Lines on quartic surfaces

Sławomir Rams

Jagiellonian University Kraków *current address:* Leibniz University Hannover

joint work with: M. Schütt (Leibniz University Hannover) - smooth case V. González-Alonso (Leibniz University Hannover) - singular case arXiv:1212.3511 + 1303.1304 + 1409.7485 + work in progress

Outline

Classical results.

Segre's argument in modern language.

A counterexample.

Main results.

Sketch of the proof.

Basic notions:

- \blacktriangleright A line in $\mathbb{P}_3:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface := a smooth degree-d algebraic hypersurface Z(f) ⊂ P₃(K).

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-*d* surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later): **Answer:** Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}_3$. If S_3 is not a cone, but $sing(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Basic notions:

- \blacktriangleright A line in $\mathbb{P}_3:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface := a smooth degree-d algebraic hypersurface Z(f) ⊂ P₃(K).

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-*d* surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later): **Answer:** Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}_3$. If S_3 is not a cone, but $sing(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Basic notions:

- \blacktriangleright A line in $\mathbb{P}_3:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface := a smooth degree-d algebraic hypersurface Z(f) ⊂ P₃(K).

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-*d* surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later): **Answer:** Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}_3$. If S_3 is not a cone, but $sing(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Basic notions:

- \blacktriangleright A line in $\mathbb{P}_3:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface := a smooth degree-d algebraic hypersurface Z(f) ⊂ P₃(K).

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-*d* surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later): **Answer:** Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}_3$. If S_3 is not a cone, but $sing(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Basic notions:

- \blacktriangleright A line in $\mathbb{P}_3:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface := a smooth degree-d algebraic hypersurface Z(f) ⊂ P₃(K).

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-*d* surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later): **Answer:** Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}_3$. If S_3 is not a cone, but $sing(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Basic notions:

- \blacktriangleright A line in $\mathbb{P}_3:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface := a smooth degree-d algebraic hypersurface Z(f) ⊂ P₃(K).

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-*d* surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later): **Answer:** Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}_3$. If S_3 is not a cone, but $sing(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Basic notions:

- \blacktriangleright A line in $\mathbb{P}_3:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface := a smooth degree-d algebraic hypersurface Z(f) ⊂ P₃(K).

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-*d* surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later): **Answer:** Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}_3$. If S_3 is not a cone, but $sing(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

Basic notions:

- \blacktriangleright A line in $\mathbb{P}_3:=$ set of zeroes of two linearly independent linear forms.
- A smooth degree-d surface := a smooth degree-d algebraic hypersurface Z(f) ⊂ P₃(K).

Fix $d \in \mathbb{N}$.

Question. What is the maximal number of lines on a smooth projective algebraic degree-*d* surface?

Cubics:

d=3: 1847 - Cayley/Salmon + Clebsch (later): **Answer:** Exactly 27 lines on every smooth $S_3 \subset \mathbb{P}_3$. If S_3 is not a cone, but $sing(S_3) \neq \emptyset$, then S_3 contains strictly less than 27 lines.

any d \geq 3: 1860 - Salmon/Clebsch:

Thm. There exists a degree-(11d - 24) polynomial F_d such that

 $Z(F_d) \cap S_d = \{P \in S_d; \text{ there exists a line } L \text{ with } i_P(S_d, L) \ge 4\},$ where $i_P(S_d, L)$ is the multiplicity of vanishing of $f|_L$ in the point P. Flecnodal divisor $\mathcal{F}_d :=$ the cycle of zeroes of F_d on the surface S_d .

Corollary.

(Number of lines on degree-d surfaces) $\leq \deg(\mathcal{F}_d) = d \cdot (11d - 24)$

any d \geq 3: 1860 - Salmon/Clebsch:

Thm. There exists a degree-(11d - 24) polynomial F_d such that $Z(F_d) \cap S_d = \{P \in S_d; \text{ there exists a line } L \text{ with } i_P(S_d, L) \ge 4\},$ where $i_P(S_d, L)$ is the multiplicity of vanishing of $f|_L$ in the point P. Flecnodal divisor $\mathcal{F}_d :=$ the cycle of zeroes of F_d on the surface S_d . **Corollary.**

(Number of lines on degree-d surfaces) $\leq \deg(\mathcal{F}_d) = d \cdot (11d - 24)$

any d \geq 3: 1860 - Salmon/Clebsch:

Thm. There exists a degree-(11d - 24) polynomial F_d such that

 $Z(F_d) \cap S_d = \{P \in S_d; \text{ there exists a line } L \text{ with } i_P(S_d, L) \ge 4\},\$

where $i_P(S_d, L)$ is the multiplicity of vanishing of $f|_L$ in the point *P*.

Flecnodal divisor \mathcal{F}_d := the cycle of zeroes of F_d on the surface S_d .

Corollary.

(Number of lines on degree-d surfaces) $\leq \deg(\mathcal{F}_d) = d \cdot (11d - 24)$

any d \geq 3: 1860 - Salmon/Clebsch:

Thm. There exists a degree-(11d - 24) polynomial F_d such that

 $Z(F_d) \cap S_d = \{P \in S_d; \text{ there exists a line } L \text{ with } i_P(S_d, L) \ge 4\},\$

where $i_P(S_d, L)$ is the multiplicity of vanishing of $f|_L$ in the point P.

Flecnodal divisor \mathcal{F}_d := the cycle of zeroes of F_d on the surface S_d .

Corollary.

(Number of lines on degree-d surfaces) $\leq \deg(\mathcal{F}_d) = d \cdot (11d - 24)$

any d \geq 3: 1860 - Salmon/Clebsch:

Thm. There exists a degree-(11d - 24) polynomial F_d such that

 $Z(F_d) \cap S_d = \{P \in S_d; \text{ there exists a line } L \text{ with } i_P(S_d, L) \ge 4\},\$

where $i_P(S_d, L)$ is the multiplicity of vanishing of $f|_L$ in the point P.

Flecnodal divisor \mathcal{F}_d := the cycle of zeroes of F_d on the surface S_d .

Corollary.

(Number of lines on degree-d surfaces) $\leq \deg(\mathcal{F}_d) = d \cdot (11d - 24)$

any d \geq 3: 1860 - Salmon/Clebsch:

Thm. There exists a degree-(11d - 24) polynomial F_d such that

 $Z(F_d) \cap S_d = \{P \in S_d; \text{ there exists a line } L \text{ with } i_P(S_d, L) \ge 4\},\$

where $i_P(S_d, L)$ is the multiplicity of vanishing of $f|_L$ in the point *P*.

Flecnodal divisor \mathcal{F}_d := the cycle of zeroes of F_d on the surface S_d .

Corollary.

(Number of lines on degree-d surfaces) $\leq \deg(\mathcal{F}_d) = d \cdot (11d - 24)$

Lefschetz Thm. For very general smooth $S_d \subset \mathbb{P}^3(\mathbb{C})$ with $d \geq 4$

 $\rho(S_d) = 1 \text{ and } \mathsf{NS}(S_d) = \mathbb{Z} \, \mathcal{O}_{S_d}(1)$

Consequently: no lines on S_d .

Example. [Shioda 81] For certain $d \ge 4$ the surface $Z(x_4^d + x_1x_2^{d-1} + x_2x_3^{d-1} + x_3x_1^{d-1})$ has Picard number one. In particular, it contains no lines.

d=4: 1882 - Schur: The quartic surface $Z(x_1^4 - x_1x_2^3 - x_3^4 + x_3x_4^3) \subset \mathbb{P}_3$ contains exactly 64 lines.

1943 - Segre claims to show:

• a line on a smooth quartic is never met by more than 18 other lines.

Lefschetz Thm. For very general smooth $S_d \subset \mathbb{P}^3(\mathbb{C})$ with $d \geq 4$

 $\rho(S_d) = 1$ and $NS(S_d) = \mathbb{Z} \mathcal{O}_{S_d}(1)$

Consequently: no lines on S_d .

