Secondary Calculus

Luca Vitagliano

University of Salerno
INFN, Gruppo Collegato di Salerno

XXII IWDGTM
Będlewo, August 19–26, 2007
Secondary Calculus generalizes standard calculus on manifolds to the (functional) space of solutions of a given PDE by using only differential geometry and homological algebra in the environment of an infinite jet manifold. In a sense

Secondary = Functional, Variational

Thus, Secondary Calculus has relevant applications to Physics and, in particular, Field Theory. As an example the geometry of the Covariant Phase Space may be formalized within Secondary Calculus.
1 What is Differential Calculus?

2 Horizontal Calculus on a PDE

3 Secondary Objects

4 Technical Issues

5 What is Missing in SC?!
Outline: Part II

6 The Covariant Phase Space

7 The Gauge Distribution

8 The Peierls Brackets

9 Future Perspectives
Differential Calculus may be formalized over any associative, unitary, (graded) commutative algebra A over a ring R. In the case $A = C^\infty(M)$ the theory reduces to standard calculus on manifolds.

Example

Let $P, Q \in \text{Mod}_A$. A k–th order, Q–valued, differential operator over P is defined to be any R–linear operator $\Box : P \rightarrow Q$ such that

$$[a_0, [a_1, [\cdots [a_k, \Box] \cdots]]]) = 0, \quad \forall a_0, a_1, \ldots, a_k \in A.$$

$$\text{Diff}_k(P, Q) = \{ \Box : P \rightarrow Q \mid \Box \text{ is a } k\text{–th order differential operator} \}$$

Remark

$\text{Diff}_k(P, Q)$ is an A–module.
Remark

\[\text{Mod}_A \ni Q \mapsto \text{Diff}_k(P, Q) \in \text{Mod}_A \]

is a functor and a representable one. I.e., for any \(Q \) there is a canonical isomorphism of modules

\[\text{Diff}_k(P, Q) \cong \text{Hom}_A(\mathcal{J}^k(P), Q) \]

with \(\mathcal{J}^k(P) = \{ k - \text{jets of elements in } P \} \).

A number of functors may be similarly introduced in \(\text{Mod}_A \). An object of differential calculus is any among these functors, their repr. objects, etc.

Example

The de Rham complex \(0 \to A \xrightarrow{d} \Lambda^1(A) \xrightarrow{d} \cdots \to \Lambda^q(A) \xrightarrow{d} \cdots \) is an object of differential calculus.
Remark

The solution space \(M \) of a PDE may be understood as the space of maximal integral submanifold of a distribution.

\[
\begin{align*}
(\ldots, x^\mu, \ldots, u^j_\sigma, \ldots) & \in J^k_\pi \\
(\ldots, x^\mu, \ldots, u^j, \ldots) & \in E \\
(\ldots, x^\mu, \ldots) & \in M
\end{align*}
\]

The Cartan distribution over \(J^\infty_\pi \) restricts to \(\mathcal{E} \)

\[
\mathcal{C} = \langle \ldots, D^\mathcal{E}_\mu, \ldots \rangle, \quad D^\mathcal{E}_\mu = \left(\frac{\partial}{\partial x^\mu} + u^j_\sigma + \mu \frac{\partial}{\partial u^j_\sigma} \right)|_{\mathcal{E}}
\]

Remark

\(\{ \text{solutions to } \mathcal{E} \} = \{ \text{maximal integral submanifolds of } (\mathcal{E}, \mathcal{C}) \} !!! \)
The tangent bundle to a differential equation splits \(T\mathcal{E} \cong \mathcal{C} \oplus \mathcal{V}\mathcal{E} \).

