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Abstract

In this article we calculate the asymptotic behaviour of the point spectrum for some special self-adjoint unbounded Jacobi operators9
J acting in the Hilbert space l2 = l2(N). For given sequences of positive numbers �n and real qn the Jacobi operator is given by
J =SW+WS∗ +Q, where Q=diag(qn) and W =diag(�n) are diagonal operators, S is the shift operator and the operator J acts on11
the maximal domain. We consider a few types of the sequences {qn} and {�n} and present three different approaches to the problem
of the asymptotics of eigenvalues of various classes of J’s. In the first approach to asymptotic behaviour of eigenvalues we use a13
method called successive diagonalization, the second approach is based on analytical models that can be found for some special J’s
and the third method is based on an abstract theorem of Rozenbljum.15
© 2006 Published by Elsevier B.V.
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1. Introduction19

In this work we calculate the point spectrum or the asymptotic behaviour of the point spectrum for some special
unbounded Jacobi operators J acting in the Hilbert space l2 = l2(N). We shall present three different approaches to the21
problem of the asymptotics of eigenvalues of various classes of J’s. Let {en}∞n=1 be the standard orthonormal basis in
l2. S stands for the shift operator on l2 given on the basis vectors as follows Sen = en+1, n�1. For given sequences23
of positive numbers �n and real qn one defines the Jacobi operator by J = SW + WS∗ + Q, where Q and W are the
associated diagonal operators, Qen = qnen (Q = diag(qn)) and Wen = �nen (W = diag(�n)) for n�1 and the operator25
J acts on the maximal domain. We call �n’s the weights of J . It turns that in the case lim infn→∞ q2

n(�2
n + �2

n−1)
−1 > 2

and limn→∞ |qn| = +∞ the operator J is self-adjoint and its spectrum is discrete [9].27
As far as we know the problem of finding the asymptotics of eigenvalues of Jacobi matrices has not been systematically

studied in a general situation. However, the density of eigenvalues of rational Jacobi matrices was analysed by Dehesa29
in [2,3]. Let us also mention that there are special Jacobi matrices which appear in quantum optics with known
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asymptotics of their eigenvalues [16]. In [11] the asymptotics of eigenvalues for a special class of Jacobi matrices was1
found. Moreover, the method proposed in [11] (so called successive diagonalization method) can be applied for a quite
general set of J’s ( Theorem 2.2, Section 2 of this paper). The method presented in Theorem 2.2 resembles the idea3
used in [14] in his studies of the asymptotic of eigenvalues of some pseudo-differential operators on the unit circle. By
using his abstract result [14, Theorem 1] we can find asymptotics of eigenvalues of a certain J when Theorem 2.2 does5
not apply (see Section 4). Our application of Rozenbljum result is rather simple, and we hope to find more interesting
one in the future.7

The third approach we propose here concerns special classes of Jacobi matrices for which analytical model can be
found. Then we deal with differential operator J̃ (unitarly equivalent to J) of the first order acting in a Hilbert space of9
holomorphic functions. This method is rather limited to special J’s but the results give very sharp asymptotical formulae
(exponential decays of errors). Let us mention that the method of successive diagonalization has been recently applied11
in [1] by Boutet de Monvel et al. to find the asymptotics of eigenvalues of a modified Jaynes–Cummings model.

This paper only deals with Jacobi matrices with discrete spectra. There is already a large literature devoted to infinite13
self-adjoint Jacobi matrices and their relation to the theory of orthogonal polynomials. In recent years several methods
were found for studies of spectral properties of general Jacobi matrices in l2(N) and l2(Z), see [5,4,8–11]. Finally, let15
us also mention the recent monograph of Teschl [15].

The paper is organized as follows. In Section 2 the method of successive diagonalization is briefly described. Section17
3 contains several natural examples of Jacobi matrices for which analytical models can be found and uses them to
compute precise asymptotic behaviour of their eigenvalues. Finally, in Section 4 simple applications of the Rozenbljum19
abstract theorem are given.

2. Successive diagonalization method21

The idea of successive diagonalization was introduced for a special class of Jacobi matrices in [11]. It is based on
the following general lemma:23

Lemma 2.1 (Lemma 2.1, Janas and Naboko [11]). Let D be a self-adjoint diagonal operator in a Hilbert space H
given by Den = �nen, where {en} is an orthonormal basis in H and simple eigenvalues �n → ∞ are ordered by25
|�k|� |�k+1|. Assume that |�i − �k|��0 if i �= k. If R is compact (not necessary self-adjoint) operator in H then the
operator T =D +R has discrete spectrum which consists of complex eigenvalues �n(T ) and �n(T )=�n +O(‖R∗en‖)27
for large n.

Successive diagonalization method was applied in [11] to a special class of Jacobi operators. It was used there in29
three steps. Then every next step allows to obtain the asymptotics of the eigenvalues of Jacobi operator more precisely
then the previous one. In this article we apply this method using only one step, but it gives (we hope) satisfactory31
explanation of the main idea of successive diagonalization.

Let �1/p (p > 0) denote the set of compact operators such that its singular numbers sk satisfy sk = O(1/kp). By33
�b

1/p we mean the subset of �1/p of operators in l2 which possess a band type matrix form in the basis {en}∞n=1.