Example. [Shioda 81] For certain $d \ge 4$ the surface $Z(x_4^d + x_1x_2^{d-1} + x_2x_3^{d-1} + x_3x_1^{d-1})$ has Picard number one. In particular, it contains no lines.

d=4: 1882 - Schur: The quartic surface $Z(x_1^4 - x_1x_2^3 - x_3^4 + x_3x_4^3) \subset \mathbb{P}_3$ contains exactly 64 lines.

1943 - Segre claims to show:

• a line on a smooth quartic is never met by more than 18 other lines.

Lefschetz Thm. For very general smooth $S_d \subset \mathbb{P}^3(\mathbb{C})$ with $d \geq 4$

 $\rho(S_d) = 1 \text{ and } \mathsf{NS}(S_d) = \mathbb{Z} \, \mathcal{O}_{S_d}(1)$

Consequently: no lines on S_d .

Example. [Shioda 81] For certain $d \ge 4$ the surface $Z(x_4^d + x_1x_2^{d-1} + x_2x_3^{d-1} + x_3x_1^{d-1})$ has Picard number one. In particular, it contains no lines.

d=4: 1882 - Schur: The quartic surface $Z(x_1^4 - x_1x_2^3 - x_3^4 + x_3x_4^3) \subset \mathbb{P}_3$ contains exactly 64 lines.

1943 - Segre claims to show:

• a line on a smooth quartic is never met by more than 18 other lines.

Lefschetz Thm. For very general smooth $S_d \subset \mathbb{P}^3(\mathbb{C})$ with $d \geq 4$

 $\rho(S_d) = 1 \text{ and } \mathsf{NS}(S_d) = \mathbb{Z} \, \mathcal{O}_{S_d}(1)$

Consequently: no lines on S_d .

Example. [Shioda 81] For certain $d \ge 4$ the surface $Z(x_4^d + x_1x_2^{d-1} + x_2x_3^{d-1} + x_3x_1^{d-1})$ has Picard number one. In particular, it contains no lines.

d=4: 1882 - Schur: The quartic surface $Z(x_1^4 - x_1x_2^3 - x_3^4 + x_3x_4^3) \subset \mathbb{P}_3$ contains exactly 64 lines.

1943 - Segre claims to show:

• a line on a smooth quartic is never met by more than 18 other lines.

Lefschetz Thm. For very general smooth $S_d \subset \mathbb{P}^3(\mathbb{C})$ with $d \geq 4$

 $\rho(S_d) = 1 \text{ and } \mathsf{NS}(S_d) = \mathbb{Z} \, \mathcal{O}_{S_d}(1)$

Consequently: no lines on S_d .

Example. [Shioda 81] For certain $d \ge 4$ the surface $Z(x_4^d + x_1x_2^{d-1} + x_2x_3^{d-1} + x_3x_1^{d-1})$ has Picard number one. In particular, it contains no lines.

d=4: 1882 - Schur: The quartic surface $Z(x_1^4 - x_1x_2^3 - x_3^4 + x_3x_4^3) \subset \mathbb{P}_3$ contains exactly 64 lines.

1943 - Segre claims to show:

• a line on a smooth quartic is never met by more than 18 other lines.

Lefschetz Thm. For very general smooth $S_d \subset \mathbb{P}^3(\mathbb{C})$ with $d \geq 4$

 $\rho(S_d) = 1$ and $NS(S_d) = \mathbb{Z} \mathcal{O}_{S_d}(1)$

Consequently: no lines on S_d .

Example. [Shioda 81] For certain $d \ge 4$ the surface $Z(x_4^d + x_1x_2^{d-1} + x_2x_3^{d-1} + x_3x_1^{d-1})$ has Picard number one. In particular, it contains no lines.

d=4: 1882 - Schur: The quartic surface $Z(x_1^4 - x_1x_2^3 - x_3^4 + x_3x_4^3) \subset \mathbb{P}_3$ contains exactly 64 lines.

1943 - Segre claims to show:

• a line on a smooth quartic is never met by more than 18 other lines.

Lefschetz Thm. For very general smooth $S_d \subset \mathbb{P}^3(\mathbb{C})$ with $d \geq 4$

 $\rho(S_d) = 1 \text{ and } \mathsf{NS}(S_d) = \mathbb{Z} \, \mathcal{O}_{S_d}(1)$

Consequently: no lines on S_d .

Example. [Shioda 81] For certain $d \ge 4$ the surface $Z(x_4^d + x_1x_2^{d-1} + x_2x_3^{d-1} + x_3x_1^{d-1})$ has Picard number one. In particular, it contains no lines.

d=4: 1882 - Schur: The quartic surface $Z(x_1^4 - x_1x_2^3 - x_3^4 + x_3x_4^3) \subset \mathbb{P}_3$ contains exactly 64 lines.

1943 - Segre claims to show:

- a line on a smooth quartic is never met by more than 18 other lines.
- maximal number of lines on smooth complex quartics = 64.

Step 1. *S* a smooth quartic surface, $\ell \subset S$ a line. Then ℓ is **met by at most** 18 **other lines on** *S*.

Step 2. If there exists a plane Π such that $\Pi \cap S$ consists of four lines, then *S* contains at most 64 lines.

Step 3. If there exists a line $\ell \subset S$ met by **at least 13** other lines, then there exists a plane Π such that $\Pi \cap S$ consists of four lines.

Step 1. *S* a smooth quartic surface, $\ell \subset S$ a line. Then ℓ is **met by at** most 18 other lines on *S*.

Step 2. If there exists a plane Π such that $\Pi \cap S$ consists of four lines, then *S* contains at most 64 lines.

Step 3. If there exists a line $\ell \subset S$ met by **at least 13** other lines, then there exists a plane Π such that $\Pi \cap S$ consists of four lines.

Step 1. *S* a smooth quartic surface, $\ell \subset S$ a line. Then ℓ is **met by at** most 18 other lines on *S*.

Step 2. If there exists a plane Π such that $\Pi \cap S$ consists of four lines, then *S* contains at most 64 lines.

Step 3. If there exists a line $\ell \subset S$ met by **at least 13** other lines, then there exists a plane Π such that $\Pi \cap S$ consists of four lines.

Step 1. *S* a smooth quartic surface, $\ell \subset S$ a line. Then ℓ is **met by at** most 18 other lines on *S*.

Step 2. If there exists a plane Π such that $\Pi \cap S$ consists of four lines, then *S* contains at most 64 lines.

Step 3. If there exists a line $\ell \subset S$ met by **at least 13** other lines, then there exists a plane Π such that $\Pi \cap S$ consists of four lines.

Step 1. *S* a smooth quartic surface, $\ell \subset S$ a line. Then ℓ is **met by at** most 18 other lines on *S*.

Step 2. If there exists a plane Π such that $\Pi \cap S$ consists of four lines, then *S* contains at most 64 lines.

Step 3. If there exists a line $\ell \subset S$ met by **at least 13** other lines, then there exists a plane Π such that $\Pi \cap S$ consists of four lines.

Step 4. If there exist coplanar lines $\ell_1, \ell_1 \subset S$ such that the conic $C_2 \in |\mathcal{O}_S(1) - \ell_1 - \ell_2|$ is no component of the flecnodal divisor \mathcal{F}_S , then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $supp(\mathcal{F}_S)$.

Step 5. If *S* contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C: S contains $N \leq 8$ pairs of coplanar lines.

Step 6. The pairs of lines span a sublattice of NS(S) of rank $\ge (N + 1)$. The number of lines is bounded by

Step 4. If there exist coplanar lines $\ell_1, \ell_1 \subset S$ such that the conic $C_2 \in |\mathcal{O}_S(1) - \ell_1 - \ell_2|$ is no component of the flecnodal divisor \mathcal{F}_S , then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $supp(\mathcal{F}_S)$.

Step 5. If *S* contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C: S contains $N \leq 8$ pairs of coplanar lines.

Step 6. The pairs of lines span a sublattice of NS(S) of rank $\ge (N + 1)$. The number of lines is bounded by

Step 4. If there exist coplanar lines $\ell_1, \ell_1 \subset S$ such that the conic $C_2 \in |\mathcal{O}_S(1) - \ell_1 - \ell_2|$ is no component of the flecnodal divisor \mathcal{F}_S , then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $supp(\mathcal{F}_S)$.