The Variational Bi–Complex and the \(\mathcal{C}–\)Spectral Sequence

\[
\begin{array}{cccccc}
\ldots & \xrightarrow{d} & \Lambda^{q,p+1}(\mathcal{E}) & \xrightarrow{\bar{d}} & \Lambda^{q+1,p+1}(\mathcal{E}) & \xrightarrow{\bar{d}} & \ldots \\
\uparrow{dv} & & \uparrow{dv} & & \uparrow{dv} & & \uparrow{dv} \\
\ldots & \xrightarrow{d} & \Lambda^{q,p}(\mathcal{E}) & \xrightarrow{\bar{d}} & \Lambda^{q+1,p}(\mathcal{E}) & \xrightarrow{\bar{d}} & \ldots \\
\end{array}
\]

\[
\{(CE_r(\mathcal{E}), d_r)\}_r \quad (CE_0(\mathcal{E}), d_0) \quad (\Lambda(\mathcal{E}), \bar{d})
\]

\[
CE^p,q_0(\mathcal{E}) \cong \Lambda^{q,p}(\mathcal{E}) \cong C^p \Lambda^p(\mathcal{E}) \otimes \bar{\Lambda}^q(\mathcal{E})
\]

\[
C^p \Lambda^p(\mathcal{E}) = \langle \ldots, i_\mathcal{E}^* (\omega^j_{\sigma_1} \wedge \ldots \wedge \omega^j_{\sigma_p}), \ldots \rangle, \quad \omega^j_\sigma = du^j_\sigma - u^j_{\sigma+\mu} dx^\mu
\]

\[
\bar{\Lambda}^q(\mathcal{E}) = \langle \ldots, i_\mathcal{E}^* (\bar{d}x^{\mu_1} \wedge \ldots \wedge \bar{d}x^{\mu_q}), \ldots \rangle, \quad \bar{d}x^\mu = dx^\mu.
\]
\(\mathcal{C} \) determines a “horizontal” differential calculus on \(\mathcal{E} \).

Definition

Let \(P, Q \in \text{Mod}_{\mathcal{F}(J^\infty \pi)} \) be modules of sections of vector bundles over \(J^\infty \pi \). A linear \(\mathcal{C} \)–diff. operator \(\Box : P \to Q \) is one locally in the form

\[
\Box(p) = \Box_{aA}^\sigma (D_{\sigma} p^a) \xi^A, \quad p = p^a e_a, \quad D_{\sigma} = D^\sigma_1 \circ \cdots \circ D^\sigma_n, \quad \Box_{aA}^\sigma \in \mathcal{F}(\mathcal{E})
\]

\(\ldots, e_a, \ldots \) a local basis of \(P; \quad \ldots, \xi^A, \ldots \) a local basis of \(Q \).

Any \(\mathcal{C} \)–differential operator \(\Box \) restricts to \(\mathcal{E} \): \(\Box \mapsto \Box_\mathcal{E} \).

Horizontal jet–spaces may be also defined. \(P \) module of sections of a vector bundle over \(\mathcal{E} \Rightarrow \overline{J}^k(P) \) module of horizontal jets of elements in \(P \), \(k \leq \infty \).

\[
\Box : P \to Q \quad \Rightarrow \quad \overline{\Psi}_\Box : \overline{J}^k(P) \to Q \quad \Rightarrow \quad \overline{\Psi}_\Box^\infty : \overline{J}^\infty(P) \to \overline{J}^\infty(Q)
\]
Adjoint Operators

P – module of sections of a vector bundle over \mathcal{E}.

$P^* = \text{Hom}(P, \mathcal{F}(\mathcal{E}))$ – dual module.

$\hat{P} = P^* \otimes \Lambda^n(\mathcal{E})$ ($n = \dim M$) – adjoint module.