Theorem 2.2. Let35

J1 = Q + SW + WS∗, (2.1)

where Q = diag(qn), W = diag(�n) and assume that

37
(i) qn = �n�(1 + �n), �n → 0, � ∈ R\{0};

�n = n�(1 + wn), wn → 0;39
(ii) ��0, � > 2� + 1;

(iii) �n+1 − �n = o(1/n).41

Then the eigenvalues �n(J1) of J1 satisfy �n(J1) = qn + O(1/n�−2�−1) for large n.
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Proof. Following the method introduced in [11] we look for the diagonal operators 	1, 	2 ∈ �b
1/(�−�−1)

such that1

X := (I + S	1 + 	2S
∗)J1 − Q(I + S	1 + 	2S

∗) ∈ �b
1/p (2.2)

for some p. If we use the notation [A, B] = AB − BA for any operators A and B then we have3

X = [S, Q]	1 + 	2[S∗, Q] + SW + WS∗ + S	1SW + 	2W + S	1WS∗ + 	2S
∗WS∗.

Note that S	1SW, 	2W, S	1WS∗, 	2S
∗WS∗ ∈ �b

1/(�−2�−1)
provided 	1, 	2 are chosen as above.5

Denote (�q)(n) := qn+1 − qn then [S, Q]en = −(�q)(n)en+1 = SDen, where D = diag(−(�q)(n)) and similarly
we have that [S∗, Q] = −DS∗. Next, note that7

(�q)(n) = �(n + 1)�(1 + �n+1) − �n�(1 + �n)

= �(n + 1)� − �n� + �[(n + 1)� − n�]�n+1 + �n�(�n+1 − �n)

and (n + 1)� − n� = �n�−1 + O(n�−2). But n�(�n+1 − �n) = o(n�−1) by (iii), so we have9

(�q)(n) = ��n�−1 + o(n�−1).

There exists a finite dimensional diagonal operator Q1 such that D + Q1 is invertible and we can define operators11
	1 := −(D + Q1)

−1W and 	2 := W(D + Q1)
−1. The operators 	1 and 	2 are diagonal and belong to �b

1/(�−1−�)

by their definitions. Then the operators13

[S, Q]	1 + SW = S[(D + Q1)	1 + W ] − SQ1	1 = −SQ1	1

and15

	2[S∗, Q] + WS∗ = 	2Q1S
∗

are finite dimensional and belong to �b
1/p for every p and consequently X belongs to �b

1/(�−2�−1)
. Denote K = I +17

S	1 + 	2S
∗. We can choose Q1 such that K is invertible, then KJ 1 − QK = X, i.e.

J1 = K−1(Q + XK−1)K .19

Therefore, 
(J1) = 
(Q + XK−1) and by Lemma 2.1

�n(J1) = �n(Q + XK−1) = qn + O(‖(K−1)∗X∗en‖)
= qn + O(1/(n�−2�−1)). �21

3. Special classes of Jacobi matrices with analytic models

In this section we shall study a few examples of unbounded Jacobi matrices in l2, which do not fall into the class23
considered in Theorem 2.2. It happens that all examples are defined by sequences of power like behaviour i.e. qn =�n�,
�n = �n�(1 + �n), �n → 0, n → 0, with � − � equals, respectively, to 1, 1

2 , 0. Nevertheless, by using specific forms25
of their weights and diagonals, we shall find the asymptotic of the eigenvalues. This approach was used for example in
[7]. In all three examples, unitarly equivalent operator models of J’s in some Hilbert spaces of holomorphic functions.27
These model operators turn out to be differential operators. The original equation for the eigenvalues Jf = �f is
transformed into the corresponding differential equation. However, analysis of these differential equations is not so29
trivial because they do not fall in general into any (known to us) classical classes describing special functions. In this
section we investigate the spectra of Jacobi matrices given by (3.1), (3.12), (3.28).31

Recall that the Hardy spaces H 2 =H 2(D) in the unit disc D={z ∈ C : |z| < 1} consists of all holomorphic functions
f (z) =∑∞

n=0 anz
n in D such that supr<1

∫ 2

0 |f (reit )|2 dt =∑∞

n=0 |an|2 < + ∞.33
Let 	0 = diag(n)∞n=1 be the diagonal operator determined by the sequence {n}∞n=1.
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3.1. Analytic model for an example of a Jacobi matrix with � − � = 1.1

We start with a simple operator

J2 = 	0 + cS + cS∗. (3.1)3

Note that J2 is formally in the class of Jacobi matrices defined in Theorem 2.2 with �=1 and �=0. Therefore, it is clear
that the assumptions of Theorem 2.2 are not satisfied. The spectrum of J2 is discrete and consists of the eigenvalues5
only. Assume that c �= 0 (the case c = 0 is trivial and 
(J2) = {1, 2, . . .}).

