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‘We prove new discrete versions of Levinson type theorems describing asymptotic behavior of solutions of
systems of linear difference equations. We show that for several cases of equations with coefficients
possessing some “essential” oscillations the asymptotics should be also essentially corrected, comparing
with the classical Levinson’s cases studied, e.g. in [2,5,9]. The results obtained here allow to study the
asymptotics for some systems with coefficients which are not necessary convergent. As an illustration, an
application to spectral studies of some Jacobi matrices is presented, by using the asymptotics of
generalized eigenvectors.
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1. Introduction

The paper is devoted to the problem of asymptotic behavior of solutions of systems of linear
equations having the form

x(n+1)=An+ Hx(n), n = ny, (1.1)

where A = {A(n)},=,, is a certain sequence of d X d invertible complex matrices (we
shall be mainly concerned with d = 2). The asymptotics of such systems have been
investigated in numerous papers. One of the most important is [2], where the classical
Levinson’s result (see [6]) on asymptotics for differential systems is adopted for the
discrete case.

This paper is a continuation of our studies from [9], where some further discrete analogs of
the Levinson type results were established. The main motivation of the previous, as well as of
the present paper, comes from the spectral analysis of Jacobi operators. Note that the
asymptotic methods have been used for spectral studies of Jacobi matrices in numerous
papers—see [1,7,9,11-15].

In [9], the asymptotics was described for sequences A being a “small perturbation” of a
sequence A’ which can be diagonalized to a form satisfying some special conditions—
dichotomy condition—see [2]) by a bounded variation sequence of diagonalizing matrices.
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2 J. Janas and M. Moszynski

In this case, the asymptotics for a base solution possesses the classical Levinson’s form

n—1
(H )\(s)) v(n), (1.2)

s=ng

where A(n) is a suitably chosen eigenvalue of A'(n) and {v(n)},=,, is a vector sequence,
which is convergent to a non-zero limit.

Yet, such a simple situation does not occur, in general, for the classes of A’ studied in this
paper. Here, we study A’ that belong to more general classes of matrices, resulting in a new
type of asymptotics. We prove that now “the scalar term” in the asymptotics has the form

n—1 o

11 x®.

s=ng
where )T(;) = AMn) + r(n) is a perturbation of A(n) with some r(n)— 0, and it can be
computed by some explicit formulas. It is worth to note that contrary to the cases studied in
[9], the term )T(;) depends in an essential way not only on the eigenvalues, but also on
eigenvectors of A’(n). Also, the vector term corresponding to @(n) from equation (1.2) is more
involved and contains the eigenvectors of A’(n). In most cases, considered here the vector
term “oscillates”, i.e. it need not converge (but its norm can be estimated from below and
above).

Note that asymptotic formulas with the scalar factor different than equation (1.2) can be
found, for instance, in [2] (which is used in the proof of our Theorem 4.1).

The methods we use here are more or less standard (successive diagonalization
procedure). However, it was necessary to find right classes of matrices A’ which are regular
enough to carry out the diagonalization method. We consider classes defined in terms of the
Stolz D* algebra (see [20]) and its generalization. In particular, we study matrix sequences
given by

Amn)y=1+ L V(n), (1.3)
m(n)
with a suitable weight sequence w(n) — +o0 and V belonging to the u — weighted D? class
(see Section 2.1). This class is especially interesting for us due to its application to the
spectral analysis of Jacobi operators. It turns out that asymptotics of solutions can be found
provided
lim iup discrV(n) <0 or lllrﬂmof discr V(n) > 0.

Let us remind the usefulness of the D* algebras in spectral analysis of difference operators
(see [14,20)).

The importance of asymptotic studies of solutions of equation (1.1) for various kinds of
applications can hardly be overestimated. We refer to [3,4,17] for interesting examples.

The paper is organized as follows. In Section 2, we introduce notation and some technical
facts, which we use in the next sections. The most important is Lemma 2.2 on preserving of
the weighted D classes by C¥ transformations.

In Section 3, we study the case of A’ € D* with the limes superior of the discriminant
being negative. We describe a general procedure for any k = 2 (Theorem 3.1), and we show
the explicit formulas in the case k = 2 (Remarks 3.2, no. 3).
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Solutions of linear systems 3

In Section 4, we prove a theorem (Theorem 4.1) which is formulated for any dimension d,
with the assumption that A(n) converge to a limit possessing d nonzero eigenvalues with
pairwise different absolute values, and with some weak oscillation assumption. As a
consequence, for d = 2, we obtain a positive discriminant analog (Corollary 4.3) of the
“k = 2 result” of Section 3. Note that the oscillation assumption is here slightly different than
in the previous section (see Remark 4.2).

The most difficult from the proof-technical point of view (but also the most interesting for
the Jacobi matrix applications) are the results of the Section 5. We study there the class
mentioned above, described by equation (1.3) with the positive or negative discriminant
assumptions (Theorems 5.1 and 5.3).

The last section is devoted to some illustrations of the abstract results of the previous
sections by examples related to the spectral analysis of Jacobi operators. We refer to our
paper in preparation [10] where we shall present applications of the asymptotic results to
spectral studies in more general situations.

Appendix contains some longer proofs of facts from Preliminaries.

2. Preliminaries

In this section, we introduce the notation used in the paper, and in several subsections we give
definitions and prove some technical lemmas used in the main part of the paper. Some longer
proofs are passed to Appendix. We start with the basic notation.

Let us fix d € N. By M4(K) we denote the set of d X d matrices with the entries in K for
K = C or R. We fix an arbitrary norm |[|-|| in C? and we use the same symbol also for the
induced operator norm in M4(C). For s € {1,...,d} the s-th standard base vector of Ccis
denoted by ey, if v € Cd, then the s-th coordinate of v is usually denoted by v, or (v),.

ForA € M4(C) and s,s’ € {1,...,d} the entry from the s-th row and the s’-th column of
A is denoted by A,. By Diag A we denote the diagonal matrix with the diagonal of A, i.e.
DiagA = diag (A1, .. .,Au), where diag (v, . . ., v,) is the diagonal matrix from M,(C) with
01, ..., being the successive diagonal entries. If d = 2, the symbol discrA denotes the
discriminant of the characteristic polynomial of A, i.e. discrA = (trA)> — 4 det A.

We shall use the following convention for products of matrices: HJI.:kA( J) equals
A(l)-...-A(k) if | > k, if | = k it equals Ay, and if [ < k it equals /.

Let X be a finite dimensional normed space (we mainly consider here X = K, K¢, M 4(K),
for K = C,R), and let w:= {u(n)},=n be a sequence of positive numbers (“the weight
sequence”), withsome N € Z.Forp € (1, +9o)and asequence x := {x(n)},=,, of elements of
X we say that x is a [”(u) sequence or simply x € [P(w), iff Z:fmax (,1U7N)||x(n)||p wn) < oo,
In the case u = 1, we write also [? instead of [”(w). Note that we use the same notation /7(w)
for any X and any starting index ng of the sequence. The set of bounded sequences is denoted by
[®. We write x(n) — g to denote the convergence of x to the limit g € X. The discrete
derivative of x is denoted by Ax, i.e. Ax = {x(n + 1) — x(n)},=,,. For k=10,1,2,... the
symbol A* denotes the k-th power of the operator A (and A® = I).

The remaining notation is introduced in the subsections.

2.1 Stolz classes of matrices—generalizations and properties

In this subsection we study the classes D¥ and D*" introduced by Stolz in [20]. We present
generalizations of some results and notions from [20].
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4 J. Janas and M. Moszynski

We start from a generalization of the D¥ classes. Let X, x and 1 be as before, and let
k=1,2,.... We say that x is a D*(u) sequence or simply x € D*(w), iff x € [ and
A"x € [®%/™ () for m = 1,...k. In the case u = 1, we write also D* instead of D*(w). We
say that the weight sequence w is shiftable iff {(u(n))/(u(n + 1))},=n € . This condition
guarantees that the /”(u) classes are left shift invariant. We say that u is separated from zero
iff liminf .o w(n) > 0. This condition guarantees that /”(w) C [9(u) when p = q.

Example 2.1 Consider w(n) = n® with some « > 0, and let x be a scalar sequence given by
x(n) = h(n”), where v > 0 and / is a C? scalar function on [1; +00). It can be easily proved
that if

oo )
J (K + |h”(s)|)s1+a_vl ds < 400,
|

then x € D?(w). Thus, if we assume that o < 1, #’ and /” are bounded and

Ta>'y>0 @2.1)

then x € D?(w). In particular, if equation 2.1 holds, then the sequences given by the formulas
sin(n?) or cos (n”) are in D?(w).