Step 5. If *S* contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C: S contains $N \leq 8$ pairs of coplanar lines.

Step 6. The pairs of lines span a sublattice of NS(S) of rank $\ge (N + 1)$. The number of lines is bounded by

Step 4. If there exist coplanar lines $\ell_1, \ell_1 \subset S$ such that the conic $C_2 \in |\mathcal{O}_S(1) - \ell_1 - \ell_2|$ is no component of the flecnodal divisor \mathcal{F}_S , then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $supp(\mathcal{F}_S)$.

Step 5. If *S* contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C: S contains $N \leq 8$ pairs of coplanar lines.

Step 6. The pairs of lines span a sublattice of NS(S) of rank $\ge (N + 1)$. The number of lines is bounded by

Step 4. If there exist coplanar lines $\ell_1, \ell_1 \subset S$ such that the conic $C_2 \in |\mathcal{O}_S(1) - \ell_1 - \ell_2|$ is no component of the flecnodal divisor \mathcal{F}_S , then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $supp(\mathcal{F}_S)$.

Step 5. If *S* contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C: S contains $N \leq 8$ pairs of coplanar lines.

Step 6. The pairs of lines span a sublattice of NS(S) of rank $\ge (N + 1)$. The number of lines is bounded by

Step 4. If there exist coplanar lines $\ell_1, \ell_1 \subset S$ such that the conic $C_2 \in |\mathcal{O}_S(1) - \ell_1 - \ell_2|$ is no component of the flecnodal divisor \mathcal{F}_S , then S contains at most 60 lines.

Assumption B: Each pair of coplanar lines on S defines a conic in $supp(\mathcal{F}_S)$.

Step 5. If *S* contains at least 9 pairs of coplanar lines, then it contains at most 62 lines.

Assumption C: S contains $N \leq 8$ pairs of coplanar lines.

Step 6. The pairs of lines span a sublattice of NS(S) of rank $\geq (N + 1)$. The number of lines is bounded by

A counterexample

Example [R-S 2012] The quartic *S* given by vanishing of

 $x_1^3 x_3 + x_1 x_2 x_3^2 + x_2^3 x_4 + r x_3^3 x_4 - x_1 x_2 x_4^2 - r x_3 x_4^3$

with r = -16/27,

- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line $\{x_3 = x_4 = 0\}$,
- contains **20 other lines that meet the line** $\{x_3 = x_4 = 0\}$

Over \mathbb{C} , we obtain a K3 surface with Picard number $\rho = 20$.

The claim of Step 1 is false.

A counterexample

Example [R-S 2012] The quartic S given by vanishing of

$$x_1^3x_3 + x_1x_2x_3^2 + x_2^3x_4 + rx_3^3x_4 - x_1x_2x_4^2 - rx_3x_4^3$$

with r = -16/27,

- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line $\{x_3 = x_4 = 0\}$,
- contains **20 other lines that meet the line** $\{x_3 = x_4 = 0\}$.

Over \mathbb{C} , we obtain a K3 surface with Picard number $\rho = 20$.

The claim of Step 1 is false.
Example [R-S 2012] The quartic S given by vanishing of

$$x_1^3 x_3 + x_1 x_2 x_3^2 + x_2^3 x_4 + r x_3^3 x_4 - x_1 x_2 x_4^2 - r x_3 x_4^3$$

with r = -16/27,

- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line $\{x_3 = x_4 = 0\}$,
- contains **20 other lines that meet the line** $\{x_3 = x_4 = 0\}$

Over \mathbb{C} , we obtain a K3 surface with Picard number $\rho = 20$.

Example [R-S 2012] The quartic S given by vanishing of

$$x_1^3 x_3 + x_1 x_2 x_3^2 + x_2^3 x_4 + r x_3^3 x_4 - x_1 x_2 x_4^2 - r x_3 x_4^3$$

with r = -16/27,

- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line $\{x_3 = x_4 = 0\}$,
- contains **20 other lines that meet the line** $\{x_3 = x_4 = 0\}$.

Over \mathbb{C} , we obtain a K3 surface with Picard number $\rho = 20$.

Example [R-S 2012] The quartic S given by vanishing of

$$x_1^3 x_3 + x_1 x_2 x_3^2 + x_2^3 x_4 + r x_3^3 x_4 - x_1 x_2 x_4^2 - r x_3 x_4^3$$

with r = -16/27,

- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line $\{x_3 = x_4 = 0\}$,

- contains **20 other lines that meet the line** $\{x_3 = x_4 = 0\}$. Over \mathbb{C} , we obtain a K3 surface with Picard number $\rho = 20$.

Example [R-S 2012] The quartic S given by vanishing of

$$x_1^3 x_3 + x_1 x_2 x_3^2 + x_2^3 x_4 + r x_3^3 x_4 - x_1 x_2 x_4^2 - r x_3 x_4^3$$

with r = -16/27,

- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line $\{x_3 = x_4 = 0\}$,
- contains **20 other lines that meet the line** $\{x_3 = x_4 = 0\}$.

Over \mathbb{C} , we obtain a K3 surface with Picard number $\rho = 20$.

Example [R-S 2012] The quartic S given by vanishing of

$$x_1^3 x_3 + x_1 x_2 x_3^2 + x_2^3 x_4 + r x_3^3 x_4 - x_1 x_2 x_4^2 - r x_3 x_4^3$$

with r = -16/27,

- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line $\{x_3 = x_4 = 0\}$,
- contains **20 other lines that meet the line** $\{x_3 = x_4 = 0\}$.

Over \mathbb{C} , we obtain a K3 surface with Picard number $\rho = 20$.

Example [R-S 2012] The quartic S given by vanishing of

$$x_1^3 x_3 + x_1 x_2 x_3^2 + x_2^3 x_4 + r x_3^3 x_4 - x_1 x_2 x_4^2 - r x_3 x_4^3$$

with r = -16/27,

- is smooth outside characteristics 2, 3, 5,
- contains 60 lines,
- contains the line $\{x_3 = x_4 = 0\}$,
- contains 20 other lines that meet the line $\{x_3 = x_4 = 0\}$.

Over \mathbb{C} , we obtain a K3 surface with Picard number $\rho = 20$.

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

- A line ℓ on a smooth quartic surface S in P³(K) intersects at most 20 other lines provided that char(K) ≠ 2, 3.
- **2.** If ℓ meets more than 18 lines on *S*, then *S* can be given by a quartic polynomial

 $x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on *S* if and only if $x_4 \mid g$.

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

- A line ℓ on a smooth quartic surface S in P³(K) intersects at most 20 other lines provided that char(K) ≠ 2, 3.
- **2.** If ℓ meets more than 18 lines on *S*, then *S* can be given by a quartic polynomial

$$x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on *S* if and only if $x_4 \mid g$.

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

- A line ℓ on a smooth quartic surface S in P³(K) intersects at most 20 other lines provided that char(K) ≠ 2, 3.
- **2.** If ℓ meets more than 18 lines on *S*, then *S* can be given by a quartic polynomial

$$x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on S if and only if $x_4 \mid g$.

Assumption: \mathbb{K} is alg closed. Thm 1 [R-S, 2012].

- A line ℓ on a smooth quartic surface S in P³(K) intersects at most 20 other lines provided that char(K) ≠ 2, 3.
- **2.** If ℓ meets more than 18 lines on *S*, then *S* can be given by a quartic polynomial

 $x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on *S* if and only if $x_4 \mid g$.

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

- A line ℓ on a smooth quartic surface S in P³(K) intersects at most 20 other lines provided that char(K) ≠ 2, 3.
- **2.** If ℓ meets more than 18 lines on *S*, then *S* can be given by a quartic polynomial

 $x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on S if and only if $x_4 \mid g$.

