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This paper presents two methods of finding asymptotic formulae for a basis of solutions of the second
order difference equations in the Jordan box case. An application to spectral analysis of Jacobi operators
is also sketched.
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1. Introduction

Interesting works on the asymptotic formulae of solutions of difference equations (in particular
of the second order equations) have appeared in the last two decades. Let us mention only two
comprehensive papers presenting the current state of art [1,4]. Some results on the asymptotic
form of solutions, in the case of double characteristic root, have been recently found in
references [6,7]. In the above works, we were mainly motivated by the spectral analysis of self-
adjoint Jacobi operators. This work also describes asymptotic behavior of solutions in the
Jordan box case (for a class of power like coefficients) and its application to the spectral theory
of Jacobi operators.
In what follows we consider the system of difference equations

Mo1x(n — 1)+ (gn — M x(n) + ux(n + 1) =0,  where A, >0, lim\, = oo,

(1.1)
qn, A are real, andn = 2.
Let
x(n—1) 0 1
_>n = , Bn = B B
' x(n) _/\"*IAn : (/\ - qn)/\n :
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Then equation (1.1) reads as
}n+1 = Bn}n (1.2)
0 1
Assume that lim, A,— 1A, ' =1 and lim,g,A, ' =8. Let A= , then

B, =A + R, where lim, R, = 0. BRI
Sometimes in the spectral analysis of Jacobi operators it is helpful to consider the product

BoyBoy—1 = A* + ARy 1 + RoyA + RoyRop— 1.

If discr A?= (rA%)? — 4detA” # 0, then A? has distinct characteristic roots and
asymptotic behavior of solutions of equation (1.2) can be found by applying, for example, the
results contained in the above mentioned works [1,4,6]. In particular, discrete analogues of
Levinson’s theorem were used in our earlier works on Jacobi operators [9,11].

Since discr A 2 = 0 if and only if (6 = 0 or 6 = *=2, then there are two cases.

1. If6=0,then A? = —Iand the asymptotic analysis of solutions of equation (1.2) is more
subtle. However, some progress was made in this case in our recent works [6,7].
1 2 1 0
2. If 6= =*2,thenA 2is similar to the Jordan box 01 or ) 1 and the analysis of

asymptotic behavior of solutions of equation (1.2) becomes very delicate.

The special case: A, = n + a, g, = = 2n was already considered by us in [10]. We shall
say more about the method used in [10] in section 4.

In this work, we study asymptotic behavior of solutions of equation (1.1) for A, and g,
given by

Ay =01+ r(n), g, = —2n%1+ s(n)), (1.3)
where a € (0, 1) and
=242 YOy =0 £ I (1.4)
n n n

with V(n), W(n) satisfying some additional assumptions (sections 3 and 4).

Note that equation (1.1) with g,, = 2n “(1 + s(n)) reduces to equation (1.3) via the change
of variables: x(n) = (— 1)"u(n), A = —u, u > 0.

We make a comment on the above form of r(n) and s(n) in section 5.

The methods we use depend essentially on the sign of A.

For A > 0 (non-oscillatory case) the method proposed by W. Kelley in [12] is employed.
Kelley found asymptotic of solutions of equation (1.1) in the case of rational coefficients.
This method also works for power like case given by equation (1.3) and presumably can be
extended to other classes of coefficients in equation (1.1).

In turn for A < 0 we apply the ansatz approach (compare [10]).

In particular, the asymptotic formulae for the solutions of equation (1.1) depend in
nontrivial way on all parameters a, b, E, D and . Complete proofs will be given only for
a € (1/3, 2/3).

Although the main motivation for this paper comes from the spectral theory of Jacobi
operators, we hope that the asymptotic results obtained in the work may be of independent
interest. Finally, observe that the asymptotic formulae of solutions found in this work are not
covered by recent general results of S. Elaydi in [4] or R.J. Kooman in [14]. In the last paper
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an interesting result on the asymptotic behavior of second order difference operators is
proved (Theorem 10.1 in [14]). However, this result does not apply to the coefficients A, and
g, of this work, due to the assumptions on V(n) and W(n) (see equation (3.4)).

The form of r(n) and s(n) also shows that & = 1/2 is essential value of the parameter «. In
this work we shall restrict our attention to the interval (1/3, 2/3). The methods apply to
a = 1/3 and a = 2/3 but asymptotic formulae become more and more complicated, as «
tends to 1 or 0. This is clear due to the presence of both 1/n and 1/n'~* in the Taylor
expansion of \/—B(n), see equation (2.2).

I thank the referee for useful remarks and for bringing to my attention the work in [14].

The paper is divided into five sections. Section 2 contains some preparatory facts which
will be used in section 3. In section 3 asymptotic formula for the solutions of equation (1.1) is
proved, in the case A > 0. In turn section 4 presents asymptotic result for A < 0. Finally, in
section 5 some comments on assumptions imposed on r(n) and s(n) are given and an
application to spectral analysis of Jacobi operators is briefly described. The same section
contains two open questions.

