3</td>
<td>3 smooth points on each component</td>
</tr>
<tr>
<td>II</td>
<td>1 smooth point, the cusp</td>
</tr>
<tr>
<td>III</td>
<td>1 smooth point of one component, the node</td>
</tr>
<tr>
<td>IV</td>
<td>1 smooth point on each component, the node</td>
</tr>
</tbody>
</table>
Sketch of the proof II

We consider the restriction $\pi|_{\ell} : \ell \to \mathbb{P}^1$ and get a degree-3 morphism.

Definition. The line ℓ is of ramification type 1^4 (resp. $2, 1^2$), (resp. 2^2) iff $\pi|_{\ell}$ has 4, (resp. 3) or (resp. 2) ramification points.

Definition. The line ℓ is of the second kind iff it intersects all smooth fibres $Z(f_{\lambda})$ in the points where Hessian of f_{λ} vanishes.

Support of the closure of the inflection points of smooth fibers:

<table>
<thead>
<tr>
<th>fibre type</th>
<th>configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_1</td>
<td>3 smooth points, the node</td>
</tr>
<tr>
<td>I_2</td>
<td>3 smooth points of one component, both nodes</td>
</tr>
<tr>
<td>I_3</td>
<td>3 smooth points on each component</td>
</tr>
<tr>
<td>II</td>
<td>1 smooth point, the cusp</td>
</tr>
<tr>
<td>III</td>
<td>1 smooth point of one component, the node</td>
</tr>
<tr>
<td>IV</td>
<td>1 smooth point on each component, the node</td>
</tr>
</tbody>
</table>
Sketch of the proof II

We consider the restriction $\pi|_\ell : \ell \to \mathbb{P}^1$ and get a degree-3 morphism.

Definition. The line ℓ is of **ramification type** 1^4 (resp. $2,1^2$), (resp. 2^2) iff $\pi|_\ell$ has 4, (resp. 3) or (resp. 2) ramification points.

Definition. The line ℓ is of **the second kind** iff it intersects all smooth fibres $Z(f_\lambda)$ in the points where Hessian of f_λ vanishes.

Support of the closure of the inflection points of smooth fibers:

<table>
<thead>
<tr>
<th>fibre type</th>
<th>configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_1</td>
<td>3 smooth points, the node</td>
</tr>
<tr>
<td>I_2</td>
<td>3 smooth points of one component, both nodes</td>
</tr>
<tr>
<td>I_3</td>
<td>3 smooth points on each component</td>
</tr>
<tr>
<td>II</td>
<td>1 smooth point, the cusp</td>
</tr>
<tr>
<td>III</td>
<td>1 smooth point of one component, the node</td>
</tr>
<tr>
<td>IV</td>
<td>1 smooth point on each component, the node</td>
</tr>
</tbody>
</table>
We consider the restriction \(\pi|_{\ell} : \ell \to \mathbb{P}^1 \) and get a degree-3 morphism.

Definition. The line \(\ell \) is of ramification type \(1^4 \) (resp. \(2, 1^2 \), (resp. \(2^2 \)) iff \(\pi|_{\ell} \) has 4, (resp. 3) or (resp. 2) ramification points.

Definition. The line \(\ell \) is of the second kind iff it intersects all smooth fibres \(Z(f_\lambda) \) in the points where Hessian of \(f_\lambda \) vanishes.

Support of the closure of the inflection points of smooth fibers:

<table>
<thead>
<tr>
<th>fibre type</th>
<th>configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_1)</td>
<td>3 smooth points, the node</td>
</tr>
<tr>
<td>(I_2)</td>
<td>3 smooth points of one component, both nodes</td>
</tr>
<tr>
<td>(I_3)</td>
<td>3 smooth points on each component</td>
</tr>
<tr>
<td>(II)</td>
<td>1 smooth point, the cusp</td>
</tr>
<tr>
<td>(III)</td>
<td>1 smooth point of one component, the node</td>
</tr>
<tr>
<td>(IV)</td>
<td>1 smooth point on each component, the node</td>
</tr>
</tbody>
</table>
Sketch of the proof III

Assumption: ℓ of the second kind.

Definition A fiber F of π is (un)ramified iff $\pi|_{\ell}$ (un)ramified at F.

Lemma 1. Let F a singular fibre of π. If F is unramified, then F has type I_1, I_3 or IV.

Proof: ℓ meets F is 3 smooth points, so F contains 3 smooth flex points. Table $\Rightarrow F$ of type I_1, I_2, I_3 or IV. ℓ meets each component of F, so I_2 excluded. \square

Lemma 2. Let F a ramified fibre of π. Then F has type I_1, I_2, II or IV, according to the ramification type as follows:

<table>
<thead>
<tr>
<th>fibre type</th>
<th>II</th>
<th>I_1, I_2, IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ramification type</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Proof: Tate’s algorithm + base changes. \square
Assumption: \(\ell \) of the second kind.

