Generalised model theory Continuous model theory Categoricity Complexity in  $\mathbf{Y}_L$ 

# Polish *G*-spaces similar to logic *G*-spaces of continuous structures

#### Aleksander Ivanov and Barbara Majcher-Iwanow

Institute of Mathematics Universyty of Wrocław

July 23, 2012

Aleksander Ivanov and Barbara Majcher-Iwanow Polish G-spaces similar to logic G-spaces of continuous structure

A B + A B +

# Logic $S_{\infty}$ -space

Let  $L = (R_i^{n_i})_{i \in I}$  be a countable relational language and

$$X_L = \prod_{i \in I} 2^{\omega^n}$$

#### be the corresponding topol. space under the product topology $\tau$ .

We view  $X_L$  as the space of all *L*-structures on  $\omega$ identifying every  $\mathbf{x} = (...x_i...) \in X_L$  with the structure  $(\omega, R_i)_{i \in I}$ where  $R_i$  is the  $n_i$ -ary relating defined by the characteristic function  $x_i : \omega^{n_i} \to 2$ .

The **logic action** of the group  $S_{\infty}$  of all permutations of  $\omega$  is defined on  $X_L$  by the rule:

$$g \circ \mathbf{x} = \mathbf{y} \Leftrightarrow \forall i \forall \overline{s}(y_i(\overline{s}) = x_i(g^{-1}(\overline{s}))).$$

# Logic $S_{\infty}$ -space

Let  $L = (R_i^{n_i})_{i \in I}$  be a countable relational language and

$$X_L = \prod_{i \in I} 2^{\omega^n}$$

be the corresponding topol. space under the product topology au.

We view  $X_L$  as the space of all *L*-structures on  $\omega$ identifying every  $\mathbf{x} = (...x_{i}...) \in X_L$  with the structure  $(\omega, R_i)_{i \in I}$ where  $R_i$  is the  $n_i$ -ary relating defined by the characteristic function  $x_i : \omega^{n_i} \to 2$ .

The **logic action** of the group  $S_{\infty}$  of all permutations of  $\omega$  is defined on  $X_L$  by the rule:

$$g \circ \mathbf{x} = \mathbf{y} \Leftrightarrow \forall i \forall \overline{s}(y_i(\overline{s}) = x_i(g^{-1}(\overline{s}))).$$

- \* 同 \* \* ヨ \* \* ヨ \* - ヨ

# Logic $S_{\infty}$ -space

Let  $L = (R_i^{n_i})_{i \in I}$  be a countable relational language and

$$X_L = \prod_{i \in I} 2^{\omega^n}$$

be the corresponding topol. space under the product topology  $\tau$ .

We view  $X_L$  as the space of all *L*-structures on  $\omega$ identifying every  $\mathbf{x} = (...x_{i}...) \in X_L$  with the structure  $(\omega, R_i)_{i \in I}$ where  $R_i$  is the  $n_i$ -ary related defined by the characteristic function  $x_i : \omega^{n_i} \to 2$ .

The **logic action** of the group  $S_{\infty}$  of all permutations of  $\omega$  is defined on  $X_L$  by the rule:

$$g \circ \mathbf{x} = \mathbf{y} \Leftrightarrow \forall i \forall \overline{s}(y_i(\overline{s}) = x_i(g^{-1}(\overline{s}))).$$

- \* 同 \* \* ヨ \* \* ヨ \* - ヨ

## Canonical partition

## Let $(\langle X, \tau \rangle, G)$ be a Polish *G*-space with a countable basis $\{C_j\}$ .

**H.Becker**: there exists a unique partition of X,  $X = \bigcup \{Y_t : t \in T\}$ into invariant  $G_{\delta}$ -sets  $Y_t$  s. t. every orbit from  $Y_t$  is dense in  $Y_t$ .