Recall the first type Bessel functions for k ∈ N and x ∈ C given by the power series Jk(x) =∑∞
n=0 (−1)n1/n!(n +7

k)!( x
2 )k+2n [17]. Using the Gamma function �(z) and taking 1/�(z) = 0 for z ∈ {−1, −2, . . .} the Bessel functions

can be defined for complex indices by9

J�(x) =
∞∑

n=0

(−1)n
1

n!�(n + � + 1)

(x

2

)�+2n

for � ∈ C, x ∈ R (J�(0) = ∞ if Re� < 0). Moreover; J−k(x) = (−1)kJk(x) for k ∈ N [17].11

Theorem 3.1. Let J2 be an operator on l2 given by (3.1) then


(J2) =
{

� ∈ R : � + c2 − 1 =
∞∑

k=2

ckJk(2c)

(k − 2)!
1

k − �

}
∪ {k ∈ N : Jk(2c) = 0}

= {�n(J2) : n�k0},13

where

�n(J2) = n − rn, rn = O

(
c2n

n!(n − 1)!
)

, n�k015

for some k0.

Proof. Let us consider the equation17

J2f = �f , (3.2)

where f = {fn}∞n=1. In (3.2) is the second order difference equation, we will change it to a differential equation by19
the method suggested in [7]. Take the coherent state for the shift operator S in l2 [13] fz = ∑∞

n=1 zn−1en and let
f =∑∞

n=1 fnen. Then (3.2) is equivalent to the relation (fz, J2f ) = �(fz, f ) for all z ∈ D.21
In the other words (fz, 	0f ) + c(fz, Sf ) + c(fz, S

∗f ) = �(fz, f ) for z ∈ D.
Denote by23

�(z) := (fz, f ). (3.3)

Straightforward calculations prove that25

(fz, 	0f ) = �(z) + z�′(z);

(fz, Sf ) = z�(z);27

(fz, S
∗f ) = 1

z
(�(z) − �(0)) (3.4)

and we get the equation29

z�′(z) + (1 + cz)�(z) + c
1

z
(�(z) − �(0)) = ��(z). (3.5)

Note that (3.2) has a solution f ∈ l2\{0} if and only if (3.5) has solution � ∈ H 2\{0}. Assume that we have � ∈ R31
such that (3.5) has a solution � ∈ H 2. If �(0) = 0 then by taking the limit at 0 in (3.5) we get c�′(0) = 0. Because
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c �= 0 we have �(0) = f1 = 0 and �′(0) = f2 = 0. By the difference (3.2) we have f = 0, so � /∈ 
p(J ). Therefore,1
instead of (3.5) we can consider the equation

z2�′(z) + [cz2 + (1 − �)z + c]�(z) = c, �(0) = 1. (3.6)3

We will look for all parameters � ∈ R for which (3.6) has non trivial solution in H 2. It is clear that the point spectrum
of J2 consists of all such numbers �. Let � be in the form �(z) = e−cz�(z). Of course, � ∈ H 2 ⇔ � ∈ H 2. Then5
(3.5) is equivalent to

z2�′(z) + [(1 − �)z + c]�(z) = cecz, �(0) = 1. (3.7)7

Let � have the power series

�(z) =
∞∑

n=0

anz
n.

9

Then (3.7) is satisfied when

a0 = 1,

ca1 + (1 − �)a0 = c2,

(n − �)an−1 + can = cn+1

n! , n�2. (3.8)11

Denote dk = (� − k) . . . (� − 2)(−1)k−1, k�2, then we calculate the solution of (3.8)

a1 = c−1(� + c2 − 1)13

and

an = c−n
n∑

k=0

c2k

k! (� − n) . . . (� − (k + 1)), n�2. (3.9)
15

For � /∈ {2, 3, . . .} we can rewrite (3.9) as

an = (−1)n−1dn

cn−1

(
a1 + c−1

n∑
k=2

(−1)k−1c2k

dkk!

)
, n�2. (3.10)

17

We should answer the question: for which � ∈ R the sequence {an} ∈ l2.
Consider the case � ∈ {0, 1, 2, 3, . . .}. Using (3.9)19

an = c−n
n∑

k=�

c2k

k! (� − n) . . . (� − (k + 1)) = (−1)n−�(n − �)!
cn−2�

n−�∑
k=0

(−1)kc2k

(k + �)!k! , n > �.

Now, notice that in this case21

{an} ∈ l2 ⇔
∞∑

k=0

(−1)kc2k

(k + �)!k! = 0 ⇔ J�(2c) = 0 ⇔ J−�(2c) = 0.
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For � /∈ {0, 1, 2, . . .}, using (3.10), the following relations hold:1

{an} ∈ l2 ⇔ a1 = c−1
∞∑

k=2

(−1)kc2k

dkk!

⇔ � − 1 + c2 =
∞∑

k=2

(−1)kc2k

dkk!

⇔
∞∑

k=0

(−1)kc2k

�(1 + k − �)k! = 0

⇔ J−�(2c) = 0.

Because3

1

dk

=
k∑

j=2

(−1)j

(k − j)!(j − 2)!
1

j − �

then we have5

∞∑
k=2

(−1)kc2k

dkk! =
∞∑

k=2

(−1)kc2k

k!
k∑

j=2

(−1)j

(k − j)!(j − 2)!
1

j − �

=
∞∑

k=2

(−1)k

(k − 2)!

⎡⎣ ∞∑
j=0

(−1)j+kc2(j+k)

(j + k)!j !

⎤⎦ 1

k − �

=
∞∑

k=2

c2k

(k − 2)!

⎡⎣ ∞∑
j=0

(−1)j c2j

(j + k)!j !