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

- A line ℓ on a smooth quartic surface S in P³(K) intersects at most 20 other lines provided that char(K) ≠ 2, 3.
- **2.** If ℓ meets more than 18 lines on *S*, then *S* can be given by a quartic polynomial

 $x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on S if and only if $x_4 \mid g$.

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

- A line ℓ on a smooth quartic surface S in P³(K) intersects at most 20 other lines provided that char(K) ≠ 2, 3.
- 2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

 $x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on S if and only if $x_4 \mid g$.

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

- A line ℓ on a smooth quartic surface S in P³(K) intersects at most 20 other lines provided that char(K) ≠ 2, 3.
- 2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

 $x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on S if and only if $x_4 \mid g$.

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

- A line ℓ on a smooth quartic surface S in P³(K) intersects at most 20 other lines provided that char(K) ≠ 2, 3.
- 2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on S if and only if $x_4 \mid g$.

Assumption: \mathbb{K} is alg closed.

Thm 1 [R-S, 2012].

- A line ℓ on a smooth quartic surface S in P³(K) intersects at most 20 other lines provided that char(K) ≠ 2, 3.
- 2. If ℓ meets more than 18 lines on S, then S can be given by a quartic polynomial

$$x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + x_3g(x_3, x_4)$$

where $q, g \in \mathbb{K}[x_3, x_4]$ are homogeneous of degree 2 resp. 3.

3. The line $\ell = \{x_3 = x_4 = 0\}$ meets 20 lines on S if and only if $x_4 \mid g$.

Different approach is needed to deal with char(\mathbb{K}) $\in \{2, 3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ may meet at most 48 lines on S.

Thm 4 [R-S, 2014]. Let char(\mathbb{K}) = 3. (a) A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 112 lines. (b) Up to the action of PGL(4) there is a unique smooth quartic surface in $\mathbb{P}^3(\mathbb{K})$ containing 112 lines.

Example The quartic

$S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(\mathbb{K}).$

Different approach is needed to deal with $char(\mathbb{K}) \in \{2,3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ may meet at most 48 lines on S.

Thm 4 [R-S, 2014]. Let char(\mathbb{K}) = 3. (a) A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 112 lines. (b) Up to the action of PGL(4) there is a unique smooth quartic surface in $\mathbb{P}^3(\mathbb{K})$ containing 112 lines.

Example The quartic

$$S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(\mathbb{K}).$$

Different approach is needed to deal with $char(\mathbb{K}) \in \{2,3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ may meet at most 48 lines on *S*.

Thm 4 [R-S, 2014]. Let char(\mathbb{K}) = 3. (a) A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 112 lines. (b) Up to the action of PGL(4) there is a unique smooth quartic surface in $\mathbb{P}^3(\mathbb{K})$ containing 112 lines.

Example The quartic

$S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(\mathbb{K}).$

Different approach is needed to deal with char(\mathbb{K}) \in {2,3}, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ may meet at most 48 lines on *S*.

Thm 4 [R-S, 2014]. Let $char(\mathbb{K}) = 3$.

(a) A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 112 lines. (b) Up to the action of PGL(4) there is a unique smooth quartic surface in $\mathbb{P}^3(\mathbb{K})$ containing 112 lines.

Example The quartic

$S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(\mathbb{K}).$

Different approach is needed to deal with $char(\mathbb{K}) \in \{2,3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ may meet at most 48 lines on *S*.

Thm 4 [R-S, 2014]. Let char(\mathbb{K}) = 3. (a) A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 112 lines. (b) Up to the action of PGL(4) there is a unique smooth quartic surface in $\mathbb{P}^3(\mathbb{K})$ containing 112 lines.

Example The quartic

$S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(\mathbb{K}).$

Different approach is needed to deal with $char(\mathbb{K}) \in \{2,3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ may meet at most 48 lines on *S*.

Thm 4 [R-S, 2014]. Let $char(\mathbb{K}) = 3$. (a) A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 112 lines. (b) Up to the action of PGL(4) there is a unique smooth quartic surface in $\mathbb{P}^3(\mathbb{K})$ containing 112 lines.

Example The quartic

$$S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(\mathbb{K}).$$

Different approach is needed to deal with $char(\mathbb{K}) \in \{2,3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ may meet at most 48 lines on *S*.

Thm 4 [R-S, 2014]. Let $char(\mathbb{K}) = 3$. (a) A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 112 lines. (b) Up to the action of PGL(4) there is a unique smooth quartic surface in $\mathbb{P}^3(\mathbb{K})$ containing 112 lines.

Example The quartic

 $S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(\mathbb{K}).$

contains exactly 112 lines (each defined over \mathbb{F}_9).

It was known already to B. Segre.

Different approach is needed to deal with $char(\mathbb{K}) \in \{2,3\}$, because flecnodal divisor can degenerate.

Thm 3 [R-S, 2014]. An irreducible conic on a smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ may meet at most 48 lines on *S*.

Thm 4 [R-S, 2014]. Let $char(\mathbb{K}) = 3$. (a) A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 112 lines. (b) Up to the action of PGL(4) there is a unique smooth quartic surface in $\mathbb{P}^3(\mathbb{K})$ containing 112 lines.

Example The quartic

 $S_3 = \{x_1^4 + x_2^4 + x_3^4 + x_4^4 = 0\} \subset \mathbb{P}^3(\mathbb{K}).$

Remark: On the quartic from the example a line on S_3 is met by 30 other lines.

Question: What for characteristic 2? (work in progress)

Thm 4 [R-S, 2014]. Let char(\mathbb{K}) = 2. A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 84 lines.

Remark: On the quartic from the example a line on S_3 is met by 30 other lines.

Question: What for characteristic 2? (work in progress)

Thm 4 [R-S, 2014]. Let char(\mathbb{K}) = 2. A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 84 lines.

Remark: On the quartic from the example a line on S_3 is met by 30 other lines.

Question: What for characteristic 2? (work in progress)

Thm 4 [R-S, 2014]. Let char(\mathbb{K}) = 2. A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 84 lines.

Remark: On the quartic from the example a line on S_3 is met by 30 other lines.

Question: What for characteristic 2? (work in progress)

Thm 4 [R-S, 2014]. Let char(\mathbb{K}) = 2. A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 84 lines.

Remark: On the quartic from the example a line on S_3 is met by 30 other lines.

Question: What for characteristic 2? (work in progress)

Thm 4 [R-S, 2014]. Let char(\mathbb{K}) = 2. A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 84 lines.

Remark: On the quartic from the example a line on S_3 is met by 30 other lines.

Question: What for characteristic 2? (work in progress)

Thm 4 [R-S, 2014]. Let char(\mathbb{K}) = 2. A smooth quartic $S \subset \mathbb{P}^3(\mathbb{K})$ contains at most 84 lines.

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.
Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

Question: What for complex quartics with singularities?

Thm 5 [Davide Veniani, 2014]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a K3 quartic surface, then it contains at most 64 lines.

Thm 6 [GA-R, 2015]. Assume that $S \subset \mathbb{P}_3(\mathbb{C})$ is a non-K3 quartic surface. If S is not ruled by lines, then it contains at most 48 lines.

Thm 7 [GA-R, 2015]. (a) Let $S \subset \mathbb{P}_3(\mathbb{C})$ be a quartic surface with at most isolated singularities, none of which is a fourfold point. Then S contains at most 64 lines.

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $\blacktriangleright H_{\lambda} \cap S =: \ell + F_{\lambda}$
- for general $\lambda \in \mathbb{P}_1$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

 $\pi: S \supset C_{\lambda} \ni P \mapsto \lambda \in \mathbb{P}_1,$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z(f_{\lambda})$ only in the points where the determinant of Hessian of f_{λ} does not vanish.

Lemma 0. If ℓ of the first kind, then ℓ is met by at most 18 other lines.

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $\blacktriangleright H_{\lambda} \cap S =: \ell + F_{\lambda}$
- for general $\lambda \in \mathbb{P}_1$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

 $\pi: S \supset C_{\lambda} \ni P \mapsto \lambda \in \mathbb{P}_1,$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z(f_{\lambda})$ only in the points where the determinant of Hessian of f_{λ} does not vanish.

