Globally generated vector bundles on complete intersection CY threefolds (joint work with E.Ballico and F.Malaspina)

Sukmoon Huh

Department of Mathematics Sungkyunkwan University

< 回 > < 回 > < 回 >

- 2 Definition and properties
- Ingredients
- 4 Results on quintic threefold
- 5 Sketch of proof
- 6 CICY of codimension 2

4 3 > 4 3

X : a smooth projective variety of dimension n over \mathbb{C} \mathcal{L} : a line bundle on X $Y \subset X$: locally complete intersection of codimension 2

 ${\mathcal E}$: a vector bundle of rank $r \ge 2$ on X with

$$0 \to \mathcal{O}_X^{\oplus (r-1)} \to \mathcal{E} \to \mathcal{I}_Y \otimes \mathcal{L} \to 0 \tag{1}$$

By tensoring (1) by \mathcal{O}_Y , we get

$$0 \to \wedge^2 N^{\vee} \otimes \mathcal{L}_{|Y} \to \mathcal{O}_Y^{\oplus (r-1)} \to \mathcal{E}_{|Y} \to N^{\vee} \otimes \mathcal{L}_{|Y} \to 0.$$
⁽²⁾

 $\Rightarrow \wedge^2 N \otimes \mathcal{L}_{|Y}^{\vee}$ is generated by (r-1) sections.

A (10) A (10)

X : a smooth projective variety of dimension *n* over \mathbb{C}

- \mathcal{L} : a line bundle on X
- $Y \subset X$: locally complete intersection of codimension 2
- \mathcal{E} : a vector bundle of rank $r \geq 2$ on X with

$$0 \to \mathcal{O}_X^{\oplus (r-1)} \to \mathcal{E} \to \mathcal{I}_Y \otimes \mathcal{L} \to 0 \tag{1}$$

By tensoring (1) by \mathcal{O}_Y , we get

$$0 \to \wedge^2 N^{\vee} \otimes \mathcal{L}_{|Y} \to \mathcal{O}_Y^{\oplus (r-1)} \to \mathcal{E}_{|Y} \to N^{\vee} \otimes \mathcal{L}_{|Y} \to 0.$$
⁽²⁾

 $\Rightarrow \wedge^2 N \otimes \mathcal{L}_{|Y}^{\vee}$ is generated by (r-1) sections.

< 回 > < 回 > < 回 > -

X : a smooth projective variety of dimension *n* over \mathbb{C}

- \mathcal{L} : a line bundle on X
- $Y \subset X$: locally complete intersection of codimension 2
- \mathcal{E} : a vector bundle of rank $r \geq 2$ on X with

$$0 \to \mathcal{O}_X^{\oplus (r-1)} \to \mathcal{E} \to \mathcal{I}_Y \otimes \mathcal{L} \to 0 \tag{1}$$

By tensoring (1) by \mathcal{O}_Y , we get

$$0 \to \wedge^2 N^{\vee} \otimes \mathcal{L}_{|Y} \to \mathcal{O}_Y^{\oplus (r-1)} \to \mathcal{E}_{|Y} \to N^{\vee} \otimes \mathcal{L}_{|Y} \to 0.$$
(2)

 $\Rightarrow \wedge^2 N \otimes \mathcal{L}_{|Y}^{\vee}$ is generated by (r-1) sections.

< 回 > < 回 > < 回 > -

X : a smooth projective variety of dimension *n* over \mathbb{C}

- \mathcal{L} : a line bundle on X
- $Y \subset X$: locally complete intersection of codimension 2
- \mathcal{E} : a vector bundle of rank $r \geq 2$ on X with

$$0 \to \mathcal{O}_X^{\oplus (r-1)} \to \mathcal{E} \to \mathcal{I}_Y \otimes \mathcal{L} \to 0 \tag{1}$$

By tensoring (1) by \mathcal{O}_Y , we get

$$0 \to \wedge^2 N^{\vee} \otimes \mathcal{L}_{|Y} \to \mathcal{O}_Y^{\oplus (r-1)} \to \mathcal{E}_{|Y} \to N^{\vee} \otimes \mathcal{L}_{|Y} \to 0.$$
⁽²⁾

 $\Rightarrow \wedge^2 N \otimes \mathcal{L}_{|Y}^{\vee}$ is generated by (r-1) sections.

Theorem (Hartshorne-Serre, Vogelaar)

Assume that

- \mathcal{L} : a line bundle with $H^i(X, \mathcal{L}^{\vee}) = 0$ for i = 1, 2
- 2 $\wedge^2 N \otimes \mathcal{L}_{|Y}^{\vee}$ is generated by (r-1) sections

Then there exists a unique vector bundle \mathcal{E} of rank r fitting into (1).

We will say that \mathcal{E} and Y correspond if we have (1).

- $\mathcal{O}_{\mathbb{P}^3}(1)^{\oplus 2}$ and a line $L \subset \mathbb{P}^3$ correspond.
- ② $T\mathbb{P}^{3}(-1)$ and a line $L \subset \mathbb{P}^{3}$ correspond.
- 3 $\mathcal{N}_{\mathbb{P}^3}(1)$ and two skew lines $L_1, L_2 \subset \mathbb{P}^3$ correspond.

A (10) A (10)

Theorem (Hartshorne-Serre, Vogelaar)

Assume that

- \mathcal{L} : a line bundle with $H^i(X, \mathcal{L}^{\vee}) = 0$ for i = 1, 2
- 2 $\wedge^2 N \otimes \mathcal{L}_{|Y}^{\vee}$ is generated by (r-1) sections

Then there exists a unique vector bundle \mathcal{E} of rank r fitting into (1).

We will say that \mathcal{E} and Y correspond if we have (1).

- $\mathcal{O}_{\mathbb{P}^3}(1)^{\oplus 2}$ and a line $L \subset \mathbb{P}^3$ correspond.
- 2 $T\mathbb{P}^{3}(-1)$ and a line $L \subset \mathbb{P}^{3}$ correspond.
- \mathfrak{O} $\mathcal{N}_{\mathbb{P}^3}(1)$ and two skew lines $L_1, L_2 \subset \mathbb{P}^3$ correspond.

A (10) A (10) A (10) A

Theorem (Hartshorne-Serre, Vogelaar)

Assume that

- \mathcal{L} : a line bundle with $H^i(X, \mathcal{L}^{\vee}) = 0$ for i = 1, 2
- 2 $\wedge^2 N \otimes \mathcal{L}_{|Y}^{\vee}$ is generated by (r-1) sections

Then there exists a unique vector bundle \mathcal{E} of rank r fitting into (1).

We will say that \mathcal{E} and Y correspond if we have (1).

