Deformations of the Veronese embedding and Finsler 2-spheres of constant curvature

Thomas Mettler

Geometry and Differential Equations Seminar
2nd December 2020
Path geometries

Setup: M connected oriented smooth surface

Path geometry: Prescription of a path on M for each direction in every tangent space (e.g. geodesics of a Finsler metric, geodesics of a projective structure)

Projective circle bundle

$$\pi : SM := (TM \setminus \{0_M\}) / \mathbb{R}^+ \to M$$

Contact structure

$$\tau[v] = \{\xi \in T[v]SM : \pi'(\xi) \wedge v = 0\}$$

Immersed curve $\gamma : (a, b) \to M$ lifts s.t. $\dot{\delta}(t)$ lies in τ

$$\delta := [\dot{\gamma}] : (a, b) \to SM$$

Path geometry: 1-dim distribution $P \to SM$ so that $P + \ker \pi' = \tau$.

Paths: Integral curves of P projected to M
The dual of a path geometry

Definition (Bryant). A generalised path geometry is a 3-manifold N together with an ordered pair (P, L) of transverse 1-dim distributions spanning a contact structure.

Path geometry:

$N = SM$, \quad P = \text{“path bundle”}$, \quad L = \text{vertical bundle of projection } SM \to M$

Definition. The dual of a generalised path geometry (N, P, L) is the generalised path geometry (N, L, P).

Question. Are there (non-trivial global) examples where the dual of a path geometry is again a path geometry?
Projective structures

Affine connection: connection ∇ on TM, assume ∇ is torsion-free

Geodesic: immersed curve $\gamma : I \to M$ s.t.

$$\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t) = 0.$$

Projective equivalence: $\nabla \sim \nabla'$ iff ∇ and ∇' have the same geodesics up to parametrisation.

Projective structure: Equivalence class p of connections

Lemma (Cartan, Eisenhart, Weyl). $\nabla \sim \nabla' \iff \exists \beta \in \Omega^1(M)$ such that

$$\nabla_x Y - \nabla'_x Y = \beta(X)Y + \beta(Y)X.$$

Projective surface (M, p) is called **flat** if it is locally diffeomorphic to S^2 so that geodesics are mapped onto (segments of) great circles.
Finsler metrics

A **Finsler norm** is a continuous function $F : TM \rightarrow [0, \infty)$ which is smooth away from the zero section and so that

- $F(\lambda v) = \lambda F(v)$ for $\lambda \geq 0$
- $F(v) > 0$ unless $v = 0$
- the symmetric bilinear form

 $$g_v(X, Y) = \frac{1}{2} \left. \frac{\partial^2}{\partial s \partial t} \right|_{s=t=0} \left[F(v + sX + tY)^2 \right]$$

 is positive definite.

F is called **reversible** is $F(v) = F(-v)$ for all $v \in TM$

Length of immersed curve $\gamma : [a, b] \rightarrow M$, $L(\gamma) := \int_a^b F(\dot{\gamma}(t)) \, dt$ is invariant under orientation preserving reparametrisations

Locally length minimising curves are the **geodesics** of F.
Finsler norm is determined by its **unit tangent bundle**

$$UM := \{ v \in TM : F(v) = 1 \}.$$

Zermelo deformation: Construct new Finsler metric by translating each fibre of UM with a vector of small enough length.

Cartan: UM is equipped with a coframing (χ, η, ν) which satisfies the structure equations

$$d\chi = -\eta \wedge \nu, \quad d\eta = -\nu \wedge (\chi - I\eta), \quad d\nu = -(K\chi - J\nu) \wedge \eta,$$

for $I, J, K \in C^\infty(UM)$.

Riemannian case: (M,g) choose **isothermal coordinates** (x, y)

$$g = e^{2u(x,y)}(dx^2 + dy^2)$$

Coframing

$$\chi = e^u (\cos \alpha \ dx + \sin \alpha \ dy), \quad \eta = e^u (-\sin \alpha \ dx + \cos \alpha \ dy), \quad \nu = d\alpha + \star du,$$

where α is the **angle coordinate** on the unit tangent bundle.
Riemannian Finsler metric: $I \equiv J \equiv 0$ and K is (the pullback to UM of) the Gauss curvature K_g.