Lemma 0. If ℓ of the first kind, then ℓ is met by at most 18 other lines.

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $\blacktriangleright H_{\lambda} \cap S =: \ell + F_{\lambda}$
- for general $\lambda \in \mathbb{P}_1$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

 $\pi: S \supset C_{\lambda} \ni P \mapsto \lambda \in \mathbb{P}_1,$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z(f_{\lambda})$ only in the points where the determinant of Hessian of f_{λ} does not vanish.

Lemma 0. If ℓ of the first kind, then ℓ is met by at most 18 other lines.

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $\blacktriangleright H_{\lambda} \cap S =: \ell + F_{\lambda}$
- for general $\lambda \in \mathbb{P}_1$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

 $\pi: S \supset C_{\lambda} \ni P \mapsto \lambda \in \mathbb{P}_1,$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z(f_{\lambda})$ only in the points where the determinant of Hessian of f_{λ} does not vanish.

Lemma 0. If ℓ of the first kind, then ℓ is met by at most 18 other lines.

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $\blacktriangleright H_{\lambda} \cap S =: \ell + F_{\lambda}$
- for general $\lambda \in \mathbb{P}_1$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

 $\pi: S \supset C_{\lambda} \ni P \mapsto \lambda \in \mathbb{P}_1,$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z(f_{\lambda})$ only in the points where the determinant of Hessian of f_{λ} does not vanish.

Lemma 0. If ℓ of the first kind, then ℓ is met by at most 18 other lines.

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $\blacktriangleright H_{\lambda} \cap S =: \ell + F_{\lambda}$
- for general $\lambda \in \mathbb{P}_1$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

 $\pi: S \supset C_{\lambda} \ni P \mapsto \lambda \in \mathbb{P}_1,$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z(f_{\lambda})$ only in the points where the determinant of Hessian of f_{λ} does not vanish.

Lemma 0. If ℓ of the first kind, then ℓ is met by at most 18 other lines.

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $\blacktriangleright H_{\lambda} \cap S =: \ell + F_{\lambda}$
- for general $\lambda \in \mathbb{P}_1$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

 $\pi: \mathcal{S} \supset \mathcal{C}_{\lambda} \ni \mathcal{P} \mapsto \lambda \in \mathbb{P}_1,$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z(f_{\lambda})$ only in the points where the determinant of Hessian of f_{λ} does not vanish.

Lemma 0. If ℓ of the first kind, then ℓ is met by at most 18 other lines. **Proof:** Computation of the resultant of the equation of $F_{\lambda}|_{\ell}$ and of its Hessian $|_{\ell}$.

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $\blacktriangleright H_{\lambda} \cap S =: \ell + F_{\lambda}$
- for general $\lambda \in \mathbb{P}_1$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

 $\pi: \mathcal{S} \supset \mathcal{C}_{\lambda} \ni \mathcal{P} \mapsto \lambda \in \mathbb{P}_1,$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z(f_{\lambda})$ only in the points where the determinant of Hessian of f_{λ} does not vanish.

Lemma 0. If ℓ of the first kind, then ℓ is met by at most 18 other lines.

Set-up. $\ell \subset S$ a line,

- We consider the family of planes $H_{\lambda} \supset \ell$.
- $\blacktriangleright H_{\lambda} \cap S =: \ell + F_{\lambda}$
- for general $\lambda \in \mathbb{P}_1$ the cubic F_{λ} is smooth.

We constructed an genus-1 fibration

 $\pi: \mathcal{S} \supset \mathcal{C}_{\lambda} \ni \mathcal{P} \mapsto \lambda \in \mathbb{P}_1,$

Definition. The line ℓ is of the first kind iff it intersects at least one smooth fibre $Z(f_{\lambda})$ only in the points where the determinant of Hessian of f_{λ} does not vanish.

Lemma 0. If ℓ of the first kind, then ℓ is met by at most 18 other lines.

We consider the restriction $\pi|_{\ell}: \ell \to \mathbb{P}^1$ and get a degree-3 morphism.

Definition. The line ℓ is of ramification type 1⁴ (resp. 2, 1²), (resp. 2²) iff $\pi|_{\ell}$ has 4, (resp. 3) or (resp. 2) ramification points.

Definition. The line ℓ is of the second kind iff it intersects all smooth fibres $Z(f_{\lambda})$ in the points where Hessian of f_{λ} vanishes.

fibre type	configuration
	3 smooth points, the node
I_2	3 smooth points of one component, both nodes
<i>I</i> 3	3 smooth points on each component
11	1 smooth point, the cusp
111	1 smooth point of one component, the node
IV	1 smooth point on each component, the node

We consider the restriction $\pi|_{\ell}: \ell \to \mathbb{P}^1$ and get a degree-3 morphism. **Definition.** The line ℓ is of ramification type 1⁴ (resp. 2, 1²), (resp. 2²) iff $\pi|_{\ell}$ has 4, (resp. 3) or (resp. 2) ramification points.

Definition. The line ℓ is of the second kind iff it intersects all smooth fibres $Z(f_{\lambda})$ in the points where Hessian of f_{λ} vanishes.

fibre type	configuration
	3 smooth points, the node
I_2	3 smooth points of one component, both nodes
<i>I</i> 3	3 smooth points on each component
11	1 smooth point, the cusp
111	1 smooth point of one component, the node
IV	1 smooth point on each component, the node

We consider the restriction $\pi|_{\ell}: \ell \to \mathbb{P}^1$ and get a degree-3 morphism. **Definition.** The line ℓ is of ramification type 1⁴ (resp. 2, 1²), (resp. 2²) iff $\pi|_{\ell}$ has 4, (resp. 3) or (resp. 2) ramification points.

Definition. The line ℓ is of the second kind iff it intersects all smooth fibres $Z(f_{\lambda})$ in the points where Hessian of f_{λ} vanishes.

fibre type	configuration
	3 smooth points, the node
I_2	3 smooth points of one component, both nodes
<i>I</i> 3	3 smooth points on each component
11	1 smooth point, the cusp
111	1 smooth point of one component, the node
IV	1 smooth point on each component, the node

We consider the restriction $\pi|_{\ell}: \ell \to \mathbb{P}^1$ and get a degree-3 morphism. **Definition.** The line ℓ is of ramification type 1⁴ (resp. 2, 1²), (resp. 2²) iff $\pi|_{\ell}$ has 4, (resp. 3) or (resp. 2) ramification points.

Definition. The line ℓ is of the second kind iff it intersects all smooth fibres $Z(f_{\lambda})$ in the points where Hessian of f_{λ} vanishes.

fibre type	configuration
I_1	3 smooth points, the node
I_2	3 smooth points of one component, both nodes
<i>I</i> ₃	3 smooth points on each component
II	1 smooth point, the cusp
III	1 smooth point of one component, the node
IV	1 smooth point on each component, the node

Assumption: ℓ of the second kind.

Definition A fiber F of π is (un)ramified iff $\pi|_{\ell}$ (un)ramified at F.

Lemma 1. Let *F* a singular fibre of π . If *F* is unramified, then *F* has type I_1, I_3 or *IV*.

Proof: ℓ meets *F* is 3 smooth points, so *F* contains 3 smooth flex points. Table \Rightarrow *F* of type l_1, l_2, l_3 or *IV*.

 ℓ meets each component of F, so I_2 excluded.

Lemma 2. Let F a ramified fibre of π . Then F has type I_1, I_2, II or IV, according to the ramification type as follows:

fibre type $II I_1, I_2, IV$ ramification type I 2

Assumption: ℓ of the second kind.

Definition A fiber F of π is (un)ramified iff $\pi|_{\ell}$ (un)ramified at F.

Lemma 1. Let *F* a singular fibre of π . If *F* is unramified, then *F* has type I_1, I_3 or *IV*.

Proof: ℓ meets *F* is 3 smooth points, so *F* contains 3 smooth flex points. Table \Rightarrow *F* of type I_1, I_2, I_3 or *IV*.