To construct it take  $\{C_j\}$  and for any  $t\in 2^{\mathbb{N}}$  define

$$Y_t = \left(\bigcap \{GC_j : t(j) = 1\}\right) \cap \left(\bigcap \{X \setminus GC_j : t(j) = 0\}\right)$$

and take  $T = \{t \in 2^{\mathbb{N}} : Y_t \neq \emptyset\}.$ 

## Canonical partition

Let  $(\langle X, \tau \rangle, G)$  be a Polish *G*-space with a countable basis  $\{C_j\}$ .

**H.Becker**: there exists a unique partition of X,  $X = \bigcup \{Y_t : t \in T\}$ into invariant  $G_{\delta}$ -sets  $Y_t$  s. t. every orbit from  $Y_t$  is dense in  $Y_t$ .

To construct it take  $\{C_j\}$  and for any  $t\in 2^{\mathbb{N}}$  define

$$Y_t = (\bigcap \{GC_j : t(j) = 1\}) \cap (\bigcap \{X \setminus GC_j : t(j) = 0\})$$

and take  $T = \{t \in 2^{\mathbb{N}} : Y_t \neq \emptyset\}.$ 

## Canonical partition

Let  $(\langle X, \tau \rangle, G)$  be a Polish *G*-space with a countable basis  $\{C_j\}$ .

**H.Becker**: there exists a unique partition of X,  $X = \bigcup \{Y_t : t \in T\}$ into invariant  $G_{\delta}$ -sets  $Y_t$  s. t. every orbit from  $Y_t$  is dense in  $Y_t$ .

To construct it take  $\{C_j\}$  and for any  $t \in 2^{\mathbb{N}}$  define

$$Y_t = (\bigcap \{ \mathsf{GC}_j : t(j) = 1 \}) \cap (\bigcap \{ X \setminus \mathsf{GC}_j : t(j) = 0 \})$$

and take  $T = \{t \in 2^{\mathbb{N}} : Y_t \neq \emptyset\}.$ 

## Canonical partition

Let  $(\langle X, \tau \rangle, G)$  be a Polish *G*-space with a countable basis  $\{C_j\}$ .

**H.Becker**: there exists a unique partition of X,  $X = \bigcup \{Y_t : t \in T\}$ into invariant  $G_{\delta}$ -sets  $Y_t$  s. t. every orbit from  $Y_t$  is dense in  $Y_t$ .

To construct it take  $\{C_j\}$  and for any  $t \in 2^{\mathbb{N}}$  define

$$Y_t = (\bigcap \{ \mathsf{GC}_j : t(j) = 1 \}) \cap (\bigcap \{ X \setminus \mathsf{GC}_j : t(j) = 0 \})$$

and take  $T = \{t \in 2^{\mathbb{N}} : Y_t \neq \emptyset\}.$ 

### Vaught transforms

#### Let X be a Polish G-space, $B \subset X$ and $u \subset G$ is open.

Vaught transforms:

 $B^{\star u} = \{x \in X : \{g \in u : gx \in B\} \text{ is comeagre in } u\}$  $B^{\Delta u} = \{x \in X : \{g \in u : gx \in B\} \text{ is not meagre in } u\}.$ the case of the **logic action** of  $S_{\infty}$  on the space  $X_L$  if

$$B = \{M \in X_L : M \models \phi(s)\}$$
 with  $s \in \omega$ 

then

$$B^{*S_{\infty}} = \{ M \in X_L : M \models \forall x \phi(x) \}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

#### Vaught transforms

Let X be a Polish G-space,  $B \subset X$  and  $u \subset G$  is open.

Vaught transforms:

$$B^{\star u} = \{x \in X : \{g \in u : gx \in B\} \text{ is comeagre in } u\}$$
$$B^{\Delta u} = \{x \in X : \{g \in u : gx \in B\} \text{ is not meagre in } u\}.$$

In the case of the **logic action** of  $S_{\infty}$  on the space  $X_L$  if

$$B = \{M \in X_L : M \models \phi(s)\}$$
 with  $s \in \omega$ 

then

$$B^{*S_{\infty}} = \{ M \in X_L : M \models \forall x \phi(x) \}.$$

#### Vaught transforms

Let X be a Polish G-space,  $B \subset X$  and  $u \subset G$  is open.

