Globally generated vector bundles on complete intersection CY threefolds (joint work with E.Ballico and F.Malaspina)

Sukmoon Huh

Department of Mathematics
Sungkyunkwan University
(1) Hartshorne-Serre correspondence
(2) Definition and properties
(3) Ingredients
4. Results on quintic threefold
(5) Sketch of proof
(6) CICY of codimension 2

X : a smooth projective variety of dimension n over \mathbb{C}

\mathcal{L} : a line bundle on X
$Y \subset X:$ locally complete intersection of codimension 2

By tensoring (1) by \mathcal{O}_{Y}, we get

X : a smooth projective variety of dimension n over \mathbb{C}
\mathcal{L} : a line bundle on X
$Y \subset X$: locally complete intersection of codimension 2
\mathcal{E} : a vector bundle of rank $r \geq 2$ on X with

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}^{\oplus(r-1)} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{Y} \otimes \mathcal{L} \rightarrow 0 \tag{1}
\end{equation*}
$$

By tensoring (1) by \mathcal{O}_{Y}, we get
$\Rightarrow \wedge^{2} N \otimes \mathcal{L}_{\mid Y}^{\vee}$ is generated by $(r-1)$ sections.
X : a smooth projective variety of dimension n over \mathbb{C}
\mathcal{L} : a line bundle on X
$Y \subset X$: locally complete intersection of codimension 2
\mathcal{E} : a vector bundle of rank $r \geq 2$ on X with

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}^{\oplus(r-1)} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{Y} \otimes \mathcal{L} \rightarrow 0 \tag{1}
\end{equation*}
$$

By tensoring (1) by \mathcal{O}_{Y}, we get

$$
\begin{equation*}
0 \rightarrow \wedge^{2} N^{\vee} \otimes \mathcal{L}_{\mid Y} \rightarrow \mathcal{O}_{Y}^{\oplus(r-1)} \rightarrow \mathcal{E}_{\mid Y} \rightarrow N^{\vee} \otimes \mathcal{L}_{\mid Y} \rightarrow 0 \tag{2}
\end{equation*}
$$

X : a smooth projective variety of dimension n over \mathbb{C}
\mathcal{L} : a line bundle on X
$Y \subset X$: locally complete intersection of codimension 2
\mathcal{E} : a vector bundle of rank $r \geq 2$ on X with

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}^{\oplus(r-1)} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{Y} \otimes \mathcal{L} \rightarrow 0 \tag{1}
\end{equation*}
$$

By tensoring (1) by \mathcal{O}_{Y}, we get

$$
\begin{equation*}
0 \rightarrow \wedge^{2} N^{\vee} \otimes \mathcal{L}_{\mid Y} \rightarrow \mathcal{O}_{Y}^{\oplus(r-1)} \rightarrow \mathcal{E}_{\mid Y} \rightarrow N^{\vee} \otimes \mathcal{L}_{\mid Y} \rightarrow 0 \tag{2}
\end{equation*}
$$

$\Rightarrow \wedge^{2} N \otimes \mathcal{L}_{\mid Y}^{\vee}$ is generated by $(r-1)$ sections

Conversely we have
Theorem (Hartshorne-Serre, Vogelaar)
Assume that
(1) \mathcal{L} : a line bundle with $H^{i}\left(X, \mathcal{L}^{\vee}\right)=0$ for $i=1,2$
(2) $\wedge^{2} N \otimes \mathcal{L}_{\mid Y}^{\vee}$ is generated by $(r-1)$ sections

Then there exists a unique vector bundle \mathcal{E} of rank r fitting into (1).

Conversely we have
Theorem (Hartshorne-Serre, Vogelaar)
Assume that
(1) \mathcal{L} : a line bundle with $H^{i}\left(X, \mathcal{L}^{\vee}\right)=0$ for $i=1,2$
(2) $\wedge^{2} N \otimes \mathcal{L}_{\mid Y}^{\vee}$ is generated by $(r-1)$ sections

Then there exists a unique vector bundle \mathcal{E} of rank r fitting into (1).
We will say that \mathcal{E} and Y correspond if we have (1).
\square
(2) $T \mathbb{P}^{3}(-1)$ and a line $L \subset \mathbb{P}^{3}$ correspond.
(3) $\mathcal{N}_{\mathbb{P} 3}(1)$ and two skew lines $L_{1}, L_{2} \subset \mathbb{P}^{3}$ correspond.

Conversely we have
Theorem (Hartshorne-Serre, Vogelaar)
Assume that
(1) \mathcal{L} : a line bundle with $H^{i}\left(X, \mathcal{L}^{\vee}\right)=0$ for $i=1,2$
(2) $\wedge^{2} N \otimes \mathcal{L}_{\mid Y}^{\vee}$ is generated by $(r-1)$ sections

Then there exists a unique vector bundle \mathcal{E} of rank r fitting into (1).
We will say that \mathcal{E} and Y correspond if we have (1).
(1) $\mathcal{O}_{\mathbb{P}^{3}}(1)^{\oplus 2}$ and a line $L \subset \mathbb{P}^{3}$ correspond.
(2) $T \mathbb{P}^{3}(-1)$ and a line $L \subset \mathbb{P}^{3}$ correspond.
(3) $\mathcal{N}_{\mathbb{P}^{3}}(1)$ and two skew lines $L_{1}, L_{2} \subset \mathbb{P}^{3}$ correspond.

Conversely we have
Theorem (Hartshorne-Serre, Vogelaar)
Assume that
(1) \mathcal{L} : a line bundle with $H^{i}\left(X, \mathcal{L}^{\vee}\right)=0$ for $i=1,2$
(2) $\wedge^{2} N \otimes \mathcal{L}_{\mid Y}^{\vee}$ is generated by $(r-1)$ sections

Then there exists a unique vector bundle \mathcal{E} of rank r fitting into (1).
We will say that \mathcal{E} and Y correspond if we have (1).
(1) $\mathcal{O}_{\mathbb{P}^{3}}(1)^{\oplus 2}$ and a line $L \subset \mathbb{P}^{3}$ correspond.
(2) $T \mathbb{P}^{3}(-1)$ and a line $L \subset \mathbb{P}^{3}$ correspond.
(3) $\mathcal{N}_{\mathbb{P}^{3}}(1)$ and two skew lines $L_{1}, L_{2} \subset \mathbb{P}^{3}$ correspond.