Definition A fiber \(F \) of \(\pi \) is \((un)\)ramified iff \(\pi|_{\ell} \) \((un)\)ramified at \(F \).

Lemma 1. Let \(F \) a singular fibre of \(\pi \). If \(F \) is unramified, then \(F \) has type \(I_1, I_3 \) or \(IV \).

Proof: \(\ell \) meets \(F \) is 3 smooth points, so \(F \) contains 3 smooth flex points. Table \(\Rightarrow \) \(F \) of type \(I_1, I_2, I_3 \) or \(IV \).
\(\ell \) meets each component of \(F \), so \(I_2 \) excluded. \(\square \)

Lemma 2. Let \(F \) a ramified fibre of \(\pi \). Then \(F \) has type \(I_1, I_2, II \) or \(IV \), according to the ramification type as follows:

<table>
<thead>
<tr>
<th>fibre type</th>
<th>(II)</th>
<th>(I_1, I_2, IV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ramification type</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Proof: Tate’s algorithm + base changes. \(\square \)
Sketch of the proof III

Assumption: \(\ell \) of the second kind.

Definition A fiber \(F \) of \(\pi \) is (un)ramified iff \(\pi |_\ell \) (un)ramified at \(F \).

Lemma 1. Let \(F \) a singular fibre of \(\pi \). If \(F \) is unramified, then \(F \) has type \(I_1, I_3 \) or \(IV \).

Proof: \(\ell \) meets \(F \) is 3 smooth points, so \(F \) contains 3 smooth flex points. Table \(\Rightarrow \) \(F \) of type \(I_1, I_2, I_3 \) or \(IV \). \(\ell \) meets each component of \(F \), so \(I_2 \) excluded. \(\square \)

Lemma 2. Let \(F \) a ramified fibre of \(\pi \). Then \(F \) has type \(I_1, I_2, II \) or \(IV \), according to the ramification type as follows:

| fibre type | \(II \) | \(I_1, I_2, IV \) |
| ramification type | 1 | 2 |

Proof: Tate’s algorithm + base changes. \(\square \)
Assumption: \(\ell \) of the second kind.

Definition A fiber \(F \) of \(\pi \) is (un)ramified iff \(\pi|_{\ell} \) (un)ramified at \(F \).

Lemma 1. Let \(F \) a singular fibre of \(\pi \). If \(F \) is unramified, then \(F \) has type \(I_1, I_3 \) or \(IV \).

Proof: \(\ell \) meets \(F \) is 3 smooth points, so \(F \) contains 3 smooth flex points.
Table \(\Rightarrow \) \(F \) of type \(I_1, I_2, I_3 \) or \(IV \).
\(\ell \) meets each component of \(F \), so \(I_2 \) excluded. \(\square \)

Lemma 2. Let \(F \) a ramified fibre of \(\pi \). Then \(F \) has type \(I_1, I_2, II \) or \(IV \), according to the ramification type as follows:

<table>
<thead>
<tr>
<th>fibre type</th>
<th>(II)</th>
<th>(I_1, I_2, IV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ramification type</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Proof: Tate’s algorithm + base changes. \(\square \)
Sketch of the proof III

Assumption: \(\ell \) of the second kind.

Definition A fiber \(F \) of \(\pi \) is (un)ramified iff \(\pi|_\ell \) (un)ramified at \(F \).

Lemma 1. Let \(F \) a singular fibre of \(\pi \). If \(F \) is unramified, then \(F \) has type \(l_1, l_3 \) or \(IV \).

Proof: \(\ell \) meets \(F \) is 3 smooth points, so \(F \) contains 3 smooth flex points. Table \(\Rightarrow \) \(F \) of type \(l_1, l_2, l_3 \) or \(IV \).
\(\ell \) meets each component of \(F \), so \(l_2 \) excluded. \(\square \)

Lemma 2. Let \(F \) a ramified fibre of \(\pi \). Then \(F \) has type \(l_1, l_2, ll \) or \(IV \), according to the ramification type as follows:

<table>
<thead>
<tr>
<th>fibre type</th>
<th>ll</th>
<th>(l_1, l_2, IV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ramification type</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Proof: Tate’s algorithm + base changes. \(\square \)
Assumption: \(\ell \) of the second kind.

Definition A fiber \(F \) of \(\pi \) is (un)ramified iff \(\pi|_\ell \) (un)ramified at \(F \).

Lemma 1. Let \(F \) a singular fibre of \(\pi \). If \(F \) is unramified, then \(F \) has type \(I_1, I_3 \) or \(IV \).