The following lemma shows that the weighted D* classes can be preserved under C*¥
transformations (i.e. transformations possessing continuous k-th differential). For G C X
containing all the elements x(n) of x, a set X' and a function f: G— X' we define

@) = {f(x() } =,

LEMMA 2.2 Let w be a shiftable weight sequence, separated from zero. Suppose that X, X'
are finite dimensional real normed spaces and that K C U C X, where U is open and K is a
compact and convex set. If f : U — X' is a C* function and x is a D*(w) sequence of elements
of K, then f(x) == {f(x(n)},=p, is a D*(w) sequence in X'.

The proof is placed in Appendix.

Observe that choosing the space X and the function f properly, from the above lemma
we can derive that acting by some operations on two (or more) D*(w) sequences we
obtain a sequence being still in D¥(w). It is true, for instance, for the product of scalar or
matrix sequences (in the real and complex case). The problem of the quotient of two
D*(w) scalar sequences x and y is slightly more delicate, even for y ! being bounded,
because of the convexity assumption in Lemma 2.2. Nevertheless, this problem can be
solved easily, as it is shown below.

LeMMA 2.3 Let u be a shiftable weight sequence, separated from zero. Suppose that
x = {x(n)},=,, and y = {y(n)},=,, are two D*(w) scalar sequences and that

inf |y(n)| > 0. 2.2)
n=ny

Then (x/y) € D*(w).
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Solutions of linear systems 5

Proof. Observe first that using x(n)(y(n)) ! = )c(n))mly(n)lf2 and Lemma 2.2 (for f being
the product) we can reduce the problem to the case of y being real. We have Ay € [*(w) and
thus y(n + 1) — y(n) — 0, since w is separated from zero. Hence, using equation (2.2), for
real y we see that the sign of y(n) is constant for n large enough. Thus, the assertion follows
from Lemma 2.2. (]

Let us recall the notion of Stolz’s D*" classes (we shall not need any “weighted
generalization” of them). Let » € {0,...,k — 1}, we say that x is a D “" sequence or simply
x € DM iff Nx € [%/G+) for j=1,...k — r. Note that

DRl =pl pkd > = pk 2.3)

forany k=1,2,....
By E we shall denote the matrix changing the order in the standard base of % ie.

0 1
E= .
1 0
DEFINITION 2.4 Consider sequences {A(n)},=,,, {S(n)},=,, of complex 2 X2 matrices,
where A(n) = diag (A (n), A—(n)) for n = ny. We say that the pair {A(n)},=,,, {S(1)},=,,

satisfies generalized Stolz conditions k, r (we shall also use the abbreviation GSCy,,), iff the
following conditions hold

inf Im A4 (n) >0, A-(n) = Ay(n), n = ny, 2.4
{A)},=p, € DX, {S()},=p, € D" NI, (2.5)
detS(n) #0 for n=ny and {(S(n))fl},,g,,o e, (2.6)
(@ S(n)=ESME, or (b) Sn)=SMm)E. 2.7

If moreover equation 2.7 (a) holds, we shall denote this case by GSCy,, (a) and similarly
for (b).
Note that the original Stolz conditions from [20, Theorem 4] contained one extra
condition, namely
Ay (m)]— 1. (2.8)

We shall denote GSC,, with equation (2.8) by OSC;,. The following lemma is a
generalization of the Stolz result mentioned above.

LemmA 2.5 If k=2, r €{0,....,k — 2} and the pair {A(n)},=,,, {S(n)},=,, satisfies
GSCy,, then there exists a pair {A’(n)}nzno/7 {S'(M)} =y, satisfying GSCy 4y (a), where
ny' = ng + 1 and N'(n) = diag (X, (n), \'_(n)), such that the following conditions hold

AmESm) 'S — 1) =S WA S n) ™", n=ny, (2.9)
Sn)—1, (2.10)
X (n)
— 1. 2.11
() @11)
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6 J. Janas and M. Moszynski

Proof. In the original Stolz result GSC was replaced by OSC. Observe that

el = (ReAcm)® + AmAc(m)?) %, n = n.

Thus, using the fact that {A(n)},=,, € D¥ and that equation (2.4) holds, by Lemma 1.2
we see that {|)\+(n)|71}”2n0 € D*. Therefore, defining A(n) = |)\+(n)|71A(n), n = ng,
and using again Lemma 2.2, we obtain {A(n)}nz,m € D* and moreover, the “rescalled” pair
{/~X(n)},,2,lo7 {S(M)},;=n, satisfies OSCy,,. Now we can use the Stolz result [20, Theorem 4.1],
and we obtain {A/ (M)} yznys {S'(M)} =, satisfying OSCy .y (a), equation (2.10), and
the analog of equation (2.9) for the “rescalled” pair. Now it is enough to define A(n) =
IAs(m|A(n), n=ny, and use the fact that {IA+(I},=,, € D* (by the arguments as
above). O

2.2 Local diagonalization of matrices

DEFINITION 2.6  Let Xo € M4(C). The triple (U, D, T), where U is an open neighborhood
of Xo in My(C), and D, T : U— M4(C) are C' functions (in the sense of 2d* real variables
functions) such that for any X € U D(X) is diagonal, T (X) is invertible and

X =TXDX)(TX) ",
we call a local C' diagonalization for Xo.

The following lemma shows that each matrix with only simple eigenvalues possesses a
local C! diagonalization.

LEmma 2.7 Let Xo,Ay,To € My(C) and suppose that Ty is invertible, Ay =
diag (Ag1, ..., Aog) with Ag; 7 Agy for j #j and Xy = T()AOT(TI. Then there exist an open
neighborhood U of X, in My(C) and holomorphic functions (as functions of d* complex
variables—entries of a matrix from MyC)) T,D:U—MyC) such that
T(Xo) = Ty, D(Xo) = Ay, and the matrices T (X) are invertible, D(X) are diagonal and
X =TX)DX)T(X)"! for X € U. In particular (U,D,T) is a local C' diagonalization
for X,.

The proof can be found in Appendix.

2.3 Explicit diagonalization in special cases

Here, we present some explicit expressions for diagonalization of 2 X 2 matrices from three
particular classes.

2.3.1 Negative discriminant matrices. Let X be a 2 X 2 real matrix with discr X < 0.
By A(X) let us denote the eigenvalue of X given by

AX) = %(trX + i/—discr X). (2.12)
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Solutions of linear systems 7

Observe that X5, X5 # 0, since
discrX = (X11 — X22)? + 4X12X1. (2.13)
Thus, we can define z(X) = (ANX) — X)X 1_2', and the diagonalizing matrix for X

1 1
S(X) = (z(X) ﬁ) (2.14)
‘We have
det S(X) = w (2.15)
12

hence S(X) is invertible and we have

(SC)) ' XS(X) = diag (\(X), N(X)). (2.16)

2.3.2 Positive discriminant matrices. Let X be a 2 X 2 real matrix with discrX > 0.
By v+ (X) let us denote the eigenvalues of X given by

1
v+(X) = E(trX + discr X). (2.17)
We define also two sets of “subscripts” related to X
QX)) ={s € {1,2}: Xss #v=(0}.

Observe that the both sets are nonempty. Suppose, on the contrary, that X; = v (X) = X»
or the same for the “—" case. Then for 0=+ or — we have 0 =det(X — v,(X)]) =
—X51X12, and hence by equation (2.13) discr X = (X — ng)2 = (, which is in contradiction
with the assumption that discr X > 0.

Moreover, for any j = 1,2 we can easily obtain the following estimate

[X12X21| = min{|v(X) — X;I°, lv—(X) — X;|°} (2.18)

Let s+ € Q4 (X). We define a diagonalizing matrix T(X) for X determined by the choice
of s+ and s—. When this choice is known, we shall also use the shorter notation T(X). For
instance, if we choose sy = s— = 1, then

X X2
T(X) = <"+(X)X11 v_(X)—X11 )

1 1

In the general case, the entries of T(X) are given by

1 for i — sy, j=1or(i —s—,j=2)
_ X for i= =1
(T(X));; = { v+~ Xi OFI=SHJ= (2.19)
X:

i fori=s_,j=2,

where for i € {1,2} we define i by = {1,2}, i# i. Since the columns of T(X) are
eigenvectors of X, we easily obtain

(TX)) " 'XT(X) = diag (w+(X),v_(X)).
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8 J. Janas and M. Moszynski

Using the formula for T(X) we can compute

detT(s4,s-,X) = (—1)**Vdiscr X

WX = Xy,5,) 7! for s, # s—

_ _ 2.20
Xot 02X = Xos ) (0 = X,0) " for sy =5, 220

2.3.3 Matrices with a special symmetry. We diagonalize here matrices of the form

i)

where a, b € C, with |b| < |Ima|. For such a,b let us denote
ib
Ima + o/ (Ima)* — |b)?