$\Box : P \to Q$ a \mathcal{C}–diff. operator $\Rightarrow \widehat{\Box} : \hat{Q} \to \hat{P}$ the adjoint operator, i.e.,

$$
\widehat{\Box}(\hat{q}) = (-1)^{|\sigma|} D_{\sigma}(\square_{aA}^\sigma \hat{q}^A)(e^a \otimes d^n x)
$$

$$
\hat{q} = \hat{q}^A(\varepsilon_A \otimes d^n x), \quad d^n x = dx^1 \wedge \cdots \wedge dx^n
$$

\ldots, e^a, \ldots and $\ldots, \varepsilon_A, \ldots$ dual bases of \ldots, e_a, \ldots and $\ldots, \varepsilon^A, \ldots$

For $\Delta : P \to Q$ and $\nabla : Q \to R$ \mathcal{C}–differential operators,

$$
\widehat{\Delta} = \Delta \text{ and } \widehat{\nabla} \circ \widehat{\Delta} = \widehat{\Delta} \circ \widehat{\nabla}.
$$
What is Differential Calculus?

Horizontal Calculus on a PDE
Secondary Objects
Technical Issues
What is Missing in SC?!

A Geometric Setting for Functional Spaces
The \(C \)-Spectral Sequence
\(C \)-differential operators
\(C \)-connections and \(C \)-modules

\(P \) – module of sections of a vector bundle \(O \to E \) over \(E \)

Algebraic Definition

A \(C \)-connection in \(P \) is an \(F(E) \)-linear corresp. \(\nabla : C \supset X \mapsto \nabla_X \), such that \(\nabla_X : P \to P \) is a der-operator (covariant derivative) over \(X \), i.e.

\[
\nabla_X(fp) = f\nabla_X p + X(f)p, \quad f \in F(E), \ p \in P.
\]

A \(\nabla \) is flat if \([\nabla_X, \nabla_Y] = \nabla_{[X,Y]}\), \(X, Y \subset C \)

Geometric Definition

A \(C \)-connection in \(O \) is an \(n \)-dimensional hor. distribution \(C(O) \) over \(O \) which projects isomorphically onto \(C \). \(C(O) \) is flat if it is involutive.

Definition

The module \(P \) of sections of a vector bundle over \(E \) endowed with a flat \(C \)-connection is called a \(C \)-module.
Example 1
the module of vertical vector fields $VD(\mathcal{E})$:

$$\nabla_X Z = [X, Z]^V, \quad X \subset \mathcal{C}, \ Z \in VD(\mathcal{E}).$$

Example 2
the module of Cartan p–forms $C^p \Lambda^p(\mathcal{E})$

$$\nabla_X \omega = L_X \omega, \quad X \subset \mathcal{C}, \ \omega \in C^p \Lambda^p(\mathcal{E}).$$

Example 3
$\Delta : P \to P_1$ a \mathcal{C}–differential operator and $\Psi^\Delta_{\infty} : J^\infty(P) \to J^\infty(P_1)$ the associated horizontal jet prolongation. $R_\Delta = \ker \Psi^\Delta_{\infty} \subset J^\infty(P)$:

$$\nabla_X (f \cdot j^\infty(p)) = X(f) \cdot j^\infty(p), \quad X \subset \mathcal{C}, \ f \in \mathcal{F}(\mathcal{E}), \ p \in P.$$
There is a de Rham–like complex associated with a C–module P

$$\cdots \rightarrow P \otimes \Lambda^q(E) \xrightarrow{\overline{d}_P} P \otimes \Lambda^{q+1}(E) \xrightarrow{\overline{d}_P} \cdots \quad (\star)$$

Definition

The graded cohomology vector space of (\star), $\overline{H}^\bullet(P)$, is called the **horizontal cohomology** space of P. \overline{d}_P is a C–differential operator.

Example

$P = C^p \Lambda^p(E) \Rightarrow \overline{d}_P = \overline{d}$, (\star) is the p–th row of the variational bi–complex and $\overline{H}^\bullet(C^p \Lambda^p(E)) = CE^{p,\bullet}_1(E)$.