- $\mathcal{O}_{\mathbb{P}^3}(1)^{\oplus 2}$ and a line $L \subset \mathbb{P}^3$ correspond.
- ② $T\mathbb{P}^{3}(-1)$ and a line $L \subset \mathbb{P}^{3}$ correspond.
- $\mathcal{N}_{\mathbb{P}^3}(1)$ and two skew lines $L_1, L_2 \subset \mathbb{P}^3$ correspond.

く 伺 とう きょう とう とう

Theorem (Hartshorne-Serre, Vogelaar)

Assume that

- \mathcal{L} : a line bundle with $H^i(X, \mathcal{L}^{\vee}) = 0$ for i = 1, 2
- 2 $\wedge^2 N \otimes \mathcal{L}_{|Y}^{\vee}$ is generated by (r-1) sections

Then there exists a unique vector bundle \mathcal{E} of rank r fitting into (1).

We will say that \mathcal{E} and Y correspond if we have (1).

- $\mathcal{O}_{\mathbb{P}^3}(1)^{\oplus 2}$ and a line $L \subset \mathbb{P}^3$ correspond.
- 2 $T\mathbb{P}^3(-1)$ and a line $L \subset \mathbb{P}^3$ correspond.

 $\mathcal{N}_{\mathbb{P}^3}(1)$ and two skew lines $L_1, L_2 \subset \mathbb{P}^3$ correspond.

< 回 > < 回 > < 回 > -

Theorem (Hartshorne-Serre, Vogelaar)

Assume that

- \mathcal{L} : a line bundle with $H^i(X, \mathcal{L}^{\vee}) = 0$ for i = 1, 2
- 2 $\wedge^2 N \otimes \mathcal{L}_{|Y}^{\vee}$ is generated by (r-1) sections

Then there exists a unique vector bundle \mathcal{E} of rank r fitting into (1).

We will say that \mathcal{E} and Y correspond if we have (1).

- $\mathcal{O}_{\mathbb{P}^3}(1)^{\oplus 2}$ and a line $L \subset \mathbb{P}^3$ correspond.
- 2 $T\mathbb{P}^{3}(-1)$ and a line $L \subset \mathbb{P}^{3}$ correspond.
- \mathfrak{O} $\mathcal{N}_{\mathbb{P}^3}(1)$ and two skew lines $L_1, L_2 \subset \mathbb{P}^3$ correspond.

A (10) A (10)

- \mathcal{E} : globally generated of rank r > n $\Rightarrow \mathcal{E}$ has $\mathcal{O}_X^{\oplus (r-n)}$ [Serre]
- ② \mathcal{E} : globally generated with $H^0(\mathcal{E}(-c_1)) \neq 0$ ⇒ $\mathcal{E} \cong \mathcal{O}_X(c_1) \oplus \mathcal{O}_X^{\oplus(r-1)}$ [Sierra]
- ③ φ : F → G : a general morphism with Hom(F, G) globally generated
 ⇒ dependency locus Y of φ is nonsingular outside
 - $\text{codimension} \geq rk(\mathcal{G}) rk(\mathcal{F}) + 1. \text{ [Banica, Chang]}$
- S : globally generated with (r − 1) general sections in (1)
 ⇒ Y is smooth outside 4-dimensional subset.
 In particular if dim(X) = 3, we may have

$$0 \to \mathcal{O}_X^{\oplus (r-1)} \to \mathcal{E} \to \mathcal{I}_C \otimes \mathcal{L} \to 0$$
 (3)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- \mathcal{E} : globally generated of rank r > n $\Rightarrow \mathcal{E}$ has $\mathcal{O}_X^{\oplus (r-n)}$ [Serre]
- ② \mathcal{E} : globally generated with $H^0(\mathcal{E}(-c_1)) \neq 0$ ⇒ $\mathcal{E} \cong \mathcal{O}_X(c_1) \oplus \mathcal{O}_X^{\oplus (r-1)}$ [Sierra]
- ⓐ $\varphi : \mathcal{F} \to \mathcal{G}$: a general morphism with $\mathcal{H}om(\mathcal{F}, \mathcal{G})$ globally generated

 $\Rightarrow \text{dependency locus } Y \text{ of } \varphi \text{ is nonsingular outside} \\ \text{codimension} \ge \text{rk}(\mathcal{G}) - \text{rk}(\mathcal{F}) + 1. \text{ [Banica, Chang]}$

④ £ : globally generated with (r − 1) general sections in (1)
 ⇒ Y is smooth outside 4-dimensional subset.
 In particular if dim(X) = 3, we may have

$$0 \to \mathcal{O}_X^{\oplus (r-1)} \to \mathcal{E} \to \mathcal{I}_C \otimes \mathcal{L} \to 0$$
 (3)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- \mathcal{E} : globally generated of rank r > n $\Rightarrow \mathcal{E}$ has $\mathcal{O}_X^{\oplus (r-n)}$ [Serre]
- ② \mathcal{E} : globally generated with $H^0(\mathcal{E}(-c_1)) \neq 0$ ⇒ $\mathcal{E} \cong \mathcal{O}_X(c_1) \oplus \mathcal{O}_X^{\oplus(r-1)}$ [Sierra]
- ◎ $\varphi : \mathcal{F} \to \mathcal{G}$: a general morphism with $\mathcal{H}om(\mathcal{F}, \mathcal{G})$ globally generated

⇒ dependency locus *Y* of φ is nonsingular outside codimension ≥ $rk(\mathcal{G}) - rk(\mathcal{F}) + 1$. [Banica, Chang]

E : globally generated with (*r* − 1) general sections in (1)
 ⇒ *Y* is smooth outside 4-dimensional subset.

 In particular if dim(*X*) = 3, we may have

$$0 \to \mathcal{O}_X^{\oplus (r-1)} \to \mathcal{E} \to \mathcal{I}_C \otimes \mathcal{L} \to 0 \tag{3}$$

- \mathcal{E} : globally generated of rank r > n $\Rightarrow \mathcal{E}$ has $\mathcal{O}_X^{\oplus (r-n)}$ [Serre]
- ② *E*: globally generated with *H*⁰(*E*(−*c*₁)) ≠ 0
 ⇒ *E* ≅ *O*_X(*c*₁) ⊕ *O*^{⊕(*r*−1)}_X [Sierra]
- $\textcircled{9} \ \varphi:\mathcal{F}\to\mathcal{G}: \text{a general morphism with }\mathcal{H}om(\mathcal{F},\mathcal{G}) \text{ globally generated}$

⇒ dependency locus *Y* of φ is nonsingular outside codimension ≥ $rk(\mathcal{G}) - rk(\mathcal{F}) + 1$. [Banica, Chang]

𝔅 : globally generated with (r − 1) general sections in (1)
 ⇒ Y is smooth outside 4-dimensional subset.
 In particular if dim(X) = 3, we may have

$$0 \to \mathcal{O}_X^{\oplus (r-1)} \to \mathcal{E} \to \mathcal{I}_C \otimes \mathcal{L} \to 0$$

with smooth C.