with o = sgn(Ima), p(a, b) = Rea + oi\/(Ima)> — |b|>. Using the assumptions on a,b it
can be easily checked that |w(a, b)| # 1, and

1 wah\ ' fa b 1 w(a,b) ,
(W ) ) (13 a><W(a,b) 1 )Zdlag(p(a,b),p(a,b))-

Moreover, we have

w(a,b) =

|b]
2|Im a|

|61

= |w(a,b)| =

= . 2.21
ma] (2.21)

2.4 Change of variables

Consider a sequence {A(n)},=,, of complex d X d matrices and the equation (1.1) for a c?
vector sequence {x(n)},=,,. Let {S(n)},=y, with N = ny, be a sequence of complex d X d
invertible matrices. If y(n) = S(n)x(n), n = N, then equation (1.1) restricted to n = N is
equivalent to

y(n+1)=Am)yn), n=N, (2.22)
where
A(n) =S+ DA)(S()™!, n=N. (2.23)

Such transformation from equation (1.1) to (2.22) we call in this paper the change of
variables by {S(n)},=x-

In the next sections, for each of the considered cases, we use one or several properly
chosen changes of variables to obtain finally the equation with A(n) of the form for which the
asymptotic results are already known. Such procedure is a standard tool for asymptotic
studies, see e.g. [2,8].
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Solutions of linear systems 9
3. Asymptotic behavior of solutions for negative discriminant case
We consider here the equation (1.1) with
A(n) = V(n) + R(n), n = no,

where {V(n)},=,, and {R(n)},=,, are sequences of 2 X 2 complex matrices satisfying

{(V)},=p, 1s a Dk sequence of real matrices, 3.1
lim sup discr V(n) < 0, 3.2)

n—+0oo
{R)} =, € 1" (33)

We shall describe a procedure of successive changes of variables for this case. Note that
the case k=1 is covered e.g. by Theorem 2.6 of [9]. Thus, assume that k = 2 here.
By equation (3.2) there exist 6 > 0 and Ny = ny such that discr V(n) = — 6 for n = N,. For
n = Ny denote

AQm) = A(V(m)), A9(m) = AP (), AQ(n) = diag AL (n), A\ (n)), (3.4)
and
SO n) = S(V(m) (3.5)
(see equation (2.14)). Using equation (2.13) we obtain
V2l > 8dm)~", (3.6)
where M > 0 is such that |V;;(n)| = M for j,j/ = 1,2, n = N,. By equation (2.16) we have
V(n) = SO2AYm)SPm)!, n=N,. (3.7)

Moreover, using Lemmas 2.2 and 2.3, by equations (2.12), (2.14), (2.15) and (3.6), we
obtain {SQ)},=y,, {A”)},=y, € D¥ and {(S©(n))"'},=y, is bounded. We also have
SOm) = SOMm)E for n = ng. Thus, the pair of sequences {A(O)(n)}nzNo, {SOm)},=n,
satisfies GSCy o.

We shall now inductively apply the following general step. Let j € {0,... k — 2} and
assume that (VO()},zy, (RO} ,zy,. (AV)}zy,, (S0}, are 2 X 2 complex
matrix sequences such that the pair {A(j)(n)}nEN], {s (j)(h)}HENj satisfies GSCy; and

VOn) = SPmAPm)(SPm)~!, n=N; (3.8)
For the equation
xPm+1) = (V(j)(n) + R(j)(n))x(j)(n), n=N;

we change the variables by {(SP(n — 1))~! Vuzn,+1 and setting xUHD(n) = (Y (n — !
xP(n) we obtain

X+ 1) = (VU0 + RYTDm)xY ), n=N;j+1,
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10 J. Janas and M. Moszynski

where (see equation (2.23))

VU@ = AV m), 3.9

RYV(m) = (SPVm) 'RPm)SV(n — 1). (3.10)

Using Lemma 2.5 we can represent V U+ () in the form analogous to equation (3.8), i.e.
there exists Nj;; = N; + 1 and the pair of sequences {A(JH)(n)}nzNj {SUDm)} =,
satisfying GSCy 1, such that

+17?
VU = SUED@ATP STV @) n = N,
and moreover

SUDm) — 1. (3.1

This makes it possible to repeat the single step “until j = k — 2”.

Let us apply the above procedure to our equation (1.1), i.e. denote VO(n) = V(n),
R©(n) = R(n) and x©(n) = x(n) for n = N,. By our previous considerations the procedure
can be started. After k — 1 steps we obtain the equation

XD+ D= (VEDm + R Pm)x*Dm), n=Ne, (3.12)
which is equivalent to equation (1.1) restricted to n = N;_, if we substitute
V) = Um - 1)) 'x(m), n =N, (3.13)

where forn = N1 — 1

k=2
U = [[s9m. (3.14)
=0
Moreover, we have
VEDm) = sED@A VS Vm) T, n= Ny, (3.15)
and
R D(m) = Um) 'RmUMn — 1), n= Ny, (3.16)

where the pair {A“"V(m)},=y,_,, (IS4 V()} =, satisfy GSCpi—1,

S« D)y -1, (3.17)
and
Un)=SOmU'®n), Um—I. (3.18)
It is crucial now that
(s Ym)},=y,, €D’ (3.19)
(since D¥*=! = D11, Therefore, to study equation (3.12) we can use some known

“D!-Levinson” type results, e.g. the results of [9] (see [2]) and we obtain the following
theorem.
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THEOREM 3.1 Assume that equations (3.1)—(3.3) hold with k = 2. Let N = Ny— and for
n=N let )\(ﬁfl)(n) be the eigenvalues of V*~V(n) with Im /\(f:*l)(n) >0 and A\* V(@) =
)t(fr‘_l)(n) (where V% D(n) and Ny_, are introduced above). Suppose that det (V(n) +
R(n)) # 0 for n = N. Then the equation

x(n+1)=V{m) + Rn)x(n), n=N (3.20)
has a base of solutions {x;(n)},=y, {x-(n)},=y of the form
n—1
xe(n) = <H A(i“%)) v+(n),n = N, (3:21)
s=N
where v+(n) are C? vectors such that
v:(n) = SOV — Dex(n), e (n)— e1, e-(n) — es, (3.22)
with SO (n) given by equation (3.5). Moreover, inf ,=y )\ff*l)(n) > 0 and

MY = AV) + En),  with {En)}=y € 1. 3.23)

Proof. Observe that A*D (n) = diag ()\(f;_l)(n), A*=D (n)) for n = N. Hence, by equations
(3.3),(3.15)—(3.17),(3.19), we can use [9, Corolary 2.2] and we obtain the existence of two
solutions of the equation (3.12) restricted to n = N of the form H:‘;,:, )\(ik_l)(s) e+(n), with
e+(n) as in equation (3.22). Thus by equations (3.13) and (3.18) and by the previous
considerations we obtain the formula for solutions of equation (3.20). The linear
independence of the solutions follows immediately from equations (3.21) and (3.22) and the
fact that ey, e, are linearly independent C? vectors. To prove equation (3.23) it is sufficient to
use equation (3.9) for j =0, ...,k — 2, the formula

SV~ 8V = 1) =1 = (V)" A — 1),

and the explicit formula for the eigenvalues of a 2 X 2 matrix. (]

Remarks 2.2

1. The analog asymptotic result for the case k = 1 (see [9, Theorem 1.6]) is simpler. The
appropriate formulas have the form

n—1
X (n) = (H )\;‘”(s)> v+(n), n=N, (3.24)
s=N
where A (n) are the eigenvalues of V©(n) = V(n):
APm) = NV, A\Om) = AD(m), (3.25)
and
V+(N) = Voo, (3.26)
where
Voot = (1,2(V0)), Voom = Doy, 3.27)

with Vo being the limit of V(n).
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2. If {V(n)},=,, € D' then it is a convergent sequence, but D* sequences for k > 1 need
not to converge in general. If we additionally assume in Theorem 3.1 that V(n) — V.
then equation (3.2) means that discr V. < 0, and by equations (3.22) and (3.5) we have
equations (3.26) and (3.27) similarly as in the case k = 1.

3. Inthe case k = 2, the numbers )\(ip(n) can be also explicitly computed. By equation (3.9)
they are the eigenvalues of VI (n) = AQm)(SOn) 'SOm — 1), i.e.

1
AW =3 (tr VO (n) + iy/—discr v<1>(n)), n=N. (3.28)
Moreover, using A{z(V(n))},=y, € [ 2, after some simple computations we get
AP = A2 = e (m)(1 + r(n) (3.29)

with )\(f)(n) defined by equation (3.25), r~ € [!, and n+ € I? given by

Vv —z(Vin—1 -
ey = SIS ) = (3.30)

Thus, by equation (3.21) we get a base of solutions {xi(n)},=n, {x-(1)},=n of
equation (3.20) such that for some N' = N

n—1 n—1
x+(n) = <H A‘B)(s)> <H (1- ni(s))> v+(n), n=N, (3.31)

s=N' s=N'

with v+(n) as in equation (3.22).