⎤⎦ 1

k − �

=
∞∑

k=2

ckJk(2c)

(k − 2)!
1

k − �
.

So, by the facts given above and the properties of the Bessel functions, we obtain7


p(J2) = {� ∈ R : J−�(2c) = 0}

=
{

� ∈ R : � + c2 − 1 =
∞∑

k=2

ckJk(2c)

(k − 2)!
1

k − �

}
∪ {k ∈ N : Jk(2c) = 0}. (3.11)

Because Jn(2c) > 0 for n�c2, there exists a number � ∈ 
p(J2) ∩ (n − 1, n) if n > c2. Let � = n − rn ∈ 
p(J2),9
rn ∈ (0, 1), n > c2 and denote �k = ckJk(2c)/(k − 2)! then

n − rn + c2 − 1 =
n−1∑
k=2

�k

k − n + rn
+ �n

rn
+

∞∑
k=n+1

�k

k − n + rn
�

∞∑
k=2

|�k| + �n

rn
,

11

so n + c2 − 2 −∑∞
k=2 |�k|��n/rn.

There exists n1 > c2 such that 1
2n��n/rn for n�n1. So, we get rn �2�n/n, n�n1, where �n �c2n/(n − 2)!13 ∑∞

j=0 c2j /(j +n)!j !�ec2
c2n/(n−2)!n!. Finally, using the above estimation it can be proved that for large n�n0 > n1

there exists exactly one number � = n − rn ∈ (n − 1, n) ∩ 
p(J2). �15

Let us mention that it is not difficult to prove the following fact:
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Remark 3.2. If 	 = diag(n)+∞
n=−∞ is a diagonal operator and S is a shift operator in l2(Z) then J2 = 	 + cS + cS∗1

considered in l2(Z) has the spectrum equal to Z. �

3.2. Analytic model for an example of a Jacobi matrix with � − � = 0.3

The Jacobi matrix J = Q + SW + WS∗ in l2(Z) with diagonals given by Q = diag(�n)+∞
n=−∞, W = diag

(
√

(n + c)2 + b2)+∞
n=−∞ has been considered in [12] and in [6]. They have found the formulae for eigenvalues of5

this operator. Here and in Section 4.1 we investigate Jacobi matrix J3 with the same entries as J but acting on l2(N). It
turns out that spectral analysis of J3 looks differently than that of J. Our approach is again based on analytical model7
of J3 in H 2.

This section is devoted to the operator9

J3 = �	0 + S(	0 + cI) + (	0 + cI)S∗, (3.12)

in l2 = l2(N). Assume that � > 2, c�0, for such parameters 
(J3) = 
p(J3) and the spectrum is discrete.11
Let us consider the relation J3f = �f . Again take the coherent state fz =∑∞

n=1 zn−1en and f =∑∞
n=1 fnen then

using (fz, J3f ) = �(fz, f ) we get13

(fz, S	0f ) + c(fz, Sf ) + (fz, 	0S
∗f ) + c(fz, S

∗f ) + �(fz, 	0f ) = �(fz, f ),

for |z| < 1. Let �(z) = (fz, f ) then we have15

(fz, S	0f ) = z2�′(z) + z�(z),

(fz, 	0S
∗f ) = �′(z),

(fz, S
∗f ) = 1

z
(�(z) − �(0)) (3.13)

and by (3.4)17

z2�′(z) + z�(z) + cz�(z) + �′(z) + c
1

z
(�(z) − �(0)) + �(�(z) + z�′(z)) = ��(z) (3.14)

and so19

z(z2 + �z + 1)�′(z) = −((1 + c)z2 + (� − �)z + c)�(z) + c�(0),

for z ∈ D. As in the previous situation, this differential equation has a solution in H 2\{0} exactly when J3f = �f has21
a solution f ∈ l2\{0}.

Notice that z2+�z+1=(z−z1)(z−z2), where z1=−(�+
√

�2 − 4)/2, z2=−(�−
√

�2 − 4)/2 and z1 <−1 < z2 < 0.23
We consider the following two cases of the parameter c.
(I) c = 0.25
In this case, (3.14) is equivalent to

�′(z)
�(z)

= − z + (� − �)

z2 + �z + 1
,27

because

z + (� − �)

z2 + �z + 1
= A

z − z1
+ B

z − z2
,29

where A = (z1 − � + �)/(z1 − z2) and B = (� − � − z2)/(z1 − z2), so ln �(z) = −A ln(z − z1) − B ln(z − z2) + C,
ln �(z)=C+ln(z−z1)

−A(z−z2)
−B , �(z)=C1(z−z1)

−A(z−z2)
−B . Therefore; � ∈ H 2 if and only if (z−z2)

−B ∈ H 2,31
but this condition is equivalent to the fact that −B =k, where k=0, 1, 2, . . . . It follows that the spectrum of J3 consists
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of the numbers1

�k(J3) = k

√
�2 − 4 + 1

2

(√
�2 − 4 + �

)
(3.15)

for k = 0, 1, 2, . . . .3
(II) c ∈ (0, 1].
We can assume that �(0)=1. Indeed, suppose that � is an analytic function in some open set that contains 0, �(0)=05

and satisfies (3.14) in this set. Then taking the limit at 0 of both sides of (3.14) we get �′(0)(c+1)=0 and so �′(0)=0
(because c + 1 �= 0). Thus f1 = �(0) = 0, f2 = �′(0) = 0 and using the relation J3f = �f , we have fn = 0, n�1 and7
� is not the eigenvalue of J3.