Throughout the paper the notation( a(-) < b(-) means that nanolo a(n)/b(n) = 0.

2. Preliminaries

Divide equation (1.1) by A, then equation (1.1) is equivalent to

n A An—
4 X x(n) + /\nl

x(n+1)+ x(n—1)=0.
Denoting A,,— /A, = 1 4+ g(n) and (g, — A)/A, = —2 + p(n) the above equation says
x(n+ 1)+ (=2 + pm)x(n) + (1 + g(n))x(n — 1) = 0. 2.1

We make the change of variable in equation (2.1) ([3] or [12])

n—1 2
w(n) = x(n)g = 20)
and obtain
~ 4(1 + g(n) L
wn+ 1) — 2w(n) + 0 =2pn-1-2) wn—1)=0.
Write
L+ Bn) = AL+ g(n) (2.2)

(p(n) = 2)(p(n — 1) = 2)
then the above equation can be written as

w(n+1) — 2w(n) + (1 + B(n)wn — 1) = 0. (2.3)
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Using the formulae for A, and g, it is obvious that B(n) — 0, as n — oo0. Note that 3(n)
depends on A. We claim that all real ( # 0) solutions w(n) of equation (2.2) satisfy

1mfﬂiD=L (2.4)

e ()

provided A > 0.
Let Aa,, == a, | — a,.

LEmMMA 1 Fix A > 0. Then any nontrivial real solution w(n) of equation (2.2) satisfies
equation (2.4).

Proof. Obviously equation (2.3) is non-oscillatory if and only if equation (1.1) is
non-oscillatory. It is known that every nontrivial solution of equation (2.3) satisfies equation
(2.4) if and only if equation (2.3) is non-oscillatory ([5]).

Write equation (1.1) in the form

AAu-1Ax(n = 1) 4+ pp—1 =0, (2.5)

where Pr-1=A+ A — A+ g
Lemma 1.2 in [2] says that equation (2.5) is non-oscillatory if and only if there exists a
sequence u, with u, > — A, n = N for some N > 0, satisfying

Pnltn + UpUp1

Au, +
u ™

+p.=0. (2.6)

Put u,, = 0. Then (2.6) is equivalent to
Phn=Mt1+MN+g,—A=0, n=N.

Since A >0 and a € (0, 1)

1 [e3 1 o
Aat1 + A+ qn :n“[<l +n> +1 -2+ (1 +n) r(n+ 1) 4+ r(n) — 2s(n)
tends to zero as n — oo (by the form of r(n) and s(n)) and so it is clear that (2.6) holds for
n = N = N(A). This completes the proof.
Due to equation (2.4), we have

wn+1)

ML = 14X, @7

where lim,—, X(n) = 0.
Below we repeat for the reader convenience the reasoning given by Kelley ([12], p. 168).
Dividing equation (2.3) by w(n) and using equation (2.7) we obtain

X(n—1
X(n) = (1+ B(n))% ~ B, 2.8)
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Now we write equation (2.8) for large n as follows
X(n) — (1 +Bm)X(n — 1) = —Bm) — (1 + B(n))z (—X(n — ). 2.9)
k=2

Let
n—1

foy =TT a+Bun,
J=o
where jj is chosen such that 1 + 3(j) # 0, for j = jj,.
Using the formula for the solution of the first order linear equation, we have

Z B(s) + (14 B)ND i,y (—X(s — 1))

X(n)=f(n+1)|C R ,

(2.10)

for some constant C.

In the next section, we shall find formal approximations of solutions of equation (2.3) by
using equations (2.9) and (2.10).

In the section we shall need the following formulae.

PROPOSITION 2.2 If A, and q,, are as above then

n—1 2 -1
<H 2 - p(l’))

A(myexp[b(1 =)™ 'n'""*+ (b —a)nn], whena € (3,3),

Al(n)epo?;l {)‘ +D—-E— )_2a+(b—a)l }, whenae(%,%],

where A(n) and A|(n) are some sequences convergent to positive constants.

Proof. Straightforward computation.
It may happen that p(i) = 2 for a certain A and i. Then in the above product the corresponding
i-factor equals 1.

For the reader convenience we recall some results in [12].The first one is a lemma from
[12].

LEMMA 2.3 Assume that f(n) is given by

n—1
foy =TT a+ By,
s=1

where B(s) — 0, as s — o is a sequence of real numbers. If y, B(s) or ZSBZ(S) diverges,
then let K be the largest integer such that ZXB’#(S) diverges. Define

lll
h()—z( L g,
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then

n—1
f(n) = F(n)exp [Z h(s)] .
s=1

where F(n) — F > 0 as n — oo,
The following appear as Theorems 1 and 2 in [12].