The above formula shows, that the scalar term in the asymptotics is essentially changed in
comparison with the “D'—case” described by equation (3.24). The correction is essential,
providing that Z:fN, 1+ (n) diverges (see [5, Theorem 8.12]), which is the typical situation
for our “D%—case”.

4. Asymptotics for positive discriminant case

We present here a theorem formulated for general dimension d of the system (1.1). As a
special case, for d = 2 and positive discriminant limit of the sequence {A(n)},=,,, we get a
result which can be treated as an analog of the theorem from the previous section. Below we
use the notion of local C! diagonalization (see Definition 2.6).

THEOREM 4.1 Let Vo be a d Xd complex matrix having d nonzero eigenvalues with
pairwise different absolute values, and let (U, D, T) be a local C" diagonalization for V.
Suppose that {V(n)},=,,, {R(n)},=,, are sequences of complex matrices satisfying

V(n) €U, n=ny, 4.1
V(n)— Ve, “4.2)
{(Vin+1) = V()} =, € 1%, 4.3)

{R()} =, € I 4.4



GDEA 148972—14/12/2005—THAHEER—193397

Solutions of linear systems

553 Denote for n = ny
554 ) .
555 diag (Afe, - -, Adw) = D(Vo),  A(n) = diag (A1(n), ..., Aa(n)) = D(V(n)),

556
557 S(n) = T (V(n))
558

559
560 &) = — (S + 1) 'S+ 1) - SNAM) ;0 j=1,....d.

and

=
- If for n = ny

563 det(V(n) +R(n)) # 0, Nm)+§&m) #0, j=1,....d,
564
565 then the equation

566 x(n+1) = (V(n) + Rm)x(n), n=ng
567
568 has a base of solutions {x;(n)},=,,, j = 1,...,d, of the form

569 nei

570 xi(n) = <H (Aj(s) + fj(s))> vi(n), j=1,...,d,n= ny,
571

572
573
574 2(n) = Yoo, j=1,...,d,
575
576
577

S=no

where vj(n) are C 4 vectors such that

13

(4.5)

(4.6)

4.7)

(4.8)

(4.9)

(4.10)

4.11)

with vje being an eigenvector of Ve for the eigenvalue Ajo. Moreover, {§(n)},=,, € 2.

578 Proof. Let us change the variables in equation (4.9) by {(S(n))”! }n=n,- The equation for

579 y(n) = (S(n))_lx(n) has the form
o YO+ 1) = (AG) + Wen(), 7 =ny
582 where
583

sg4 W(n) = —(S(n+ 1)1 (St + 1) — S)A@®) + (St + 1)) 'R(n)S(n).

4.12)

(4.13)

585 Observe that by equations (4.1) and (4.2), all the V(n)-s are contained in a compact
586 subdomain of 7 : U — My4(C). Since T is a C! function, by equation (4.6) there exists K > 0

587 such that
588

550 IS+ 1) = Sl = KlIVin+ 1) = V)ll, n = ny.

590 Thus, by equation (4.3) {S(n+ 1) — S(n)},=,, € 2. Moreover, by equations (4.5)

591 and (4.6),
592

03 () = Seo, (S() ™' = (Se0) ™", A1) = Aco,

(4.14)

594 where Soo = T (Vo) Aww = D(Vo). Thus {&(n)} =, € [*, and by equations (4.4) and (4.13),
595 we have {W(n)},=,, € [, and [A;(n)(Ay(n)) "' = [Njeo(Ajeo) '] # 1, j # j'. Therefore, by
596 [2, Theorem 3.3] there exists N = ny and a sequence of invertible matrices {B(n)},=y

597 such that

598
B(n)—1

(4.15)
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and that changing variables in equation (4.12) by this sequence we obtain
w(n + 1) = (A(n) + DiagW(n) + R(n))wn), n=N 4.16)

for w(n) = B(n)y(n), with {R'(n)},=y € ['. Now, using equation (4.13), we can write
equation (4.16) in the form

wn+1)= (/~\(n) +R'(n)wn), n=N, “4.17)
where A(n) = A(n) — Diag [(S(n 4 1)"'(S(n + 1) — S(m)A(m)] and
R'(n) = Diag [(S(n + 1)) 'R(m)S(n)] + R (n).

By equation (4.7) A(n) =diag (M(n) + &(n), ..., Ag(n) + &;(n)). Moreover, Aj(n) +
&(n) — Ajo and {R"(n)},=y € I'. Thus, the new system (4.17) is an /! perturbation of a
diagonal system, and we can apply here a “diagonal-Levinson” type result. For instance, we
can use [9, Theorem 1.2] (since the assumptions (3.24) and (3.25) of [9] are satisfied;
alternatively see [2]: Lemma 2.1 4+ Remark 2.2 (1)). We obtain the existence of solutions

n—1
wi(n) = (H(A,-(s) + fj(s») o/(n), j=1,...d, n=N,
s=N

with vj’(n) — ¢;. Now, using equations (4.8),(4.14) and (4.15), we obtain the formula (4.10)
for solutions of equation (4.9), and their linear independence easily follows from the
independence of eigenvectors of V. |

Remark 4.2 The oscillation assumptions in Theorems 3.1 and 4.1 for the case k = 2 are
similar, but different. The condition {(AV)()},=,, € 1% is weaker than the condition
{(Vim)},=,, € D?, yet in Theorem 4.1 we additionally assume that V(n) is convergent, which
is not necessary in Theorem 3.1.

Under the assumptions of the above theorem, a local C! diagonalization for Vo always
exists by Lemma 2.7, nevertheless the general asymptotic formulas obtained in the theorem
may be not explicit enough. Sometimes, making some extra assumptions on the matrix Ve
and on the sequence {V(n)},=,, we can find the formula for the scalar term A;(n) + &(n) in
the asymptotics (4.10) in a more explicit form. Below we do this for d = 2 with “positive
discriminant assumption”, using the formulas introduced in Section 2.3.2.

COROLLARY 4.3 Let d = 2 and assume equations (4.2)—(4.4). Suppose that V(n) are real
matrices with discr V(n) > 0 for n = ny, and that

discrVeo >0, trVs, #0, detVy, # 0. 4.18)
Define
Aot = V+(Ve), Ax(n) = v+(V(n)), n=n, (4.19)

and choose s+ € {1,2} such that s+ € Q+(V). Then there exists N = ny such that
forn=N

s+ € Q+(V(n)), (4.20)
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and 1 + 6+(n) # 0, det (V(n) + R(n)) # 0, where for any n satisfying equation (4.20)

S+ DS+ 1D = 81m) — S+ DS+ 1) — 5,(n)
detS(n + 1)

d1(n) =
4.21)

So1(n+ DS+ 1) = Sip(n) — Sii(n + 1)(S22(n + 1) — Sa(n))
detS(n + 1) ’

with S(n) = T(s4,s—,V(n)). If N is as above, then the equation x(n+1)= (V(n)+
R(n)x(n), n =N, has a base of solutions {x(n)},=,, {X-(1)},=,, of the form

n—1 n—1
xe(n) = (H (A+(s>> (H 1+ 6+(s)> ve(m), n=N, (4.22)
s=N s=N

where v+ (n) are C? vectors such that
D+ (1) = Vroo, (4.23)

o_(n) =

With v+« being the first and the second column of the matrix T(sy,s—, V), respectively.
Moreover, {8+(n)},=y € I°.

Proof. The existence of N follows immediately from equations (4.2) and (4.4) and the fact
that A;j(n) + &(n) converge to the j-th eigenvalue of Ve, ie. 10 Aot O Aw-. These
eigenvalues are nonzero and have different absolute values by equation (4.18). Now the
proof follows easily from Theorem 4.3 and the explicit formula for a local C'!
diagonalization for V. This diagonalization can be defined by an analytic extension of the
formulas from Section 2.3.2 (note that these formulas refer to the real matrix X case). [J

Remarks 4.4  Similarly, as in the previous section (see Remarks 3.2) equation (4.22) shows,
that the scalar term in the asymptotics is essentially changed in comparison with the
corresponding“D ' —case” (see [9, Th 1.5]).