Conversely we have
Theorem (Hartshorne-Serre, Vogelaar)
Assume that
(1) \mathcal{L} : a line bundle with $H^{i}\left(X, \mathcal{L}^{\vee}\right)=0$ for $i=1,2$
(2) $\wedge^{2} N \otimes \mathcal{L}_{\mid Y}^{\vee}$ is generated by $(r-1)$ sections

Then there exists a unique vector bundle \mathcal{E} of rank r fitting into (1).
We will say that \mathcal{E} and Y correspond if we have (1).
(1) $\mathcal{O}_{\mathbb{P}^{3}}(1)^{\oplus 2}$ and a line $L \subset \mathbb{P}^{3}$ correspond.
(2) $T \mathbb{P}^{3}(-1)$ and a line $L \subset \mathbb{P}^{3}$ correspond.
(3) $\mathcal{N}_{\mathbb{P}^{3}}(1)$ and two skew lines $L_{1}, L_{2} \subset \mathbb{P}^{3}$ correspond.

There are several well-known properties concerning globally generated vector bundles:

There are several well-known properties concerning globally generated vector bundles:
(1) \mathcal{E} : globally generated of rank $r>n$
$\Rightarrow \mathcal{E}$ has $\mathcal{O}_{X}^{\oplus(r-n)}$ [Serre]

$\varphi: \mathcal{F} \rightarrow \mathcal{G}:$ a general morphism with $\mathcal{H o m}(\mathcal{F}, \mathcal{G})$ globally

generated
\Rightarrow dependency locus Y of φ is nonsingular outside codimension $\geq \operatorname{rk}(\mathcal{G})-\operatorname{rk}(\mathcal{F})+1$. [Banica, Chang]
(4) \mathcal{E} : globally generated with $(r-1)$ general sections in (1) $\Rightarrow Y$ is smooth outside 4-dimensional subset.
In particular if $\operatorname{dim}(X)=3$, we may have

There are several well-known properties concerning globally generated vector bundles:
(1) \mathcal{E} : globally generated of rank $r>n$
$\Rightarrow \mathcal{E}$ has $\mathcal{O}_{X}^{\oplus(r-n)}$ [Serre]
(2) \mathcal{E} : globally generated with $H^{0}\left(\mathcal{E}\left(-c_{1}\right)\right) \neq 0$
$\Rightarrow \mathcal{E} \cong \mathcal{O}_{X}\left(c_{1}\right) \oplus \mathcal{O}_{X}^{\oplus(r-1)}$ [Sierra]

There are several well-known properties concerning globally generated vector bundles:
(1) \mathcal{E} : globally generated of rank $r>n$
$\Rightarrow \mathcal{E}$ has $\mathcal{O}_{X}^{\oplus(r-n)}$ [Serre]
(2) \mathcal{E} : globally generated with $H^{0}\left(\mathcal{E}\left(-c_{1}\right)\right) \neq 0$
$\Rightarrow \mathcal{E} \cong \mathcal{O}_{X}\left(c_{1}\right) \oplus \mathcal{O}_{X}^{\oplus(r-1)}$ [Sierra]
(3) $\varphi: \mathcal{F} \rightarrow \mathcal{G}$: a general morphism with $\mathcal{H o m}(\mathcal{F}, \mathcal{G})$ globally generated
\Rightarrow dependency locus Y of φ is nonsingular outside codimension $\geq \operatorname{rk}(\mathcal{G})-\operatorname{rk}(\mathcal{F})+1$. [Banica, Chang]
\mathcal{E} : globally gen
$\Rightarrow Y$ is smooth
In particular if d
with smooth C.

There are several well-known properties concerning globally generated vector bundles:
(1) \mathcal{E} : globally generated of rank $r>n$
$\Rightarrow \mathcal{E}$ has $\mathcal{O}_{X}^{\oplus(r-n)}$ [Serre]
(2) \mathcal{E} : globally generated with $H^{0}\left(\mathcal{E}\left(-c_{1}\right)\right) \neq 0$
$\Rightarrow \mathcal{E} \cong \mathcal{O}_{X}\left(c_{1}\right) \oplus \mathcal{O}_{X}^{\oplus(r-1)}$ [Sierra]
(3) $\varphi: \mathcal{F} \rightarrow \mathcal{G}$: a general morphism with $\mathcal{H o m}(\mathcal{F}, \mathcal{G})$ globally generated
\Rightarrow dependency locus Y of φ is nonsingular outside codimension $\geq \operatorname{rk}(\mathcal{G})-\operatorname{rk}(\mathcal{F})+1$. [Banica, Chang]
(4) \mathcal{E} : globally generated with $(r-1)$ general sections in (1)
$\Rightarrow Y$ is smooth outside 4-dimensional subset.
In particular if $\operatorname{dim}(X)=3$, we may have

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}^{\oplus(r-1)} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{C} \otimes \mathcal{L} \rightarrow 0 \tag{3}
\end{equation*}
$$

with smooth C.