THEOREM 2.4  Assume that 1 + B(n) = 0 for n > ny and that v(n) and w(n) satisfy the
inequalities

_ I+ Bm)v(n — 1)

wn) = ey~ B, n=notl (2.11)
_ 4+ Bmwn —1) -
Wi =—"—0 ] B(n), n=ny+1 (2.12)

w(ng) = v(no)
o(n) > —1, n=ny.

If X(ng) € [v(ng),w(ng)] and X(n) satisfies equation (2.8) for n=ng+ 1, then
o(n) = X(n) = wn), n = ny.

THEOREM 2.5 Assume that 1+ B(n) =0, v(n) satisfies (2.11), w(n) satisfies (2.12),
o(n) = wn), lon)| < 1, and |wn)| < 1 for n = ny. Then (2.8) has a solution X(n) so that
v(n) = X(n) = w(n) for n = ny,.

3. The case of positive half line (0, + o)

Fix A > 0. As we already mentioned in the Introduction asymptotic behavior of solutions
x(n) of equation (1.1) depends in essential way on «. This will become clear below. We shall
consider separately only two intervals of a:(1/2, 2/3) and (1/3, 1/2). However, the method
also works for the remaining «'s.

3.1 Formal calculations

c 12
® * (575)-

Then we have inequalities:

2a<1+%<57a<1—|—a<2—g,

which will be frequently used below. First the asymptotic of solutions of equation (2.8) is

found formally, and next using results in [12] precise proof of the obtained formal asymptotic
formulae will be given.

Our task is to find formal solutions X (n) of equation (2.8) modulo some terms of the order
O(n 3% + O(n @72,
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By definition of B(n) we have

2
B = = = 1) — s — 1) — s(n) 4+ A A

ne ; 4n2a n1+a WT&
AGW(H) — 2V |
+ X (")lﬂ () +0(2). 3.1
n n

The growth conditions r(n) = O(1/n) = s(n) also has been used in computing
equation (3.1).
It follows that

VB = \/nza(l +X)'?, (3.2)

Xo=—7 z<r<n>—s<n))§—3—)‘ c'+c—2+3W(")_2V(")+0( la)- (3-3)

. +_
Anl-a 4n®  n  nle n n2-

In order to estimate X,,,; — X,, we impose on V(n) and W(n) the condition
1 1
V(n) = 0(;) = W), AV(n)= 0(2) = AW(n), (3.4)

where x > /2.

How to make a reasonable guess on formal solutions X (n)? We follow the idea of Kelley
[12]. First, using the Euler summation formula one can check that f (n)zg;ll B(s)f(s + n~!
tends to c(a — 1), for a nonzero constant ¢, as n — -+ 0.

Since we know that X(n) — 0, as n — 4 o0, looking at equation (2.10) we see that the next
largest term X 2(k — 1) in the numerator of the sum in equation (2.10) must influence the
asymptotic behavior of X(n). Therefore, we assume

,8(s)+X2(s — 1)< B(s), as §— 4o0.

It follows that

X(s = 1)= £/ =B(s) + y(s), (3.5

where y(s) < 1/+/s%, as s — + o0, see equation (3.1).
On substituting X(n — 1) given by equation (3.5) into equation (2.8) we have

X))+ Bmn)—A+Bm)[X(n— 1) —X*n—D+Xn—1)
(3.6)
—Xn—D+Xn—D]+0Xn—1)=0.

By equations (3.2) and (3.3) the order of O(X 6(n — 1) =0(l/n 3"‘). We want to solve
equation (3.6) modulo O(1/n 2792y 1 O(1/n3%). It is convenient to write equation (3.6) in the
form
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X(n) — X(n — 1)+ [B(n) + X*(n — D] — [X(n — DB(n) + X (n — 1)]
] (3.7
+ X201 = D) + X = D] = X0 = DB + X (n = D]+ 0<ﬁ> =0.

In equation (3.7) appears the difference X(n) — X(n — 1). Therefore, we must to analyze

V=Bn+1) — /=Bn),

(see equation (3.5)).
Write

X, x> x
(V=B = \/ (1+—— "+1g+0(x‘;)>,
Note that

/\X4 o 1
pen T I\ pad-arta/2 |

Since equation (3.4) implies that
1
Ar(n) = 0(2) = As(n),
n

combining the above equalities and definition of X,, we have

1
Xony1 — Xn = 0( 2a>'
n

Therefore, using (+) we check

— A 1
V=Bn+1)— /=B = Znﬁ:é/—z + O<n2a/2>

(because 4(1 — @) + a/2 =2 — a/2).
By equation (3.5) and the last formula we obtain