Now, we will look for the function � of the form �(z)= (z− z1)
A�(z) for some real number A. Notice that � ∈ H 29

if and only if � ∈ H 2, because |z1| > 1.
We have the new equation:11

z(z − z1)
A+1(z − z2)�

′(z) = −[(1 + c + A)z2 + (� − � − z2A)z + c](z − z1)
A�(z) + c.

One can choose A such that (1 + c + A)z2 + (� − � − z2A)z + c = (z − z1)(pz + q), for some p, q. It follows that13
pz + q = (A + 1 + c)z + � − � + z1(1 + c) + A(z1 − z2) and A = (�(c − 1) − z1 + �)/(z1 − z2). Hence

(z − z2)[z�′(z)] + [(A + 1 + c)z − cz2]�(z) = c

(z − z1)
A+1 . (3.16)

15

The function of the right hand side of (3.16) is analytic in D,

c

(z − z1)
A+1 =

∞∑
n=0

bnz
n,

17

(the power series converge in |z| < |z1|) and

b0 = c(−z2)
A+1,19

bn = c(−1)n(−z2)
A+1+n (A + 1)(A + 2) . . . (A + n)

n! , n�1. (3.17)

We look for an analytic in D function �(z) =∑∞
n=0 anz

n satisfying (3.16). Thus the coefficients of � must satisfy21

a0 = b0

−cz2
= (−z2)

A;

a1 = b1 − (A + 1 + c)a0

−(c + 1)z2
= (−z2)

A

(c + 1)z2
[(A + 1)(cz2

2 + 1) + c]; (3.18)23

and the recurrence relation

(n + A + c)an−1 − (c + n)z2an = bn, n�2.25

This is the first order linear difference equation. We can solve it:

an = gna1 −
n∑

k=1

bk

(c + k)z2

n∏
l=k+1

l + A + c

(c + l)z2
(3.19)

27

or

an = gn

[
a1 −

n∑
k=2

bk

(c + k)z2gk

]
, n�2 (3.20)

29
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if l + A + c �= 0 for all l�1, where1

gn =
n∏

k=2

k + A + c

(c + k)z2
.

Notice that if c /∈ {−1, −2, . . .} then (c + k)z2 �= 0 for every k ∈ N.3

Proposition 3.3.

(1) If k + A + c �= 0 for all k ∈ {2, 3, . . .} then5

{an} ∈ l2 ⇔ a1 =
∞∑

k=2

bk

z2(c + k)gk

. (3.21)

(2) If c ∈ (0, 1] and k0 + A + c = 0 for some k0 ∈ {2, 3, . . .} then {an} /∈ l2.7

Proof. Ad.1⇒ Because |gn| → ∞ it must be that the second term of the product in (3.20) must be convergent to 0.
⇐ In this situation we have (see the definition of gk)9

an = gn

∞∑
k=n+1

bk

z2(c + k)gk

= bn+1

n + 1 + A + c
+

∞∑
k=n+2

bk

k + A + c

k−1∏
l=n+1

(
z2 − z2A

l + A + c

)
.

By (3.17) |bn|�Chn and |z2 − z2A/(n + A + c)|�h for large n, where h = 1/|z1| + � = |z2| + � < 1, and we have11
|an|�Chn+1 + C

∑∞
k=n+2 hkhk−n−2 �C(hn+1 + hn+21/(1 − h)) < C′hn+1 for large n, this implies {an} ∈ l2.

Ad.2. Let A = −k0 − c, then A + l + c �= 0 for all l > k0 and using (3.19) and (3.17) for n > k0, we have13

an =
n∑

k=k0

bk

z2(k + c)

n∏
l=k+1

A + l + c

(c + l)z2

= c(−z2)
A+1

n∑
k=k0

zk
2
(−k0 − c + 1) . . . (−k0 − c + k)

k! (z−1
2 )n−k

n∏
l=k+1

l − k0

c + l
.

Hence we can write (for some constant M(c, z2, k))15

an = M(c, z2, k0)z
n+1
1

n∑
k=k0

z2k
2

(1 − k0 − c) . . . (k − k0 − c)

k!
n∏

l=k+1

l − k0

l + c

= M(c, z2, k)
z

2k0
2

k0! zn+1
1

n∏
l=k0+1

l − k0

l + c

⎡⎣1 +
n−k0∑
k=1

z2k
2

(1 − c) . . . (k − c)

(k0 + 1) . . . (k0 + k)

k0+k∏
l=k0+1

l + c

l − k0

⎤⎦
and so there is a constant M1(c, z2, k) > 0 such that17

|an|�M1(c, z2, k0)|z1|n+1
n∏

l=k0+1

l − k0

l + c
→ +∞, n → ∞. �

Let us come back to (3.21). Using (3.17), after some calculations, we obtain19

∞∑
k=2

bk

z2(c + k)gk

= c(−z2)
A+1

∞∑
k=2

z2k−2
2 �k

A + k

k

k−2∏
l=0

(
A + 1 + l

A + 2 + l + c

)
,

where21

�2 = 1, �k =
k−1∏
l=2

(
1 + c

l

)
, k > 2. (3.22)
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Then condition (3.21) from Proposition 3.3 can be transformed to1

− 1

c(c + 1)
[(A + 1)(cz2

2 + 1) + c] =
∞∑

k=2

z2k
2 �k

A + k

k

k−1∏
l=1

(
1 − c + 1

A + 1 + l + c

)
.