There have been several works on the classification of globally generated vector bundles with small first Chern classes over

- projective spaces [Anghel-Coanda-Manolache] [Sierra-Ugaglia]
- quadric hypersurfaces [Ballico-Malaspina-H]
- Segre threefolds [Ballico-Malaspina-H]
- $\operatorname{deg}(C)=c_{2}(\mathcal{E}) \leq c_{1}^{2} \operatorname{deg}(X)$
- $\omega_{C} \otimes \mathcal{O}_{X}\left(-c_{1}\right)$ is globally generated
- $\mathcal{I}_{C}\left(c_{1}\right)$ is globally generated

We may use

- Liaison the ory for better bound of $c_{2}(\varepsilon)$
- Smoothing of singular curves for the construction of C

There have been several works on the classification of globally generated vector bundles with small first Chern classes over

- projective spaces [Anghel-Coanda-Manolache] [Sierra-Ugaglia]
- quadric hypersurfaces [Ballico-Malaspina-H]
- Segre threefolds [Ballico-Malaspina-H]

From the sequence

$$
0 \rightarrow \mathcal{O}_{X}^{\oplus(r-1)} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{C}\left(c_{1}\right) \rightarrow 0
$$

- $\operatorname{deg}(C)=c_{2}(\mathcal{E}) \leq c_{1}^{2} \operatorname{deg}(X)$
- $\omega_{C} \otimes \mathcal{O}_{X}\left(-c_{1}\right)$ is globally generated
- $\mathcal{I}_{C}\left(c_{1}\right)$ is globally generated

We may use

- Liaison theory for better bound of $c_{2}(\mathcal{E})$

There have been several works on the classification of globally generated vector bundles with small first Chern classes over

- projective spaces [Anghel-Coanda-Manolache] [Sierra-Ugaglia]
- quadric hypersurfaces [Ballico-Malaspina-H]
- Segre threefolds [Ballico-Malaspina-H]

From the sequence
$0 \rightarrow \mathcal{O}_{X}^{\oplus(r-1)} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{C}\left(c_{1}\right) \rightarrow 0$

- $\operatorname{deg}(C)=c_{2}(\mathcal{E}) \leq c_{1}^{2} \operatorname{deg}(X)$
- $\omega_{C} \otimes \mathcal{O}_{X}\left(-c_{1}\right)$ is globally generated
- $\mathcal{I}_{C}\left(c_{1}\right)$ is globally generated

We may use

- Liaison theory for better bound of $c_{2}(\mathcal{E})$
- Smoothing of singular curves for the construction of C

Definition

(1) A smooth 3-dimensional projective variety X is called a Calabi-Yau threefold if $\omega_{X} \cong \mathcal{O}_{X}$.
(2) If a complete intersection $X=X_{r_{1}, \ldots, r_{k}} \subset \mathbb{P}^{k+3}$ is Calabi-Yau, then it is called a complete intersection Calabi-Yau (CICY).

Classify GG bundles on CICY threefold with small c_{1}.

Definition

(1) A smooth 3-dimensional projective variety X is called a Calabi-Yau threefold if $\omega_{X} \cong \mathcal{O}_{X}$.
(2) If a complete intersection $X=X_{r_{1}, \ldots, r_{k}} \subset \mathbb{P}^{k+3}$ is Calabi-Yau, then it is called a complete intersection Calabi-Yau (CICY).

There are 5 types of CICY 3-folds:
(1) $X_{5} \subset \mathbb{P}^{4}$
(2) $X_{2,4} \subset \mathbb{P}^{5}$
(3) $X_{3,3} \subset \mathbb{P}^{5}$
(4) $X_{2,2,3} \subset \mathbb{P}^{6}$
(5) $X_{2,2,2,2} \subset \mathbb{P}^{7}$

Classify GG bundles on CICY threefold with small c_{1}.

Definition

(1) A smooth 3-dimensional projective variety X is called a Calabi-Yau threefold if $\omega_{X} \cong \mathcal{O}_{X}$.
(2) If a complete intersection $X=X_{r_{1}, \ldots, r_{k}} \subset \mathbb{P}^{k+3}$ is Calabi-Yau, then it is called a complete intersection Calabi-Yau (CICY).

There are 5 types of CICY 3-folds:
(1) $X_{5} \subset \mathbb{P}^{4}$
(2) $X_{2,4} \subset \mathbb{P}^{5}$
(3) $X_{3,3} \subset \mathbb{P}^{5}$
(4) $X_{2,2,3} \subset \mathbb{P}^{6}$
(5) $X_{2,2,2,2} \subset \mathbb{P}^{7}$

Goal : Classify GG bundles on CICY threefold with small c_{1}.

Theorem (Ballico-Malaspina-H)
Let \mathcal{E} be a globally generated bundle of rank $r \geq 2$ on $X=X_{5}$ with $c_{1} \leq 2$ and no trivial factor. Then \mathcal{E} is one of the following:
(1) $T \mathbb{P}^{4}(-1)_{\mid X}$ or $\pi_{p}^{*} T \mathbb{P}^{3}(-1)$
(2) $\mathcal{O}_{X}(1)^{\oplus 2}$ or $\pi_{p}^{*} \mathcal{N}_{\mathbb{P}^{3}}(1)$
(3) $\pi_{p}^{*} \Omega_{\mathbb{P}^{3}}(2)$
(4) $0 \rightarrow \mathcal{O}_{X}(-2) \rightarrow \mathcal{O}_{X}^{\oplus(r+1)} \rightarrow \mathcal{E} \rightarrow 0$ with $3 \leq r \leq 14$
(5) $0 \rightarrow \mathcal{O}_{X}(-1)^{\oplus 2} \rightarrow \mathcal{O}_{X}^{\oplus(r+2)} \rightarrow \mathcal{E} \rightarrow 0$ with $3 \leq r \leq 8$
(6) $0 \rightarrow \mathcal{O}_{X}(-1) \rightarrow \mathcal{O}_{X}^{\oplus r} \oplus \mathcal{O}_{X}(1) \rightarrow \mathcal{E} \rightarrow 0$ with $3 \leq r \leq 5$
$\left(\pi_{p}: X \rightarrow \mathbb{P}^{3}\right.$ is a linear projection from $p \in \mathbb{P}^{4} \backslash X$.)