A connection in a bundle π over a manifold M, $P = \Gamma(\pi)$ may be used to **integrate** a (suitably supported) element $p \in P \otimes \Lambda^q(M)$ over a q–fold $\gamma \subset M$. Similarly, the flat C–connection in a C–module P may be used to **integrate** an element $p \in P \otimes \Lambda^q(E)$ over an integral q–fold of C.
Horizontal Calculus on a PDE: Summary

On the infinite prolongation E of a differential equation E_0, the Cartan distribution \mathcal{C} determines

- the space M of solutions of E_0;
- the class of \mathcal{C}–modules, P,
- the class of associated de Rham–like complexes, $(P \otimes \Lambda^\bullet(E), \bar{d}_P)$,
- the class of horizontal cohomology spaces, $\bar{H}^\bullet(P)$.
What is Differential Calculus?
Horizontal Calculus on a PDE
Secondary Objects
Technical Issues
What is Missing in SC?!

Universal Linearization
Secondary First Order Calculus
The Secondarization Scheme
The Secondary Exterior Differential

\[\mathcal{E} \xrightarrow{i_{\mathcal{E}}} J^{\infty, \pi} \xrightarrow{F} J^{\infty, \nu} \]
\[\mathcal{E}_0 \xrightarrow{F_0} V \]
\[\pi_k \quad \nu \quad M \]
\[\ell^E_F(\chi) = (\frac{\partial F_\alpha}{\partial u_j} D_\sigma \chi^j)[x,u] = 0 \]
\[\chi = (\ldots, \chi^j[x,u], \ldots) \]

Proposition
\[H^0(\mathcal{V}D(\mathcal{E})) \simeq \ker \ell^E_F. \]
$H^0(\text{VD}(\mathcal{E}))$ is a space of (local) vector fields on M.

Definition

$$D(M) = \overline{H}^\bullet(\text{VD}(\mathcal{E})) = \{\text{secondary vector fields on } M\}.$$

Another example: elements in $\overline{H}^n(C^p\Lambda^p(\mathcal{E})) \simeq CE_1^{p,n}(\mathcal{E})$ identify with variational p–forms on \mathcal{E}. For $p = 0$, $[\omega] \in \overline{H}^q(\mathcal{F}(\mathcal{E})) \simeq CE_1^{0,q}(\mathcal{E})$ identifies with the functional

$$M \ni x \mapsto \int_{\gamma} j^\infty_*(x)(\omega), \quad \gamma \text{ a suitable } q\text{–fold in } M.$$

$\overline{H}^q(C^p\Lambda^p(\mathcal{E}))$ is a space of (local) differential p–forms on M.

Definition

$$\Delta^p(M) = \overline{H}^\bullet(C^p\Lambda^p(\mathcal{E})) \simeq CE_1^{p,\bullet}(\mathcal{E}) = \{\text{secondary } p\text{–forms on } M\}.$$

All standard operations with vector fields and forms have secondary analogues, defined in purely algebraic (and homological) way!
So far I defined

- \(M = \{\text{secondary points}\} = \{\text{solutions } x \text{ of } E_0\}, \)
- \(D(M) = \{\text{secondary vector fields}\} = \overline{H}^\bullet(V D(E)), \)
- \(\Lambda^\bullet(M) = \{\text{secondary differential forms}\} = \overline{H}^\bullet(C \cdot \Lambda^\bullet(E)). \)

Secondaryization Principle

The secondary version \(\Phi(M) \) of an object \(\Phi \) of differential calculus is the horizontal cohomology of the \(C \)–"module" of vertical analogues of "elements" in \(\Phi \).

The following **Secondaryization Scheme** may be used to define \(\Phi(M) \):

1. Define a vertical version \(V \Phi(E) \) of \(\Phi \) over \(E \),
2. Note that \(V \Phi(E) \) has got a canonical \(C \)–"module" structure,
3. Put \(\Phi(M) = \overline{H}^\bullet(V \Phi(E)). \)
Apply the Secondarization Scheme to the de Rham Complex.