Denote by x = A + 1 + c, then we have the condition for � to belong to the spectrum of J3:3

� ∈ 
p(J3) ⇔ � = (x − 1 − c)(z1 − z2) + z1 − �(c − 1),

where x is a real number such that5

− 1

c(c + 1)
[(x − c)(cz2

2 + 1) + c]︸ ︷︷ ︸
L(x)

=
∞∑

k=2

z2k
2 �k

x − 1 − c + k

k

k−1∏
l=1

(
1 − c + 1

x + l

)
︸ ︷︷ ︸

P(x)

. (3.23)

The computations given below will allow to localize the point � very precisely. Notice that7

k−1∏
l=1

(
1 − c + 1

x + l

)
= 1 +

k−1∑
p=1

Akp

x + p
,

where9

A21 = −(c + 1),

Ak 1 = −(c + 1)

k−2∏
l=1

(
1 − c + 1

l

)
, Ak,k−1 = −(c + 1)�k(k − 1); k > 2,

11

Ak p = −(c + 1)�p+1p

k−p−1∏
l=1

(
1 − c + 1

l

)
; k > 2, 2�p�k − 2.

Denote dk = z2k
2 �k(x − 1 − c + k)/k, then13

P(x) =
∞∑

k=2

dk +
∞∑

k=2

dk

k−1∑
j=1

Akj

x + j︸ ︷︷ ︸
P1

,

P1 =
∞∑

k=2

( ∞∑
l=k

dlAl(k−1)

)
1

x + (k − 1)

=
∞∑

k=1

( ∞∑
l=k+1

z2l
2 �l

x + l − 1 − c

l
Alk

)
1

x + k

=
∞∑

k=1

( ∞∑
l=k+1

z2l
2 �l

Alk

l

)
x + k − k

x + k
+

∞∑
k=1

( ∞∑
l=k+1

z2l
2 �l

l − 1 − c

l
Alk

)
1

x + k

=
∞∑

k=1

( ∞∑
l=k+1

z2l
2 �l

Alk

l

)
+

∞∑
k=1

[
−k

( ∞∑
l=k+1

z2l
2 �l

Alk

l

)
+

∞∑
l=k+1

z2l
2 �l

l − 1 − c

l
Alk

]
1

x + k

=
∞∑

k=1

( ∞∑
l=k+1

z2l
2 �l

Alk

l

)
+

∞∑
k=1

[ ∞∑
l=k+1

z2l
2 �l

l − k − 1 − c

l
Alk

]
1

x + k
.

15
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Denote1

a = −
(

cz2
2 + 1

c(c + 1)
+

∞∑
k=2

z2k
2 �k

k

)
and3

b = cz2
2

1 + c
−

∞∑
k=2

z2k
2 �k

k − 1 − c

k
−

∞∑
k=1

∞∑
l=k+1

z2l
2 �l

Alk

l
.

Notice that a < 0 because c > 0 and �k > 0. By the above calculations we look for x ∈ R such that5

ax + b =
∞∑

k=1

z2k+2
2 �k+1

[
−cAk+1 k

k + 1
+

∞∑
l=k+2

z
2(l−k−1)
2

�l

�k+1

Alk

l
(l − k − 1 − c)

]
1

x + k

=
∞∑

k=1

z2k+2
2 �k+1

⎡⎣−cAk+1 k

k + 1
+

∞∑
j=2

z
2(j−1)
2

�k+j

�k+1
ak+j,k

j − 1 + c

k + j

⎤⎦ 1

x + k
.

Therefore,7

ax + b = c(c + 1)

∞∑
k=1

z2k+2
2 �2

k+1k

⎡⎣ 1

k + 1
+

∞∑
j=2

z
2(j−1)
2

�j+k

�k+1

j−1∏
s=2

(
1 − c + 1

s

)
j − 1 − c

j + k

⎤⎦
︸ ︷︷ ︸

Bk

1

x + k
. (3.24)

Denote by9

Ak = c(c + 1)z
2(k+1)
2 �2

k+1kBk . (3.25)

Notice that11

�j+k

�k+1
=

j+k−1∏
s=k

(
1 + c

s

)
��j ,

|Bk|�1 +
∞∑

j=2

z
2(j−1)
2 �j

j−1∏
s=2

∣∣∣∣1 − c + 1

s

∣∣∣∣ (1 + c)= : M1
13

and let

M2 := c(c + 1)M1

∞∑
k=1

z
2(k+1)
2 �2

k+1k. (3.26)
15

Denote f (x) =∑∞
k=1 Ak/(x + k). Note two simple facts.