Theorem (Ballico-Malaspina-H)
Let \mathcal{E} be a globally generated bundle of rank $r \geq 2$ on $X=X_{5}$ with $c_{1} \leq 2$ and no trivial factor. Then \mathcal{E} is one of the following:
(1) $T \mathbb{P}^{4}(-1)_{\mid X}$ or $\pi_{p}^{*} T \mathbb{P}^{3}(-1)$
(2) $\mathcal{O}_{X}(1)^{\oplus 2}$ or $\pi_{p}^{*} \mathcal{N}_{\mathbb{P}^{3}}(1)$
(3) $\pi_{p}^{*} \Omega_{\mathbb{P}^{3}}(2)$
(4) $0 \rightarrow \mathcal{O}_{X}(-2) \rightarrow \mathcal{O}_{X}^{\oplus(r+1)} \rightarrow \mathcal{E} \rightarrow 0$ with $3 \leq r \leq 14$
(5) $0 \rightarrow \mathcal{O}_{X}(-1)^{\oplus 2} \rightarrow \mathcal{O}_{X}^{\oplus(r+2)} \rightarrow \mathcal{E} \rightarrow 0$ with $3 \leq r \leq 8$
(6) $0 \rightarrow \mathcal{O}_{X}(-1) \rightarrow \mathcal{O}_{X}^{\oplus r} \oplus \mathcal{O}_{X}(1) \rightarrow \mathcal{E} \rightarrow 0$ with $3 \leq r \leq 5$
$\left(\pi_{p}: X \rightarrow \mathbb{P}^{3}\right.$ is a linear projection from $p \in \mathbb{P}^{4} \backslash X$.)
In particular we have $c_{2}(\mathcal{E}) \in\{0,5,10,15,20\}$.

Example

U_{1}, U_{2} : planes in \mathbb{P}^{4} with $\left\langle U_{1} \cup U_{2}\right\rangle=\mathbb{P}^{4}$
Assume $\{p\}=U_{1} \cap U_{2} \not \subset X$.
Set $U=U_{1} \cup U_{2}$ and $C=U \cap X=C_{1} \sqcup C_{2}$ with $C_{i}=U_{i} \cap X$
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$.
It is easy to check that $I_{C}(2)$ is globally generated.
\Rightarrow There exists a globally generated bundle \mathcal{E} of rank 2 fitting into (1)
with $\mathcal{L} \cong \mathcal{O}_{X}(2)$.

Letting $L_{i}=\pi_{p}\left(C_{i}\right)$, we have

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}} \rightarrow \mathcal{N}_{\mathbb{P}^{3}}(1) \rightarrow \mathcal{I}_{L_{1} \cup L_{2}}(2) \rightarrow 0 .
$$

Thus the example gives $\pi_{p}^{*} \mathcal{N}_{\mathbb{P}^{3}}(1)$.

Example

U_{1}, U_{2} : planes in \mathbb{P}^{4} with $\left\langle U_{1} \cup U_{2}\right\rangle=\mathbb{P}^{4}$
Assume $\{p\}=U_{1} \cap U_{2} \not \subset X$.
Set $U=U_{1} \cup U_{2}$ and $C=U \cap X=C_{1} \sqcup C_{2}$ with $C_{i}=U_{i} \cap X$
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$.
It is easy to check that $I_{C}(2)$ is globally generated.
\Rightarrow There exists a globally generated bundle \mathcal{E} of rank 2 fitting into (1)
with $\mathcal{L} \cong \mathcal{O}_{X}(2)$.

Letting $L_{i}=\pi_{p}\left(C_{i}\right)$, we have

Thus the example gives $\pi_{p}^{*} \mathcal{N}_{\mathbb{P}^{3}}(1)$.

Example

U_{1}, U_{2} : planes in \mathbb{P}^{4} with $\left\langle U_{1} \cup U_{2}\right\rangle=\mathbb{P}^{4}$
Assume $\{p\}=U_{1} \cap U_{2} \not \subset X$.
Set $U=U_{1} \cup U_{2}$ and $C=U \cap X=C_{1} \sqcup C_{2}$ with $C_{i}=U_{i} \cap X$
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$.
It is easy to check that $\mathcal{I}_{C}(2)$ is globally generated.
\Rightarrow There exists a globally generated bundle \mathcal{E} of rank 2 fitting into (1) with $\mathcal{L} \cong \mathcal{O}_{X}(2)$.

Letting $L_{i}=\pi_{p}\left(C_{i}\right)$, we have

Thus the example gives $\pi_{p}^{*} \mathcal{N}_{\mathbb{P}^{3}}(1)$.

Example

U_{1}, U_{2} : planes in \mathbb{P}^{4} with $\left\langle U_{1} \cup U_{2}\right\rangle=\mathbb{P}^{4}$
Assume $\{p\}=U_{1} \cap U_{2} \not \subset X$.
Set $U=U_{1} \cup U_{2}$ and $C=U \cap X=C_{1} \sqcup C_{2}$ with $C_{i}=U_{i} \cap X$
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$.
It is easy to check that $\mathcal{I}_{C}(2)$ is globally generated.
\Rightarrow There exists a globally generated bundle \mathcal{E} of rank 2 fitting into (1) with $\mathcal{L} \cong \mathcal{O}_{X}(2)$.

Letting $L_{i}=\pi_{p}\left(C_{i}\right)$, we have

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}} \rightarrow \mathcal{N}_{\mathbb{P}^{3}}(1) \rightarrow \mathcal{I}_{L_{1} \cup L_{2}}(2) \rightarrow 0
$$

Example

U_{1}, U_{2} : planes in \mathbb{P}^{4} with $\left\langle U_{1} \cup U_{2}\right\rangle=\mathbb{P}^{4}$
Assume $\{p\}=U_{1} \cap U_{2} \not \subset X$.
Set $U=U_{1} \cup U_{2}$ and $C=U \cap X=C_{1} \sqcup C_{2}$ with $C_{i}=U_{i} \cap X$
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$.
It is easy to check that $\mathcal{I}_{C}(2)$ is globally generated.
\Rightarrow There exists a globally generated bundle \mathcal{E} of rank 2 fitting into (1) with $\mathcal{L} \cong \mathcal{O}_{X}(2)$.