1. The vertical version of the de Rham complex over E is the vertical de Rham complex $\cdots \to C^p \Lambda^p(E) \xrightarrow{d^V} C^{p+1} \Lambda^{p+1}(E) \xrightarrow{d^V} \cdots$

2. $C^\bullet \Lambda^\bullet(E)$ has a C–module structure and d^V is compatible with it, i.e., it extends to the var. bi–complex $(C^\bullet \Lambda^\bullet(E) \otimes \overline{\Lambda}^\bullet(E), d, d^V)$.

3. Put $\Lambda^p(M) = \overline{H}^\bullet(C^p \Lambda^p(E)) \simeq CE^p_1(\bullet)(E)$. moreover d^V passes in horizontal cohomology, giving a complex (secondary de Rham complex) $\cdots \to \Lambda^p(M) \xrightarrow{d} \Lambda^{p+1}(M) \xrightarrow{d} \cdots$.

$(\Lambda^\bullet(M), d) = (CE^\bullet_1(\bullet)(E), d^\bullet_1(\bullet))$.

Calculus of variations is an aspect of Secondary Calculus. Put $\mathcal{E} = J^\infty \pi$.

Then $M = \{\text{sections of } \pi\}$. $S = [L] \in \overline{H}^n(\mathcal{F}(\mathcal{E})) \subset C^\infty(M)$ is an action functional: $L = \mathcal{L}[x, u] d^n x$, $S \simeq \int \mathcal{L}[x, u] d^n x$ and

$$dS = [d^V L] \equiv (\ldots, (-1)^\sigma D_\sigma(\frac{\partial \mathcal{L}}{\partial u_\sigma}), \ldots) \in \Lambda^1(M).$$
Theorem [Goldschmidt]

Let $\Delta : P \to P_1$ be a C–differential operator. There exists a formal resolution of $\ker \Delta$, i.e. a formally exact complex (compatibility complex) of C–diff. operators $P \xrightarrow{\Delta} P_1 \xrightarrow{\Delta_1} \cdots \to P_q \xrightarrow{\Delta_q} \cdots$, i.e. such that the sequence $\overline{J}^\infty(P) \xrightarrow{\overline{\Psi}_\Delta^\infty} \overline{J}^\infty(P_1) \xrightarrow{\overline{\Psi}_{\Delta_1}^\infty} \cdots \to \overline{J}^\infty(P_q) \xrightarrow{\overline{\Psi}_{\Delta_q}^\infty} \cdots$ is exact.

Theorem [Spencer]

Horizontal cohomologies of $R_\Delta = \ker \overline{\Psi}_\Delta^\infty$ are isomorphic to cohomologies of any compatibility complex of Δ.

Corollary

Horizontal cohomologies of R^*_Δ are isomorphic to homologies of any adj. complex $\hat{P} \xleftarrow{\hat{\Delta}} \hat{P}_1 \xleftarrow{\cdots} \hat{P}_{q-1} \xleftarrow{\hat{\Delta}_q} \hat{P}_q \xleftarrow{\cdots}$ of a compat. complex of Δ.
The length of a compatibility complex of Δ measures the “degree of overdeterminacy” of the equation $\Delta(p) = 0$.

Proposition

$VD(\mathcal{E}) \cong R_{\ell_F^\mathcal{E}}$ and therefore hor. cohom. of $VD(\mathcal{E})$ is isomorphic to cohom. of a compatibility complex $\mathcal{E} \xrightarrow{\ell_F^\mathcal{E}} P_1 \xrightarrow{\Delta_1} \cdots \xrightarrow{} P_q \xrightarrow{\Delta_q} \cdots$.

Then, if equation $\ell_F^\mathcal{E}(\chi) = 0$ is not overdetermined

$$
\overline{H}^q(VD) \cong \begin{cases}
\text{ker } \ell_F^\mathcal{E} & \text{if } q = 0 \\
\text{coker } \ell_F^\mathcal{E} & \text{if } q = 1 \\
0 & \text{if } q > 1
\end{cases},
\overline{H}^q(C^1 \Lambda^1) \cong \begin{cases}
\text{coker } \widehat{\ell}_F^\mathcal{E} & \text{if } q = n \\
\text{ker } \widehat{\ell}_F^\mathcal{E} & \text{if } q = n - 1 \\
0 & \text{if } q < n - 1
\end{cases}.
$$

If $\mathcal{E} = J^\infty \pi$, then $D(M) \cong \kappa$ and $\Lambda^1(M) \cong \widehat{\kappa}$.
At the moment Secondary Calculus only deals with local functionals!