K is the **Finsler–Gauss curvature** or flag curvature.

Theorem (Akbar-Zadeh, 1988). If a Finsler metric on a compact surface has constant negative curvature, then it is Riemannian, and, if it has zero curvature, then it is locally Minkowskian.

Theorem (Bryant, 2006). If a reversible Finsler metric on a compact surface has constant positive curvature, then it is Riemannian.

Fact: A Zermelo deformation of a constant curvature Finsler metric by a Killing vector field has again constant curvature.

Example. (Katok) First example of non-Riemannian $K \equiv 1$ Finsler metric on S^2 via Zermelo deformation of constant curvature metric.

Theorem (Bryant, 1997). Classification of $K \equiv 1$ Finsler 2-spheres that are projectively flat.
(Generalised) thermostats

Dual vector fields (X, H, V) to (χ, η, ν)

\[
[V, X] = H, \quad [V, H] = -X, \quad [X, H] = K_g V
\]

Tautological bundle $\tau = \{\eta = 0\}$, **vertical bundle** $\{\chi = \eta = 0\}$

Thermostat: flow ϕ generated by $X + \lambda V$ for $\lambda \in C^\infty(UM)$

Choice of metric g identifies path geometry P with thermostat.

$\lambda = \lambda(x, y, \alpha)$, 2\pi-periodic in α, **Fourier-decomposition** in α

Volume form: $\Theta = \chi \wedge \eta \wedge \nu$ and **inner product:**

\[
\langle u, v \rangle = \int_{UM} uv \Theta,
\]

Densely defined operator $-iV$ is self-adjoint

\[
L^2(UM) = \bigoplus_{m \in \mathbb{Z}} \mathcal{H}_m, \quad \mathcal{H}_m = \ker(m \text{Id} + iV)
\]
Examples of thermostats

Example. $\alpha \in \Omega^2(M), g \in \text{Riem}(M)$. Consider flow of Hamiltonian vector field X_η on $(T^*M, \Omega_0 + \nu^*\alpha)$ generated by Hamiltonian $\eta(\xi) = \frac{1}{2}|\xi|^2_{g^\#}$.

Magnetic flows correspond to thermostats of degree 0, i.e. $V\lambda = 0$

$$\pi^*\alpha = \lambda \chi \wedge \eta.$$

1-forms $\lambda \in \mathcal{C}^\infty(UM) \cap (\mathcal{H}_{-1} \oplus \mathcal{H}_1) \leftrightarrow \Omega^1(M)$

To $\theta \in \Omega^1(M)$ – thought of as a function $\theta : UM \to \mathbf{R}$ – we associate the thermostat ϕ generated by the vector field

$$F = X - V(\theta)V.$$

Orbits of ϕ – when projected to M – are reparametrisations of the geodesics of the **Weyl connection** defined by (g, θ).
Weyl connections

Weyl connection: Affine torsion-free connection ∇ preserving a conformal structure $[g]$, i.e. parallel transport maps of ∇ are **angle preserving** w.r.t. $[g],

$$\nabla g = 2\theta \otimes g,$$

Weyl connections are of the form

$$(g, \theta) \nabla = g \nabla + g \otimes \theta^\flat - \theta \otimes \text{Id} - \text{Id} \otimes \theta$$

with $g \in [g]$ and $\theta \in \Omega^1(M)$.

Weyl structure is an equivalence class $[(g, \theta)]$ where

$$(g, \theta) \sim (\hat{g}, \hat{\theta}) \iff \hat{g} = e^{2u}g \text{ and } \hat{\theta} = \theta + du, u \in C^\infty(M)$$

Weyl structures are in one-to-one correspondence with Weyl connections

$$[(g, \theta)] \mapsto g \nabla + g \otimes \theta^\flat - \theta \otimes \text{Id} - \text{Id} \otimes \theta$$

Weyl connections with θ **exact** correspond to Levi-Civita connections
A Weyl structure \([(g, \theta)]\) is called **positive** if \(\text{Sym}(\text{Ric}(g, \theta) \nabla))\) is positive definite.

On oriented surface \(M\)

\[
[(g, \theta)] \text{ is positive } \iff (K_g - \delta_g \theta) dA_g > 0
\]

Lemma. For a positive Weyl structure \([(g, \theta)]\) there exists a unique gauge \((g, \theta)\) – henceforth called the **natural gauge** – so that \(K_g - \delta_g \theta \equiv 1\).

Lemma. Let \([(g, \theta)]\) be a positive Weyl structure with natural gauge \((g, \theta)\) and let \(\pi : UM \to M\) denote the unit tangent bundle of \(g\) with coframing \((\chi, \eta, \nu)\). Then the forms

\[
\hat{\chi} := \pi^*(\star_g \theta) - \nu, \quad \hat{\eta} := -\eta, \quad \hat{\nu} := -\chi
\]

satisfy the structure equations of a Finsler metric with \(K \equiv 1\).

Paraphrasing: Ignoring global issues, the path geometry of a positive Weyl structure (i.e. whose paths are the geodesics of the associated Weyl connection) is dual to the path geometry of a Finsler metric with \(K \equiv 1\).
Dynamical aspects of $K \equiv 1$ Finsler metrics

Theorem (Bryant, Foulon, Ivanov, Matveev, Ziller, 2017). Let F be a $K \equiv 1$ Finsler metric on S^2. Then there exists a shortest closed geodesic of length $2\pi \ell \in (\pi, 2\pi]$ and the following holds:

- **If** $\ell = 1$, all geodesics are closed and have the same length 2π,
- **If** ℓ is irrational, there exist two closed geodesics with the same image, and all other geodesics are not closed. The length of the second closed geodesic is $2\pi \ell / (2\ell - 1)$. Moreover, the metric admits a Killing vector field.
- **If** $\ell = p/q \in (\frac{1}{2}, 1)$ with $p, q \in \mathbb{N}$ and $\gcd(p, q) = 1$, and in this case all unit-speed geodesics have a common period $2\pi p$. Furthermore, there exists at most two closed geodesics with length less than $2\pi p$. A second one exists only if $2p - q > 1$, and its length is $2\pi p / (2p - q) \in (2\pi, 2p\pi)$.

In particular, if all geodesics of a Finsler metric on S^2 are closed, then its geodesic flow is periodic with period $2\pi p$ for some integer p.

They also show that the case when F admits a Killing field can be deformed (via a Zermelo deformation) to the case $\ell = 1$.
A duality result

A Weyl structure \([(g, \theta)]\) is called **Besse** if the associated Weyl connection has the property that all of its maximal geodesics are closed.

Theorem (Lange–M., 2019). There is a one-to-one correspondence between Finsler metrics on \(S^2\) with \(K \equiv 1\) and all geodesics closed on the one hand, and positive Besse–Weyl structures on weighted projective spaces \(\mathbb{CP}(a_1, a_2)\) with \(c := \gcd(a_1, a_2) \in \{1, 2\}, a_1 \geq a_2, 2|(a_1 + a_2)\) and \(c^3|a_1a_2\) on the other hand.

More precisely,

1. such a Finsler metric with shortest closed geodesic of length \(2\pi \ell \in (\pi, 2\pi]\), \(\ell = p/q \in (1/2, 1], \gcd(p, q) = 1\), gives rise to a positive Besse–Weyl structure on \(\mathbb{CP}(a_1, a_2)\) with \(a_1 = q\) and \(a_2 = 2p - q\), and

2. a positive Besse–Weyl structure on such a \(\mathbb{CP}(a_1, a_2)\) gives rise to such a Finsler metric on \(S^2\) with shortest closed geodesic of length \(2\pi \left(\frac{a_1 + a_2}{2a_1}\right) \in (\pi, 2\pi]\),

and these assignments are inverse to each other. Moreover, two such Finsler metrics are isometric if and only if the corresponding Besse–Weyl structures coincide up to a diffeomorphism.
Weighted projective space

Projective space \mathbb{CP}^1 is $\mathbb{C}^2 \setminus \{0\}$ modulo the action

$$\lambda \cdot (z, w) = (\lambda z, \lambda w), \quad \lambda \in \mathbb{C}^*$$

Weighted projective space $\mathbb{CP}(a_1, a_2)$ for weights $(a_1, a_2) \in \mathbb{N}^2$ is $\mathbb{C}^2 \setminus \{0\}$ modulo the action

$$\lambda \cdot (z, w) = (\lambda^{a_1} z, \lambda^{a_2} w), \quad \lambda \in \mathbb{C}^*$$

$\mathbb{CP}(1, 1) = \mathbb{CP}^1$, weighted projective space is in general an **orbifold**

There exists a natural generalisation g_{FS} of the **Fubini–Study metric** to $\mathbb{CP}(a_1, a_2)$

g_{FS} is a Besse orbifold metric of strictly positive Gauss curvature ($K_{g_{FS}} \neq \text{const}$).

Try to deform g_{FS} among the class of positive Besse-Weyl structures to construct new examples of $K \equiv 1$ Finsler structures.
Isometric embeddings

\[4g_{FS} = \left(\frac{a_1 + a_2}{2} + \frac{a_1 - a_2}{2} \cos(r) \right)^2 \, dr^2 + \sin^2(r) \, d\phi^2, \quad (r, \phi) \in (0, \pi) \times S^1 \]
Twistor space

Twistor bundle $J^+ \to M$

$J^+_p := \{ \text{linear complex structures } J \text{ on } T_p M : (v, Jv) \text{ is pos. oriented } \forall v \neq 0 \}$

Bundle with fibre

$\frac{\text{GL}^+(2, \mathbb{R})/\text{GL}(1, \mathbb{C})}{\simeq} \mathcal{D} := \{ z \in \mathbb{C} : |z| < 1 \}$

Conformal structure \leftrightarrow orientation compatible complex structure

$J_p : T_p M \to T_p M, \quad J_p = \text{counterclockwise rotation by } \pi/2$

Conformal structure defines section $[g] : M \to J_+.$

Proposition (O’Brian & Rawnsley, Dubvois-Violette). Torsion-free ∇ on TM equips J^+ with an integrable almost complex structure J_p which does only depend on the projective equivalence class of ∇.

At $j \in J^+$ lift j horizontally and use complex structure on the fibre vertically.
Holomorphic curves

Proposition (M., 2014). The Weyl connection \((g, \theta) \nabla\) belongs to \(p\) iff
\([g] : M \to (J^+, J_p)\) is a holomorphic curve.

Same statement holds for orbifolds.

Proposition (M., 2014). For the projective structure on \(S^2\) whose geodesics are the great circles, we have \(J^+ \hookrightarrow \mathbb{CP}^2\)

Proposition (Lange–M., 2019). For the projective structure arising from the Fubini–Study metric \(g_{FS}\) on \(\mathbb{CP}(a_1, a_2)\), we have \(J^+ \hookrightarrow \mathbb{CP}(a_1, (a_1 + a_2)/2, a_2)\). Furthermore, the holomorphic curve

\([g_{FS}] : \mathbb{CP}(a_1, a_2) \to \mathbb{CP}(a_1, (a_1 + a_2)/2, a_2)\)

corresponds to the **Veronese embedding**

\([z, w] \mapsto [z^2, zw, w^2]\).

Suitable deformations of the Veronese embedding yield positive Besse–Weyl structure on \(\mathbb{CP}(a_1, a_2)\) and hence new examples of Finsler 2-spheres with \(K \equiv 1\).