Letting $L_{i}=\pi_{p}\left(C_{i}\right)$, we have

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{3}} \rightarrow \mathcal{N}_{\mathbb{P}^{3}}(1) \rightarrow \mathcal{I}_{L_{1} \cup L_{2}}(2) \rightarrow 0
$$

Thus the example gives $\pi_{p}^{*} \mathcal{N}_{\mathbb{P}^{3}}(1)$.
\mathcal{E} : globally generated of rank 2 with $c_{1}=2$ and $H^{0}(\mathcal{E}(-1))=0$. C : a corresponding smooth curve to \mathcal{E}.

Let $C:=C_{1} \sqcup \cdots \sqcup C_{S}, C_{i}$ irreducible component

$\omega_{C} \cong \mathcal{O}_{C}(2) \Rightarrow d_{i}=g_{i}-1$.
Definition
$\pi(d, n)$: the upper bound on the genus for non-degenerate curves of degree d in \mathbb{P}^{n}
e.g. $\pi(6,3)=4, \pi(7,3)=6, \pi(7,4)=3$,

Choose general $A_{1}, A_{2}, A_{3} \in\left|\mathcal{I}_{C}(2)\right|$ with $B_{i} \subset \mathbb{P}^{4}$ quadrics such that $B_{i} \cap X=A_{i}$ and $B_{i} \cap B_{j}$ is a reduced surface of degree 4.

Case1 : $B_{1} \cap B_{2} \cap B_{3}$ contains no surface
$Y:=B_{1} \cap B_{2} \cap B_{3}$ is a curve of degree 8 with $\omega_{Y} \cong \mathcal{O}_{Y}(1)$.
$\Rightarrow C$ is connected and contained in \mathbb{P}^{2}, a contradiction.
\mathcal{E} : globally generated of rank 2 with $c_{1}=2$ and $H^{0}(\mathcal{E}(-1))=0$.
C : a corresponding smooth curve to \mathcal{E}.
Let $C:=C_{1} \sqcup \cdots \sqcup C_{s}, C_{i}$ irreducible component $\omega_{C} \cong \mathcal{O}_{C}(2) \Rightarrow d_{i}=g_{i}-1$.

Definition
$\pi(d, n)$: the upper bound on the genus for non-degenerate curves of
degree d in \mathbb{P}^{n}
e.g. $\pi(6,3)=4, \pi(7,3)=6, \pi(7,4)=3$,

Choose general $A_{1}, A_{2}, A_{3} \in\left|\mathcal{I}_{C}(2)\right|$ with $B_{i} \subset \mathbb{P}^{4}$ quadrics such that $B_{i} \cap X=A_{i}$ and $B_{i} \cap B_{j}$ is a reduced surface of degree 4.

Case1: $B_{1} \cap B_{2} \cap B_{3}$ contains no surface
$Y:=B_{1} \cap B_{2} \cap B_{3}$ is a curve of degree 8 with $\omega_{Y} \cong \mathcal{O}_{Y}(1)$
$\Rightarrow C$ is connected and contained in \mathbb{P}^{2}, a contradiction.
\mathcal{E} : globally generated of rank 2 with $c_{1}=2$ and $H^{0}(\mathcal{E}(-1))=0$.
C : a corresponding smooth curve to \mathcal{E}.
Let $C:=C_{1} \sqcup \cdots \sqcup C_{s}, C_{i}$ irreducible component $\omega_{C} \cong \mathcal{O}_{C}(2) \Rightarrow d_{i}=g_{i}-1$.

Definition

$\pi(d, n)$: the upper bound on the genus for non-degenerate curves of degree d in \mathbb{P}^{n}
e.g. $\pi(6,3)=4, \pi(7,3)=6, \pi(7,4)=3, \cdots$

Choose general $A_{1}, A_{2}, A_{3} \in\left|I_{C}(2)\right|$ with $B_{i} \subset \mathbb{P}^{4}$ quadrics such that
$B_{i} \cap X=A_{i}$ and $B_{i} \cap B_{j}$ is a reduced surface of degree 4.
Case1: $B_{1} \cap B_{2} \cap B_{3}$ contains no surface

$\Rightarrow C$ is connected and contained in \mathbb{P}^{2}, a contradiction.
\mathcal{E} : globally generated of rank 2 with $c_{1}=2$ and $H^{0}(\mathcal{E}(-1))=0$.
C : a corresponding smooth curve to \mathcal{E}.
Let $C:=C_{1} \sqcup \cdots \sqcup C_{s}, C_{i}$ irreducible component
$\omega_{C} \cong \mathcal{O}_{C}(2) \Rightarrow d_{i}=g_{i}-1$.

Definition

$\pi(d, n)$: the upper bound on the genus for non-degenerate curves of degree d in \mathbb{P}^{n}
e.g. $\pi(6,3)=4, \pi(7,3)=6, \pi(7,4)=3, \cdots$

Choose general $A_{1}, A_{2}, A_{3} \in\left|\mathcal{I}_{C}(2)\right|$ with $B_{i} \subset \mathbb{P}^{4}$ quadrics such that $B_{i} \cap X=A_{i}$ and $B_{i} \cap B_{j}$ is a reduced surface of degree 4.
\mathcal{E} : globally generated of rank 2 with $c_{1}=2$ and $H^{0}(\mathcal{E}(-1))=0$.
C : a corresponding smooth curve to \mathcal{E}.
Let $C:=C_{1} \sqcup \cdots \sqcup C_{s}, C_{i}$ irreducible component
$\omega_{C} \cong \mathcal{O}_{C}(2) \Rightarrow d_{i}=g_{i}-1$.

Definition

$\pi(d, n)$: the upper bound on the genus for non-degenerate curves of degree d in \mathbb{P}^{n}
e.g. $\pi(6,3)=4, \pi(7,3)=6, \pi(7,4)=3, \cdots$

Choose general $A_{1}, A_{2}, A_{3} \in\left|\mathcal{I}_{C}(2)\right|$ with $B_{i} \subset \mathbb{P}^{4}$ quadrics such that $B_{i} \cap X=A_{i}$ and $B_{i} \cap B_{j}$ is a reduced surface of degree 4.