Vaught transforms:

$$B^{\star u} = \{x \in X : \{g \in u : gx \in B\} \text{ is comeagre in } u\}$$
$$B^{\Delta u} = \{x \in X : \{g \in u : gx \in B\} \text{ is not meagre in } u\}.$$

In the case of the **logic action** of  $S_{\infty}$  on the space  $X_L$  if

$$B = \{M \in X_L : M \models \phi(s)\}$$
 with  $s \in \omega$ 

then

$$B^{*S_{\infty}} = \{ M \in X_L : M \models \forall x \phi(x) \}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

-

## Vaught transforms 2

- If  $B \in \mathbf{\Sigma}_{\alpha}$ , then  $B^{\Delta H} \in \mathbf{\Sigma}_{\alpha}$  and if  $B \in \mathbf{\Pi}_{\alpha}$ , then  $B^{*H} \in \mathbf{\Pi}_{\alpha}$ .
- For any open  $B \subseteq X$  and any open K < G we have  $B^{\Delta K} = KB$ , where  $KB = \{gx : g \in K, x \in B\}$ .

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Generalised model theory Continuous model theory Categoricity Complexity in  $\mathbf{Y}_L$ 

## Vaught transforms 2

- If  $B \in \mathbf{\Sigma}_{\alpha}$ , then  $B^{\Delta H} \in \mathbf{\Sigma}_{\alpha}$  and if  $B \in \mathbf{\Pi}_{\alpha}$ , then  $B^{*H} \in \mathbf{\Pi}_{\alpha}$ .
- For any open  $B \subseteq X$  and any open K < G we have  $B^{\Delta K} = KB$ , where  $KB = \{gx : g \in K, x \in B\}$ .

・ 同 ト ・ ヨ ト ・ ヨ ト ・

# Actions of closed subgroups of $S_\infty$

Let G be a closed subgroup of  $S_{\infty}$ . Let  $\mathcal{N}^G$  be the standard basis of the topology of G consisting of cosets of pointwise stabilisers of finite subsets of  $\omega$ .

Let  $(\langle X, \tau \rangle, G)$  be a Polish *G*-space with a countable basis *A*. Along with  $\tau$  we shall consider another topology on *X*.

Nice topology:

周 ト イ ヨ ト イ ヨ ト

# Actions of closed subgroups of $S_\infty$

Let G be a closed subgroup of  $S_{\infty}$ .

Let  $\mathcal{N}^{G}$  be the standard basis of the topology of G consisting of cosets of pointwise stabilisers of finite subsets of  $\omega$ .

Let  $(\langle X, \tau \rangle, G)$  be a Polish *G*-space with a countable basis *A*. Along with  $\tau$  we shall consider another topology on *X*.

Nice topology:

# Actions of closed subgroups of $S_\infty$

Let G be a closed subgroup of  $S_{\infty}$ .

Let  $\mathcal{N}^{G}$  be the standard basis of the topology of G consisting of cosets of pointwise stabilisers of finite subsets of  $\omega$ .

Let  $(\langle X, \tau \rangle, G)$  be a Polish *G*-space with a countable basis *A*. Along with  $\tau$  we shall consider another topology on *X*.

Nice topology:

# Nice topology

**Definition (H.Becker)** A topology **t** on X is **nice** for the G-space  $(\langle X, \tau \rangle, G)$  if the following conditions are satisfied. (A) **t** is a Polish topology, **t** is finer than  $\tau$  and the G-action remains continuous with respect to **t**.

(B) There exists a basis  $\mathcal{B}$  for t (called **nice**) such that:

- $\mathcal{B}$  is countable;
- 2 for all  $B_1, B_2 \in \mathcal{B}$ ,  $B_1 \cap B_2 \in \mathcal{B}$ ;
- **③** for all  $B \in \mathcal{B}$ ,  $X \setminus B \in \mathcal{B}$ ;
- for all  $B \in \mathcal{B}$  and  $u \in \mathcal{N}^{G}$ ,  $B^{\Delta u}, B^{\star u} \in \mathcal{B}$ ;
- If or any B ∈ B there exists an open subgroup H < G such that B is invariant under the corresponding H-action.