5. Double eigenvalues—perturbations of 1

In general, when the limit of A(n) has double eigenvalue, the asymptotic studies are more
difficult. In this section, the matrix sequence {A(n)},~,, in the equation (1.1) is a perturbation
of I of the form

An) =1+ L V(n) + R(n). 5.1)
()
The scalar sequence u satisfies

p(n) >0, n=ng, n)—+oo, (5.2)
f (RO 4D = po)* _ (53)

= u(n) ’ '

+00 1

= 4oo. 54
Zumy o
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Observe, that by equation (5.3) (u(n + 1)/u(n)) — 1. Hence, u is a shiftable weight
sequence (see Section 2.1), and moreover, for any sequence {u(n)},~y we have

(U ymy € P(w) iff {uln+ D} oy € 1P(R). (5.5)

Note that the conditions (5.2)—(5.4) are satisfied for instance by sequences of the form
pn)y=n*n=1for0 < a<l.

For the matrix part of the perturbation we shall assume here that {R(n)},=,, € 1" and
{(Vi)},=,, € D?(w). We present two theorems with different assumptions on the sign of the
discriminant of V(n).

5.1 Perturbations with negative discriminant

In this section, we study the case with the negative sign of V(n) in equation (5.1). We use here
the functions A, z, S defined in Section 2.3.1.

THEOREM 5.1  Suppose that equations (5.1)—(5.4) hold and that {V(n)},=,, and {R(n)},=,,
are sequences of 2 X 2 complex matrices satisfying

{(V()},=,, isa Dz(,u,) sequence of real matrices, 5.6)
lim sup discr V(n) < 0, 5.7

n—-+00
{R)}y=y, € 1. (5.8)

Assume also discrV(n) <0, n=ng, and for n=mny define An)= AV(n)),
z(n) = z(V(n)). For n = ny + 1 set

r(n)

) =2 = 2= 1), rn) =5

a(n) = AMn) + ir' (M) + p(),  bn) = ir'(W(An) + pmn).
Then there exists N = no + 1 such that forn = N
Ima(n) > |b(n)|, (5.9)
and
detA(n) # 0. (5.10)
If N is as above then the equation
x(n+1)=Amx@m), n=N (5.1
has a base of solutions {x(n)},=n, {x—(n)},=n of the form

n—1
xa(n) = (H (1 +pl:(f)))>vt<n>, n=N, (5.12)

s=N
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where

pi(n) = Re (an) + iy (man))? — b, p-(n) = pn)
and v+(n) are C? vectors such that
vx(n) = S(n — Dex(n), ey (n) — e, e—(n) — e, (5.13)

with S(n) = S(V(n)). Moreover,
We need the following lemma here:

ps(n) — A(n) — 0. (5.14)

LEMMA 5.2 Assume equations (5.2)—(5.4). If uis a Dz(,u) sequence, then Au(n)u(n) — 0.

Proof. Denote t = Au. We have

n n—1

(mun) = tno)ulng + D+ > (At — Du®) + Y (Awkrk),

k=nop+1 k=no+1

and both sums on the RHS are convergent. The first, since = I'(w), and by equation
(5.5). The second, since

(Aw)(k)
Aw)(k)t(k) = k k
(Au)(k)r(k) G [£(k)/ k)],

and using equation (5.3) and t = Au € [*(u) we see that the above is a product of two 2
sequences. Thus, #(n)u(n) = (t(n))/(w(n)) "' — g for some ¢ € C. Suppose that Re g # 0.
Then using (Re #(n))/ (w(n))"' = Req and equation (5.4), by the comparative test of
convergence (the signum of Re #(n) is constant for large n since Re g # 0), we obtain the
divergence of ZZ;;URe t(k) = Reu(n) — Reu(ng) to +00 or —oo. And so we get a
contradiction with the boundedness of u. Thus, Re ¢ = 0, and proceeding analogically for
Im g we get the assertion of the lemma. (]

Proof of Theorem 5.1. We shall frequently use here the property (5.5), but to shorten the
argumentation, we shall not refer to it. Denote A= {A(n)},=,,, 2= {2(1)},=p,
r= {r(n)}nanJrla rl = {rl(n)}n2n0+]v a = {a(n)}nznoJrl’ b = {b(n)}nanJrl' USiIlg
Lemmas 2.2 and 2.3 we obtain

Az € DX (w) (5.15)
and
inf Im A(n) > 0, inf Imz(n) > 0. (5.16)
n=n n=ny
We also have
{8} zp> (SO} ,2, E 1% (5.17)
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By Lemma 5.2 we get
r(n)u(n) — 0. (5.18)
Now, by equations (5.2), (5.15), (5.16) and (5.18), we see at once that
b(n)— 0 (5.19)
and there exist N = ng + 1, C, 6 > 0 such that forn = N
la(n)| = C, Ima(n) > 8, (5.20)
and equations (5.9) and (5.10) hold. Thus, we also have

1+

p:((n")) 40, n=N, (5.21)

since Im p (n) # 0. Moreover, by equations (5.18)—(5.20), we get equation (5.14).
Let us change the variables in equation (5.11) by {(S(n — 1)) "'},=. The equation for

y(n) = (S — 1) 'x(n) (5.22)
has the form
yin+1)=Hm)yn), n=N, (5.23)

where by equation (2.23) and by the diagonalization formula (S(n)) ' V(n) = A(n)(S(n)) ",
with A(n) = diag (A(n), A(n)) (see equation (2.16)), we have

Hn) = (1 lA Sn)~'s D+Rn)=1 L fam b R
(n)—( +M (n))( (n) 'S(n— 1) +R(n) = +m 55 @ + R(n),

where R(n) = (S(n)) " 'R(n)S(n — 1). By equations (5.8) and (5.17) we have
{Rm)},=y € 1". (5.24)

Using equation (5.9) we can define w(n) = w(a(n),b(n)), n=N, and by the
diagonalization formulas from Section 2.3.3 we have

a(n) bn) _ »
(W a(n)> = W(nydiag (p4+(m), p-(m))(W(n)) ", n=N,
with
1 w(n)
W(n) = (W | > (5.25)
We shall prove that
{(Wn)},=y €D, Wn)—1. (5.26)

First, let us note that having equation (5.26) we can use [9, Corollary 1.2] for the equation
(5.23), since by equation (5.10) det H(n) # 0,

P+(”)7 1+ p+(n)
m(n) ()

H(n) = W(n) diag <1 + )(W(n))1 + R(n)
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with 0 # 1 + (p+(n))/(u(n)) — 1, and equation (5.24) holds. This way we obtain the
existence of solutions of equation (5.23)

n—1
_ p=(s) -
y+(n) = (g (1 + M(s))>e*(”)’ n=N,

with e+ (n) as in equation (5.13). Now, using equation (5.22) we get the asymptotic formula
for x+ and their linear independence as in the assertion of the theorem.

It remains only to prove equation (5.26). By equations (5.19), (5.20) and (2.21) we have
w(n) — 0, hence, by equation (5.25), it suffices to show that

{w(n)},=y € D". (5.27)

By the definition of w(n) there exists N’ such that w(n) = ib(n)g(n), n = N', where by
equations (5.19) and (5.20) g(n) = f(Ima(n), |b(n)!), with f: U—R, U= {(x,y) € R?
< x<C,lyl <1/2)x}, flx,y) = éx—i— x2 — y2) . The partial derivatives of f are
bounded and thus f'is a bounded Lipschitz function. Therefore, {g(n)},~» is bounded and
there exists C; such that

lg(n+1) — gm| = Ci(Ima(n + 1) — Ima@)| + |b(n+ 1) — b)), n=N"

Hence, by |[w(n + 1) — w®m)| =< |gn + Dllb(n + 1) — b(n)| + |b(n)||lg(n + 1) — g(n)| and
equation (5.19) there exist Cp, C3 > 0 such that for n = N’

[wn+ 1) — wn)| = Calb(n + 1) — b(n)| + Cslb(n)l|la(n + 1) — a(n)|. (5.28)
Thus, to show equation (5.27) is sufficient to prove that
beD' (5.29)
and that
r'Aa € 1Y (w), (5.30)

since by equations (5.2) and (5.15) |b(n)| =< 2|r'(n)|u(n) for large n. Note first that by
equations (5.15) and (5.16)

ror’ € (). (5.31)

Similarly, using (Ar)(n) = (A%Z)(n — 1) we have
Ar € 1'(w) C I*(w) (5.32)
(the last inclusion is a consequence of equation (4.2)), and thus also A’r e 1'(w). So we have
r € D* (). (5.33)

Observe also that v’ = rs, where s € Dz(p,) by equations (5.15) and (5.16) and Lemma 2.2.
Thus, by equations (5.31) and (5.32) and the Schwarz inequality we obtain

Ar' € 1'(w). (5.34)
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For the proof of equation (5.30) let us write a(n) in the form a(n) = a'(n) + ir' (Wu(n),
where

. r(n)
W= 1+i—2 ).
a'(n) (n)( + lZIm p

By Lemma 2.2, equations (5.15) and (5.33) we have {a’(n)}nzn0 € D?(w), and thus, by
the Schwarz inequality and equation (5.31), the component a’ in a can be omitted in the proof
of equation (5.30) and we are reduced to proving r'A(r'w) € I'(w). Since r'(n)uw(n) — 0 by
equation (5.18), it suffices to show

Ar'w) €11, (5.35)

We have (A(r'w)(n) = [r'(n + D/um]I((Ap)(n))/ (/@) + w(n)(Ar')(n), hence by
the Schwarz inequality, equations (5.3),(5.31) and (5.34) we obtain equation (5.35).