Case1: $B_{1} \cap B_{2} \cap B_{3}$ contains no surface
\mathcal{E} : globally generated of rank 2 with $c_{1}=2$ and $H^{0}(\mathcal{E}(-1))=0$.
C : a corresponding smooth curve to \mathcal{E}.
Let $C:=C_{1} \sqcup \cdots \sqcup C_{s}, C_{i}$ irreducible component
$\omega_{C} \cong \mathcal{O}_{C}(2) \Rightarrow d_{i}=g_{i}-1$.

Definition

$\pi(d, n)$: the upper bound on the genus for non-degenerate curves of degree d in \mathbb{P}^{n}
e.g. $\pi(6,3)=4, \pi(7,3)=6, \pi(7,4)=3, \cdots$

Choose general $A_{1}, A_{2}, A_{3} \in\left|\mathcal{I}_{C}(2)\right|$ with $B_{i} \subset \mathbb{P}^{4}$ quadrics such that $B_{i} \cap X=A_{i}$ and $B_{i} \cap B_{j}$ is a reduced surface of degree 4.

Case1: $B_{1} \cap B_{2} \cap B_{3}$ contains no surface
$Y:=B_{1} \cap B_{2} \cap B_{3}$ is a curve of degree 8 with $\omega_{Y} \cong \mathcal{O}_{Y}(1)$.
\mathcal{E} : globally generated of rank 2 with $c_{1}=2$ and $H^{0}(\mathcal{E}(-1))=0$.
C : a corresponding smooth curve to \mathcal{E}.
Let $C:=C_{1} \sqcup \cdots \sqcup C_{s}, C_{i}$ irreducible component
$\omega_{C} \cong \mathcal{O}_{C}(2) \Rightarrow d_{i}=g_{i}-1$.

Definition

$\pi(d, n)$: the upper bound on the genus for non-degenerate curves of degree d in \mathbb{P}^{n}
e.g. $\pi(6,3)=4, \pi(7,3)=6, \pi(7,4)=3, \cdots$

Choose general $A_{1}, A_{2}, A_{3} \in\left|\mathcal{I}_{C}(2)\right|$ with $B_{i} \subset \mathbb{P}^{4}$ quadrics such that $B_{i} \cap X=A_{i}$ and $B_{i} \cap B_{j}$ is a reduced surface of degree 4.

Case1: $B_{1} \cap B_{2} \cap B_{3}$ contains no surface
$Y:=B_{1} \cap B_{2} \cap B_{3}$ is a curve of degree 8 with $\omega_{Y} \cong \mathcal{O}_{Y}(1)$.
$\Rightarrow C$ is connected and contained in \mathbb{P}^{2}, a contradiction.

Case2 : $B_{1} \cap B_{2} \cap B_{3}$ contains a surface $=S \cup$ (lower dimensional part) with $(S \cap X)_{\text {red }}=C$.
S is one of the following

- $S=U_{1} \cup U_{2}$ the union of two planes with $U_{1} \cap U_{2}=\{p\}$
- $S=U_{1} \cup U_{2} \cup U_{3}$ spanning \mathbb{P}^{4}
- $S=Q \cup U$ with $U \not \subset\langle Q\rangle$
- S is an integral non-degenerated surface of degree 3 in \mathbb{P}^{4}.

In the last case, S is either
(i) a cubic scroll
(ii) a cone over a rational normal curve in \mathbb{P}^{3}
\Rightarrow In each case except the first, we get contradictions.
Similarly we may deal with higher rank case.

Case2 : $B_{1} \cap B_{2} \cap B_{3}$ contains a surface $=S \cup$ (lower dimensional part) with $(S \cap X)_{\text {red }}=C$.
S is one of the following

- $S=U_{1} \cup U_{2}$ the union of two planes with $U_{1} \cap U_{2}=\{p\}$
- $S=U_{1} \cup U_{2} \cup U_{3}$ spanning \mathbb{P}^{4}
- $S=Q \cup U$ with $U \not \subset\langle Q\rangle$
- S is an integral non-degenerated surface of degree 3 in \mathbb{P}^{4}.

In the last case, S is either
(i) a cubic scroll
(ii) a cone over a rational normal curve in \mathbb{P}^{3}
\Rightarrow In each case except the first, we get contradictions.
Similarly we may deal with higher rank case.

Case2 : $B_{1} \cap B_{2} \cap B_{3}$ contains a surface
$=S \cup$ (lower dimensional part) with $(S \cap X)_{\text {red }}=C$.
S is one of the following

- $S=U_{1} \cup U_{2}$ the union of two planes with $U_{1} \cap U_{2}=\{p\}$
- $S=U_{1} \cup U_{2} \cup U_{3}$ spanning \mathbb{P}^{4}
- $S=Q \cup U$ with $U \not \subset\langle Q\rangle$
- S is an integral non-degenerated surface of degree 3 in \mathbb{P}^{4}.

In the last case, S is either
(i) a cubic scroll
(ii) a cone over a rational normal curve in \mathbb{P}^{3}
\Rightarrow In each case except the first, we get contradictions.
Similarly we may deal with higher rank case.

Case2 : $B_{1} \cap B_{2} \cap B_{3}$ contains a surface
$=S \cup$ (lower dimensional part) with $(S \cap X)_{\text {red }}=C$.
S is one of the following

- $S=U_{1} \cup U_{2}$ the union of two planes with $U_{1} \cap U_{2}=\{p\}$
- $S=U_{1} \cup U_{2} \cup U_{3}$ spanning \mathbb{P}^{4}
- $S=Q \cup U$ with $U \not \subset\langle Q\rangle$
- S is an integral non-degenerated surface of degree 3 in \mathbb{P}^{4}.

In the last case, S is either
(i) a cubic scroll
(ii) a cone over a rational normal curve in \mathbb{P}^{3}
\Rightarrow In each case except the first, we get contradictions.