< 日 > < 同 > < 回 > < 回 > < □ > <

- \mathcal{E} : globally generated of rank r > n $\Rightarrow \mathcal{E}$ has $\mathcal{O}_X^{\oplus (r-n)}$ [Serre]
- ② \mathcal{E} : globally generated with $H^0(\mathcal{E}(-c_1)) \neq 0$ ⇒ $\mathcal{E} \cong \mathcal{O}_X(c_1) \oplus \mathcal{O}_X^{\oplus (r-1)}$ [Sierra]
- $\varphi: \mathcal{F} \to \mathcal{G}$: a general morphism with $\mathcal{H}om(\mathcal{F}, \mathcal{G})$ globally generated

⇒ dependency locus *Y* of φ is nonsingular outside codimension ≥ $rk(\mathcal{G}) - rk(\mathcal{F}) + 1$. [Banica, Chang]

𝔅 : globally generated with (r − 1) general sections in (1)
 ⇒ Y is smooth outside 4-dimensional subset.
 In particular if dim(X) = 3, we may have

$$0 \to \mathcal{O}_X^{\oplus (r-1)} \to \mathcal{E} \to \mathcal{I}_C \otimes \mathcal{L} \to 0 \tag{3}$$

Ingredients

There have been several works on the classification of globally generated vector bundles with small first Chern classes over

- projective spaces [Anghel-Coanda-Manolache] [Sierra-Ugaglia]
- quadric hypersurfaces [Ballico-Malaspina-H]
- Segre threefolds [Ballico-Malaspina-H]

From the sequence

 $0 \to \mathcal{O}_X^{\oplus (r-1)} \to \mathcal{E} \to \mathcal{I}_C(c_1) \to 0$

- $\deg(C) = c_2(\mathcal{E}) \le c_1^2 \deg(X)$
- $\omega_C \otimes \mathcal{O}_X(-c_1)$ is globally generated
- $\mathcal{I}_C(c_1)$ is globally generated

We may use

- Liaison theory for better bound of $c_2(\mathcal{E})$
- Smoothing of singular curves for the construction of C

Ingredients

There have been several works on the classification of globally generated vector bundles with small first Chern classes over

- projective spaces [Anghel-Coanda-Manolache] [Sierra-Ugaglia]
- quadric hypersurfaces [Ballico-Malaspina-H]
- Segre threefolds [Ballico-Malaspina-H]

From the sequence

$$0 \to \mathcal{O}_X^{\oplus (r-1)} \to \mathcal{E} \to \mathcal{I}_C(c_1) \to 0$$

•
$$\deg(C) = c_2(\mathcal{E}) \le c_1^2 \deg(X)$$

- $\omega_C \otimes \mathcal{O}_X(-c_1)$ is globally generated
- $\mathcal{I}_C(c_1)$ is globally generated

We may use

- Liaison theory for better bound of $c_2(\mathcal{E})$
- Smoothing of singular curves for the construction of C

< 回 > < 回 > < 回 > -

Ingredients

There have been several works on the classification of globally generated vector bundles with small first Chern classes over

- projective spaces [Anghel-Coanda-Manolache] [Sierra-Ugaglia]
- quadric hypersurfaces [Ballico-Malaspina-H]
- Segre threefolds [Ballico-Malaspina-H]

From the sequence

$$0 \to \mathcal{O}_X^{\oplus (r-1)} \to \mathcal{E} \to \mathcal{I}_C(c_1) \to 0$$

•
$$\deg(C) = c_2(\mathcal{E}) \le c_1^2 \deg(X)$$

- $\omega_C \otimes \mathcal{O}_X(-c_1)$ is globally generated
- $\mathcal{I}_C(c_1)$ is globally generated

We may use

- Liaison theory for better bound of $c_2(\mathcal{E})$
- Smoothing of singular curves for the construction of C

Definition

- A smooth 3-dimensional projective variety X is called a Calabi-Yau threefold if $\omega_X \cong \mathcal{O}_X$.
- ② If a complete intersection $X = X_{r_1,...,r_k} ⊂ \mathbb{P}^{k+3}$ is Calabi-Yau, then it is called a complete intersection Calabi-Yau (CICY).

There are 5 types of CICY 3-folds:

- $I X_5 \subset \mathbb{P}^4$
- $3 X_{3,3} \subset \mathbb{P}^5$
- $\textcircled{4} X_{2,2,3} \subset \mathbb{P}^6$
- $I X_{2,2,2,2} \subset \mathbb{P}^7$

Goal : Classify GG bundles on CICY threefold with small c_1 .

Definition

- A smooth 3-dimensional projective variety *X* is called a Calabi-Yau threefold if $\omega_X \cong \mathcal{O}_X$.
- ② If a complete intersection $X = X_{r_1,...,r_k} ⊂ \mathbb{P}^{k+3}$ is Calabi-Yau, then it is called a complete intersection Calabi-Yau (CICY).

There are 5 types of CICY 3-folds:

- $\bigcirc X_5 \subset \mathbb{P}^4$
- 2 $X_{2,4} \subset \mathbb{P}^5$
- $3 X_{3,3} \subset \mathbb{P}^5$
- $\textcircled{4} X_{2,2,3} \subset \mathbb{P}^6$

Goal : Classify GG bundles on CICY threefold with small c_1 .

イロト イヨト イヨト イヨト

Definition

- A smooth 3-dimensional projective variety *X* is called a Calabi-Yau threefold if $\omega_X \cong \mathcal{O}_X$.
- ② If a complete intersection $X = X_{r_1,...,r_k} ⊂ \mathbb{P}^{k+3}$ is Calabi-Yau, then it is called a complete intersection Calabi-Yau (CICY).

There are 5 types of CICY 3-folds:

- $\bigcirc X_5 \subset \mathbb{P}^4$
- $\textcircled{2} X_{2,4} \subset \mathbb{P}^5$
- $3 X_{3,3} \subset \mathbb{P}^5$
- $\textcircled{4} X_{2,2,3} \subset \mathbb{P}^6$

Goal : Classify GG bundles on CICY threefold with small c_1 .

イロト イヨト イヨト イヨト

Theorem (Ballico-Malaspina-H)

Let \mathcal{E} be a globally generated bundle of rank $r \ge 2$ on $X = X_5$ with $c_1 \le 2$ and no trivial factor. Then \mathcal{E} is one of the following:

1
$$T\mathbb{P}^4(-1)_{|X}$$
 or $\pi_p^*T\mathbb{P}^3(-1)$
2 $\mathcal{O}_X(1)^{\oplus 2}$ or $\pi_p^*\mathcal{N}_{\mathbb{P}^3}(1)$
3 $\pi_p^*\Omega_{\mathbb{P}^3}(2)$
4 $0 \to \mathcal{O}_X(-2) \to \mathcal{O}_X^{\oplus (r+1)} \to \mathcal{E} \to 0$ with $3 \le r \le 14$
5 $0 \to \mathcal{O}_X(-1)^{\oplus 2} \to \mathcal{O}_X^{\oplus (r+2)} \to \mathcal{E} \to 0$ with $3 \le r \le 8$
6 $0 \to \mathcal{O}_X(-1) \to \mathcal{O}_X^{\oplus r} \oplus \mathcal{O}_X(1) \to \mathcal{E} \to 0$ with $3 \le r \le 5$
 $\pi_p: X \to \mathbb{P}^3$ is a linear projection from $p \in \mathbb{P}^4 \setminus X$.

In particular we have $c_2(\mathcal{E}) \in \{0, 5, 10, 15, 20\}$.

Theorem (Ballico-Malaspina-H)

Let \mathcal{E} be a globally generated bundle of rank $r \ge 2$ on $X = X_5$ with $c_1 \le 2$ and no trivial factor. Then \mathcal{E} is one of the following:

1
$$T\mathbb{P}^4(-1)_{|X}$$
 or $\pi_p^*T\mathbb{P}^3(-1)$
2 $\mathcal{O}_X(1)^{\oplus 2}$ or $\pi_p^*\mathcal{N}_{\mathbb{P}^3}(1)$
3 $\pi_p^*\Omega_{\mathbb{P}^3}(2)$
4 $0 \to \mathcal{O}_X(-2) \to \mathcal{O}_X^{\oplus(r+1)} \to \mathcal{E} \to 0$ with $3 \le r \le 14$
5 $0 \to \mathcal{O}_X(-1)^{\oplus 2} \to \mathcal{O}_X^{\oplus(r+2)} \to \mathcal{E} \to 0$ with $3 \le r \le 8$
6 $0 \to \mathcal{O}_X(-1) \to \mathcal{O}_X^{\oplus r} \oplus \mathcal{O}_X(1) \to \mathcal{E} \to 0$ with $3 \le r \le 5$
 $\pi_p: X \to \mathbb{P}^3$ is a linear projection from $p \in \mathbb{P}^4 \setminus X$.

In particular we have $c_2(\mathcal{E}) \in \{0, 5, 10, 15, 20\}$.

 U_1, U_2 : planes in \mathbb{P}^4 with $\langle U_1 \cup U_2 \rangle = \mathbb{P}^4$ Assume $\{p\} = U_1 \cap U_2 \not\subset X$. Set $U = U_1 \cup U_2$ and $C = U \cap X = C_1 \sqcup C_2$ with $C_i = U_i \cap X$ $\Rightarrow \omega_C \cong \mathcal{O}_C(2)$.

It is easy to check that $\mathcal{I}_{\mathcal{C}}(2)$ is globally generated. \Rightarrow There exists a globally generated bundle \mathcal{E} of rank 2 fitting into (1) with $\mathcal{L} \cong \mathcal{O}_X(2)$.

Letting $L_i = \pi_p(C_i)$, we have

$$0 \to \mathcal{O}_{\mathbb{P}^3} \to \mathcal{N}_{\mathbb{P}^3}(1) \to \mathcal{I}_{L_1 \cup L_2}(2) \to 0.$$

Thus the example gives $\pi_p^* \mathcal{N}_{\mathbb{P}^3}(1)$.

 U_1, U_2 : planes in \mathbb{P}^4 with $\langle U_1 \cup U_2 \rangle = \mathbb{P}^4$ Assume $\{p\} = U_1 \cap U_2 \not\subset X$. Set $U = U_1 \cup U_2$ and $C = U \cap X = C_1 \sqcup C_2$ with $C_i = U_i \cap X$ $\Rightarrow \omega_C \cong \mathcal{O}_C(2)$.

It is easy to check that $\mathcal{I}_{\mathcal{C}}(2)$ is globally generated. \Rightarrow There exists a globally generated bundle \mathcal{E} of rank 2 fitting into (1) with $\mathcal{L} \cong \mathcal{O}_X(2)$.

Letting $L_i = \pi_p(C_i)$, we have

$$0 \to \mathcal{O}_{\mathbb{P}^3} \to \mathcal{N}_{\mathbb{P}^3}(1) \to \mathcal{I}_{L_1 \cup L_2}(2) \to 0.$$

Thus the example gives $\pi_p^* \mathcal{N}_{\mathbb{P}^3}(1)$.

 U_1, U_2 : planes in \mathbb{P}^4 with $\langle U_1 \cup U_2 \rangle = \mathbb{P}^4$ Assume $\{p\} = U_1 \cap U_2 \notin X$. Set $U = U_1 \cup U_2$ and $C = U \cap X = C_1 \sqcup C_2$ with $C_i = U_i \cap X$ $\Rightarrow \omega_C \cong \mathcal{O}_C(2)$.

It is easy to check that $\mathcal{I}_C(2)$ is globally generated. \Rightarrow There exists a globally generated bundle \mathcal{E} of rank 2 fitting into (1) with $\mathcal{L} \cong \mathcal{O}_X(2)$.

```
Letting L_i = \pi_p(C_i), we have

0 \to \mathcal{O}_{\mathbb{P}^3} \to \mathcal{N}_{\mathbb{P}^3}(1) \to \mathcal{I}_{L_1 \cup L_2}(2) \to 0.

Thus the example gives \pi_p^* \mathcal{N}_{\mathbb{P}^3}(1).
```

イロト イポト イヨト イヨト

 U_1, U_2 : planes in \mathbb{P}^4 with $\langle U_1 \cup U_2 \rangle = \mathbb{P}^4$ Assume $\{p\} = U_1 \cap U_2 \notin X$. Set $U = U_1 \cup U_2$ and $C = U \cap X = C_1 \sqcup C_2$ with $C_i = U_i \cap X$ $\Rightarrow \omega_C \cong \mathcal{O}_C(2)$.

It is easy to check that $\mathcal{I}_C(2)$ is globally generated. \Rightarrow There exists a globally generated bundle \mathcal{E} of rank 2 fitting into (1) with $\mathcal{L} \cong \mathcal{O}_x(2)$.

Letting $L_i = \pi_p(C_i)$, we have

$$0 \to \mathcal{O}_{\mathbb{P}^3} \to \mathcal{N}_{\mathbb{P}^3}(1) \to \mathcal{I}_{L_1 \cup L_2}(2) \to 0.$$

Thus the example gives $\pi_p^*\mathcal{N}_{\mathbb{P}^3}(1).$

 U_1, U_2 : planes in \mathbb{P}^4 with $\langle U_1 \cup U_2 \rangle = \mathbb{P}^4$ Assume $\{p\} = U_1 \cap U_2 \notin X$. Set $U = U_1 \cup U_2$ and $C = U \cap X = C_1 \sqcup C_2$ with $C_i = U_i \cap X$ $\Rightarrow \omega_C \cong \mathcal{O}_C(2)$.

It is easy to check that $\mathcal{I}_C(2)$ is globally generated. \Rightarrow There exists a globally generated bundle \mathcal{E} of rank 2 fitting into (1) with $\mathcal{L} \cong \mathcal{O}_x(2)$.

Letting $L_i = \pi_p(C_i)$, we have

$$0 \to \mathcal{O}_{\mathbb{P}^3} \to \mathcal{N}_{\mathbb{P}^3}(1) \to \mathcal{I}_{L_1 \cup L_2}(2) \to 0.$$

Thus the example gives $\pi_p^* \mathcal{N}_{\mathbb{P}^3}(1)$.

 \mathcal{E} : globally generated of rank 2 with $c_1 = 2$ and $H^0(\mathcal{E}(-1)) = 0$. C: a corresponding smooth curve to \mathcal{E} .

Let $C := C_1 \sqcup \cdots \sqcup C_s$, C_i irreducible component $\omega_C \cong \mathcal{O}_C(2) \Rightarrow d_i = g_i - 1.$

Definition

 $\pi(d,n)$: the upper bound on the genus for non-degenerate curves of degree d in \mathbb{P}^n

e.g.
$$\pi(6,3) = 4$$
, $\pi(7,3) = 6$, $\pi(7,4) = 3$, ...

Choose general $A_1, A_2, A_3 \in |\mathcal{I}_C(2)|$ with $B_i \subset \mathbb{P}^4$ quadrics such that $B_i \cap X = A_i$ and $B_i \cap B_j$ is a reduced surface of degree 4.

Case1 : $B_1 \cap B_2 \cap B_3$ contains no surface

 $Y := B_1 \cap B_2 \cap B_3$ is a curve of degree 8 with $\omega_Y \cong \mathcal{O}_Y(1)$. $\Rightarrow C$ is connected and contained in \mathbb{P}^2 , a contradiction.

 \mathcal{E} : globally generated of rank 2 with $c_1 = 2$ and $H^0(\mathcal{E}(-1)) = 0$. C: a corresponding smooth curve to \mathcal{E} . Let $C := C_1 \sqcup \cdots \sqcup C_s$, C_i irreducible component $\omega_C \cong \mathcal{O}_C(2) \Rightarrow d_i = g_i - 1$.

Definition

 $\pi(d,n)$: the upper bound on the genus for non-degenerate curves of degree d in \mathbb{P}^n

e.g.
$$\pi(6,3) = 4$$
, $\pi(7,3) = 6$, $\pi(7,4) = 3$, ...

Choose general $A_1, A_2, A_3 \in |\mathcal{I}_C(2)|$ with $B_i \subset \mathbb{P}^4$ quadrics such that $B_i \cap X = A_i$ and $B_i \cap B_j$ is a reduced surface of degree 4.

Case1 : $B_1 \cap B_2 \cap B_3$ contains no surface

 $Y := B_1 \cap B_2 \cap B_3$ is a curve of degree 8 with $\omega_Y \cong \mathcal{O}_Y(1)$. $\Rightarrow C$ is connected and contained in \mathbb{P}^2 , a contradiction.

 \mathcal{E} : globally generated of rank 2 with $c_1 = 2$ and $H^0(\mathcal{E}(-1)) = 0$. *C*: a corresponding smooth curve to \mathcal{E} .

Let $C := C_1 \sqcup \cdots \sqcup C_s$, C_i irreducible component $\omega_C \cong \mathcal{O}_C(2) \Rightarrow d_i = g_i - 1$.

Definition

 $\pi(d,n)$: the upper bound on the genus for non-degenerate curves of degree d in \mathbb{P}^n

e.g.
$$\pi(6,3) = 4$$
, $\pi(7,3) = 6$, $\pi(7,4) = 3$, ...

Choose general $A_1, A_2, A_3 \in |\mathcal{I}_C(2)|$ with $B_i \subset \mathbb{P}^4$ quadrics such that $B_i \cap X = A_i$ and $B_i \cap B_j$ is a reduced surface of degree 4.

Case1 : $B_1 \cap B_2 \cap B_3$ contains no surface

 $Y := B_1 \cap B_2 \cap B_3$ is a curve of degree 8 with $\omega_Y \cong \mathcal{O}_Y(1)$. $\Rightarrow C$ is connected and contained in \mathbb{P}^2 , a contradiction.

 \mathcal{E} : globally generated of rank 2 with $c_1 = 2$ and $H^0(\mathcal{E}(-1)) = 0$. C: a corresponding smooth curve to \mathcal{E} . Let $C := C_1 \sqcup \cdots \sqcup C_s$, C_i irreducible component $\omega_C \cong \mathcal{O}_C(2) \Rightarrow d_i = g_i - 1$.

Definition

 $\pi(d,n)$: the upper bound on the genus for non-degenerate curves of degree d in \mathbb{P}^n

e.g.
$$\pi(6,3) = 4$$
, $\pi(7,3) = 6$, $\pi(7,4) = 3$, ...

Choose general $A_1, A_2, A_3 \in |\mathcal{I}_C(2)|$ with $B_i \subset \mathbb{P}^4$ quadrics such that $B_i \cap X = A_i$ and $B_i \cap B_j$ is a reduced surface of degree 4.

Case1 : $B_1 \cap B_2 \cap B_3$ contains no surface

 $Y := B_1 \cap B_2 \cap B_3$ is a curve of degree 8 with $\omega_Y \cong \mathcal{O}_Y(1)$. $\Rightarrow C$ is connected and contained in \mathbb{P}^2 , a contradiction.

イロト イポト イヨト イヨト

 \mathcal{E} : globally generated of rank 2 with $c_1 = 2$ and $H^0(\mathcal{E}(-1)) = 0$. C: a corresponding smooth curve to \mathcal{E} . Let $C := C_1 \sqcup \cdots \sqcup C_s$, C_i irreducible component $\omega_C \cong \mathcal{O}_C(2) \Rightarrow d_i = g_i - 1$.

Definition

 $\pi(d,n)$: the upper bound on the genus for non-degenerate curves of degree d in \mathbb{P}^n

e.g.
$$\pi(6,3) = 4$$
, $\pi(7,3) = 6$, $\pi(7,4) = 3$, ...

Choose general $A_1, A_2, A_3 \in |\mathcal{I}_C(2)|$ with $B_i \subset \mathbb{P}^4$ quadrics such that $B_i \cap X = A_i$ and $B_i \cap B_j$ is a reduced surface of degree 4.

Case1 : $B_1 \cap B_2 \cap B_3$ contains no surface

 $Y := B_1 \cap B_2 \cap B_3$ is a curve of degree 8 with $\omega_Y \cong \mathcal{O}_Y(1)$. $\Rightarrow C$ is connected and contained in \mathbb{P}^2 , a contradiction.

イロト イポト イヨト イヨト

 \mathcal{E} : globally generated of rank 2 with $c_1 = 2$ and $H^0(\mathcal{E}(-1)) = 0$. C: a corresponding smooth curve to \mathcal{E} . Let $C := C_1 \sqcup \cdots \sqcup C_s$, C_i irreducible component $\omega_C \cong \mathcal{O}_C(2) \Rightarrow d_i = g_i - 1$.

Definition

 $\pi(d,n)$: the upper bound on the genus for non-degenerate curves of degree d in \mathbb{P}^n

e.g.
$$\pi(6,3) = 4$$
, $\pi(7,3) = 6$, $\pi(7,4) = 3$, ...

Choose general $A_1, A_2, A_3 \in |\mathcal{I}_C(2)|$ with $B_i \subset \mathbb{P}^4$ quadrics such that $B_i \cap X = A_i$ and $B_i \cap B_j$ is a reduced surface of degree 4.

Case1 : $B_1 \cap B_2 \cap B_3$ contains no surface

 $Y := B_1 \cap B_2 \cap B_3$ is a curve of degree 8 with $\omega_Y \cong \mathcal{O}_Y(1)$. $\Rightarrow C$ is connected and contained in \mathbb{P}^2 , a contradiction.

 \mathcal{E} : globally generated of rank 2 with $c_1 = 2$ and $H^0(\mathcal{E}(-1)) = 0$. C: a corresponding smooth curve to \mathcal{E} .

Let $C := C_1 \sqcup \cdots \sqcup C_s$, C_i irreducible component

$$\omega_C \cong \mathcal{O}_C(2) \Rightarrow d_i = g_i - 1.$$

Definition

 $\pi(d,n)$: the upper bound on the genus for non-degenerate curves of degree d in \mathbb{P}^n

e.g.
$$\pi(6,3) = 4, \pi(7,3) = 6, \pi(7,4) = 3, \cdots$$

Choose general $A_1, A_2, A_3 \in |\mathcal{I}_C(2)|$ with $B_i \subset \mathbb{P}^4$ quadrics such that $B_i \cap X = A_i$ and $B_i \cap B_j$ is a reduced surface of degree 4.

Case1 : $B_1 \cap B_2 \cap B_3$ contains no surface

 $Y := B_1 \cap B_2 \cap B_3$ is a curve of degree 8 with $\omega_Y \cong \mathcal{O}_Y(1)$. $\Rightarrow C$ is connected and contained in \mathbb{P}^2 , a contradiction.

▲ 同 ▶ | ▲ 三 ▶

S is one of the following

- $S = U_1 \cup U_2$ the union of two planes with $U_1 \cap U_2 = \{p\}$
- $S = U_1 \cup U_2 \cup U_3$ spanning \mathbb{P}^4
- $S = Q \cup U$ with $U \not\subset \langle Q \rangle$
- S is an integral non-degenerated surface of degree 3 in \mathbb{P}^4 .

In the last case, S is either

- (i) a cubic scroll
- (ii) a cone over a rational normal curve in \mathbb{P}^3

 \Rightarrow In each case except the first, we get contradictions. Similarly we may deal with higher rank case.

A (10) A (10) A (10)

S is one of the following

- $S = U_1 \cup U_2$ the union of two planes with $U_1 \cap U_2 = \{p\}$
- $S = U_1 \cup U_2 \cup U_3$ spanning \mathbb{P}^4
- $S = Q \cup U$ with $U \not\subset \langle Q \rangle$
- S is an integral non-degenerated surface of degree 3 in ℙ⁴.

In the last case, S is either

(i) a cubic scroll

(ii) a cone over a rational normal curve in \mathbb{P}^3

 \Rightarrow In each case except the first, we get contradictions. Similarly we may deal with higher rank case.

< 回 > < 三 > < 三 >

S is one of the following

- $S = U_1 \cup U_2$ the union of two planes with $U_1 \cap U_2 = \{p\}$
- $S = U_1 \cup U_2 \cup U_3$ spanning \mathbb{P}^4
- $S = Q \cup U$ with $U \not\subset \langle Q \rangle$
- S is an integral non-degenerated surface of degree 3 in ℙ⁴.

In the last case, S is either

- (i) a cubic scroll
- (ii) a cone over a rational normal curve in \mathbb{P}^3

 \Rightarrow In each case except the first, we get contradictions. Similarly we may deal with higher rank case.

S is one of the following

- $S = U_1 \cup U_2$ the union of two planes with $U_1 \cap U_2 = \{p\}$
- $S = U_1 \cup U_2 \cup U_3$ spanning \mathbb{P}^4
- $S = Q \cup U$ with $U \not\subset \langle Q \rangle$
- S is an integral non-degenerated surface of degree 3 in ℙ⁴.

In the last case, S is either

- (i) a cubic scroll
- (ii) a cone over a rational normal curve in \mathbb{P}^3

 \Rightarrow In each case except the first, we get contradictions. Similarly we may deal with higher rank case

S is one of the following

- $S = U_1 \cup U_2$ the union of two planes with $U_1 \cap U_2 = \{p\}$
- $S = U_1 \cup U_2 \cup U_3$ spanning \mathbb{P}^4
- $S = Q \cup U$ with $U \not\subset \langle Q \rangle$
- S is an integral non-degenerated surface of degree 3 in ℙ⁴.

In the last case, S is either

- (i) a cubic scroll
- (ii) a cone over a rational normal curve in \mathbb{P}^3

 \Rightarrow In each case except the first, we get contradictions. Similarly we may deal with higher rank case.

Let us assume $X = X_{2,4}$ or $X_{3,3}$.

Example (1)

 $U_1, U_2 \cong \mathbb{P}^3$ in \mathbb{P}^5 $U := U_1 \cup U_2$ spans \mathbb{P}^5 , transversal to X with $U_1 \cap U_2 \cap X = \emptyset$ $C = U \cap X$ $\Rightarrow \omega_C \cong \mathcal{O}_C(2)$ and $\mathcal{I}_C(2)$ is globally generated.

Example (2)

 $C = Q_1 \cap Q_2 \cap Q_3 \cap Q_4 \subset \mathbb{P}^5$ $\Rightarrow \omega_C \cong \mathcal{O}_C(2) \text{ and } \mathcal{I}_C(2) \text{ is globally generated.}$

There exist some $X_{2,4}$ and $X_{3,3}$ containing such *C*.

```
Let us assume X = X_{2,4} or X_{3,3}.
```

```
U_1, U_2 \cong \mathbb{P}^3 in \mathbb{P}^5
U := U_1 \cup U_2 spans \mathbb{P}^5, transversal to X with U_1 \cap U_2 \cap X = \emptyset
C = U \cap X
\Rightarrow \omega_C \cong \mathcal{O}_C(2) and \mathcal{I}_C(2) is globally generated.
```

Example (2)

 $C = Q_1 \cap Q_2 \cap Q_3 \cap Q_4 \subset \mathbb{P}^5$ $\Rightarrow \omega_C \cong \mathcal{O}_C(2) \text{ and } \mathcal{I}_C(2) \text{ is globally generated.}$

There exist some $X_{2,4}$ and $X_{3,3}$ containing such *C*.

```
Let us assume X = X_{2,4} or X_{3,3}.
```

 $U_1, U_2 \cong \mathbb{P}^3$ in \mathbb{P}^5 $U := U_1 \cup U_2$ spans \mathbb{P}^5 , transversal to *X* with $U_1 \cap U_2 \cap X = \emptyset$ $C = U \cap X$ $\Rightarrow \omega_C \cong \mathcal{O}_C(2)$ and $\mathcal{I}_C(2)$ is globally generated.

Example (2)

 $C = Q_1 \cap Q_2 \cap Q_3 \cap Q_4 \subset \mathbb{P}^5$ $\Rightarrow \omega_C \cong \mathcal{O}_C(2)$ and $\mathcal{I}_C(2)$ is globally generated.

There exist some $X_{2,4}$ and $X_{3,3}$ containing such *C*.

```
Let us assume X = X_{2,4} or X_{3,3}.
```

```
U_1, U_2 \cong \mathbb{P}^3 in \mathbb{P}^5
U := U_1 \cup U_2 spans \mathbb{P}^5, transversal to X with U_1 \cap U_2 \cap X = \emptyset
C = U \cap X
\Rightarrow \omega_C \cong \mathcal{O}_C(2) and \mathcal{I}_C(2) is globally generated.
```

Example (2)

$$C = Q_1 \cap Q_2 \cap Q_3 \cap Q_4 \subset \mathbb{P}^5$$

 $\Rightarrow \omega_C \cong \mathcal{O}_C(2) \text{ and } \mathcal{I}_C(2) \text{ is globally generated.}$

There exist some $X_{2,4}$ and $X_{3,3}$ containing such *C*.

```
Let us assume X = X_{2,4} or X_{3,3}.
```

```
U_1, U_2 \cong \mathbb{P}^3 in \mathbb{P}^5
U := U_1 \cup U_2 spans \mathbb{P}^5, transversal to X with U_1 \cap U_2 \cap X = \emptyset
C = U \cap X
\Rightarrow \omega_C \cong \mathcal{O}_C(2) and \mathcal{I}_C(2) is globally generated.
```

Example (2)

$$C = Q_1 \cap Q_2 \cap Q_3 \cap Q_4 \subset \mathbb{P}^5$$

 $\Rightarrow \omega_C \cong \mathcal{O}_C(2) \text{ and } \mathcal{I}_C(2) \text{ is globally generated.}$

There exist some $X_{2,4}$ and $X_{3,3}$ containing such *C*.

$S \subset \mathbb{P}^5$: a surface of degree 5 with $\omega_S \cong \mathcal{O}_S(-1)$. $C := S \cap U_3, U_3$: a cubic $\Rightarrow \omega_C \cong \mathcal{O}_C(2)$ For $X := U_3 \cap U'_3$, we get that $\mathcal{I}_C(2)$ is globally general

Example (4)

 $Y = Q_1 \cap Q_2 \cap Q_3 \cap U_3 : \deg(Y) = 24 \text{ and } \omega_Y \cong \mathcal{O}_Y(3)$ Assume $Y = C \cup D$ with $\deg(C) = d$ and D smooth outside $C \cap D$ $\Rightarrow \omega_{Y|C} \cong \omega_C(C \cap D)$ and so $\deg(C \cap D) = d$

If *C* is cut out by U_3 and U'_3 inside $S := Q_1 \cap Q_2 \cap Q_3$, then we have $d = \deg(U'_3 \cap D) = 3(24 - d)$, i.e. d = 18.

 $\Rightarrow C \subset U_3 \cap U_3' =: X_{3,3}$ with globally generated $\mathcal{I}_C(2)$

(a) < (a) < (b) < (b)

 $S \subset \mathbb{P}^5$: a surface of degree 5 with $\omega_S \cong \mathcal{O}_S(-1)$. $C := S \cap U_3, U_3$: a cubic $\Rightarrow \omega_C \cong \mathcal{O}_C(2)$ For $X := U_3 \cap U'_3$, we get that $\mathcal{I}_C(2)$ is globally generated.

Example (4)

 $Y = Q_1 \cap Q_2 \cap Q_3 \cap U_3 : \deg(Y) = 24 \text{ and } \omega_Y \cong \mathcal{O}_Y(3)$ Assume $Y = C \cup D$ with $\deg(C) = d$ and D smooth outside $C \cap D$ $\Rightarrow \omega_{Y|C} \cong \omega_C(C \cap D)$ and so $\deg(C \cap D) = d$

If *C* is cut out by U_3 and U'_3 inside $S := Q_1 \cap Q_2 \cap Q_3$, then we have $d = \deg(U'_3 \cap D) = 3(24 - d)$, i.e. d = 18.

 $\Rightarrow C \subset U_3 \cap U_3' =: X_{3,3}$ with globally generated $\mathcal{I}_C(2)$

3

(a)

 $S \subset \mathbb{P}^5$: a surface of degree 5 with $\omega_S \cong \mathcal{O}_S(-1)$. $C := S \cap U_3, U_3$: a cubic $\Rightarrow \omega_C \cong \mathcal{O}_C(2)$ For $X := U_3 \cap U'_3$, we get that $\mathcal{I}_C(2)$ is globally generated.

Example (4)

 $Y = Q_1 \cap Q_2 \cap Q_3 \cap U_3 : \deg(Y) = 24 \text{ and } \omega_Y \cong \mathcal{O}_Y(3)$ Assume $Y = C \cup D$ with $\deg(C) = d$ and D smooth outside $C \cap D$ $\Rightarrow \omega_{Y|C} \cong \omega_C(C \cap D)$ and so $\deg(C \cap D) = d$

If *C* is cut out by U_3 and U'_3 inside $S := Q_1 \cap Q_2 \cap Q_3$, then we have $d = \deg(U'_3 \cap D) = 3(24 - d)$, i.e. d = 18.

 $\Rightarrow C \subset U_3 \cap U'_3 =: X_{3,3}$ with globally generated $\mathcal{I}_C(2)$

(a) < (a) < (b) < (b)

 $S \subset \mathbb{P}^5$: a surface of degree 5 with $\omega_S \cong \mathcal{O}_S(-1)$. $C := S \cap U_3, U_3$: a cubic $\Rightarrow \omega_C \cong \mathcal{O}_C(2)$ For $X := U_3 \cap U'_3$, we get that $\mathcal{I}_C(2)$ is globally generated.

Example (4)

 $Y = Q_1 \cap Q_2 \cap Q_3 \cap U_3 : \deg(Y) = 24 \text{ and } \omega_Y \cong \mathcal{O}_Y(3)$ Assume $Y = C \cup D$ with $\deg(C) = d$ and D smooth outside $C \cap D$ $\Rightarrow \omega_{Y|C} \cong \omega_C(C \cap D)$ and so $\deg(C \cap D) = d$

If C is cut out by U_3 and U'_3 inside $S := Q_1 \cap Q_2 \cap Q_3$, then we have $d = \deg(U'_3 \cap D) = 3(24 - d)$, i.e. d = 18.

 $\Rightarrow C \subset U_3 \cap U'_3 =: X_{3,3}$ with globally generated $\mathcal{I}_C(2)$

(a)

 $S \subset \mathbb{P}^5$: a surface of degree 5 with $\omega_S \cong \mathcal{O}_S(-1)$. $C := S \cap U_3, U_3$: a cubic $\Rightarrow \omega_C \cong \mathcal{O}_C(2)$ For $X := U_3 \cap U'_3$, we get that $\mathcal{I}_C(2)$ is globally generated.

Example (4)

 $Y = Q_1 \cap Q_2 \cap Q_3 \cap U_3 : \deg(Y) = 24 \text{ and } \omega_Y \cong \mathcal{O}_Y(3)$ Assume $Y = C \cup D$ with $\deg(C) = d$ and D smooth outside $C \cap D$ $\Rightarrow \omega_{Y|C} \cong \omega_C(C \cap D)$ and so $\deg(C \cap D) = d$

If C is cut out by U_3 and U'_3 inside $S := Q_1 \cap Q_2 \cap Q_3$, then we have $d = \deg(U'_3 \cap D) = 3(24 - d)$, i.e. d = 18.

 $\Rightarrow C \subset U_3 \cap U'_3 =: X_{3,3}$ with globally generated $\mathcal{I}_C(2)$

< 日 > < 同 > < 回 > < 回 > < □ > <

Theorem

Let \mathcal{E} be globally generated of rank 2 with $c_1 = 2$ and $h^0(\mathcal{E}(-1)) = 0$.

- **1** On $X_{2,4}$, we have Example (1), (2)
- On X_{3,3}, we have Example (1), (2), (3), (4)

except the case of $c_2 = 16$.

Corollary

 ${\cal E}$: globally generated of rank 2 on X with $c_1 \leq 2$

- **2** $X_{3,3}$: $c_2 \in \{0, 9, 12, 15, 16, 18\}$

Theorem

Let \mathcal{E} be globally generated of rank 2 with $c_1 = 2$ and $h^0(\mathcal{E}(-1)) = 0$.

- **1** On $X_{2,4}$, we have Example (1), (2)
- On X_{3,3}, we have Example (1), (2), (3), (4)

except the case of $c_2 = 16$.

Corollary

 \mathcal{E} : globally generated of rank 2 on X with $c_1 \leq 2$

1
$$X_{2,4}$$
: $c_2 \in \{0, 4, 8, 11, 16\}$

2
$$X_{3,3}$$
: $c_2 \in \{0, 9, 12, 15, 16, 18\}$

 Ψ : the scheme-theoretic base locus of $H^0(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(2))$ Φ : the union of the irreducible components of Ψ_{red} containing *C*

• $\Psi \cap X = C$ as schemes

• $deg(\Phi) \le 2^{5-dim(\Phi)}$ and the equality holds iff $\Phi = \Psi$ is equidimensional and complete intersection of hyperquadrics.

 $S_i :=$ a fixed reduced and irreducible component $S_i \subset \Psi$ containing C_i .

•
$$s = 1$$
, i.e. set $S = S_1 \Rightarrow \dim(S) \in \{1, 2\}$.
 \Rightarrow Example (2)-(4).

• s = 2:

$$1 \quad i \neq j \Rightarrow S_i \neq S_j$$

2 dim
$$(S_i) \ge 2$$
 for all i

3 There exists *i* with
$$\dim(S_i) = 3$$

dim
$$(S_i) = 3$$
 for all i

get contradiction except Example(1).

 Ψ : the scheme-theoretic base locus of $H^0(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(2))$ Φ : the union of the irreducible components of Ψ_{red} containing *C*

- $\Psi \cap X = C$ as schemes
- $deg(\Phi) \le 2^{5-dim(\Phi)}$ and the equality holds iff $\Phi = \Psi$ is equidimensional and complete intersection of hyperquadrics.
- $S_i :=$ a fixed reduced and irreducible component $S_i \subset \Psi$ containing C_i .

•
$$s = 1$$
, i.e. set $S = S_1 \Rightarrow \dim(S) \in \{1, 2\}$.
 \Rightarrow Example (2)-(4).
• $s = 2$:
• $i \neq j \Rightarrow S_i \neq S_j$
• $\dim(S_i) \ge 2$ for all i
• There exists i with $\dim(S_i) = 3$
• $\dim(S_i) = 3$ for all i
• get contradiction except Example(1).

 Ψ : the scheme-theoretic base locus of $H^0(\mathbb{P}^5, \mathcal{I}_{C,\mathbb{P}^5}(2))$ Φ : the union of the irreducible components of Ψ_{red} containing *C*

- $\Psi \cap X = C$ as schemes
- $deg(\Phi) \le 2^{5-dim(\Phi)}$ and the equality holds iff $\Phi = \Psi$ is equidimensional and complete intersection of hyperquadrics.

 $S_i :=$ a fixed reduced and irreducible component $S_i \subset \Psi$ containing C_i .

•
$$s = 1$$
, i.e. set $S = S_1 \Rightarrow \dim(S) \in \{1, 2\}$.
 \Rightarrow Example (2)-(4).
• $s = 2$:
• $i \neq j \Rightarrow S_i \neq S_j$
• $\dim(S_i) \ge 2$ for all i
• $\dim(S_i) = 3$ for all i

Thank You Very Much !!!

3