Fact 1. Because Ak > 0, then f is continues and decreasing in every interval (−n − 1, −n), where n = 1, 2, 3, . . . and17
in (−1, +∞); moreover limx→−n±f (x) = ±∞. This implies that in (−n − 1, −n) there exists exactly one x such that
ax + b = f (x) (for n ∈ {1, 2, . . .})19

Remember that we denoted by L(x) the left side of Eq. (3.23) and by P(x) the right side of this equation. We can
check that L(0) > 0 and P(0)�0 (because we have assumed that c ∈ (0, 1]), so it is trivial that L(0) > P (0), but this21
implies that b > f (0). Therefore there exist exactly two points in (−1, +∞) satisfying equation ax +b=f (x). Finally
{x ∈ R : ax + b = f (x)} = {xn = −n + rn : n = 0, 1, . . .} for some rn ∈ (0, 1), when n�2.23

Fact 2. If f (x) = ax + b and x + n = rn ∈ (0, 1), then there exists n1 such that |rn|�2An/|a|n for n�n1.
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Indeed, we have |a|n+arn +b=An/rn +∑k �=n Ak/(k−n+ rn)�An/rn +∑∞
k=n+1 Ak/(k−n+ rn)� |An|/|rn|+1 ∑∞

k=1 Ak � |An|/|rn| + 2M2, so |a|n − |a| + b − M2 � |An|/|rn|. Then there exists n1 such that |a|n/2� |An|/|rn| for
all n�n1.3

Finally, we have just proved the following theorem:

Theorem 3.4. Let J3 = �	0 + S(	0 + c) + (	0 + c)S∗ be a Jacobi operator in l2 and � > 2 then5


(J3) = {�n(J3) : n = 0, 1, 2, . . .},
where

7
1. in the case c = 0

�n(J3) = n

√
�2 − 4 + 1

2

(√
�2 − 4 + �

)
;9

2. in the case c ∈ (0, 1]

�n(J3) = n

√
�2 − 4 + 1

2

(√
�2 − 4 + �

)
+ c

(√
�2 − 4 − �

)
− rn

√
�2 − 4, (3.27)11

where |rn|�C(c, �)z
2(n+1)
2 �2

n for n > n1 for some large n1.

(Note that z2 = −(� −
√

�2 − 4)/2 ∈ (−1, 0) and �k =∏k−1
l=2 (1 + c

l
).) �13

The spectrum of J3 for the parameter c > 1 will be considered in Section 4.1.

3.3. Analytic model for an example of a Jacobi matrix with � − � = 1
2 .15

In this section we calculate the point spectrum for

J4 = 	0 + �S	1/2
0 + �	1/2

0 S∗, (3.28)17

where 	0 = diag(n)∞n=1 and � ∈ R. The reason for presenting this here is twofold. Firstly, the analytic model of J4 uses
the Bargmann space. Secondly, knowledge of 
(J4) can be used to compute asymptotic of the eigenvalues of some19
perturbations of J4. It is easy to check that J4 is unitarly equivalent to the operator T = �Tz + �T ∗

z + T ∗
z Tz, where Tz

is the operator of multiplication by the variable z on the Bargmann space B2 of entire functions on C that belong to21
L2(�), with d�(z) = 1


e−|z|2 dm(z), where m is the Lebesgue measure [13].
Then23

Tf = �f

is equivalent to25

�zf + �f ′ + (zf )′ = �f

f ′/f = (� − 1 − �z)(z + �)−1.27

Hence

f ′/f = −� + (� + �2 − 1)(z + �)−129

ln(f ) = ln[C(z + �)�+�2−1e−�z]
for some constant C �= 0.31

It follows that

f = C(z + �)�+�2−1e−�z33
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and so f ∈ B2\{0} ⇔ � + �2 − 1 ∈ {0, 1, 2, . . .}. Therefore;1


p(J4) = 
p(T ) = {k + 1 − �2 : k = 0, 1, 2, . . .}.

4. Rozenbljum theorem3

In this section we are going to find an asymptotic behaviour of eigenvalues for a few Jacobi operators applying the
following abstract theorem of Rozenbljum.5

Theorem 4.1 (Rozenbljum [14]). Assume that A and B are self-adjoint bounded below operators having purely discrete
spectra and 0 is not an eigenvalue of any of them. Let � ∈ (−∞, 1). Assume that there exist bounded and boundedly7
invertible operators K1, K2 and bounded operators C1,C2 such that

K−1
1 AK1 − B = C1|B|�,9

K−1
2 BK2 − A = C2|A|�.

If 
(A) = {�n(A) : n�1}, 
(B) = {�n(B) : n�1} and �n(A)��n+1(A), �n(B)��n+1(B), n�1 then11

|�n(A) − �n(B)| = O(|�n(A)|�), n → ∞. �

Let us mention that in [14] one can find much general version of Theorem 4.1 that includes similar result also for13
operators with discrete spectra but not bounded below. We apply Theorem 4.1 to the following Jacobi operators.

At the beginning of we will complete analysis of asymptotics of eigenvalues for the Jacobi matrices on l2 = l2(N)15
with the entries considered in Section 3.2 with the parameter c > 1. We consider the operator J3 = �	0 + SW + WS∗
(like the one given by 3.12), where W =	0 + cI for c > 1. In this case c= ñ+ c̃ for some ñ ∈ {1, 2, . . .} and c̃ ∈ [0, 1].17
Take the Jacobi operator

J̃ − ñ�I = (�	0 − ñ�I ) + S(	0 + c̃I ) + (	0 + c̃I )S∗

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − ñ)� 1 + c̃

1 + c̃ (2 − ñ)�
. . .