Case2 : $B_{1} \cap B_{2} \cap B_{3}$ contains a surface
$=S \cup\left(\right.$ lower dimensional part) with $(S \cap X)_{\text {red }}=C$.
S is one of the following

- $S=U_{1} \cup U_{2}$ the union of two planes with $U_{1} \cap U_{2}=\{p\}$
- $S=U_{1} \cup U_{2} \cup U_{3}$ spanning \mathbb{P}^{4}
- $S=Q \cup U$ with $U \not \subset\langle Q\rangle$
- S is an integral non-degenerated surface of degree 3 in \mathbb{P}^{4}.

In the last case, S is either
(i) a cubic scroll
(ii) a cone over a rational normal curve in \mathbb{P}^{3}
\Rightarrow In each case except the first, we get contradictions.
Similarly we may deal with higher rank case.

Let us assume $X=X_{2,4}$ or $X_{3,3}$.
Example (1)
$U_{1}, U_{2} \cong \mathbb{P}^{3}$ in \mathbb{P}^{5}
$U:=U_{1} \cup U_{2}$ spans \mathbb{P}^{5}, transversal to X with $U_{1} \cap U_{2} \cap X=\emptyset$
$C=U \cap X$
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$ and $\mathcal{I}_{C}(2)$ is globally generated.

Example (2)

There exist some $X_{2,4}$ and $X_{3,3}$ containing such C.

Let us assume $X=X_{2,4}$ or $X_{3,3}$.
Example (1)
$U_{1}, U_{2} \cong \mathbb{P}^{3}$ in \mathbb{P}^{5}
$U:=U_{1} \cup U_{2}$ spans \mathbb{P}^{5}, transversal to X with $U_{1} \cap U_{2} \cap X=\emptyset$
$C=U \cap X$
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$ and $\mathcal{I}_{C}(2)$ is globally generated.

Example (2)

There exist some $X_{2,4}$ and $X_{3,3}$ containing such C.

Let us assume $X=X_{2,4}$ or $X_{3,3}$.
Example (1)
$U_{1}, U_{2} \cong \mathbb{P}^{3}$ in \mathbb{P}^{5}
$U:=U_{1} \cup U_{2}$ spans \mathbb{P}^{5}, transversal to X with $U_{1} \cap U_{2} \cap X=\emptyset$
$C=U \cap X$
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$ and $\mathcal{I}_{C}(2)$ is globally generated.

Let us assume $X=X_{2,4}$ or $X_{3,3}$.
Example (1)
$U_{1}, U_{2} \cong \mathbb{P}^{3}$ in \mathbb{P}^{5}
$U:=U_{1} \cup U_{2}$ spans \mathbb{P}^{5}, transversal to X with $U_{1} \cap U_{2} \cap X=\emptyset$
$C=U \cap X$
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$ and $\mathcal{I}_{C}(2)$ is globally generated.

Example (2)

$C=Q_{1} \cap Q_{2} \cap Q_{3} \cap Q_{4} \subset \mathbb{P}^{5}$
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$ and $\mathcal{I}_{C}(2)$ is globally generated.

Let us assume $X=X_{2,4}$ or $X_{3,3}$.
Example (1)
$U_{1}, U_{2} \cong \mathbb{P}^{3}$ in \mathbb{P}^{5}
$U:=U_{1} \cup U_{2}$ spans \mathbb{P}^{5}, transversal to X with $U_{1} \cap U_{2} \cap X=\emptyset$
$C=U \cap X$
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$ and $\mathcal{I}_{C}(2)$ is globally generated.

Example (2)

$C=Q_{1} \cap Q_{2} \cap Q_{3} \cap Q_{4} \subset \mathbb{P}^{5}$
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$ and $\mathcal{I}_{C}(2)$ is globally generated.
There exist some $X_{2,4}$ and $X_{3,3}$ containing such C.

Example (3)

$S \subset \mathbb{P}^{5}$: a surface of degree 5 with $\omega_{S} \cong \mathcal{O}_{S}(-1)$.
$C:=S \cap U_{3}, U_{3}:$ a cubic
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$
For $X:=U_{3} \cap U_{3}^{\prime}$, we get that $\mathcal{I}_{C}(2)$ is globally generated.

Example (4)

$Y=Q_{1} \cap Q_{2} \cap Q_{3} \cap U_{3}: \operatorname{deg}(Y)=24$ and $\omega_{Y} \cong \mathcal{O}_{Y}(3)$
Assume $Y=C \cup D$ with $\operatorname{deg}(C)=d$ and D smooth outside $C \cap D$
$\Rightarrow \omega_{Y \mid C} \cong \omega_{C}(C \cap D)$ and so $\operatorname{deg}(C \cap D)=d$
If C is cut out by U_{3} and U_{3}^{\prime} inside $S:=Q_{1} \cap Q_{2} \cap Q_{3}$, then we have $d=\operatorname{deg}\left(U_{3}^{\prime} \cap D\right)=3(24-d)$, i.e. $d=18$.
$\Rightarrow C \subset U_{3} \cap U_{3}^{\prime}=: X_{3,3}$ with globally generated $\mathcal{I}_{C}(2)$

Example (3)

$S \subset \mathbb{P}^{5}$: a surface of degree 5 with $\omega_{S} \cong \mathcal{O}_{S}(-1)$.
$C:=S \cap U_{3}, U_{3}:$ a cubic
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$
For $X:=U_{3} \cap U_{3}^{\prime}$, we get that $\mathcal{I}_{C}(2)$ is globally generated.

Example (3)

$S \subset \mathbb{P}^{5}$: a surface of degree 5 with $\omega_{S} \cong \mathcal{O}_{S}(-1)$.
$C:=S \cap U_{3}, U_{3}:$ a cubic
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$
For $X:=U_{3} \cap U_{3}^{\prime}$, we get that $\mathcal{I}_{C}(2)$ is globally generated.