Proof: \(\ell \) meets \(F \) is 3 smooth points, so \(F \) contains 3 smooth flex points. Table \(\Rightarrow \) \(F \) of type \(I_1, I_2, I_3 \) or \(IV \).
\(\ell \) meets each component of \(F \), so \(I_2 \) excluded. \(\square \)

Lemma 2. Let \(F \) a ramified fibre of \(\pi \). Then \(F \) has type \(I_1, I_2, II \) or \(IV \), according to the ramification type as follows:

| fibre type | \(II \) | \(I_1, I_2, IV \) |
| ramification type | 1 | 2 |

Proof: Tate's algorithm + base changes. \(\square \)
Assumption: ℓ of the second kind.

Definition A fiber F of π is (un)ramified iff $\pi|_\ell$ (un)ramified at F.

Lemma 1. Let F a singular fibre of π. If F is unramified, then F has type I_1, I_3 or IV.

Proof: ℓ meets F is 3 smooth points, so F contains 3 smooth flex points. Table $\Rightarrow F$ of type I_1, I_2, I_3 or IV. ℓ meets each component of F, so I_2 excluded. □

Lemma 2. Let F a ramified fibre of π. Then F has type I_1, I_2, II or IV, according to the ramification type as follows:

<table>
<thead>
<tr>
<th>fibre type</th>
<th>II</th>
<th>I_1, I_2, IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ramification type</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Proof: Tate’s algorithm + base changes. □
Lemma 3. Semi-stable fibres on S occur in pairs (I_1, I_3) and triples (I_2, I_3, I_3).

Proposition 4. Let R be the ramification type of ℓ. Let G_R be defined as follows:

<table>
<thead>
<tr>
<th>R</th>
<th>1^4</th>
<th>$2, 1^2$</th>
<th>2^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_R</td>
<td>${12}$</td>
<td>${15, 16}$</td>
<td>${18, 19, 20}$</td>
</tr>
</tbody>
</table>

Then ℓ meets exactly N other lines contained in S, where $N \in G_R$.

Proof: Case-by-case analysis of ramification types, e.g. for $R = 1^4$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8. Lemma 1 implies remaining fibers of type I_1, I_3 or IV. By Lemma 3 we get:

$$\frac{(24 - 8)}{4 \cdot 3}$$ lines
Sketch of the proof IV

Lemma 3. Semi-stable fibres on S occur in pairs (I_1, I_3) and triples (I_2, I_3, I_3).

Proposition 4. Let R be the ramification type of ℓ. Let G_R be defined as follows:

<table>
<thead>
<tr>
<th>R</th>
<th>1^4</th>
<th>$2, 1^2$</th>
<th>2^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_R</td>
<td>${12}$</td>
<td>${15, 16}$</td>
<td>${18, 19, 20}$</td>
</tr>
</tbody>
</table>

Then ℓ meets exactly N other lines contained in S, where $N \in G_R$.

Proof: Case-by-case analysis of ramification types, e.g. for $R = 1^4$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8.

Lemma 1 implies remaining fibers of type I_1, I_3 or IV.

By Lemma 3 we get:

$$\frac{(24 - 8)}{4 \cdot 3} \text{ lines}$$
Lemma 3. Semi-stable fibres on S occur in pairs (I_1, I_3) and triples (I_2, I_3, I_3).

Proposition 4. Let R be the ramification type of ℓ. Let G_R be defined as follows:

\[
\begin{array}{c|c|c|c}
R & 1^4 & 2, 1^2 & 2^2 \\
G_R & \{12\} & \{15, 16\} & \{18, 19, 20\}
\end{array}
\]

Then ℓ meets exactly N other lines contained in S, where $N \in G_R$.

Proof: Case-by-case analysis of ramification types, e.g. for $R = 1^4$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8. Lemma 1 implies remaining fibers of type I_1, I_3 or IV. By Lemma 3 we get:

\[(24 – 8)/4 \cdot 3 \text{ lines}\]
Lemma 3. Semi-stable fibres on S occur in pairs (I_1, I_3) and triples (I_2, I_3, I_3).

Proposition 4. Let R be the ramification type of ℓ. Let G_R be defined as follows:

<table>
<thead>
<tr>
<th>R</th>
<th>1^4</th>
<th>$2, 1^2$</th>
<th>2^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_R</td>
<td>${12}$</td>
<td>${15, 16}$</td>
<td>${18, 19, 20}$</td>
</tr>
</tbody>
</table>

Then ℓ meets exactly N other lines contained in S, where $N \in G_R$.

Proof: Case-by-case analysis of ramification types, e.g. for $R = 1^4$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8.

Lemma 1 implies remaining fibers of type I_1, I_3 or IV.

By Lemma 3 we get:

$$\frac{(24 - 8)}{4 \cdot 3} \text{ lines}$$
Lemma 3. Semi-stable fibres on S occur in pairs (I_1, I_3) and triples (I_2, I_3, I_3).