 ℓ meets each component of F, so I_2 excluded.

Lemma 2. Let F a ramified fibre of π . Then F has type I_1, I_2, II or IV, according to the ramification type as follows:

fibre type $II I_1, I_2, IV$ ramification type I 2

Assumption: ℓ of the second kind.

Definition A fiber F of π is (un)ramified iff $\pi|_{\ell}$ (un)ramified at F.

Lemma 1. Let *F* a singular fibre of π . If *F* is unramified, then *F* has type I_1, I_3 or *IV*.

Proof: ℓ meets *F* is 3 smooth points, so *F* contains 3 smooth flex points. Table \Rightarrow *F* of type I_1, I_2, I_3 or *IV*. ℓ meets each component of *F*, so I_2 excluded.

Lemma 2. Let F a ramified fibre of π . Then F has type I_1, I_2, II or IV, according to the ramification type as follows:

fibre type $II I_1, I_2, IV$ ramification type I 2

Assumption: ℓ of the second kind.

Definition A fiber F of π is (un)ramified iff $\pi|_{\ell}$ (un)ramified at F.

Lemma 1. Let *F* a singular fibre of π . If *F* is unramified, then *F* has type I_1, I_3 or *IV*.

Proof: ℓ meets *F* is 3 smooth points, so *F* contains 3 smooth flex points. Table \Rightarrow *F* of type I_1, I_2, I_3 or *IV*.

 ℓ meets each component of F, so I_2 excluded.

Lemma 2. Let F a ramified fibre of π . Then F has type I_1, I_2, II or IV, according to the ramification type as follows:

fibre type $II I_1, I_2, IV$ ramification type I 2

Assumption: ℓ of the second kind.

Definition A fiber F of π is (un)ramified iff $\pi|_{\ell}$ (un)ramified at F.

Lemma 1. Let *F* a singular fibre of π . If *F* is unramified, then *F* has type l_1, l_3 or *IV*.

Proof: ℓ meets *F* is 3 smooth points, so *F* contains 3 smooth flex points. Table \Rightarrow *F* of type I_1, I_2, I_3 or *IV*. ℓ meets each component of *F*, so I_2 excluded.

Lemma 2. Let F a ramified fibre of π . Then F has type I_1, I_2, II or IV, according to the ramification type as follows:

fibre type $II I_1, I_2, IV$ ramification type I 2

Assumption: ℓ of the second kind.

Definition A fiber F of π is (un)ramified iff $\pi|_{\ell}$ (un)ramified at F.

Lemma 1. Let *F* a singular fibre of π . If *F* is unramified, then *F* has type I_1, I_3 or *IV*.

Proof: ℓ meets *F* is 3 smooth points, so *F* contains 3 smooth flex points. Table \Rightarrow *F* of type I_1, I_2, I_3 or *IV*. ℓ meets each component of *F*, so I_2 excluded.

Lemma 2. Let *F* a ramified fibre of π . Then *F* has type I_1, I_2, II or IV, according to the ramification type as follows:

fibre type		I_1, I_2, IV
ramification type	1	2

Assumption: ℓ of the second kind.

Definition A fiber F of π is (un)ramified iff $\pi|_{\ell}$ (un)ramified at F.

Lemma 1. Let *F* a singular fibre of π . If *F* is unramified, then *F* has type I_1, I_3 or *IV*.

Proof: ℓ meets *F* is 3 smooth points, so *F* contains 3 smooth flex points. Table \Rightarrow *F* of type I_1, I_2, I_3 or *IV*. ℓ meets each component of *F*, so I_2 excluded.

Lemma 2. Let *F* a ramified fibre of π . Then *F* has type I_1, I_2, II or IV, according to the ramification type as follows:

fibre type $| II \quad I_1, I_2, IV$ ramification type $| I \quad 2$

Lemma 3. Semi-stable fibres on S occur in pairs (I_1, I_3) and triples (I_2, I_3, I_3) .

Proposition 4. Let *R* be the ramification type of ℓ . Let *G_R* be defined as follows:

R
$$1^4$$
 $2, 1^2$ 2^2 G_R{12}{15, 16}{18, 19, 20}

Then ℓ meets exactly N other lines contained in S, where $N \in G_R$.

Proof: Case-by-case analysis of ramification types, e.g. for $\mathbf{R} = \mathbf{1}^4$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8.

Lemma 1 implies remaining fibers of type I_1 , I_3 or IV.

By Lemma 3 we get:

Lemma 3. Semi-stable fibres on S occur in pairs (I_1, I_3) and triples (I_2, I_3, I_3) .

Proposition 4. Let *R* be the ramification type of ℓ . Let G_R be defined as follows:

Then ℓ meets exactly N other lines contained in S, where $N \in G_R$.

Proof: Case-by-case analysis of ramification types, e.g. for $\mathbf{R} = \mathbf{1}^4$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8.

Lemma 1 implies remaining fibers of type I_1 , I_3 or IV.

By Lemma 3 we get:

Lemma 3. Semi-stable fibres on S occur in pairs (I_1, I_3) and triples (I_2, I_3, I_3) .

Proposition 4. Let *R* be the ramification type of ℓ . Let G_R be defined as follows:

Then ℓ meets exactly N other lines contained in S, where $N \in G_R$.

Proof: Case-by-case analysis of ramification types, e.g. for $R = 1^4$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8. Lemma 1 implies remaining fibers of type l_1, l_3 or IV. By Lemma 3 we get:

Lemma 3. Semi-stable fibres on S occur in pairs (I_1, I_3) and triples (I_2, I_3, I_3) .

Proposition 4. Let *R* be the ramification type of ℓ . Let G_R be defined as follows:

Then ℓ meets exactly N other lines contained in S, where $N \in G_R$.

Proof: Case-by-case analysis of ramification types, e.g. for $R = 1^4$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8.

Lemma 1 implies remaining fibers of type I_1 , I_3 or IV. By Lemma 3 we get:

Lemma 3. Semi-stable fibres on S occur in pairs (I_1, I_3) and triples (I_2, I_3, I_3) .

Proposition 4. Let *R* be the ramification type of ℓ . Let G_R be defined as follows:

Then ℓ meets exactly N other lines contained in S, where $N \in G_R$.

Proof: Case-by-case analysis of ramification types, e.g. for $R = 1^4$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8.

Lemma 1 implies remaining fibers of type I_1 , I_3 or IV.

By Lemma 3 we get:

Lemma 3. Semi-stable fibres on S occur in pairs (I_1, I_3) and triples (I_2, I_3, I_3) .

Proposition 4. Let *R* be the ramification type of ℓ . Let G_R be defined as follows:

Then ℓ meets exactly N other lines contained in S, where $N \in G_R$.

Proof: Case-by-case analysis of ramification types, e.g. for $R = 1^4$ we have 4 type-II fibers by Lemma 2. This gives Euler number 8.

Lemma 1 implies remaining fibers of type I_1 , I_3 or IV.

By Lemma 3 we get:

Lemma 5. Let ℓ be of the ramification type $R = 2^2$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

 $\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},\$

where $q \in k[x_3, x_4]$ (resp. $g \in k[x_3, x_4]$) is a polynomial of degree 2 (resp. 4).

Proof: After a linear transformation,

- ℓ given by $x_3 = x_4 = 0$,

- the ramification occurs at $x_3 = 0$, $x_4 = 0$.

After further normalisation the equation:

$$x_3x_1^3 + x_4x_2^3 + x_3^2q_1 + x_3x_4q_2 + x_4^2q_3 = 0$$

where the q_j are homogeneous quadratic forms in x_1, \ldots, x_4 . Solve for ℓ to be a line of the second kind, i.e. for the Hessian to vanish identically on ℓ .
Lemma 5. Let ℓ be of the ramification type $R = 2^2$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

 $\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},\$

where $q \in k[x_3, x_4]$ (resp. $g \in k[x_3, x_4]$) is a polynomial of degree 2 (resp. 4).

Proof: After a linear transformation,

- ℓ given by $x_3 = x_4 = 0$,

- the ramification occurs at $x_3 = 0$, $x_4 = 0$.