. . .
. . . ñ − 1 + c̃

ñ − 1 + c̃ 0� ñ + c̃

ñ + c̃ � 1 + ñ + c̃

1 + ñ + c̃ 2� 2 + ñ + c̃

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

19

Notice that

J̃ − ñ�I =
(

Mñ Sc

S∗
c J3

)
,21

and so

(J̃ − ñ�I ) −
(

Mñ 0
0 J3

)
=
(

0 Sc

S∗
c 0

)
= C(�)	−�

0 ,23

for some finite dimensional operator C(�) and for any number ��1. Observe that


p(J̃ − ñ�I ) = {�n(J̃ ) − ñ� : n = 0, 1, 2, . . .}25

and


p

(
Mñ 0
0 J3

)
= {�0, . . . , �ñ−1}︸ ︷︷ ︸


p(Mñ)

∪ {�0(J3), �1(J3), . . .}︸ ︷︷ ︸

p(J3)

.

27
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We apply the Rozenbljum theorem (Theorem 4.1) to operators A = (J̃ − ñ�I ) + �I and B = (
Mñ
0

0
J3

) + �I , where the1
parameter � ∈ R is such that 
(A), 
(B) ⊂ (0, +∞). Therefore, by the Rozenbljum theorem we obtain

�n(J3) = �n+ñ(J̃ ) − ñ� + r̃n,3

where r̃n = O(n−�) for large n and any natural number ��1. Finally, using Theorem 3.4, calculate that

�n(J3) = (n + ñ)

√
�2 − 4 + 1

2

(
� +

√
�2 − 4

)
+ c̃

(√
�2 − 4 − �

)
− rn

√
�2 − 4 − ñ� + r̃n

= n

√
�2 − 4 + 1

2

(
� +

√
�2 − 4

)
+ c

(√
�2 − 4 − �

)
−˜̃rn,5

for n = 0, 1, 2, . . . , where ˜̃rn = O(n−�) for large n and for any ��1.
Now, let us come back to the operator with diagonals like these considered in [12,6]. Let qn = �n and �n =7 √
(n + c)2 + b. Take the diagonal operators Q = diag(qn), W = diag(�n) and define the Jacobi operator

J5 = SW + WS∗ + Q.9

Let B = J5 + �I , A = J3 + �I , where J3 is given by (3.12) with the parameter � > 2 and c�0 and � ∈ R is such that

(A), 
(B) ⊂ (0, +∞). Applying Theorem 4.1, take K1 = K2 = I, � = −1. Define11

R := diag

(√
(n + c)2 + b − (n + c)

)
,

√
(n + c)2 + b − (n + c) = b√

(n + c)2 + b + (n + c)
= O

(
1

n

)
.

Then we have B − A = J5 − J3 = SR − RS∗ = C1A
−1 = C2B

−1 for some bounded operators C1 and C2. Again by13
the Rozenbljum theorem and (3.27),

�n(J5) = �n(J3) + O

(
1

n

)
= n

√
�2 − 4 + 1

2

(
� +

√
�2 − 4

)
+ c

(√
�2 − 4 − �

)
+ O

(
1

n

)
15

for large n.
Recall that Masson and Repka [12] and Edward [6] proved that if J ′

5 with a diagonal and weights like J5 is considered17
as an operator in l2(Z) then


p(J ′
5) =

{
n

√
�2 − 4 + 1

2

(
� +

√
�2 − 4

)
+ c

(√
�2 − 4 − �

)
: n ∈ Z

}
.19

Moreover, they found exact formulae for eigenvalues of J ′
5 and proved that the eigenvalues do not depend on the

parameter b�0. We see that the asymptotic behaviour in +∞ of the point spectra of J ′
5 and J5 is obviously similar,21

but generally the eigenvalues of the operator J5 acting in l2(N) do not equal to formulae that give their asymptotics,
what can be observed by looking at (3.23) and (3.24) in Section 3.2.23

The final (easy) application of Theorem 4.1 is given to a Jacobi operator which also does not fall into the class
described in Theorem 2.1. Let us try to calculate asymptotic behaviour of the point spectrum of25

J6 = SW + WS∗ + Q,

where27

W = diag

(
1√
n

)
, Q = diag(

√
n).

It is trivial that J6 − Q = SW + WS∗ = C1|J6|−1 = C2|Q|−1, so by Theorem 4.129

�n(J6) = √
n + O

(
1√
n

)
,

n�1.31
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However, using the Rozenbljum theorem we can obtain even better result. Notice that J 2
6 = Q2 + W 2 + SW 2S∗ +1

(S + QSW) + (S + QSW)∗ + (SW)2 + (WS∗)2, Q2 = 	0 and S + QSW = 2S + SD, where Den = 1√
n(

√
n+√

n+1)
en

for n = 1, 2, . . . . Then J 2
6 − (	0 + 2S + 2S∗) ∈ �b

1/1, so using the result of Section 3 and the Rozenbljum theorem3

we have the asymptotic for the eigenvalues of J 2
6 given by �n(J

2
6 ) = n + O( 1

n
) and the asymptotics for J6 is

�n(J6) =
√

�n(J
2
6 ) = √

n + O

(
1

n
√

n

)
.

5
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