Proposition 4. Let R be the ramification type of ℓ. Let G_R be defined as follows:

<table>
<thead>
<tr>
<th>R</th>
<th>1^4</th>
<th>$2, 1^2$</th>
<th>2^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_R</td>
<td>${12}$</td>
<td>${15, 16}$</td>
<td>${18, 19, 20}$</td>
</tr>
</tbody>
</table>

Then ℓ meets exactly N other lines contained in S, where $N \in G_R$.

Proof: Case-by-case analysis of ramification types, e.g. for $R = 1^4$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8. Lemma 1 implies remaining fibers of type I_1, I_3 or IV.

By Lemma 3 we get:

$$(24 - 8)/4 \cdot 3 \text{ lines}$$
Sketch of the proof IV

Lemma 3. Semi-stable fibres on S occur in pairs (I_1, I_3) and triples (I_2, I_3, I_3).

Proposition 4. Let R be the ramification type of ℓ. Let G_R be defined as follows:

<table>
<thead>
<tr>
<th>R</th>
<th>1^4</th>
<th>$2, 1^2$</th>
<th>2^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_R</td>
<td>${12}$</td>
<td>${15, 16}$</td>
<td>${18, 19, 20}$</td>
</tr>
</tbody>
</table>

Then ℓ meets exactly N other lines contained in S, where $N \in G_R$.

Proof: Case-by-case analysis of ramification types, e.g. for $R = 1^4$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8.

Lemma 1 implies remaining fibers of type I_1, I_3 or IV.

By Lemma 3 we get:

$$(24 - 8)/4 \cdot 3 \text{ lines}$$
Sketch of the proof V

Lemma 5. Let ℓ be of the ramification type $R = 2^2$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

$$\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},$$

where $q \in k[x_3, x_4]$ (resp. $g \in k[x_3, x_4]$) is a polynomial of degree 2 (resp. 4).

Proof: After a linear transformation,
- ℓ given by $x_3 = x_4 = 0$,
- the ramification occurs at $x_3 = 0, x_4 = 0$.

After further normalisation the equation:

$$x_3x_1^3 + x_4x_2^3 + x_3^2q_1 + x_3x_4q_2 + x_4^2q_3 = 0$$

where the q_j are homogeneous quadratic forms in x_1, \ldots, x_4.

Solve for ℓ to be a line of the second kind, i.e. for the Hessian to vanish identically on ℓ. □
Sketch of the proof V

Lemma 5. Let ℓ be of the ramification type $R = 2^2$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

$$\{x_3x_1^3 + x_4x_2^3 + x_1x_2 q(x_3, x_4) + g(x_3, x_4) = 0\},$$

where $q \in k[x_3, x_4]$ (resp. $g \in k[x_3, x_4]$) is a polynomial of degree 2 (resp. 4).

Proof: After a linear transformation,
- ℓ given by $x_3 = x_4 = 0$,
- the ramification occurs at $x_3 = 0$, $x_4 = 0$.

After further normalisation the equation:

$$x_3x_1^3 + x_4x_2^3 + x_3^2 q_1 + x_3x_4 q_2 + x_4^2 q_3 = 0$$

where the q_j are homogeneous quadratic forms in x_1, \ldots, x_4.

Solve for ℓ to be a line of the second kind, i.e. for the Hessian to vanish identically on ℓ. □
Lemma 5. Let ℓ be of the ramification type $R = 2^2$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

$$\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},$$

where $q \in k[x_3, x_4]$ (resp. $g \in k[x_3, x_4]$) is a polynomial of degree 2 (resp. 4).

Proof: After a linear transformation,
- ℓ given by $x_3 = x_4 = 0$,
- the ramification occurs at $x_3 = 0, x_4 = 0$.

After further normalisation the equation:

$$x_3x_1^3 + x_4x_2^3 + x_1^2q_1 + x_3x_4q_2 + x_4^2q_3 = 0$$

where the q_j are homogeneous quadratic forms in x_1, \ldots, x_4.

Solve for ℓ to be a line of the second kind, i.e. for the Hessian to vanish identically on ℓ. □
Sketch of the proof V

Lemma 5. Let ℓ be of the ramification type $R = 2^2$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

$$\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},$$

where $q \in k[x_3, x_4]$ (resp. $g \in k[x_3, x_4]$) is a polynomial of degree 2 (resp. 4).

Proof: After a linear transformation,
- ℓ given by $x_3 = x_4 = 0$,
- the ramification occurs at $x_3 = 0$, $x_4 = 0$.

After further normalisation the equation:

$$x_3x_1^3 + x_4x_2^3 + x_2^2q_1 + x_3x_4q_2 + x_4^2q_3 = 0$$

where the q_j are homogeneous quadratic forms in x_1, \ldots, x_4.