After further normalisation the equation:

$$x_3x_1^3 + x_4x_2^3 + x_3^2q_1 + x_3x_4q_2 + x_4^2q_3 = 0$$

Lemma 5. Let ℓ be of the ramification type $R = 2^2$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

 $\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},\$

where $q \in k[x_3, x_4]$ (resp. $g \in k[x_3, x_4]$) is a polynomial of degree 2 (resp. 4).

Proof: After a linear transformation,

- ℓ given by $x_3 = x_4 = 0$,
- the ramification occurs at $x_3 = 0$, $x_4 = 0$.

After further normalisation the equation:

$$x_3x_1^3 + x_4x_2^3 + x_3^2q_1 + x_3x_4q_2 + x_4^2q_3 = 0$$

Lemma 5. Let ℓ be of the ramification type $R = 2^2$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

 $\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},\$

where $q \in k[x_3, x_4]$ (resp. $g \in k[x_3, x_4]$) is a polynomial of degree 2 (resp. 4).

Proof: After a linear transformation,

- ℓ given by $x_3 = x_4 = 0$,
- the ramification occurs at $x_3 = 0$, $x_4 = 0$.

After further normalisation the equation:

$$x_3x_1^3 + x_4x_2^3 + x_3^2q_1 + x_3x_4q_2 + x_4^2q_3 = 0$$

Lemma 5. Let ℓ be of the ramification type $R = 2^2$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

 $\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},\$

where $q \in k[x_3, x_4]$ (resp. $g \in k[x_3, x_4]$) is a polynomial of degree 2 (resp. 4).

Proof: After a linear transformation,

- ℓ given by $x_3 = x_4 = 0$,
- the ramification occurs at $x_3 = 0$, $x_4 = 0$.

After further normalisation the equation:

$$x_3x_1^3 + x_4x_2^3 + x_3^2q_1 + x_3x_4q_2 + x_4^2q_3 = 0$$

Lemma 5. Let ℓ be of the ramification type $R = 2^2$. Then S is projectively equivalent to a quartic in the family \mathcal{Z}

 $\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},\$

where $q \in k[x_3, x_4]$ (resp. $g \in k[x_3, x_4]$) is a polynomial of degree 2 (resp. 4).

Proof: After a linear transformation,

- ℓ given by $x_3 = x_4 = 0$,
- the ramification occurs at $x_3 = 0$, $x_4 = 0$.

After further normalisation the equation:

$$x_3x_1^3 + x_4x_2^3 + x_3^2q_1 + x_3x_4q_2 + x_4^2q_3 = 0$$

We study quartics given by

 $\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},\$

Lemma 6. A surface $S \in \mathbb{Z}$ is a smooth quartic such that the fibration $\pi : S \to \mathbb{P}_1$ attains a fibre of Kodaira type I_2 (necessarily at 0 or ∞) iff x_3 or x_4 divides g. The ramified fibres degenerate to Kodaira type IV iff x_3 or x_4 divides q.

Proof: Generically, there are six singular fibres of Kodaira type l_1 located at $0, \infty$ and at the zeroes of g. Formulas for the Jacobian of the fibration π give 6 fibres of Kodaira type l_3 at the zeroes of $q^3 + 27x_3x_4g$.

$$x_3x_1^3 + x_4x_2^3 + x_1x_2x_3^2 - x_1x_2x_4^2 + rx_3^3x_4 - rx_3x_4^3$$

We study quartics given by

 $\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},\$

Lemma 6. A surface $S \in \mathbb{Z}$ is a smooth quartic such that the fibration $\pi : S \to \mathbb{P}_1$ attains a fibre of Kodaira type I_2 (necessarily at 0 or ∞) iff x_3 or x_4 divides g. The ramified fibres degenerate to Kodaira type IV iff x_3 or x_4 divides q.

Proof: Generically, there are six singular fibres of Kodaira type I_1 located at $0, \infty$ and at the zeroes of g. Formulas for the Jacobian of the fibration π give 6 fibres of Kodaira type I_3 at the zeroes of $q^3 + 27x_3x_4g$.

$$x_3x_1^3 + x_4x_2^3 + x_1x_2x_3^2 - x_1x_2x_4^2 + rx_3^3x_4 - rx_3x_4^3$$

We study quartics given by

 $\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},\$

Lemma 6. A surface $S \in \mathbb{Z}$ is a smooth quartic such that the fibration $\pi : S \to \mathbb{P}_1$ attains a fibre of Kodaira type I_2 (necessarily at 0 or ∞) iff x_3 or x_4 divides g. The ramified fibres degenerate to Kodaira type IV iff x_3 or x_4 divides q.

Proof: Generically, there are six singular fibres of Kodaira type I_1 located at $0, \infty$ and at the zeroes of g. Formulas for the Jacobian of the fibration π give 6 fibres of Kodaira type I_3 at the zeroes of $q^3 + 27x_3x_4g$.

$$x_3x_1^3 + x_4x_2^3 + x_1x_2x_3^2 - x_1x_2x_4^2 + rx_3^3x_4 - rx_3x_4^3$$

We study quartics given by

 $\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},\$

Lemma 6. A surface $S \in \mathbb{Z}$ is a smooth quartic such that the fibration $\pi : S \to \mathbb{P}_1$ attains a fibre of Kodaira type I_2 (necessarily at 0 or ∞) iff x_3 or x_4 divides g. The ramified fibres degenerate to Kodaira type IV iff x_3 or x_4 divides q.

Proof: Generically, there are six singular fibres of Kodaira type I_1 located at $0, \infty$ and at the zeroes of g. Formulas for the Jacobian of the fibration π give 6 fibres of Kodaira type I_3 at the zeroes of $q^3 + 27x_3x_4g$.

That is the way we found our counterexample:

 $x_3x_1^3 + x_4x_2^3 + x_1x_2x_3^2 - x_1x_2x_4^2 + rx_3^3x_4 - rx_3x_4^3$

We study quartics given by

 $\{x_3x_1^3 + x_4x_2^3 + x_1x_2q(x_3, x_4) + g(x_3, x_4) = 0\},\$

Lemma 6. A surface $S \in \mathbb{Z}$ is a smooth quartic such that the fibration $\pi : S \to \mathbb{P}_1$ attains a fibre of Kodaira type I_2 (necessarily at 0 or ∞) iff x_3 or x_4 divides g. The ramified fibres degenerate to Kodaira type IV iff x_3 or x_4 divides q.

Proof: Generically, there are six singular fibres of Kodaira type I_1 located at $0, \infty$ and at the zeroes of g. Formulas for the Jacobian of the fibration π give 6 fibres of Kodaira type I_3 at the zeroes of $q^3 + 27x_3x_4g$.

$$x_3x_1^3 + x_4x_2^3 + x_1x_2x_3^2 - x_1x_2x_4^2 + rx_3^3x_4 - rx_3x_4^3$$

We fix $S\in\mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration

 $\pi_0: S \to \mathbb{P}^1$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff *S* is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If *S* lies away from \mathcal{Z} we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2 .

By Lemma 6 π_0 has an I₃-fiber or a type-*IV* fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

 $17 + 3 \cdot 15 + 4 = 66.$

We fix $S\in\mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration

 $\pi_0: S \to \mathbb{P}^1$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff *S* is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If *S* lies away from \mathcal{Z} we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2 .

By Lemma 6 π_0 has an I₃-fiber or a type-*IV* fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

 $17 + 3 \cdot 15 + 4 = 66.$

We fix $S\in\mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration

 $\pi_0: S \to \mathbb{P}^1$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff *S* is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If *S* lies away from Z we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2 .

By Lemma 6 π_0 has an I₃-fiber or a type-*IV* fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

 $17 + 3 \cdot 15 + 4 = 66.$

We fix $S \in \mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration

 $\pi_0: S \to \mathbb{P}^1$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff *S* is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If *S* lies away from \mathcal{Z} we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2 .