Example

Multilocal functionals are not represented in Secondary Calculus

\[\int \cdots \int \mathcal{L} [x_1, \ldots, x_r, u_1, \ldots, u_r] d^n x_1 \cdots d^n x_r \]

Example

Feynman–like functionals are not represented in Secondary Calculus

\[\exp i \int \mathcal{L} [x, u] d^n x \]

The space of secondary functions is still too small!
A Lagrangian field theory is a bundle $\pi : E \to M$ together with an action $S = [L] \in \overline{H}^n(\mathcal{F}(J^\infty \pi))$, $L \in \overline{\Lambda}^n(J^\infty \pi)$ is a lagrangian density and $\mathcal{E}_0 : dS = 0$ the associated Euler–Lagrange equations of motion.

Definition

The **Covariant Phase Space \mathcal{P}** of the lagrangian field theory (π, S) is the space of solutions of \mathcal{E}_0, i.e., $\mathcal{P} = \{\text{max. int. subman. of } (\mathcal{E}, C)\}$.

Proposition [Zuckerman]

There exists a canonical, closed (secondary) 2–form on \mathcal{P}.

Proof. $dS = [d^V L] \in \hat{\mathcal{X}} \hookrightarrow C^1 \Lambda^1 \otimes \overline{\Lambda}^n$. Thus, $d^V L - dS = \overline{d}\theta$, for some $\theta \in C^1 \Lambda^1 \otimes \overline{\Lambda}^{n-1}$. Put $\omega = i^*_\mathcal{E}(d^V \theta) \in C^2 \Lambda^2(\mathcal{E}) \otimes \overline{\Lambda}^{n-1}(\mathcal{E})$, and note that

$$\overline{d}\omega = 0 \quad \Rightarrow \quad \omega = [\omega] \in \overline{H}^{n-1}(C^2 \Lambda^2(\mathcal{E})) \subset \Lambda^2(\mathcal{P})$$

does only depend on S. Moreover, $d\omega = [d^V \omega] = 0$.
The first Noether theorem has a formulation in terms of \((P, \omega)\)!

Let \(\chi \in \mathfrak{g}\) be a Noether symmetry of \((\pi, S)\), i.e., \(L_\chi S = 0\). \(\chi\) is, in particular, an infinitesimal symmetry of \(E_0\), i.e.,

\[
X = \chi|_E \in \ker \ell^E_{dS} \simeq \overline{H}^0(VD(E)) \Rightarrow X \in D(P)
\]

According to first Noether theorem there exists an associated conservation law

\[
f \in \overline{H}^{n-1}(\mathcal{F}(E)) \Rightarrow f \in C^\infty(P)
\]

Proposition [LV]

\[
df = -i_\chi \omega.
\]

Similar to hamiltonian mechanics!
The second Noether theorem has a formulation in terms of \((P, \omega)\).

Define \(\Gamma : D(P) \ni X \mapsto i_X \omega \in \Lambda^1(P)\).

In hamilt. mech.: degeneracy distrib. of presympl. form = \langle \text{gauge symm.} \rangle

\(\ker \Gamma \) (= degeneracy distribution of \(\omega\)) = \langle \text{gauge symmetries of } (\pi, S) \rangle?

Standard Definition

A *local* (or gauge) *symmetry* of \((\pi, S)\) is a \(C\)–differential operator \(G : P \to \mathfrak{g}\), such that \(G(p)\) is a Noether symmetry for any \(p \in P\).

Remark

\(\text{im } G \subset \ker \Gamma\).

(Natural) Definition

A *gauge symmetry* of \((\pi, S)\) is an element in \(\ker \Gamma\).
In hamilt. mechanics: gauge symmetries ⇔ first class constraints

\[\ell^\mathcal{E} \text{d}S = \hat{\ell}^\mathcal{E} \text{d}S \Rightarrow \text{If the eq. } \ell^\mathcal{E} \text{d}S(\chi) = 0 \text{ is overdetermined then it is also underdetermined (i.e. constrained). Let } \chi \xrightarrow{\ell^\mathcal{E} \text{d}S} \hat{\chi} \xrightarrow{\Delta_1} P_2 \xrightarrow{\Delta_2} \ldots \text{ be a non trivial compat. complex and } \hat{\chi} \xleftarrow{\ell^\mathcal{E} \text{d}S} \chi \xleftarrow{\hat{\Delta}_1} P_2 \xleftarrow{\ldots} \text{ the adjoint complex.} \]

\[\ell^\mathcal{E} \text{d}S \circ \hat{\Delta}_1 = 0. \]

Theorem [LV]

\[\ker \Gamma = \operatorname{im} \hat{\Delta}_1. \]

Corollary [LV]

\(\omega \) is non–degenerate iff \(\ell^\mathcal{E} \text{d}S(\chi) = 0 \) is a non–constrained eq.
Suppose that ω is non-degenerate \implies (as in hamiltonian mechanics) there are brackets $\{\cdot,\cdot\}$ on the space of secondary functions on P.

Let $f \in C^\infty(P)$. Put $X_f = \Gamma^{-1}(df) \in D(P)$.

Let $f, g \in \overline{H}^{n-1}(\mathcal{F}(\mathcal{E})) \subset C^\infty(P)$ and $H \in \overline{H}^n(\mathcal{F}(\mathcal{E})) \subset C^\infty(P)$. Put

$$\{f, g\}_0 = -L_{X_f}g, \quad \{f, H\}_1 = -L_{X_f}H.$$

Proposition [LV]

$(\overline{H}^{n-1}(\mathcal{F}(\mathcal{E})), \{\cdot,\cdot\}_0)$ is a Lie algebra and $(\overline{H}^n(\mathcal{F}(\mathcal{E})), \{\cdot,\cdot\}_1)$ an its representation.

Theorem [Barnich–Henneaux–Schomblond]

$\{\cdot,\cdot\}_0$ coincide with the Peierls bracket between conservation laws.
In hamilt. mech. gauges are quotiented out via symplectic reduction. How to define a secondary symplectic reduction?

Geometric Definition of Degeneracy Distribution

Let $X = [X] \in \overline{H}^0(VD(\mathcal{E})) \subset D(P)$ be a gauge symmetry. $X \in VD(\mathcal{E})$ is a standard vector field over \mathcal{E}. Put $\mathcal{G} = \langle X \mid [X] \in \ker \Gamma \rangle$ and $\tilde{\mathcal{C}} = \mathcal{C} + \mathcal{G}$.

Conjecture 1

$(\mathcal{E}, \tilde{\mathcal{C}})$ is (locally) isomorphic to the infinite prolongation of a PDE $\tilde{\mathcal{E}}_0$.

Put $\tilde{P} = \{\text{solutions of } \tilde{\mathcal{E}}_0\}$. There is a morphism $p^*: \Lambda^\bullet(\tilde{P}) \rightarrow \Lambda^\bullet(P)$.

Conjecture 2 on Secondary Symplectic Reduction

There exists a unique secondary 2–form $\tilde{\omega}$ on \tilde{P} such that $p^*(\tilde{\omega}) = \omega$ and $\tilde{\omega}$ has zero degeneracy distribution.
Secondary Calculus

<table>
<thead>
<tr>
<th>Reference</th>
<th>Details</th>
</tr>
</thead>
</table>
Geometry of the Covariant Phase Space