Solve for ℓ to be a line of the second kind, i.e. for the Hessian to vanish identically on ℓ. \[\square\]
Sketch of the proof V

Lemma 5. Let \(\ell \) be of the ramification type \(R = 2^2 \). Then \(S \) is projectively equivalent to a quartic in the family \(\mathcal{Z} \)

\[
\{ x_3 x_1^3 + x_4 x_2^3 + x_1 x_2 q(x_3, x_4) + g(x_3, x_4) = 0 \},
\]

where \(q \in k[x_3, x_4] \) (resp. \(g \in k[x_3, x_4] \)) is a polynomial of degree 2 (resp. 4).

Proof: After a linear transformation,
- \(\ell \) given by \(x_3 = x_4 = 0 \),
- the ramification occurs at \(x_3 = 0, x_4 = 0 \).

After further normalisation the equation:

\[
x_3 x_1^3 + x_4 x_2^3 + x_3^2 q_1 + x_3 x_4 q_2 + x_4^2 q_3 = 0
\]

where the \(q_j \) are homogeneous quadratic forms in \(x_1, \ldots, x_4 \).

Solve for \(\ell \) to be a line of the second kind, i.e. for the Hessian to vanish identically on \(\ell \). \(\square \)
Lemma 5. Let ℓ be of the ramification type $R = 2^2$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

$$\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},$$

where $q \in k[x_3, x_4]$ (resp. $g \in k[x_3, x_4]$) is a polynomial of degree 2 (resp. 4).

Proof: After a linear transformation,
- ℓ given by $x_3 = x_4 = 0$,
- the ramification occurs at $x_3 = 0$, $x_4 = 0$.
After further normalisation the equation:

$$x_3x_1^3 + x_4x_2^3 + x_3^2q_1 + x_3x_4q_2 + x_4^2q_3 = 0$$

where the q_j are homogeneous quadratic forms in x_1, \ldots, x_4.
Solve for ℓ to be a line of the second kind, i.e. for the Hessian to vanish identically on ℓ. □
Sketch of the proof VI

We study quartics given by

\[\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\}, \]

Lemma 6. A surface \(S \in \mathcal{Z} \) is a smooth quartic such that the fibration \(\pi : S \to \mathbb{P}_1 \) attains a fibre of Kodaira type \(I_2 \) (necessarily at 0 or \(\infty \)) iff \(x_3 \) or \(x_4 \) divides \(g \). The ramified fibres degenerate to Kodaira type \(IV \) iff \(x_3 \) or \(x_4 \) divides \(q \).

Proof: Generically, there are six singular fibres of Kodaira type \(I_1 \) located at 0, \(\infty \) and at the zeroes of \(g \).
Formulas for the Jacobian of the fibration \(\pi \) give 6 fibres of Kodaira type \(I_3 \) at the zeroes of \(q^3 + 27x_3x_4g \).

That is the way we found our counterexample:

\[x_3x_1^3 + x_4x_2^3 + x_1x_2x_3^2 - x_1x_2x_4^2 + rx_3^3x_4 - rx_3x_4^3 \]
Sketch of the proof VI

We study quartics given by

\[\{ x_3 x_1^3 + x_4 x_2^3 + x_1 x_2 q(x_3, x_4) + g(x_3, x_4) = 0 \} , \]

Lemma 6. A surface \(S \in \mathcal{Z} \) is a smooth quartic such that the fibration \(\pi : S \to \mathbb{P}_1 \) attains a fibre of Kodaira type \(I_2 \) (necessarily at 0 or \(\infty \)) iff \(x_3 \) or \(x_4 \) divides \(g \). The ramified fibres degenerate to Kodaira type \(IV \) iff \(x_3 \) or \(x_4 \) divides \(q \).

Proof: Generically, there are six singular fibres of Kodaira type \(I_1 \) located at 0, \(\infty \) and at the zeroes of \(g \).

Formulas for the Jacobian of the fibration \(\pi \) give 6 fibres of Kodaira type \(I_3 \) at the zeroes of \(q^3 + 27 x_3 x_4 g \). \(\square \)

That is the way we found our counterexample:

\[x_3 x_1^3 + x_4 x_2^3 + x_1 x_2 x_3^2 - x_1 x_2 x_4^2 + r x_3^3 x_4 - r x_3 x_4^3 \]
Sketch of the proof VI

We study quartics given by

\[\{ x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0 \}, \]

Lemma 6. A surface \(S \in \mathcal{Z} \) is a smooth quartic such that the fibration \(\pi : S \to \mathbb{P}_1 \) attains a fibre of Kodaira type \(I_2 \) (necessarily at \(0 \) or \(\infty \)) iff \(x_3 \) or \(x_4 \) divides \(g \). The ramified fibres degenerate to Kodaira type \(IV \) iff \(x_3 \) or \(x_4 \) divides \(q \).