By Lemma 6 π_0 has an I₃-fiber or a type-*IV* fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

 $17 + 3 \cdot 15 + 4 = 66.$

We fix $S\in\mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration

 $\pi_0: S \to \mathbb{P}^1$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff *S* is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If *S* lies away from \mathcal{Z} we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2 .

By Lemma 6 π_0 has an I₃-fiber or a type-*IV* fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

 $17 + 3 \cdot 15 + 4 = 66.$

We fix $S\in\mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration

 $\pi_0: S \to \mathbb{P}^1$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff *S* is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If *S* lies away from \mathcal{Z} we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2 .

By Lemma 6 π_0 has an I₃-fiber or a type-*IV* fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

 $17 + 3 \cdot 15 + 4 = 66$

We fix $S\in\mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration

 $\pi_0: S \to \mathbb{P}^1$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff *S* is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If *S* lies away from \mathcal{Z} we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2 .

By Lemma 6 π_0 has an I₃-fiber or a type-*IV* fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by $17 + 3 \cdot 15 + 4 = 66$.

We fix $S\in\mathcal{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration

 $\pi_0: S \to \mathbb{P}^1$

By direct, computer-aided computation we get

Lemma 7. A line in a fibre of π_0 is of the second kind iff *S* is the Schur quartic.

Proposition 8. A smooth quartic contains at most 66 lines.

Proof: If *S* lies away from \mathcal{Z} we are done.

We can assume we deal with the line $\ell_0 \subset S$.

By Proposition 4 we can assume ℓ_0 of ramification type 2^2 .

By Lemma 6 π_0 has an I₃-fiber or a type-*IV* fiber.

By Lemma 7 either S is Schur quartic or number of lines bounded by

 $17 + 3 \cdot 15 + 4 = 66.$

Assumption: S contains 65 or 66 lines.

- We fix $S \in \mathbb{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration $\pi_0 : S \to \mathbb{P}_1$.
- By Lemma 6 π₀ admits a (ramified) fibre of Kodaira type l₂ (i.e. line + conic). The fibre consists of:
 - ℓ_1 a line of the first kind
 - Q a conic, that does not come up in the flecnodal divisor $\mathsf{supp}(\mathcal{F}_S).$
- The line ℓ_1 induces a second elliptic fibration $\pi_1: S \to \mathbb{P}_1$.
- ▶ The quartic *S* admits the automorphism of order 3

$$\sigma: \begin{array}{ccc} S & \rightarrow & S \\ [x_1, x_2, x_3, x_4] & \mapsto & [\varrho x_1, \varrho^2 x_2, x_3, x_4] \end{array}$$

Assumption: S contains 65 or 66 lines.

- We fix $S \in \mathbb{Z}$ and the line ℓ_0 of the second kind with induced elliptic fibration $\pi_0 : S \to \mathbb{P}_1$.
- By Lemma 6 π₀ admits a (ramified) fibre of Kodaira type l₂ (i.e. line + conic). The fibre consists of:
 - ℓ_1 a line of the first kind
 - Q a conic, that does not come up in the flecnodal divisor $\mathsf{supp}(\mathcal{F}_S).$
- The line ℓ_1 induces a second elliptic fibration $\pi_1: S \to \mathbb{P}_1$.
- ▶ The quartic *S* admits the automorphism of order 3

$$\sigma: \begin{array}{ccc} S & \rightarrow & S \\ [x_1, x_2, x_3, x_4] & \mapsto & [\varrho x_1, \varrho^2 x_2, x_3, x_4] \end{array}$$

Assumption: S contains 65 or 66 lines.

- We fix S ∈ Z and the line l₀ of the second kind with induced elliptic fibration π₀ : S → P₁.
- By Lemma 6 π₀ admits a (ramified) fibre of Kodaira type l₂ (i.e. line + conic). The fibre consists of:
 - ℓ_1 a line of the first kind
 - Q a conic, that does not come up in the flecnodal divisor $\mathsf{supp}(\mathcal{F}_S).$
- The line ℓ_1 induces a second elliptic fibration $\pi_1: S \to \mathbb{P}_1$.
- ▶ The quartic *S* admits the automorphism of order 3

$$\sigma: \begin{array}{ccc} S & \rightarrow & S \\ [x_1, x_2, x_3, x_4] & \mapsto & [\varrho x_1, \varrho^2 x_2, x_3, x_4] \end{array}$$

Assumption: S contains 65 or 66 lines.

- We fix S ∈ Z and the line l₀ of the second kind with induced elliptic fibration π₀ : S → P₁.
- By Lemma 6 π₀ admits a (ramified) fibre of Kodaira type l₂ (i.e. line + conic). The fibre consists of:
 - ℓ_1 a line of the first kind
 - Q a conic, that does not come up in the flecnodal divisor supp (\mathcal{F}_S) .
- The line ℓ_1 induces a second elliptic fibration $\pi_1: S \to \mathbb{P}_1$.
- ▶ The quartic *S* admits the automorphism of order 3

$$\sigma: \begin{array}{ccc} S & \rightarrow & S \\ [x_1, x_2, x_3, x_4] & \mapsto & [\varrho x_1, \varrho^2 x_2, x_3, x_4] \end{array}$$

Assumption: S contains 65 or 66 lines.

- We fix S ∈ Z and the line l₀ of the second kind with induced elliptic fibration π₀ : S → P₁.
- By Lemma 6 π₀ admits a (ramified) fibre of Kodaira type l₂ (i.e. line + conic). The fibre consists of:
 - ℓ_1 a line of the first kind
 - Q a conic, that does not come up in the flecnodal divisor supp (\mathcal{F}_S) .
- The line ℓ_1 induces a second elliptic fibration $\pi_1: S \to \mathbb{P}_1$.
- ▶ The quartic *S* admits the automorphism of order 3

$$\sigma: \begin{array}{ccc} S & \rightarrow & S \\ [x_1, x_2, x_3, x_4] & \mapsto & [\varrho x_1, \varrho^2 x_2, x_3, x_4] \end{array}$$

Assumption: S contains 65 or 66 lines.

- We fix S ∈ Z and the line l₀ of the second kind with induced elliptic fibration π₀ : S → P₁.
- By Lemma 6 π₀ admits a (ramified) fibre of Kodaira type l₂ (i.e. line + conic). The fibre consists of:
 - ℓ_1 a line of the first kind
 - Q a conic, that does not come up in the flecnodal divisor supp (\mathcal{F}_S) .
- The line ℓ_1 induces a second elliptic fibration $\pi_1: S \to \mathbb{P}_1$.
- ▶ The quartic *S* admits the automorphism of order 3

$$\sigma: \begin{array}{ccc} S & \rightarrow & S \\ [x_1, x_2, x_3, x_4] & \mapsto & [\varrho x_1, \varrho^2 x_2, x_3, x_4] \end{array}$$

- the lines ℓ_0 , ℓ_1 are fixed by σ ,
- the resolution of S/σ is a K3 surface S',
- π_0 , π_1 induce elliptic fibrations on S'.

We exploit the above properties to get:

• the lines ℓ_0 , ℓ_1 are fixed by σ ,

- the resolution of S/σ is a K3 surface S',
- π_0 , π_1 induce elliptic fibrations on S'.

We exploit the above properties to get:

- the lines ℓ_0 , ℓ_1 are fixed by σ ,
- the resolution of S/σ is a K3 surface S',
- π_0 , π_1 induce elliptic fibrations on S'.

We exploit the above properties to get:

- the lines ℓ_0 , ℓ_1 are fixed by σ ,
- the resolution of S/σ is a K3 surface S',
- π_0 , π_1 induce elliptic fibrations on S'.

We exploit the above properties to get:

- the lines ℓ_0 , ℓ_1 are fixed by σ ,
- the resolution of S/σ is a K3 surface S',
- π_0 , π_1 induce elliptic fibrations on S'.

We exploit the above properties to get:

- the lines ℓ_0 , ℓ_1 are fixed by σ ,
- the resolution of S/σ is a K3 surface S',
- π_0 , π_1 induce elliptic fibrations on S'.

We exploit the above properties to get: