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Integrability by quadratures

An autonomous system of differential equations,

ẋ i = f i (x1, . . . , xn) , i = 1, . . . , n, (1)

is geometrically interpreted in terms of a vector field Γ in a
n-dimensional manifold M with a local expression

Γ =
n∑

i=1

f i (x1, . . . , xn)∂x i .

The integral curves of Γ are the solutions of (1). Integrating the
system amounts to determine its general solution.

In particular, we speak about the integrability by quadratures if you
can determine the solutions by means of a finite number of algebraic
operations and integrations of known functions. Historically, this is
the first concept of integrability.
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Rectification

Note, however, that the concept of integrability by quadratures is
computational and not geometric, as it depends on coordinates in
which we work.
The result of the straightening out (rectification) Theorem asserts the
existence of coordinates (y1, . . . , yn) in a neighbourhood of a point
where Γ is different from zero such that

Γ = ∂yn .

The new coordinates y1, . . . , yn−1, are constants of motion and
therefore we cannot find easily such coordinates in a general case.
It is clear that the if we use such rectifying coordinates for Γ the
integration is immediate, the solution being

yk(t) = yk0 , k = 1, . . . , n − 1, yn(t) = yn0 + t.

This proves that the concept of integrability by quadratures depends
on the choice of initial coordinates, because using these rectifying
coordinates the system is always integrable by quadratures.
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Integrability by quadratures - examples

Consider first the non-autonomous inhomogeneous linear differential
equation in dimension one,

ẋ = c0(t) + c1(t) x ,

which is well known to be integrable in terms of two quadratures:

x(t) = exp

(∫ t

0
c1(t ′) dt ′

)[
x0 +

∫ t

0
exp

(
−
∫ t′

0
c1(t ′′) dt ′′

)
c0(t ′) dt ′

]
.

Another example is given by the nonautonomous system of differential
equations

ẋ i =
n∑

j=1

H i
j x

j + bi (t), i = 1, . . . , n,

where H i
j are real numbers. Then, the solution starting from the

point x0 is given by

x(t) = exp (Ht)

[
x0 +

∫ t

0
exp

(
−Ht ′

)
b(t ′)dt ′

]
.

J.Grabowski (IMPAN) Integrability by quadratures Larnaca, 10-14/06/2018 5 / 20



Solvable Lie algebras

Recall that the derived algebra of a Lie algebra (g, [·, ·]) is the
subalgebra g1 of g, defined by g1 = [g, g], while the derived series is
the sequence of Lie subalgebras defined by g0 = g and

gk+1 = [gk , gk ], k ∈ N .
Such a sequence satisfies gk+1 ⊂ gk , and the Lie algebra g is said to
be solvable if the derived series eventually arrives at the zero
subalgebra, i.e. there exists the smallest natural number m such that
gm+1 = {0} or, in other words, gm is Abelian.

Example. The Lie algebra of upper-triangular matrices is solvable.
∗

************

*
0


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Lie’s Theorem

A classical example is the celebrated result due to Lie, who
established the following theorem :

Theorem

If n vector fields, X1,. . . ,Xn, which are linearly independent at each point
of an open set U ⊂ Rn, span a solvable Lie algebra and satisfy
[X1,Xi ] = λi X1 with λi ∈ R, then X1 is integrable by quadratures in U.

A different result is due to Kozlov.

Theorem

Let vector fields, X1,. . . ,Xn, be linearly independent at each point of an
open set U ⊂ Rn and span a Lie algebra L such that the corresponding
operators of the adjoint representation adXi

= [Xi , ·] have a common
triangular form

[Xi ,Xj ] =
i∑

k=1

Cij
k Xk , Cij

k ∈ R .

Then, all the vector fields Xi , i = 1, . . . , n, are integrable by quadratures.
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Sketch of the Lie’s proof for n = 2

The differential equation can be integrated if we are able to find a
first integral F for X1, i.e. X1F = 0, such that dF 6= 0 in U.

As X1 and X2 are two linearly independent vector fields such that
[X1,X2] = λ2 X1, there exists a 1-form α0 such that i(X1)α0 = 0,
i(X2)α = 1.

We can see that α is then closed, because X1 and X2 generate X(R2)
and

dα(X1,X2) = X1α(X2)−X2α(X1)+α([X1,X2]) = α([X1,X2]) = λ2 α(X1) = 0.

The (locally defined) function F such that

F (x1, x2) =

∫
γ(x1,x2)

α,

where γ(x1,x2) is any curve joining a reference point (x10 , x
2
0 ) ∈ U with

the point (x1, x2), is the first integral we were looking for.
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Example

The dynamics is given by the vector field X1, defined in
M = T∗R2 = R2 × R2 with coordinates (x , y , px , py ), by

X1 = px∂x + py∂y −
k2
y2/3

∂px +
2

3

k2 x + k3
y5/3

∂py ,

where k2 and k3 are arbitrary constants.

Now, with Xi , i = 2, 3, 4, we denote the vector fields

X2 =

(
6 p2x + 3 p2y + k2

6x

y2/3
+ k3

6

y2/3

)
∂x + (6 pxpy + 9 k2y

1/3)∂y

− k2
6

y2/3
px∂px +

(
4k2

x

y5/3
− 3

1

y2/3
py

)
∂py ,
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Example

X3 =

(
4 p3x + 4 pxp

2
y +

8(k2x + k3)

y2/3
px + 12k2 y

1/3 py

)
∂x

+
(
4p2x py + 12k2 y

1/3 px
)
∂y − 4k2

1

y2/3
p2x ∂px

+

(
8

3

k2x + k3
y5/3

p2x − 4k2
1

y2/3
pxpy − 12 k22

1

y1/3

)
∂py ,

and

X4 =(
6p5x + 12 p3xp

2
y + 24

k3 + k2x

y2/3
p3x + 108 k2y

1/3p2xpy + 324 k22y
2/3px

)
∂x

+
(

6 p4xpy + 36 k2y
1/3p3x

)
∂y − 6

(
k2
y2/3

p4x − 972k32

)
∂px

+

(
4
k3 + k2x

y5/3
p4x − 12

k2
y2/3

− 108 k22
1

y1/3
p2x

)
∂py .
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Example

Then, we have
[X1,Xi ] = 0 , i = 2, 3, 4.

[X2,X3] = 0 , [X2,X4] = 1944 k32 X1 , [X3,X4] = 432 k32 X2 .

Therefore, X1,X2,X3,X4 generate a four-dimensional solvable real Lie
algebra L and are linearly independent in R4.

In view of Lie’s Theorem,

X1 = px∂x + py∂y −
k2
y2/3

∂px +
2

3

k2 x + k3
y5/3

∂py ,

is integrable by quadratures

and in view of Kozlov’s Theorem all X1,X2,X3,X4 are integrable by
quadratures.
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Main result

We want to generalize the mentioned theorems of Lie and Kozlow on
a finite-dimansional solvable Lie algebra L of vector fields on M by

skipping the assumption that the dimension of L equals dim(M),

skipping the triangularizability assumption.

Hence, our main result can be formulated as follows.

Theorem

If L is a finite-dimensional solvable and transitive real Lie algebra of vector
fields on a manifold M, then each vector field Γ ∈ L is integrable by
quadratures.

We will proceed by induction on n = dim(M) using the following
lemma.

Lemma

Any solvable finite-dimensional real Lie algebra L contains an Abelian Lie
ideal A of dimension 1 or 2.
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Abelian Lie ideals

Proof.

Another important Lie theorem ensures that every finite-dimensional
representation of a solvable Lie algebra over an algebraically closed
field has an eigenvector common to all the operators of the
representation.

If we consider the adjoint representation, the theorem implies that
any finite-dimensional complex, solvable Lie algebra has a one
dimensional ideal.

Therefore, we can consider the complexified Lie algebra LC = L⊕ iL
and its adjoint representation for which we can use the standard Lie
theorem. As there is a common eigenvector ν = ν1 + iν2, the vectors
ν1, ν2 ∈ L span an Abelian Lie ideal A of dimension 1 or 2.

Indeed, A is clearly a Lie ideal, [x , ν] = [x , ν1] + i [x , ν2] = λ(x)ν, and
if dim(A) = 2, then [ν2, ν1] = [ν2, ν] = λν, so λ = 0.
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Rectification of Abelian algebras of vector fields

Definition

We say that an Abelian subalgebra of vector fields A is straightened out,
(or rectified) by quadratures in an open set U if, by quadratures, we can
find local coordinates (Q1, . . . ,Qn) in U such that the set
{∂Q1 , . . . , ∂Qr } ⊂ A and it generates the same distribution as A.

Proposition

Any Abelian ideal of a transitive finite-dimensional solvable Lie algebra of
vector fields, can be straightened out by quadratures.

Example

Let L = 〈∂x , ∂y , x∂x , y∂y , y2∂x , y∂x〉 . be a solvable and transitive Lie
algebra of vector fields on R2. The associated descending series is
L1 = 〈∂x , ∂y , y2∂x , y∂x〉, A = L2 = 〈∂x , y∂x〉, L3 = {0}.
A is a rectified Abelian ideal with respect to coordinates x , y .
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Proof of the main theorem

We shall use induction on the dimension n of the manifold M, but as
the considerations are local, we can as well assume that M = Rn.

The case n = 0 is trivial, so assume that n ≥ 1 and let us pick up an
Abelian ideal A ⊂ L of dimension one or two, whose existence is
granted for real solvable finite-dimensional Lie algebras.

Due to the fact that L is transitive, we know that the distribution DA

spanned by A is regular, say of rank r ≤ 2. As it is also involutive, it
generates a foliation FA.

Moreover, one can obtain by quadratures a coordinate system
Q1, . . . ,Qn such that DA is generated by ∂Q1 , . . . , ∂Qr ∈ A and leaves
of FA are the level sets of the functions Qr+1, . . . ,Qn.

We will first consider the case in which the dimension of the Abelian
Lie algebra A coincides with the dimension of the integral leaves of
the foliation FA, i.e. dim(A) = r .
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Proof of the main theorem

For Γ ∈ L, we first conclude that [∂Q i , Γ] =
∑r

j=1H
j
i ∂Q j implies that

Γ =
r∑

j=1

(
r∑

i=1

H j
iQ

i + bj(Qr+1, . . . ,Qn)

)
∂Q j + Γ̄ ,

where H j
i ∈ R, and bj as well as the vector field

Γ̄ =
∑n

s=r+1 γ
s(Qr+1, . . . ,Qn)∂Qs depend on coordinates Qr+1, . . . ,Qn

only. This leads to a system which in coordinates reads

Q̇ j =
r∑

i=1

H j
iQ

i + bj(Qr+1, . . . ,Qn) , j = 1, . . . , r , (2)

Q̇s = γs(Qr+1, . . . ,Qn) , s = r + 1, . . . , n . (3)

Solving (3) by the inductive assumption, we end up with

Q̇ j =
r∑

i=1

H j
iQ

i + bj(Qr+1(t), . . . ,Qn(t)) , j = 1, . . . , r ,

which can be integrated by quadratures.
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Proof of the main theorem

Now, we should still consider the possibility that the dimension of A is
two, but the dimension of the integral leaves of the foliation DA is
one.

In this case, we chose a one-dimensional subspace A1 ⊂ A, whose
generator X1 spans DA. As we already know, X1 can be integrated by
quadratures and can be taken as ∂Q1 in our system of coordinates.

From [∂Q1 , Γ] ∈ FA we get that Γ must be of the form

Γ =
(
f (Q2, . . . ,Qn)Q1 + w(Q2, . . . ,Qn)

)
∂Q1+

n∑
s=2

γs(Q2, . . . ,Qn)∂Qs .

We can first solve, by inductive assumption,

Q̇s = γs(Q2, . . . ,Qn) , s = 2, . . . , n ,

and so reduce to
Q̇1 = f (t)Q1 + w(t)

which also can be solved by quadratures.
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Example

To see our method in action, consider the Lie algebra of vector fields
in R2 spanned by

X1 = ∂x , X2 = y∂x , J = xy∂x + (1 + y2)∂y .

The Lie algebra L is solvable and A = 〈∂x , y∂x〉 is its only non trivial
ideal.

If we take Γ = J as the dynamical vector field, we immediately see
that the Lie’s procedure cannot be applied, as J is not an element of
any commutative ideal in L.

Also the mentioned Kozlov’s result is not applicable, since the algebra
is not triangular and the vector fields are not independent at every
point.

Take A1 = 〈∂x〉. The equation for the coordinate x in the fibre is

ẋ = xy .
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Example

The differential equation corresponding to the projection Γ̄ of the
dynamical vector field in coordinate y is

ẏ = 1 + y2 .

This can be immediately integrated to give y(t) = y0 + tan t.

Substituting into the equation in the fibre, we get

ẋ = (y0 + tan t)x ,

whose solution can be expressed as x(t) = x0 exp(y0t)/ cos t.
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THANK YOU FOR YOUR ATTENTION!
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