X(n) = X(n — 1) = + [_“*/X]er(nﬂ)— (n)+0<21a/2> (3.8)

o l+a/2

B(n) + X*(n — 1) = £2/=Bn)y(n) + y*(n) (3.9)

BmX(n —1)+X(n = 1) = =2Bm)y(n) = 3/=Bmy*n) + v’ (). (3.10)
As we shall see below it is not necessary to compute the two remaining terms

X2n— DPm)+X*m—1) and X3(n— DPm) +X3(n—1).
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Inserting formulae (3.8)—(3.10) into (3.7) we have

= | NG y(n)] + Y1) = Y () + Y0) + 2By ()

T3V Bmy () — v ) + X2 — DIBM) + X2(n — D] = X3 — 1) (3.1D)
1 |
<1 + X% - 01+0( 1) o) =

We want —av/A/2n'+%/2 4 2./=B(n)y (n) to cancel out up to the order 1/n '+,
Therefore,

y(n) = —+6(n), with  8(n) <%. (3.12)

Hence (3.11) after substitution of (3.12) turns out to be equivalent to

8n+ 1) — 5(n)+23(n)[ +5(n)} +2./=Bn) 5(n)+0< 2_1 /2>

1
+0<ﬁ> =0, (3.13)

because all the remaining terms of equation (3.11) are of a order higher than O(1/n 2oaly

Next we want the terms =2./— B(n)d(n) and B(n)a/2n to cancel out up to the order 1/n e
Thus

a/A .
0+(n)=*—— yPEYL + e(n), with en) < T (3.14)
This way we have formally computed that
avA
X+(n—1)=*£/—B{n) +—n 112 + &(n), (3.15)

where s(n) < 1/n'*%/2,

(b) 11
a e (3 2}

The reasoning in this case is similar to the one given in (a). Therefore, we
shall be brief. First note the scale of inequalities is different from the case (a):
302 =(1 — a2) <502 =(1 + a/2) = (2 — 3a/2).

The assumptions on V(-) and W(-) are given again by equation (3.4).

Using definition of B(n) after lengthy computations we have

A
Bln) = =2 (1 +yn), (3.16)
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where
C1 (&) c3 C4 Cs Ce a1
[ a— — 4+ — 2(W -V A
y e /\n‘*“+/\n2“+n+n3a+n1+“+ (W(n) (n))An
+ (5W(n) — 2V(n)An ' + 0m* %) + O(n %)
and

A\? A2
c1=2(E—D)—3<§), c=2(a—b)+ a, 0323(D—E)+7.

The form of remaining constants ¢y, s = 4, 5, 6 are not essential for formal computations.
Now

V=B = A[Z( >y2+0(yi)]- (3.17)

Rewrite equation (2.8) for large n as follows
6
X(n) = X(n— D+ Y _[BwX'(n— 1)+ X* " — DI(~1)'
s=0
— (1= X(n—1)BMWX (n— 1)+ 0X’(n—1)=0. (3.18)

We want to solve equation (3.18) modulo O(n ~( o+ 3a2)) for large n. As in the above case
(a) we look for X(n — 1) in the form

X(n) =%/ =Bn+1)+yr+1),

with y(n) < n-?,
Using equations (3.16) and (3.17) we find

X(m) = X(n— 1=+ [z;fiﬁ en 10 ”] Ty (1) =y () + )

+ O(n_9a/2) + O(na/Z—l),

for some constant c.
In turn

B + X2 = 1) = 2y [VAn ™2+ ein 32| 4002 71) + 52 (),

for some constant e;.

Denote by L(n) == X(n) — X(n—1) + B(n) + X*(n — 1).

We demand that the terms =[— a~/A /2n 1+e/21 and 1y (n)+/An ~%/2 of L(n) cancel up to the
ordern ' ~ 2

Hence
y(n) = a(dn)™" + 8(n), (3.19)

where 8(n) < 1/n.
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Using equations (3.19) and (3.10) the sum L(n) — [X(n — 1)B(n) + X3(n — 1)] can be
written as

Sn+1) — 8n) = |ean 32 4 28(n)An Y2 + e38(nyn 3>

+ 23(”)[“(471)71 + é6(n)] + O(n 79“/2) +0(n a/271),

for some constants e, and e3
Now the terms *£28 (n)\v/An ~/2 and al2B(n)n ~! cancel up to the order n Tloe provided
that

+\/Xa

om =+ e

+ e(n), (3.20)
where e(n) < 1/n'*%/2,

Since X %(n — D[B(n) + X *(n — 1)] is of the order n ~' ~>*? and the terms X°*(n — 1)
[B(n) + X 2(n — 1)] and O(X 9(n — 1)) are of the order higher than O(n -1 —2(1)

This reasoning shows that X(n) is also given by the formula (3.15).

3.2 Proof of formal approximations

(a) a € <l,%)
2’3

Following the ideas of Kelly we will prove below that the formal expression given by
equation (3.15) is indeed right approximation of genuine solutions of equation (2.8). We
restrict ourselves to the proof in the 4 sign case of equation (3.15). The proof for the — sign
in equation (3.15) is similar.

Define

=/~ D+oy 4 here d € R 3.21
v(n) = Bn+ )+E+W, ere (3.21)
is a free constant.

We claim that choosing suitable d we have

vin—1)
—(1 —— <0 3.22
v(n)+ B(n) — ( +B(n))1+v(n_ n=0 (3.22)
for all n sufficiently large.

Indeed, using equation (3.21) and repeating the computation made above (see equations

(3.8) and (3.9), etc.) we find that the left hand side of (3.22) reduces to

1 VA 1 1
B (d - a\/X) aiTa 0<n2—a/2) + 0(,1301)

This proves the claim provided that d < a+/A and n is sufficiently large. The same
computations prove that

[e% d1
—+

W(I’l) = _B(l’l + l) + an W
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satisfies

-1
w(n) + B(n) — (1 + B(n))#n_)l) >0, (3.23)

if d, > a+/A and n is large enough. Inequalities (3.22) and (3.23) allow to apply Theorem 2.4
and get a solution X;(n) of equation (2.8) such that

M
‘de-v—BM4—D—7%‘S;ﬂi5, (3.24)

for large n.
Similarly, by Theorem 2.5 we can find a second solution X;(n) of equation (2.8) for which
we have

a M
Yol + /B D~ | = (3.25)

for n sufficiently large.
Now the first asymptotic formulae for a basis of solutions of equation (1.1) are described by

THEOREM 3.1 Let o € (1/2, 2/3). Suppose that A, and q, are given by equation (1.3),
where V,, and W,, satisfy conditions (3.4). Then equation (1.1) has a basis of solutions y+(n)
with the asymptotic behavior given by

A

y(n) = C+(mn~ “*exp = [1 — a/znlf(a/z) + yn®? + pn' =G| (3.26)

where C+(n) — C+ # 0, as n — o and

A2 D—-E 30\ ! a+2b —a)
=—(Z 4+ =) (122 =" &
= (77 )(1-5) s

Proof. Let X|(n), X»(n) be solutions of (2.8) satisfying estimates (3.24) and (3.25). Since

1+&W=Y%%¥,i=LZ
applying Lemma 2.3 we have
n—1 1 1
MMZFMNWZH&®_5ﬁ®+§ﬁ®' (3.27)

Note that
{Xim}el' (=12

by estimates equations (3.24) and (3.25), and so 3 is the largest integer 2 for which
ZkX;yf (k) is divergent.
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Again due to estimates (3.24) and (3.25), the assumption (3.4) and the form of
+/—B(k + 1) one can write for large k

A a—2(a—b)_3< )\>3_ D-E

Xi(k)y=* —_t = — _—
(k) ka+ 2\/Xkl—a/2 8 ko \/Xk3a/2

@ (@/)—1-x Ga/2)-2
+ ot o(k ) T Ok )

A —2(@—">
Gl

2 _ " a=2
X} =7 p + 0(k*?)

3/2
X} (k)= = (k—a> +O(k /)y,

where in the above equalities + sign corresponds to i = 1 and — sign for i = 2.
Using the above formulae and the Euler summation formula equation (3.27) can be
written as

w;(n) = I?i(n)n“/“exp + |An'"? 4 Bn®? 4 Cn' 32|, (3.28)

with A = v/A(1 — @/2)"", B = (a — 2a+ 2b)(ax/A)~", C = p, for some sequences F;(n)
converging to positive constants Fi.

Combining Proposition 2.2 and equation (3.28) we obtain equation (3.26).

The proof is complete.

11
b e
(b) « (3 2}
Again the reasoning is the same as in the case (a).
Define
— dl 2
Vi) = =B+ D+ s (3.29)
where d; is a real constant.
Then one can choose d; such that
vi(n—1)
vi(n) + B(n) — (1 + B ))m<0 (3.30)

for all n large enough.
In fact, direct computation of the left hand side of (3.30) reveals (by using the expansion of
(I+vin— 1)) =30 (= 1)vi(n — 1) + 0w!°n — 1)) that it is equal (for large n) to

(@A = an)]n ™ fin 05D 4 02 4 022,
for a certain constant fi. This expression can be made negative for a suitable d; and n large

enough. The same computations show that

dy

vy(n) ==/ —B(n+ )+4 +—" oTra/2



610 J. Janas

satisfies for another constant d, (namely such that dr~/A — al > 0) and large n

vo(n— 1)

va(n) + Bn) = (1 + Bm) PRy — > 0. (3.3D)

Applying Theorem 2.4 we obtain a solution X;(n) of equation (2.8) such that

- M
[%a00 = /=B + 1)~ o = ks (3.32)

for n sufficiently large and some M. Similarly, by Theorem 2.5 we can find another solution
X>(n) of equation (2.8) such that

- M
T — /B D~ | = (3.33)

for some M, and large values of n.
Consequently, we obtain

THEOREM 3.2  Let a € (1/3, 1/2]. Assume that V(n) and W(n) satisfy equation (3.4). Then
equation (1.1) has a basis of solutions X+ (n) with the asymptotic behavior of the form

X-(n)=A=(n)n 7“/4exp

a\ 1
+ _ 1-a/2 a/2 1-3a/2 n 1-50/2
__[Ji(l 2) n + yn®* 4 pn -+ii;§;7§n . (3.34)

where A+(n)— A+ #0, as n— oo, p and Y are the same as in equation (3.26),
n=VAl(cz — c/4+ c1)/4+ A2 /5] with ¢, given in equation (3.16).

Proof. Let X1 (n), X»(n) be solutions of (2.8) satisfying estimates equations (3.32) and (3.33).
As we know

5 wi(n + 1 .
1+&@=K%@l,z=L2
and applying Lemma 2.3 we obtain
~ _ ! S 1 &2 1 ~3 1 ~4 1)25
wi(n) = Fi(n) expz Xi(k) — EXi (k) + gXi (k) — ZXi (k) + 5 Sk |, (3.35)
k=1

with Fy(n) — F; > 0, as n — o0,
Note that {)N(iﬁ(n)} € 1' (i =1, 2)due to (3.32) and (3.33), and so # = 5. Using equation
(3.17) and the assumption x > «/2 we check that for some sequences ry(k) € [ "and large k
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the following equalities hold

. /X g & gV
Xi k)= * k 5
" [ VA Skl a2 | ke +4k+”( )
2
. Cq 3
th e — = - — =
Wil 81 )\7 82 C2, 83 3 )
A giA
L) = —+%+g2+ ra(k),
- AN 3g 03
)(?(k)—i<<ka> +W + r3(n),

2
Xl = 2o+ rah),

5/2
X)==+ <k);> +r5(k).

Here + sign corresponds to i = 1 and — sign to i = 2.
Using equation (3.35) the above equalities and Proposition 2.2 we obtain

n—1 2
X+(n)=A(n) exp [Z <2k)\_a =+ <D —FE— A8>k2a + b - a)kl)]

k=1

n—1
N A - 82 —5a/2
B(n)exp = —+ pk 3“/24_7__}_7’/( a/
; k 2/ Ak 1-a/2

exp

—ni * (p-E- AN 24 (b~ ak T

£\ 2k 8 4k
n—1 ‘7[’

= Ai(m)By(mn~*exp * Z [\/ pk‘3“/2+kH/2 ]

where 1 = V/A(c3 — ¢2/4) + ¢1)/4 + 1/5(1)°/2, p and 4 are the same as in equation (3.21),
and B(n), B1(n) are some sequences convergent to positive constants.
The Euler formula completes the proof.

4. The case of negative half-line (— oo, 0)

Asymptotic behavior of solutions of equation (1.1) for A < 0 is much simpler to find.

Assumptions on r(n) and s (n) are also less restrictive. Namely, r(n) and s (n) do not change

their form (equation (1.4)) but in this section V(n) and W(n) only decay faster than 1/n o2 je.

V(n) = O(%) = W(n) for large n, “.1)

where x > a/2.
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The idea of proof is based on right ansatz about the form of asymptotic of solutions of
equation (1.1). This approach was already successfully used in [10] (for negative A and
a = 1). The form of the ansatz we make below is inspired by Theorem 3.1.

The case a € (1/2, 2/3)

THEOREM 4.1 Let « € (1/2, 2/3). Suppose that A, and g, are the same as above, i.e.
A =01+ r(n), ¢, — 2n*(1 + s(n)) and r(n) = a/n + D/n>*+ V(n)/n, s(n) = b/n +
E/m>* + Wn)/n. If V(-) and W(-) satisfy (4.1) and B,, is given in (1.1), then for any A <0

there are two linearly independent solutions 7+ (n) of
An+1) = B,Z(n) (4.2)
with the asymptotics given by

ze(n) =n " *exp[=i(Fn'~%* — Gn®? + Hn' >%)(1 + o(1)),

zin—1)
i=V-LEn = < z(n) )

Pev(1-9) L o=t

o'

as n— oo and

Proof. We make the ansatz

2y = n"exp [Z (Ak® + Bk® + CkP)|,
1

where —1 = p<e <8 <0,and A, B, C, v € R are some numbers.
Define the matrix

here Z,, denotes the complex conjugate of z,,.
We want to choose A, B, C, v, &, 6 and p such that

S, \BuS, =1+ R, 4.3)

for some matrices R, with {||R,||}el . It follows that an arbitrary solution of equation (4.2)
has the form

Znt1 = Sp1Wa,

where w, is a sequence of vectors which tends to a non-zero vector.
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Therefore, the form of the asymptotic of 7, | will be determined by the matrix S, , i.e. by
the parameters A, B, C, v, 8, € and p.