Example (4)

$Y=Q_{1} \cap Q_{2} \cap Q_{3} \cap U_{3}: \operatorname{deg}(Y)=24$ and $\omega_{Y} \cong \mathcal{O}_{Y}(3)$
Assume $Y=C \cup D$ with $\operatorname{deg}(C)=d$ and D smooth outside $C \cap D$
$\Rightarrow \omega_{Y \mid C} \cong \omega_{C}(C \cap D)$ and $\operatorname{so~} \operatorname{deg}(C \cap D)=d$

Example (3)

$S \subset \mathbb{P}^{5}$: a surface of degree 5 with $\omega_{S} \cong \mathcal{O}_{S}(-1)$.
$C:=S \cap U_{3}, U_{3}:$ a cubic
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$
For $X:=U_{3} \cap U_{3}^{\prime}$, we get that $\mathcal{I}_{C}(2)$ is globally generated.

Example (4)

$Y=Q_{1} \cap Q_{2} \cap Q_{3} \cap U_{3}: \operatorname{deg}(Y)=24$ and $\omega_{Y} \cong \mathcal{O}_{Y}(3)$
Assume $Y=C \cup D$ with $\operatorname{deg}(C)=d$ and D smooth outside $C \cap D$
$\Rightarrow \omega_{Y \mid C} \cong \omega_{C}(C \cap D)$ and so $\operatorname{deg}(C \cap D)=d$
If C is cut out by U_{3} and U_{3}^{\prime} inside $S:=Q_{1} \cap Q_{2} \cap Q_{3}$, then we have $d=\operatorname{deg}\left(U_{3}^{\prime} \cap D\right)=3(24-d)$, i.e. $d=18$.

Example (3)

$S \subset \mathbb{P}^{5}$: a surface of degree 5 with $\omega_{S} \cong \mathcal{O}_{S}(-1)$.
$C:=S \cap U_{3}, U_{3}:$ a cubic
$\Rightarrow \omega_{C} \cong \mathcal{O}_{C}(2)$
For $X:=U_{3} \cap U_{3}^{\prime}$, we get that $\mathcal{I}_{C}(2)$ is globally generated.

Example (4)

$Y=Q_{1} \cap Q_{2} \cap Q_{3} \cap U_{3}: \operatorname{deg}(Y)=24$ and $\omega_{Y} \cong \mathcal{O}_{Y}(3)$
Assume $Y=C \cup D$ with $\operatorname{deg}(C)=d$ and D smooth outside $C \cap D$
$\Rightarrow \omega_{Y \mid C} \cong \omega_{C}(C \cap D)$ and so $\operatorname{deg}(C \cap D)=d$
If C is cut out by U_{3} and U_{3}^{\prime} inside $S:=Q_{1} \cap Q_{2} \cap Q_{3}$, then we have $d=\operatorname{deg}\left(U_{3}^{\prime} \cap D\right)=3(24-d)$, i.e. $d=18$.
$\Rightarrow C \subset U_{3} \cap U_{3}^{\prime}=: X_{3,3}$ with globally generated $\mathcal{I}_{C}(2)$

Theorem

Let \mathcal{E} be globally generated of rank 2 with $c_{1}=2$ and $h^{0}(\mathcal{E}(-1))=0$.
(1) On $X_{2,4}$, we have Example (1), (2)
(2) On $X_{3,3}$, we have Example (1), (2), (3), (4) except the case of $c_{2}=16$.

Theorem

Let \mathcal{E} be globally generated of rank 2 with $c_{1}=2$ and $h^{0}(\mathcal{E}(-1))=0$.
(1) On $X_{2,4}$, we have Example (1), (2)
(2) On $X_{3,3}$, we have Example (1), (2), (3), (4)
except the case of $c_{2}=16$.

Corollary

\mathcal{E} : globally generated of rank 2 on X with $c_{1} \leq 2$
(1) $X_{2,4}: c_{2} \in\{0,4,8,11,16\}$
(2) $X_{3,3}: c_{2} \in\{0,9,12,15,16,18\}$

```
\(\Psi\) : the scheme-theoretic base locus of \(H^{0}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(2)\right)\) \(\Phi\) : the union of the irreducible components of \(\Psi_{\text {red }}\) containing \(C\)
```


- $\Psi \cap X=C$ as schemes

- $\operatorname{deg}(\Phi) \leq 2^{5-\operatorname{dim}(\Phi)}$ and the equality holds iff $\Phi=\Psi$ is
equidimensional and complete intersection of hyperquadrics.

(3) There exists i with $\operatorname{dim}\left(S_{i}\right)=3$
(4) $\operatorname{dim}\left(S_{i}\right)=3$ for all i
(0) get contradiction except Example(1).
Ψ : the scheme-theoretic base locus of $H^{0}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(2)\right)$
Φ : the union of the irreducible components of $\Psi_{\text {red }}$ containing C
- $\Psi \cap X=C$ as schemes
- $\operatorname{deg}(\Phi) \leq 2^{5-\operatorname{dim}(\Phi)}$ and the equality holds iff $\Phi=\Psi$ is equidimensional and complete intersection of hyperquadrics.
$S_{i}:=$ a fixed reduced and irreducible component $S_{i} \subset \Psi$ containing C_{i}.

Ψ : the scheme-theoretic base locus of $H^{0}\left(\mathbb{P}^{5}, \mathcal{I}_{C, \mathbb{P}^{5}}(2)\right)$
Φ : the union of the irreducible components of $\Psi_{\text {red }}$ containing C
- $\Psi \cap X=C$ as schemes
- $\operatorname{deg}(\Phi) \leq 2^{5-\operatorname{dim}(\Phi)}$ and the equality holds iff $\Phi=\Psi$ is equidimensional and complete intersection of hyperquadrics.
$S_{i}:=$ a fixed reduced and irreducible component $S_{i} \subset \Psi$ containing C_{i}.
- $s=1$, i.e. set $S=S_{1} \Rightarrow \operatorname{dim}(S) \in\{1,2\}$.
\Rightarrow Example (2)-(4).
- $s=2$:
(1) $i \neq j \Rightarrow S_{i} \neq S_{j}$
(2) $\operatorname{dim}\left(S_{i}\right) \geq 2$ for all i
(3) There exists i with $\operatorname{dim}\left(S_{i}\right)=3$
(4) $\operatorname{dim}\left(S_{i}\right)=3$ for all i
(5) get contradiction except Example(1).

Thank You Very Much !!!