Proof: Generically, there are six singular fibres of Kodaira type \(I_1 \) located at \(0, \infty \) and at the zeroes of \(g \).
Formulas for the Jacobian of the fibration \(\pi \) give 6 fibres of Kodaira type \(I_3 \) at the zeroes of \(q^3 + 27x_3x_4g \). \(\square \)

That is the way we found our counterexample:

\[x_3x_1^3 + x_4x_2^3 + x_1x_2x_3^2 - x_1x_2x_4^2 + rx_3^3x_4 - rx_3x_4^3 \]
Sketch of the proof VI

We study quartics given by
\[\{ x_3 x_1^3 + x_4 x_2^3 + x_1 x_2 q(x_3, x_4) + g(x_3, x_4) = 0 \} , \]

Lemma 6. A surface $S \in \mathcal{Z}$ is a smooth quartic such that the fibration $\pi : S \to \mathbb{P}_1$ attains a fibre of Kodaira type I_2 (necessarily at 0 or ∞) iff x_3 or x_4 divides g. The ramified fibres degenerate to Kodaira type IV iff x_3 or x_4 divides q.

Proof: Generically, there are six singular fibres of Kodaira type I_1 located at $0, \infty$ and at the zeroes of g. Formulas for the Jacobian of the fibration π give 6 fibres of Kodaira type I_3 at the zeroes of $q^3 + 27x_3 x_4 g$. \(\square\)

That is the way we found our counterexample:

\[x_3 x_1^3 + x_4 x_2^3 + x_1 x_2 x_3^2 - x_1 x_2 x_4^2 + r x_3^3 x_4 - r x_3 x_4^3 \]
Sketch of the proof VI

We study quartics given by

\[\{ x_3 x_1^3 + x_4 x_2^3 + x_1 x_2 q(x_3, x_4) + g(x_3, x_4) = 0 \}, \]

Lemma 6. A surface \(S \in \mathcal{Z} \) is a smooth quartic such that the fibration \(\pi : S \to \mathbb{P}_1 \) attains a fibre of Kodaira type \(I_2 \) (necessarily at 0 or \(\infty \)) iff \(x_3 \) or \(x_4 \) divides \(g \). The ramified fibres degenerate to Kodaira type \(IV \) iff \(x_3 \) or \(x_4 \) divides \(q \).

Proof: Generically, there are six singular fibres of Kodaira type \(I_1 \) located at 0, \(\infty \) and at the zeroes of \(g \).
Formulas for the Jacobian of the fibration \(\pi \) give 6 fibres of Kodaira type \(I_3 \) at the zeroes of \(q^3 + 27x_3 x_4 g \). \(\square \)

That is the way we found our counterexample:

\[x_3 x_1^3 + x_4 x_2^3 + x_1 x_2 x_3^2 - x_1 x_2 x_4^2 + r x_3 x_4 - r x_3 x_4^3 \]
Sketch of the proof VII - 66 lines

We fix $S \in \mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration

$$\pi_0 : S \rightarrow \mathbb{P}^1$$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If S lies away from \mathcal{Z} we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2.

By Lemma 6 π_0 has an I$_3$-fiber or a type-IV fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

$$17 + 3 \cdot 15 + 4 = 66.$$
We fix $S \in \mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration

$$\pi_0 : S \to \mathbb{P}^1$$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If S lies away from \mathcal{Z} we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2.

By Lemma 6 π_0 has an I_3-fiber or a type-IV fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

$$17 + 3 \cdot 15 + 4 = 66.$$
Sketch of the proof VII - 66 lines

We fix $S \in \mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration

$$\pi_0 : S \rightarrow \mathbb{P}^1$$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If S lies away from \mathcal{Z} we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2.

By Lemma 6 π_0 has an I_3-fiber or a type-IV fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

$$17 + 3 \cdot 15 + 4 = 66.$$
Sketch of the proof VII - 66 lines

We fix $S \in \mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration

$$\pi_0 : S \to \mathbb{P}^1$$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If S lies away from \mathcal{Z} we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2.

By Lemma 6 π_0 has an I_3-fiber or a type-IV fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

$$17 + 3 \cdot 15 + 4 = 66.$$
Sketch of the proof VII - 66 lines

We fix $S \in Z$ and the line ℓ_0 of the second kind with induced elliptic fibration

$$\pi_0 : S \to \mathbb{P}^1$$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If S lies away from Z we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2.

By Lemma 6 π_0 has an I3-fiber or a type-IV fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

$$17 + 3 \cdot 15 + 4 = 66.$$
Sketch of the proof VII - 66 lines

We fix $S \in \mathcal{Z}$ and the line l_0 of the second kind with induced elliptic fibration

$$\pi_0 : S \to \mathbb{P}^1$$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If S lies away from \mathcal{Z} we are done.

We can assume we deal with the line $l_0 \subset S$.

By Proposition 4 we can assume l_0 of ramification type 2^2.

By Lemma 6 π_0 has an I$_3$-fiber or a type-IV fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

$$17 + 3 \cdot 15 + 4 = 66.$$
Sketch of the proof VII - 66 lines

We fix $S \in \mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration

$$\pi_0 : S \to \mathbb{P}^1$$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If S lies away from \mathcal{Z} we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2.

By Lemma 6 π_0 has an I_3-fiber or a type-IV fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

$$17 + 3 \cdot 15 + 4 = 66.$$
Sketch of the proof VII - 66 lines

We fix $S \in \mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration

$$\pi_0 : S \to \mathbb{P}^1$$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff S is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If S lies away from \mathcal{Z} we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2.

By Lemma 6 π_0 has an I_3-fiber or a type-IV fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

$$17 + 3 \cdot 15 + 4 = 66.$$
Sketch of the proof VIII

Assumption: \(S \) contains 65 or 66 lines.

- We fix \(S \in \mathbb{Z} \) and the line \(\ell_0 \) of the second kind with induced elliptic fibration \(\pi_0 : S \to \mathbb{P}_1 \).
- By Lemma 6 \(\pi_0 \) admits a (ramified) fibre of Kodaira type \(I_2 \) (i.e. line + conic). The fibre consists of:
 - \(\ell_1 \) a line of the first kind
 - \(Q \) a conic, that does not come up in the flecnodal divisor \(\text{supp}(\mathcal{F}_S) \).
- The line \(\ell_1 \) induces a second elliptic fibration \(\pi_1 : S \to \mathbb{P}_1 \).
- The quartic \(S \) admits the automorphism of order 3

\[
\sigma : S \quad \rightarrow \quad S \\
[x_1, x_2, x_3, x_4] \quad \mapsto \quad [\varrho x_1, \varrho^2 x_2, x_3, x_4]
\]

where \(\varrho \) is a primitive third root of unity,
Assumption: \(S \) contains 65 or 66 lines.

- We fix \(S \in \mathcal{B} \) and the line \(\ell_0 \) of the second kind with induced elliptic fibration \(\pi_0 : S \to \mathbb{P}_1 \).
- By Lemma 6 \(\pi_0 \) admits a (ramified) fibre of Kodaira type \(I_2 \) (i.e. line + conic). The fibre consists of:
 - \(\ell_1 \) a line of the first kind
 - \(Q \) a conic, that does not come up in the flecnodal divisor \(\text{supp}(\mathcal{F}_S) \).
- The line \(\ell_1 \) induces a second elliptic fibration \(\pi_1 : S \to \mathbb{P}_1 \).
- The quartic \(S \) admits the automorphism of order 3
 \[
 \sigma : \quad S \quad \rightarrow \quad S \\
 [x_1, x_2, x_3, x_4] \quad \mapsto \quad [\varrho x_1, \varrho^2 x_2, x_3, x_4]
 \]
 where \(\varrho \) is a primitive third root of unity,
Assumption: \(S \) contains 65 or 66 lines.

- We fix \(S \in \mathcal{Z} \) and the line \(\ell_0 \) of the second kind with induced elliptic fibration \(\pi_0 : S \to \mathbb{P}_1 \).
- By Lemma 6 \(\pi_0 \) admits a (ramified) fibre of Kodaira type \(I_2 \) (i.e. line + conic). The fibre consists of:
 - \(\ell_1 \) a line of the first kind
 - \(Q \) a conic, that does not come up in the flecnodal divisor \(\text{supp}(\mathcal{F}_S) \).
- The line \(\ell_1 \) induces a second elliptic fibration \(\pi_1 : S \to \mathbb{P}_1 \).
- The quartic \(S \) admits the automorphism of order 3

\[
\sigma : \quad S \quad \rightarrow \quad S
\]

\[
[x_1, x_2, x_3, x_4] \quad \mapsto \quad [\varrho x_1, \varrho^2 x_2, x_3, x_4]
\]

where \(\varrho \) is a primitive third root of unity,
Assumption: S contains 65 or 66 lines.

- We fix $S \in \mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration $\pi_0 : S \to \mathbb{P}_1$.

- By Lemma 6 π_0 admits a (ramified) fibre of Kodaira type I_2 (i.e. line + conic). The fibre consists of:
 - ℓ_1 a line of the first kind
 - Q a conic, that does not come up in the flecnodal divisor $\text{supp}(\mathcal{F}_S)$.

- The line ℓ_1 induces a second elliptic fibration $\pi_1 : S \to \mathbb{P}_1$.

- The quartic S admits the automorphism of order 3

$$
\sigma : S \rightarrow S \\
[x_1, x_2, x_3, x_4] \mapsto [\varrho x_1, \varrho^2 x_2, x_3, x_4]
$$

where ϱ is a primitive third root of unity,
Assumption: S contains 65 or 66 lines.

- We fix $S \in \mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration $\pi_0 : S \to \mathbb{P}_1$.

- By Lemma 6 π_0 admits a (ramified) fibre of Kodaira type I_2 (i.e. line + conic). The fibre consists of:
 - ℓ_1 a line of the first kind
 - Q a conic, that does not come up in the flecnodal divisor $\text{supp}(\mathcal{F}_S)$.

- The line ℓ_1 induces a second elliptic fibration $\pi_1 : S \to \mathbb{P}_1$.

- The quartic S admits the automorphism of order 3

\[
\sigma : \quad [x_1, x_2, x_3, x_4] \quad \to \quad [\varrho x_1, \varrho^2 x_2, x_3, x_4]
\]

where ϱ is a primitive third root of unity,
Assumption: S contains 65 or 66 lines.

- We fix $S \in \mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration $\pi_0 : S \to \mathbb{P}_1$.

- By Lemma 6 π_0 admits a (ramified) fibre of Kodaira type I_2 (i.e. line + conic). The fibre consists of:
 - ℓ_1 a line of the first kind
 - Q a conic, that does not come up in the flecnodal divisor $\text{supp}(\mathcal{F}_S)$.

- The line ℓ_1 induces a second elliptic fibration $\pi_1 : S \to \mathbb{P}_1$.

- The quartic S admits the automorphism of order 3

$$
\sigma : S \rightarrow S
\begin{bmatrix}
 x_1, x_2, x_3, x_4
\end{bmatrix} \mapsto \begin{bmatrix}
 \varrho x_1, \varrho^2 x_2, x_3, x_4
\end{bmatrix}
$$

where ϱ is a primitive third root of unity,
Sketch of the proof IX

- the lines ℓ_0, ℓ_1 are fixed by σ,
- the resolution of S/σ is a K3 surface S',
- π_0, π_1 induce elliptic fibrations on S'.

We exploit the above properties to get:

Thm 2 [R-S, 2012]. Let K be an alg. closed field with $\text{char}(K) \neq 2, 3$. A smooth quartic $S \subset \mathbb{P}_3(K)$ contains at most 64 lines.
Sketch of the proof IX

- the lines ℓ_0, ℓ_1 are fixed by σ,
- the resolution of S/σ is a K3 surface S',
- π_0, π_1 induce elliptic fibrations on S'.

We exploit the above properties to get:

Thm 2 [R-S, 2012]. Let \mathbb{K} be an alg. closed field with $\text{char}(\mathbb{K}) \neq 2, 3$. A smooth quartic $S \subset \mathbb{P}_3(\mathbb{K})$ contains at most 64 lines.
Sketch of the proof IX

- the lines ℓ_0, ℓ_1 are fixed by σ,
- the resolution of S/σ is a K3 surface S',
- π_0, π_1 induce elliptic fibrations on S'.

We exploit the above properties to get:

Thm 2 [R-S, 2012]. Let K be an alg. closed field with $\text{char}(K) \neq 2, 3$. A smooth quartic $S \subset \mathbb{P}_3(K)$ contains at most 64 lines.
Sketch of the proof IX

- the lines ℓ_0, ℓ_1 are fixed by σ,
- the resolution of S/σ is a K3 surface S',
- π_0, π_1 induce elliptic fibrations on S'.

We exploit the above properties to get:

Thm 2 [R-S, 2012]. Let K be an alg. closed field with $\text{char}(K) \neq 2, 3$. A smooth quartic $S \subset \mathbb{P}_3(K)$ contains at most 64 lines.
Sketch of the proof IX

- the lines ℓ_0, ℓ_1 are fixed by σ,
- the resolution of S/σ is a K3 surface S',
- π_0, π_1 induce elliptic fibrations on S'.

We exploit the above properties to get:

Thm 2 [R-S, 2012]. Let K be an alg. closed field with $\text{char}(K) \neq 2, 3$. A smooth quartic $S \subset \mathbb{P}_3(K)$ contains at most 64 lines.
Sketch of the proof IX

- the lines ℓ_0, ℓ_1 are fixed by σ,
- the resolution of S/σ is a K3 surface S',
- π_0, π_1 induce elliptic fibrations on S'.

We exploit the above properties to get:

Thm 2 [R-S, 2012]. Let K be an alg. closed field with $\text{char}(K) \neq 2, 3$. A smooth quartic $S \subset \mathbb{P}_3(K)$ contains at most 64 lines.