LetA = =V, B= *(a+2(b — a))/(2VA), C = (—A>124) + (E — D)IA), § = — al2,
e=al2—1,y=—a/dand p= — 30/2.

Direct computation shows that

detS,i1 = [n(n+ D124+ 1)1+ BA '(n + 1)* 2+ -],

where the above dots mean the higher order terms.
It follows that

(detSyp) ' = ii(2\/—_)\)_ln“[1 +0<n1]“>}7 (4.4)

for large n.
Denote

em)=1= 0, )= A+ 201+ se)(1 +r(n) ™' — 2.

Then
0 1 0 0
B, = + .
-1 2 e(n) Yn)
We have
. . Pn T Sn ty
S, 1BuS, = (det S,11) — + 7, -3, )| 4.5)
where

2/ __ _
Pn = |Zn| (anlznl +Zn+lznl - 2)7

2 —1 —1
M =50 (2n-12, + 212, —2),

2 _ 1= _—
Sn = |Zn| (_11[}(”) - QD(n)anlZn 1Zn*lzn 1)7

t” = Zi(_dj(n) - QD(n)anlzn_l)

Below we shall estimate the off diagonal element: (det S, 1)71(1),, +1,)of S/

w1 BnSn-
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We compute
1
1z, = (1 - Z) {1 = (An® 4 Bn® + Cn®) 4 S (An® + Bn® + Cn’)
n

1 1
- E(Ana + Bn® + Cn®)’ + E(An8 + Bn® + CnP)* + O(n55)] (4.6)

1z, = (1 +%) {1 +Am+ 1D°+ B+ 1) + Cn+ )P

1 1 1
+3 A0+ D?+Bn+1)°+ Cn+ 1)P)* + 3 L.+ LR I+ O(nSB)}.
4.7)
Hence using equations (4.6) and (4.7) and the form of A, we have for large n
Mo+ 1, = z,%{A(n + 1)°+B(n+ 1)° 4+ C(n+ 1)’ — (An® + Bn® + Cn”)
1
+5lAn+ DP 4. )2 +@An’+..)%
1
+ 5 [AC+ D2+ .. +@An®+ .. )%
1
+ g lAe + D+ . )+ @Al + . ) + o)
A A
+291An® " 4 Bre Tl Cnply - A M)
n no
— 2[s(n) — r(n) — s(n)r(n)] + O(r*(n)) + %(An‘s + Bn® + Cn?)
— & Ar(n = DI1+ 001 |
n
A 2AB a b—a
_ 2 2,26 _ Y _
- Z”{ <A n na) + (l’l —(e+9d) n 2 n )
1
+ E(A‘*n45 +24ACn* — 24[E — DIn">*) + (A8 + 2AX + aA)n®!
1
—B(a — DHn® ' — Can?' + B?n*® + 0(n”?) + 0( 1+x> } (4.8)
n

we also have used assumptions on «, s(n) and r(n). Due to definitions of A, B, C, 8, € and p
the first four terms in the above brackets {...} vanish and the remaining terms reduce, for
large 7, to the sum O(n *~?) + O(n ~>*%) + O(1/n"™).
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Hence
|0 + tal = |22 {O(naz) + 0("75a/2) + 0<n11+x)] ’
- 0<n(°‘/2)_2> +0(n7) + 0(@)
so for large n
}(detSnH)_](nn + tn)} _ 0<n(3a/2>—2> T O(n—Za) 4 0(,114“1751/2)7 (4.9)

see equation (4.4). Since « € (1/2, 2/3) and x > «/2 it is clear that the off diagonal elements

of S, J: 1B1S, are summable.

Concerning the diagonal element (det Sn+1)7](pn + s,) note that
I + 50 — detSpt] = |z 1Z0-12, ' + zas12, ' — 2 = $(0) — @ (2012,
~ (zn12, " = Zu1z, )
= lanl’ 12013, + 21z, =2 = P — @(MZ1Z, |
= |21z, + 212, =2 =P — @MWz, |
= |mn +tal. (4.10)

Combining equations (4.10) and (4.9) we conclude the proof of equation (4.3) and the
statement of theorem.

One could also formulate and prove analogous formula for « € (1/3, 1/2]. However,
details of computations are long and not too interesting.

Instead we have the following asymptotic formula for the case a € [2/3, 3/4).

THEOREM 4.2 Let a € (2/3, 3/4). Suppose that A, and q,, are the same as in Theorem 4.1
and satisfy the same assumptions as above. Then for any A <0 there are two linearly
independent solutions of equation (4.2) with the asymptotic given by

_ n _ a+2(b—a) _ a+2(b—a) _
a/4 / Nk a2 koz/Z 1 k301/2 2)
+\n)=n eXp| = 1 —_— X
z+(n) [ Z ( 2=\ 8( a)3/2

X (1 + o(1)),

as n— oo,

Proof. (The idea).
We proceed in a similar way as above. First we make the same type of ansatz, i.e.

n
Zy = n"exp Z(Mk81 + Nk®' + PkP) |,
1

where —1 = p; <eg; <8 <0,and M, N, P, y; € R are some numbers.
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Then by repeating the calculations presented above we find that
Sut1BuS =1+ Ty,

with (||T,|l) € 1" provided we take M = ++/A, N = *[a+2(b—a)]@4))"?, P=

— x 7(1;(2/\()};720)’ Y = _Ta’ 81 = _Tav g = % - 1, p1 = 370‘ — 2. We omit the details.

5. Comments and applications to Jacobi operators

5.1 Comments

First note that the perturbation of n* by n“ ' + Dn ~® is quite natural because even when
a=b=D=E=0 in the asymptotic formula (3.26) appears exp = [(1/~/A)n®/?) +
pn' =G4 with p defined in Theorem 3.1. In turn the third term V(n)n ~' has the order
higher than Dn ~2* for e < 2/3, (1 + x > 1 4+ a/2 > 2a) or the order higher than an " for
a < 1/2. Concerning the assumptions (3.4) it is clear that they have been essentially used in
the above estimates.

Under what type of perturbation of A, and g, the asymptotic formulae are stable?

First note that in the asymptotic formulae for X,(n), s =1, 2 appears /—pB(n + 1).
Therefore any additive perturbation of — B(n), i.e. —B(n) + r(n) leads to the same
asymptotic form of the solutions X.(n) (modulo a convergent sequence) provided that
V=B +r(n) = /=) + ri(n), with ri () €1,

However, the following formulation in terms of additive perturbation of A, and ¢, seems
more natural.

PROPOSITION 5.1 Let A, and g, be as in Theorem 3.1 and o € (1/3, 2/3).

Consider A, = A\, + Pny Gn = qn + P, with

¢, =0n"7)=y,andy + 3a/2 > 1.

Then the asymptotic formulae given in Theorem 3.1 (resp. Theorem 3.2) for solutions of
equation (1.1) (with A, and §,) remain unchanged.

Proof. Computing B(n) corresponding to A, and qn we find:

— ! 12

Bn) = Bm)(1 +0(n "), € (3,3),
for large n. It follows that \/ B(n) = /B()(1 + O(n~©*®)) and the above note completes the
proof.

Remark 5.2 However, the method used for A >0 cannot be applied for general
1! perturbation, i.e. when Xn = N1 +r,) and g, = ¢g,(1 +s,), where r, and s, are only
summable sequences. We need to know how fast decay these perturbations in the power scale
(see the arguments used in the formal proofs in section 3). Nevertheless, summable
perturbations are allowed by adapting the method used for A > 0 in section 4, and this will be
shown in a separate work (joint with E. Chernova and S. Naboko).
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5.2 Application to Jacobi operators

As is well known asymptotic behavior of generalized eigenvectors of Jacobi operators is
strongly related to the spectral analysis of them (via Khan-Pearson subordination theory
[13]). This idea has been used by us in several recent papers [6—9,11].

Below we present only one standard application of Theorems 3.1 and 4.1. The application
is rather straightforward and more interesting ones will be given in the future work.

For A, and ¢, given by equation (3) the Jacobi operator J acts in />(N) by the formula

(Ju)n = An—lun—l + qnltn + /\nun+l>

with the maximal domain.
Since Y, A, ! = 400, J defines a self-adjoint operator in I%(N).
As an easy consequence of Theorems 3.1 and 4.1 we have

THEOREM 5.3 Let o € (1/2, 2/3) and let A,, q, be as in equation (1.3). Then J is purely
absolutely continuous on ( — o, 0) and purely point in (0, 4 00).

Proof. (Sketch) Fix A < 0. By repeating standard reasoning and applying Theorem 4.1 one
can check that equation (1.1) has no subordinated solutions (see the proof of Theorem 2.2 in
[6]). This fact combined with Khan-Pearson theory proves that J is purely absolutely
continuous in ( — oo, 0)

In turn Theorem 3.1 implies that equation (1.1) has (for positive A) exponentially
decreasing solution and this, again due to Khan—Pearson theory, implies that J may have
only point spectrum on the positive half line. We omit the details.

5.3 Open questions

(a) Extend the results (for arbitrary real A) for the weights (A,, = n “(1 + r(n)) + ¢, where
c#0.
(b) Do the methods apply to other sequences A, and ¢,,?
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