The last part of the proof is the proof of equation (5.29). We have Ab = iA(r/w) + iA(r'A)
and A(r'p) € I! by equation (5.35). Moreover, using the Schwarz inequality, equations
(5.15), (5.31) and (5.34) we get A(r'A) € I'(w) C I', which proves equation (5.29). O

5.2 Perturbations with positive discriminant

Here, we study some positive discriminant assumptions on V(n) in equation (5.1).
We use here the functions v+, Q.+, T defined in Section 2.3.2.

THEOREM 5.3 Suppose that equations (5.1)—(5.4) hold and that the sequences {V (1)} ,=p,
{R(M)} =y, of 2 X 2 complex matrices satisfy equations (5.6) and (5.8), and

liminf discr V(n) > 0. (5.36)

n——+00

Assume also that the numbers sy,s— € {1,2} fulfil

liminf lv,(V(n) — Vs s, (W) >0, o=+,—. (5.37)
Then there exists N = ny + 1 such that
s+ € Qo (V(n)forn =N — 1, (5.38)
discr V(n) > 0, detA(n) # Oforn = N, (5.39)
and

11;’5\] discr P(n) > 0, v+~ (P(n)) # —u(n)forn = N, (5.40)

where
P(n) = A(n) + (A(n) + n(n)Q(n), (5.41)

with  A(n) = diag (v4.(n), v—(n), v=(n) = v=(V(n)), Q(n) = —(S(n)~"(AS)(n — 1) for
n=N, and S(n) = T(sy,s—,V(n)) forn = N — 1. If N is as above then the equation

x(n+1)=Am)x(n), n=N (5.42)
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has a base of solutions {x;(n)},=y, {x-(n)},=y of the form

xe(n) = <1_"1[: (1 + p;(?;)) Ye(n), n=N, (5.43)
where p=(n) = v+(P(n)) and = (n) are C* vectors such that
P=(n) = S(n — Dex(n), er(n)— ey, e—(n) — e,. (5.44)
Moreover,
p=(n) = v=(n) — 0. (5.45)

Proof. As in the previous proof, we shall frequently use here the property (5.5), without
referring to it. The existence of N for which equations (5.38) and (5.39) hold is clear, thus, for
n large enough, say, for n = N’, the matrices S(n), A(n), Q(n), P(n) are well defined. Denote

A= {AM} =y S = {SM) )=y, ST = AST M }zns @ = (O} yznis P = {P(D)} =y
and £ = {(A(n) + w(n))Q(n)},=y:. Using Lemmas 2.2 and 2.3 and equation (5.36) we get

A, S, STl e D (w). (5.46)

For A the above follows from equation (2.17), for S—from equation (2.19), and for S ~'—
from equations (2.18) and (2.20) (the last is needed only in the case s; = s, with j = s).
Hence, using Lemma 5.2 and equation (5.2), we obtain

En)— 0, (5.47)
and therefore,
discr P(n) — discr V(n) = discr (A(n) + £(n)) — discr A(n) — 0. (5.48)

Thus, by equation (5.36), and by equation (5.2) we obtain the existence of N which
satisfies also equation (5.40).
Observe that if A, B € D*(w), then by the Schwarz inequality AAB € D' (), since we
have
A(AAB)(n) = (AA)(n)(AB)(n + 1) + A(n)(A*B)(n).

In particular, by equation (5.46) we get

Q € (W N D (w. (5.49)
Now, observe that equations (5.47) and (5.48) proves equation (5.45). Moreover,
iminf -0 (W4 (P(m)) = P2o(n)) = lim féof (p+(n) — v—(n) — Exn(n)) (5.50)

=liminf o0 (v (1) — v-(n) = En(n) + p1(n) — v1.(n)
= liminf discr V(n),

and analogically
liminf (Pii(n) —v_(P(n)))= limJirnf discrV(n). (5.51)

Thus, there exists Ny = N such that2 € Q. (P(n)), 1 € Q_(P(n)) forn = N, and we can
define a diagonalizing sequence W = {W(n)},=y, by Wmn)=T2,1,P(n), n=N,.
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By equations (5.47), (5.50), (5.51), (5.36) and (2.19) we have

1 u(n)
Wn) = (W(n) | )—»I, (5.52)
with
En(n) Ea(n)
— A = v’ = 5.53
oy e e e e ey M 633
and

P(n) = W(n)diag (p4 (n), p-(m)(W(n)~', n=N,. (5.54)
We shall prove now that
weDb (5.55)

By equations (5.52) and (5.53), using Py1(n) = w(n) + E11(n), Pr(n) = u—(n) + Exn(n)
and the formula

a _ (Aa)(m)b(n) — a(n)(Ab)(n)
A (E) (m) = b(n + 1)b(n) ’

we see that it is enough to prove the following three statements:

EeD', (5.56)
(Ap)E €1, (5.57)
Av=)E €1, (5.58)

where p= = {p+(n)},=n, V= = {v+(W)},=y. We have £ = AQ + uQ, and
(AAQ))(n) = A(n + 1)(AQ)(n) + (AA)(n)Q(n),

AuQ))(n) = un + 1H(AQ)(n) + (\A/%) V (mQ(n),

hence using equations (5.3), (5.46) and (5.49), the Schwarz inequality and /”(u) C /7, we get
AQ,uQ € D' (5.59)

and thus also equation (5.56). Using the similar arguments and the estimate

lAD)@IEMI = [|Ax QMA@ + I(Ax) )/ )|\ u(m) Q)|
we get
x € DX(w) = (A&l € 1. (5.60)

In particular, using equation (5.60) for x = v+, we get equation (5.58). To prove equation
(5.57) let us observe first that there exists C = 0 such that

l(Ap=)m)| = CllAP)m)Il, n=N. (5.61)

The above follows from p+(n) = v+(P(n)), from equation (5.40), and from the fact that
the sum and the superposition of Lipschitz functions are also Lipschitz functions (we use this
for the functions M»(R) @ X — trX, D D X — discr X and [e; K] D t— +/t, for a bounded
domain D C M»(R) and for 0 < € < K). Thus, by equation (5.61), it suffices to prove
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l(AP)||E]l € 1!, and hence, using P = A + AQ + uQ and equations (5.46), (5.49) and (5.60)
we see that it is enough to prove A(uQ) € I', which follows from equation (5.59). This
finishes the proof of equation (5.55).

Now we proceed in a similar manner as in the proof of the previous theorem. We change the
variables in equation (5.42) by {(S(n — 1))"'},=x- The equation for y(n) = (S(n — 1)) 'x(n)
has the form

y(n+1)= H(m)y(n), n=N, (5.62)
where
Hn) = <1 + lP(n)) + R(n) (5.63)
m(n)

where R(n) = (S(n)) 'R(n)S(n — 1). Thus, we have {R(n)},-y € I', and by equation (5.54)
forn = N,

104—(")7 14 P- (n)
m(n) m(n)

H(n) = W(n)diag (1 + )(W(n))_l + R(n).

Hence, we can use [9, Theorem 1.4] (see also the results in [2]) to the equation (5.62). For
n = N we have det H(n) # 0 by equation (5.39) and 1 + (p=(n))/(u(n)) # 0 by equation
(5.40). Moreover, the main assumption (“dichotomy condition”) of [9, Theorem 1.4] is
satisfied for the solution “y_" since for n large enough |1 + (p—(n))/(m@)II1 + (p+(n))/
(pd(n))lf1 = 1. For the second solution “y,” we need the above inequality and

o0

H 4 p—(n)

n=N [.L(}’l)

-1
=0. (5.64)

‘ 1 p+(n)
()

But equation (5.64) follows immediately from Z::N%: —o0, being a

consequence of the equality p_(n) — p4(n) = —discr P(n) and of the conditions (5.4) and
(5.40). In this way, similarly as in the proof of the previous theorem, we obtain the existence
of solutions of equation (5.62), and then, by the change of variables, the asymptotic formula
(5.43) and the linear independence of solutions. O

6. Applications for studies of generalized eigenvectors of some Jacobi operators

In this section, we intend to illustrate the abstract results from the previous sections with
some examples. These examples refer to the generalized eigenvectors of some Jacobi
operators. We show here some asymptotic results which can be obtained by the theorems
proved in Sections 3—5, but which do not follow directly from the other discrete versions of
the Levinson theorem, e.g. the theorems proved in [2,3,9].
Let us consider a Jacobi matrix, i. e. an infinite tridiagonal matrix of the form
q1 Wi
wi g2 W2

w2 g3 W3

W3 g4
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where w,, g, are real coefficients (weights and diagonals, respectively), and w,, # 0. More
precisely, for a complex sequence u = {u,},~; we define

(jbt)n = Wy—Up—1 + qnln + Wpllpy1, N € N7 (61)

with the convention that w; = u; := 0, if j < 1. The Jacobi operator J is the operator in the
Hilbert space [*(N) defined by J on the maximal domain D(J):= {u € [>(N):
Ju € I’(N)}, ie. Ju= Ju for u € DJ). Let A € C. A scalar sequence u = {u,},~;
we call a generalized eigenvector of J for A, if

(Juw), = Au, foranyn = 2. (6.2)

Note that to be the eigenvector of J (not only “generalized”), u should satisfy the above
equation also for n = 1, and it should be a (nonzero) sequence from /2(N). Nevertheless,
properties of generalized eigenvectors have strong relations with some spectral properties of J.
For instance, the subordination theory of Gilbert, Pearson and Khan (see [16]) is an example of
such a relation. Some spectral results obtained by the subordination theory and by the
asymptotic analysis of generalized eigenvectors have been presented in [7,9].

To study the asymptotic behavior of the solutions of equation (5.2) it is convenient to
rewrite this equation in the equivalent C? vector form

x(n+ 1) = By(Mx(n), n=2, 6.3)

where B,(A) is the transfer matrix given by

0 1
By(M)= | _w A-q | (6.4)

and the equivalence of equations (5.2) and (5.3) is established by the substitutions

Up—1
x(n) == ( > € C*forn = 2, u, = (x(n+ 1)), forn = 1. (6.5)

n

Another equivalent C? vector form of equation (6.2) can be obtained when instead of
single B,(A)’s we use products of two neighbor transfer matrices. Thus, define

B,(A) = By,(M)Bo—1(A), n=2. (6.6)
The equation
¥n+1)=B,Mx(n), n=2 6.7)
is equivalent to equation (6.2) by the substitutions

Uzn—2

¥n)=x2n— 1) = < > eC’ n=2, (6.8)

Up—1
&), for n=21—-2
(Buy1())'%(D),  for n=21—3"

n=1.

Uy = (x(n+ 1), = {

The first example illustrates Theorems 3.1 and 4.1.



GDEA 148972—14/12/2005—THAHEER—193397

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

Solutions of linear systems 25

Example 6.1 Let w, >0, g, €R for n € N. Assume that {(W,—1)/(Wn)},=2, {(gn)/
Wp)},=; € D? and

Ynl_, 1, @—>a7 la| # 2.

Wy Wy

With these assumptions, for any A € C we obtain {B,(A)},=, € D? and B,(\) — B,

where
0 1
Be = , discr (Boo) = a® — 4.

wy — +00,

-1 —a

We can consider the equation (6.3) as equation (1.1) setting A(n) := B,(A) and ng = 2.

Case 1. |a| < 2.
Applying Theorem 3.1, Remarks 3.2 no. 2 and 3 and the formula (6.5) we get the existence
of two linearly independent solutions u *, u ~ of equation (6.2) having the form

ut = (H/ /\Q)(s)) (H(l - n+(s))> P (n),

s=N

with ¢ (n) — 1,

1 A— n n— A— n2 )L(J(r)) _)\(B) —1
)\(io)(n):E _qi,-\/4u_<_q>)7 n(n) = = (n) — A (n— 1)

n Whn n 2Im /\(J?) (11)

for n = N, with some N large enough (where N and ¢+ (n) also depend on A).

It is a well-known fact based on subordination theory that in this case J is an absolutely
continuous operator (i.e. J has only purely absolutely continuous spectrum), provided that it
is selfadjoint (see [14, Theorem 3.1]). The same fact can also be easily obtained from the
above asymptotic formula for u=. However, the details on )\(19) and m+ obtained here are in
some sense “too strong” (to get the absolute continuity of J, it would be enough to know that
AOm) = )\(J?)(n) and m-(n) = n,(n)) and they could be used to study some more delicate
spectral properties of J.

Case 2. |a| > 2.
Applying Theorem 4.1, Corollary 4.3 and the formula (6.5) we get the existence of two
linearly independent solutions u™,u~ of equation (6.2) having the form

where {+(n) — 1 and

1A—n
mmrﬂuw4m=2(‘f7rmm)

—A-(n+ DAs(n+1) = Ap(n)
A(m)B(n+1) ’

A+ DA-(n+ 1) — A_(n)

B A_(m)B(n+1) ’

o1(n) =

6_(n)
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_ 2
B(”) — \/(A Qn> _4Wn71
Whn Wn

for n = N, with some N large enough, where N and ¢~(n) also depend on A.
The case considered here is the so-called dominating diagonal case, and it is well known
that J is selfadjoint and has purely discrete spectrum (see [14]). Observe that

with

Ar(n) = Aieo = %(—a + a2 —4).

Moreover, |A o] <1 < |A_o| fora > 2, and |Ax| < 1 < |Ayw| for a < —2. Thus, using
the above asymptotic formulas we see that if A € o(/J), then for a > 2 (a < —2) the solution
ut (u7) is the eigenvector of J for A. So, we have obtained quite precise asymptotics for
eigenvectors of J. Note, that they are much more precise than the information which can be
obtained on the basis of the Poincaré—Perron type theorems (see [5]).

A simple but concrete example of weights and diagonals satisfying the general conditions
formulated here (including the selfadjointness of J), and additionally satisfying
{B,(M)},=0 & D! (i.e. the “D'-methods of [9] does not work) can be defined as follows:

N
w, =n% g, = (a—l—n 2sm(n'”))n°‘7 n=1,

where |a| # 2,0 < a =1, (1/2) < p < (3/4). The above is a consequence of the fact that

{n=1/Pgin (nP)},=; € D>\D' (some more general classes of sequences from D*\D' are

given by the formulas n # sin (n”) and n~# cos (n”), where 0 < B <p < (1/2)(B+ 1)).
The second example illustrates Theorems 5.1 and 5.3.

Example 6.2 Assume that w, = n® + c,r,, g, =0,n € N, where 0 < a < 1, {¢,,},=; is a
2-periodic sequence and ry, = 1,79,+1 = sin(n?), with 0 < y < (1 — a)/2 and let a, v,
¢1,C, be such that w, # 0 for any n.

Contrary to the previous example, here the asymptotic behavior of the generalized
eigenvectors of J strongly depends on the spectral parameter A. We shall not write down the
explicit asymptotic formulas, which can be easily obtained by Theorems 5.1 or 5.3 (depending
on A) and by the substitution formula (6.8), but we limit ourselves just to summarize the
spectral consequences of these asymptotic results (with these assumptions J is selfadjoint).

To study the generalized eigenvectors of J we analyze here equation (6.7). We get

- 1
B,(A\) = — <I +— V(n)>
()
where w(n) = wy,—; for n = 2 and where {V,},=, is a D*(u) matrix sequence satisfying

liminf discr V(n) = d*> — 4A%, lim sup discr V(n) = di — 4A?,

n—-+0o0 =00
with
leal = ley| for [eal > el
T 0 for |eal =< ey’

dy = leil + leal
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The above is a consequence of the fact, that the set of the limit points of the sequence
{sin(n”)},=; is equal to [—1; 1] (see [18, van der Corput theorem]).
Consider two cases.

Case 1. |A| >d,.

In this case, lim sup ,— o discr V(n) < 0, and we can use Theorem 5.1. We obtain two
linearly independent solutions with the scalar terms differing only in the complex
conjugation. Combining this with the subordination theory and the generalized Behncke
Stolz Lemma (see [19, Theorem 1.1]) we can prove that J is absolutely continuous in
R\[—d+; d+] and that R\(—d,; d.) is contained in the absolutely continuous spectrum of J.

Case 2. |A| <d_.

In this case, liminf ,—  discr V(n) > 0. Moreover, if A # 0, then the condition (5.37)
holds for some numbers si,s— € {1,2}, and we can apply Theorem 5.3. This allows to
prove that there exists a generalized eigenvector of J for A which is in /2(N). Using now
the subordination theory we can prove that J is pure point in (—d_;d-) (i.e. the image
of the spectral projection for J on this interval is contained in the closed span of all the
eigenvectors of J).

Note that we usually get “a region of uncertainty”, which appears when d_ < d,, i.e.
when ¢; # 0. In this region, our abstract results do not rather give us any asymptotic
information on the generalized eigenvectors of J. The appearance of the region of uncertainty
is the main difference between this example and the examples studied in [7,9]. Note also that
the region where we can prove the pure pointness is nonempty iff |co| > |c].

We stress that by the definition, the fact that J is pure point in a subset of R does not mean
that there exists an eigenvalue of J in this subset—its intersection with the spectrum of J can
be, e.g. empty.

The details related to this example, as well as some generalizations, will be presented in [10].
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Appendix

We give here some longer proofs of some results formulated in Section 2.

We start from Lemma 2.2.

The proof is based on an integral formula for A*f(x). We need some extra notation to write
this formula in a possibly short form. Fix j = 1,2, .. .. By d’t we denote the integration by the
Lebesgue measure in R”, d”f(u) is the j-th order differential of the function f at the point u
and dYf(u)(h) is the value of this differential at the system A of j vectors from X
(.e. h=(h,....,hj) EX’). For a €N/ we set |a|=a;+...+ o and we define
w/,yl Ve N/ fors=1,...jby

1 for m=s 1 for m<s

j= 17""17 1j'n= b j"n:
w = ) (1) 0 for m#s )

0 for m=s
form=1,...,j. We denote also
Al={a€EN/ :k=l|a,l=a,=k for s=1,...j}. (A.1)

Foraset Yand ny € N by Seq,,(Y) we denote the set of all sequences in Y with the starting
index equal to n. Let a € N/, the operators Ty, 9% : Seq,, (X/) — Seq,,(X/) are given by

Toy)n) = yi(n+ ay),...,yi(n + o),

@) = (A% yD(®), ..., (A%y)m).
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We also define A® : Seq,,(X) — Seq,,(X’) by
(A*)(n) = (A*" %)), ...,(AYX)(n)), n = no.
We have
99T = Tgd®, 9*AP = A*TP (A.2)

For F: X/ —X'and y € Seq,,O(Xj) denote by F(y) the element of Seq,,(X’) given by
(F(y))(n) = F(y(n)), n = ny. It can be easily proved by induction that for F being j-linear
operator the following “discrete Leibnitz formula” holds

J
AF(y) =Y F(T 0"y). (A.3)
s=1

Assume that X, X', U and K are as in the Lemma 1.2.

LEMMA A.1  Foranyk = 1,2,... there exist a finite set I} and functions ry, ay, By defined on
I such that for any j € I

r(j) € {1,.. .k}, () € A;:k(j),ﬁk(j) e N+
and there exist polynomials vyj, wyj of ri(j) real variables for | = 0, ..., ri(j), satisfying: for

any x € Seq,,(K) and any Ckfunctionf :U—-X

Areym=>" J  wg(0d "D f (@) (T, A" Px))d "Vt (A4)
jen oy
for n = ng, where forj € I, t € [0; 119, n = ny

re(J)

awg(n) = wig()(A'x)(n) € K. (A.5)
=0

Proof. The proof is by induction on k. If k = 1 then we have
(Af))(n) = f(x(n + 1)) — f(x(n))
= J dVf(e(n) + (A0 (Ax)(m)dr,
[0:1]

which proves the assertion for k = 1. Assume that the assertion holds for some k = 1, and that f
isa C*™! function. Let us first choose j € Iy and t € [0; 1]?, n = ny. Using (A.3), we obtain

d " Pf(ain + D) (T, A*Px)(n + 1)) — d DS (@i () (T, ) A%Vx)(1))
= d"Pf(awyn + D) (Tpp A" V00 + D) = d"Df (@) (Tp, (A x)(n + 1)
+ (A [d(rk(j))f(axzkj(n)) (Tﬁk(j)Aak(j)x” ) (n)
- J d " (i) + 1 (Aawy) () (T, A3 + 1), (Adyy) (n))de’
[0;1]

()

o % (i
+ Zd("’(’))f(axzkj(n))((Ty:kmal“k TppA k<")X> (n))-
s=1
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Thus, by equations (A.2), (A.4), (A.5)

AF)m) = A @)+ 1) — (AFF))n)

vii(t") J d IV (@ (n) + t'(Aaxy)(n)

= J [0:17% [0:1]

(Ta A + 1), Aagng)m)d't'd V"

710)] .
(Od " Df (@ gl A) ()
+ Z Z J[O;l]’k(f) vk](t)d k f(axfk](n)) ((Ty?(u)a Tﬁk(./)A & x)(n)>d (g

JEI s=1

rk(j)

= | 0d O ) (T A0
=R (N

e(J) ‘
j () i .
+ ZZ J " 'Ukj(l‘)d(rk(J))f(axtkj(n)) ((Tv”‘”)wk(j) AL+ k(,,))() (n)) Jn f)t,
[0;1]7% s

j€Ix =1
where for t = (¢/,1") € [0; 1] X [0; 1], [ = 0, ..., 1k (j) Di(t) = ot Ywgia(t "),

A (n) = ayig(n) + t'(Adyig)(n)

() A.6
D wit AR + ' (AT @), (A0

=0

and
au(j) = (), 1+ 1) €N P XN,  Bu(j) = (B(j) + 0P,0) € N*P xN. (A7)

Moreover, by the inductive assumption and by equation (A.6), we have a.,;(n) € K since
K is convex, and by equations (A.7), (A.1), for any [ = 0,...,r(j), s = 1,..., ri(j) we have
au(j) € AL, (i) + 179 € ALY,

which proves the assertion for k£ + 1. g

Proof of Lemma 1.2. We have f(x) Ekl°°, since K is compact. Choose m = 1,...,k. By
Lemma A.1, to prove that A" (f(x)) € Im() it is sufficient to show that forany r = 1,...,m,
a €A, and B € N’ the sequence y = {y(n)},=,,, given by

y() = sup [ld " u)(TpA“ D)
is a scalar [*/™ () sequence. Using the continuity of d*)f and the compactness of K we get
ymy = MJJI(A%x)@ll, n=no (A.8)
s=1

with some M < 4-c0, where x,(n) = x(n + ;). Observe, that x; is a Dk(,u) sequence in X for
any s = 1,...,r, since u is shiftable. Hence A%x, is a [*/%)(u) sequence in X, since by
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equation (A.1), we have
m=la, l=a=m=<k s=1,...r (A.9)

Thus, by equation (A.8), using the Holder inequality and equation (A.9), we gety € [P(w),
where

1 Loy o m
= 2 ="=_
P =k k k
k
Therefore, p < (k/m), and y € Im(u), since u is separated from zero. ]

The next to prove is Lemma 1.7.

Proof of Lemma 1.7. Denote by vy; the vector being the i-th column of Ty, i = 1,...,d. We
have (Xo — Noi)vo; = 0. We shall prove first that there exist a neighborhood U; of X, and
holomorphic functions v; : U; — C4, \; 1 U;— C such that \;(Xo) = Agi,  vi(Xo) = vg; and
X — AM(X)vi(X) =0 for X € U;. We shall use the implicit function theorem. Since the
vector equation (X — A)v = 0 is a system of only d corresponding scalar equations, and we
are looking for d 4 1 scalar values (A and d coordinates of v), we should add one additional
“independent” scalar equation. Thus, let us consider the function F : M;(C) X C'xC—
C? x C given by the formula

FX,v,2) = (X = Mo, yv),

where y € C? is an arbitrary fixed vector satisfying yovp; # 0 (with yo being the scalar
product of vy and v). Denote by D, the differential of F' with respect to (v,A) at the point
(X0, voi, Agi). Do is the linear transformation of C? x C given by

Do(h) = (Xo — Aoi)hy — hyvoi, Yhe),

where h = (hy,hy) € C*XC. If h € KerDy, then (Xo— Ao)hy = hyvo; and thus
(Ao — Ao)(To) 'hy = hy(To) 'wo; = hye;. Comparing the i-th coordinate of the RHS and
the LHS of the last equation, we obtain i), = 0. Hence A, € Ker(Xo — Ag;), that is i, = cvy;
for some ¢ € C. But & € Ker Dy means also that 0 = yh, = cyvy;, thus by our assumption
on vy we obtain ¢ =0, and consequently h, = 0. Therefore, # = 0, which yields the
invertibility of Dy. The existence of U; and the appropriate holomorphic functions v;, A;
follows from the implicit function theorem for the equation F(X, v, w) = (0, yvy,).

Now, we can define 7(X) to be the matrix with the i-th column equal to v,(X), i = 1,...,d,
U={XeUN..NU;: det7T(X)# 0} and D(X) := diag(A(X), ..., Ag(X)). O