イロト イポト イヨト イヨト 二日

# Example

#### Logic action

For any countable fragment F of  $L_{\omega_1\omega},$  which is closed under quantifiers, all sets

$$Mod(\phi, \bar{s}) = \{M \in X_L : M \models \phi(\bar{s})\}$$
 with  $\bar{s} \subset \omega$ 

form a nice basis defining a nice topology (denoted by  $\mathbf{t}_F$ ) of the  $S_\infty$ -space  $X_L$ .

Each piece of the canonical partition corresponding to  $\mathbf{t}_F$  consists of structures which satisfy the same *F*-sentences (without parameters).

(日)

# Example

#### Logic action

For any countable fragment F of  $L_{\omega_1\omega},$  which is closed under quantifiers, all sets

$$Mod(\phi, \bar{s}) = \{M \in X_L : M \models \phi(\bar{s})\}$$
 with  $\bar{s} \subset \omega$ 

form a nice basis defining a nice topology (denoted by  $\mathbf{t}_F$ ) of the  $S_\infty$ -space  $X_L$ .

Each piece of the canonical partition corresponding to  $\mathbf{t}_F$  consists of structures which satisfy the same *F*-sentences (without parameters).

・ロト ・得ト ・ヨト ・ヨト

## Example and illustration

Let G be a closed subgroup of  $S_{\infty}$  and  $(X, \tau)$  be a Polish G-space. Let **t** be a nice topology for  $(\langle X, \tau \rangle, G)$ .

A generalized version of Lindström's model completeness theorem:

#### Theorem (B.M-I)

For any  $x_1 \in X$  if  $X_1 = Gx_1$  is a  $G_{\delta}$ -subset of X, then both topologies  $\tau$  and **t** coincide on  $X_1$ .

H.Becker: **J.Amer.Math.Soc**, 11(1998), 397 - 449 and **APAL**, 111(2001), 145 - 184

(日)

## Example and illustration

Let G be a closed subgroup of  $S_{\infty}$  and  $(X, \tau)$  be a Polish G-space. Let **t** be a nice topology for  $(\langle X, \tau \rangle, G)$ .

A generalized version of Lindström's model completeness theorem:

#### Theorem (B.M-I)

For any  $x_1 \in X$  if  $X_1 = Gx_1$  is a  $G_{\delta}$ -subset of X, then both topologies  $\tau$  and **t** coincide on  $X_1$ .

H.Becker: **J.Amer.Math.Soc**, 11(1998), 397 - 449 and **APAL**, 111(2001), 145 - 184

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## Example and illustration

Let G be a closed subgroup of  $S_{\infty}$  and  $(X, \tau)$  be a Polish G-space. Let **t** be a nice topology for  $(\langle X, \tau \rangle, G)$ .

A generalized version of Lindström's model completeness theorem:

#### Theorem (B.M-I)

For any  $x_1 \in X$  if  $X_1 = Gx_1$  is a  $G_{\delta}$ -subset of X, then both topologies  $\tau$  and **t** coincide on  $X_1$ .

H.Becker: **J.Amer.Math.Soc**, 11(1998), 397 - 449 and **APAL**, 111(2001), 145 - 184

(日)

Generalised model theory Continuous model theory Categoricity Complexity in  $\mathbf{Y}_L$ 

## Existence

#### Theorem

(H.Becker) Let G be a closed subgroup of  $S_{\infty}$  and  $(X, \tau)$  be a Polish G-space. Let t' be a topology on X finer than  $\tau$ , such that the action remains continuous with respect to t'. Then there is a nice topology t for  $(\langle X, \tau \rangle, G)$  such that t is finer than t'.

**Remark:** All elements of  $\mathbf{t}$  are  $\tau$ -Borel.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\begin{array}{c} \mbox{Generalised model theory}\\ \mbox{Continuous model theory}\\ \mbox{Categoricity}\\ \mbox{Complexity in } \mathbf{Y}_L \end{array}$ 



#### Question:

Is it possible to extend the generalised model theory of H.Becker to actions of Polish groups (without the assumption  $G \leq S_{\infty}$ ) ?

A 10

(\* ) \* ) \* ) \* )

## Continuous structures

A countable continuous signature:

$$L = \{d, R_1, ..., R_k, ..., F_1, ..., F_l, ...\}.$$

#### Definition

A **metric** *L*-**structure** is a complete metric space (M, d) with *d* bounded by 1, along with a family of uniformly continuous operations  $F_k$  on *M* and a family of predicates  $R_I$ , i.e. uniformly continuous maps from appropriate  $M^{k_I}$  to [0, 1].

It is usually assumed that to a predicate symbol  $R_i$  a continuity modulus  $\gamma_i$  is assigned so that when  $d(x_j, x'_j) < \gamma_i(\varepsilon)$  with  $1 \le j \le k_i$  the corresponding predicate of M satisfies

 $|R_i(x_1,...,x_j,...,x_{k_i}) - R_i(x_1,...,x_j',...,x_{k_i})| < \varepsilon.$ 

高 とう きょう く ほ とう ほう

## Continuous structures

A countable continuous signature:

$$L = \{d, R_1, ..., R_k, ..., F_1, ..., F_l, ...\}.$$

#### Definition

A **metric** *L*-**structure** is a complete metric space (M, d) with *d* bounded by 1, along with a family of uniformly continuous operations  $F_k$  on *M* and a family of predicates  $R_I$ , i.e. uniformly continuous maps from appropriate  $M^{k_I}$  to [0, 1].

It is usually assumed that to a predicate symbol  $R_i$  a continuity modulus  $\gamma_i$  is assigned so that when  $d(x_j, x'_j) < \gamma_i(\varepsilon)$  with  $1 \le j \le k_i$  the corresponding predicate of M satisfies

$$|R_i(x_1,...,x_j,...,x_{k_i}) - R_i(x_1,...,x_j',...,x_{k_i})| < \varepsilon.$$

- 4 同 2 4 回 2 4 回 2 4

## Canonical structure

Let (G, d) be a Polish group with a left invariant metric  $\leq 1$ . If  $(\mathbf{X}, d)$  is its completion, then  $G \leq Iso(\mathbf{X})$ . Let S be a countable dense subset of  $\mathbf{X}$ . Enumerate all orbits of G of finite tuples of S.

For the closure of such an *n*-orbit C define a predicate  $R_{\overline{C}}$  on  $(\mathbf{X},d)$  by

 $R_{\overline{C}}(y_1,...,y_n) = d((y_1,...,y_n),\overline{C}) \text{ (i.e. } inf\{d(\overline{y},\overline{c}):\overline{c}\in\overline{C}\}).$ 

It is observed by J.Melleray that G is the automorphism group of the continuous structure M of all these predicates on **X**, with continuous moduli = id.

(日)

## Canonical structure

Let (G, d) be a Polish group with a left invariant metric  $\leq 1$ . If  $(\mathbf{X}, d)$  is its completion, then  $G \leq Iso(\mathbf{X})$ . Let S be a countable dense subset of  $\mathbf{X}$ . Enumerate all orbits of G of finite tuples of S.

For the closure of such an *n*-orbit C define a predicate  $R_{\overline{C}}$  on  $(\mathbf{X}, d)$  by

$$R_{\overline{C}}(y_1,...,y_n) = d((y_1,...,y_n),\overline{C}) \text{ (i.e. } inf\{d(\bar{y},\bar{c}):\bar{c}\in\overline{C}\}).$$

It is observed by J.Melleray that G is the automorphism group of the continuous structure M of all these predicates on **X**, with continuous moduli = id.

- 4 同 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 日 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H 2 4 H

#### The space of continuous structures

#### Fix a relational continuous signature L and a Polish space $(\mathbf{Y}, d)$ . Let S be a dense countable subset of $\mathbf{Y}$ .

Define the spee  $\mathbf{Y}_L$  of continuous *L*-stretres on  $(\mathbf{Y}, d)$  as follows. **Metric on the set of** *L*-structures: Enumerate all tuples of the form  $(j, \bar{s})$ , where  $\bar{s}$  is a tple  $\in S$  of the lngth of the arity of  $R_j$ . For *L*-structures *M* and *N* on **Y** let

$$\delta(M,N) = \sum_{i=1}^{\infty} \{2^{-i} | R_j^M(\overline{s}) - R_j^N(\overline{s}) | : i \text{ is the number of } (j,\overline{s}) \}.$$

#### Logic action

- the space  $\mathbf{Y}_L$  is Polish;
- the Polish group  $Iso(\mathbf{Y})$  acts on  $\mathbf{Y}_L$  continuously

Aleksander Ivanov and Barbara Majcher-Iwanow Polish G-spaces similar to logic G-spaces of continuous structure

#### The space of continuous structures

Fix a relational continuous signature L and a Polish space  $(\mathbf{Y}, d)$ . Let S be a dense countable subset of  $\mathbf{Y}$ .

Define the spee  $\mathbf{Y}_L$  of continuous *L*-stretres on  $(\mathbf{Y}, d)$  as follows. **Metric on the set of** *L*-structures: Enumerate all tuples of the form  $(j, \bar{s})$ , where  $\bar{s}$  is a tple  $\in S$  of the lngth of the arity of  $R_j$ . For *L*-structures *M* and *N* on  $\mathbf{Y}$  let

$$\delta(M,N) = \sum_{i=1}^{\infty} \{2^{-i} | R_j^M(\bar{s}) - R_j^N(\bar{s}) | : i \text{ is the number of } (j,\bar{s}) \}.$$

#### Logic action

- the space  $\mathbf{Y}_L$  is Polish;
- the Polish group  $Iso(\mathbf{Y})$  acts on  $\mathbf{Y}_L$  continuously

Aleksander Ivanov and Barbara Majcher-Iwanow Polish G-spaces similar to logic G-spaces of continuous structure

#### The space of continuous structures

Fix a relational continuous signature L and a Polish space  $(\mathbf{Y}, d)$ . Let S be a dense countable subset of  $\mathbf{Y}$ .

Define the spee  $\mathbf{Y}_L$  of continuous *L*-stretres on  $(\mathbf{Y}, d)$  as follows. **Metric on the set of** *L*-structures: Enumerate all tuples of the form  $(j, \bar{s})$ , where  $\bar{s}$  is a tple  $\in S$  of the lngth of the arity of  $R_j$ . For *L*-structures *M* and *N* on  $\mathbf{Y}$  let

$$\delta(M,N) = \sum_{i=1}^{\infty} \{2^{-i} | R_j^M(\bar{s}) - R_j^N(\bar{s}) | : i \text{ is the number of } (j,\bar{s}) \}.$$

#### Logic action

- the space  $\mathbf{Y}_L$  is Polish;
- the Polish group  $Iso(\mathbf{Y})$  acts on  $\mathbf{Y}_L$  continuously

Aleksander Ivanov and Barbara Majcher-Iwanow Polish G-spaces similar to logic G-spaces of continuous structure

# Universality

#### Theorem

For any Polish group G there is a Polish space  $(\mathbf{Y}, d)$  and a continuous relational signature L such that

- $G < Iso(\mathbf{Y})$
- for any Polish G-space X there is a Borel 1-1-map *M* : X → Y<sub>L</sub> such that for any x, x' ∈ X structures *M*(x) and *M*(x') are isomorphic if and only if x and x' are in the same G-orbit,

The map  $\mathcal{M}$  is a Borel *G*-invariant 1-1-reduction of the *G*-orbit equivalence relation on **X** to the  $lso(\mathbf{Y})$ -orbit equivalence relation on the space  $\mathbf{Y}_L$  of all *L*-stuctures.

・ロト ・得ト ・ヨト ・ヨト

## Grades subsets and subgroups

#### A graded subset of X, denoted $\phi \sqsubseteq X$ , is a function $X \rightarrow [0, 1]$ .

It is **open (closed)**,  $\phi \in \Sigma_1$  (resp.  $\phi \in \Pi_1$ ), if it is upper (lower) semi-continuous, i.e. the set  $\phi_{< r}$  (resp.  $\phi_{> r}$ ) is open for all  $r \in [0,1]$  (here  $\phi_{< r} = \{z \in \mathbf{X} : \phi(z) < r\}$ ).

When G is a Polish group, then a graded subset  $H \sqsubseteq G$  is called a **graded subgroup** if H(1) = 0,  $\forall g \in G(H(g) = H(g^{-1}))$  and  $\forall g, g' \in G(H(gg') \leq H(g) + H(g'))$ .

We also define Borel classes  $\Sigma_{\alpha}$ ,  $\Pi_{\alpha}$  so that  $\phi$  is  $\Sigma_{\alpha}$ if  $\phi = inf \Phi$  for some countable  $\Phi \subset \bigcup \{\Pi_{\gamma} : \gamma < \alpha\}$  and  $\Pi_{\alpha} = \{1 - \phi : \phi \in \Sigma_{\alpha}\}.$ 

イロト イポト イヨト イヨト

Grades subsets and subgroups

A graded subset of X, denoted  $\phi \sqsubseteq X$ , is a function  $X \rightarrow [0, 1]$ .

It is **open (closed)**,  $\phi \in \Sigma_1$  (resp.  $\phi \in \Pi_1$ ), if it is upper (lower) semi-continuous, i.e. the set  $\phi_{< r}$  (resp.  $\phi_{> r}$ ) is open for all  $r \in [0, 1]$  (here  $\phi_{< r} = \{z \in X : \phi(z) < r\}$ ).

When G is a Polish group, then a graded subset  $H \sqsubseteq G$  is called a **graded subgroup** if H(1) = 0,  $\forall g \in G(H(g) = H(g^{-1}))$  and  $\forall g, g' \in G(H(gg') \leq H(g) + H(g'))$ .

We also define Borel classes  $\Sigma_{\alpha}$ ,  $\Pi_{\alpha}$  so that  $\phi$  is  $\Sigma_{\alpha}$ if  $\phi = inf \Phi$  for some countable  $\Phi \subset \bigcup \{\Pi_{\gamma} : \gamma < \alpha\}$  and  $\Pi_{\alpha} = \{1 - \phi : \phi \in \Sigma_{\alpha}\}.$ 

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Grades subsets and subgroups

A graded subset of X, denoted  $\phi \sqsubseteq X$ , is a function  $X \rightarrow [0, 1]$ .

It is **open (closed)**,  $\phi \in \Sigma_1$  (resp.  $\phi \in \Pi_1$ ), if it is upper (lower) semi-continuous, i.e. the set  $\phi_{< r}$  (resp.  $\phi_{> r}$ ) is open for all  $r \in [0, 1]$  (here  $\phi_{< r} = \{z \in \mathbf{X} : \phi(z) < r\}$ ).

When G is a Polish group, then a graded subset  $H \sqsubseteq G$  is called a **graded subgroup** if H(1) = 0,  $\forall g \in G(H(g) = H(g^{-1}))$  and  $\forall g, g' \in G(H(gg') \le H(g) + H(g'))$ .

We also define Borel classes  $\Sigma_{\alpha}$ ,  $\Pi_{\alpha}$  so that  $\phi$  is  $\Sigma_{\alpha}$ if  $\phi = inf\Phi$  for some countable  $\Phi \subset \bigcup \{\Pi_{\gamma} : \gamma < \alpha\}$  and  $\Pi_{\alpha} = \{1 - \phi : \phi \in \Sigma_{\alpha}\}.$ 

イロト イポト イヨト イヨト 二日

Grades subsets and subgroups

A graded subset of X, denoted  $\phi \sqsubseteq X$ , is a function  $X \rightarrow [0, 1]$ .

It is **open (closed)**,  $\phi \in \Sigma_1$  (resp.  $\phi \in \Pi_1$ ), if it is upper (lower) semi-continuous, i.e. the set  $\phi_{< r}$  (resp.  $\phi_{> r}$ ) is open for all  $r \in [0, 1]$  (here  $\phi_{< r} = \{z \in \mathbf{X} : \phi(z) < r\}$ ).

When G is a Polish group, then a graded subset  $H \sqsubseteq G$  is called a **graded subgroup** if H(1) = 0,  $\forall g \in G(H(g) = H(g^{-1}))$  and  $\forall g, g' \in G(H(gg') \le H(g) + H(g'))$ .

We also define Borel classes  $\Sigma_{\alpha}$ ,  $\Pi_{\alpha}$  so that  $\phi$  is  $\Sigma_{\alpha}$ if  $\phi = inf\Phi$  for some countable  $\Phi \subset \bigcup \{\Pi_{\gamma} : \gamma < \alpha\}$  and  $\Pi_{\alpha} = \{1 - \phi : \phi \in \Sigma_{\alpha}\}.$ 

イロト イポト イヨト イヨト 二日

## Graded subsets of $\mathbf{Y}_L$

For  $\bar{c}$  from  $(\mathbf{Y}, d)$  and a linear  $\delta$  with  $\delta(0) = 0$ graded subgroup  $H_{\delta, \bar{c}} \sqsubseteq Iso(\mathbf{Y})$ :

 $H_{\delta, \overline{c}}(g) = \delta(max(d(c_1, g(c_1)), ..., d(c_n, g(c_n)))), \text{ where } g \in Iso(\mathbf{Y}).$ 

A **continuous formula** is an expression built from 0,1 and atomic formulas by applications of the following functions:

$$x/2$$
 ,  $\dot{x-y} = max(x-y,0)$  ,  $min(x,y)$  ,  $max(x,y)$  ,  $|x-y|$  ,

eg (x) = 1 - x ,  $x \dot{+} y = {\it min}(x + y, 1)$  ,  ${\it sup}_x$  and  ${\it inf}_x.$ 

Any continuous sentence  $\phi(\bar{c})$  defines a graded subset of  $\mathbf{Y}_L$  which belongs to  $\mathbf{\Sigma}_n$  for some n:

## $\phi(\bar{c})$ takes M to the value $\phi^M(\bar{c})$ .

・ロッ ・雪 ・ ・ ヨ ・ ・ ロ ・

## Graded subsets of $\mathbf{Y}_L$

For  $\bar{c}$  from  $(\mathbf{Y}, d)$  and a linear  $\delta$  with  $\delta(0) = 0$ graded subgroup  $H_{\delta,\bar{c}} \sqsubseteq Iso(\mathbf{Y})$ :

$$H_{\delta,\overline{c}}(g) = \delta(max(d(c_1,g(c_1)),...,d(c_n,g(c_n)))), ext{ where } g \in Iso(\mathbf{Y}).$$

A **continuous formula** is an expression built from 0,1 and atomic formulas by applications of the following functions:

$$x/2$$
 ,  $\dot{x-y} = max(x-y,0)$  ,  $min(x,y)$  ,  $max(x,y)$  ,  $|x-y|$  ,

$$egic{} (x) = 1 - x$$
 ,  $\dot{x + y} = \textit{min}(x + y, 1)$  ,  $\textit{sup}_x$  and  $\textit{inf}_x$ 

Any continuous sentence  $\phi(\bar{c})$  defines a graded subset of  $\mathbf{Y}_L$  which belongs to  $\mathbf{\Sigma}_n$  for some n:

## $\phi(ar{c})$ takes M to the value $\phi^M(ar{c})$ .

ロト (得) (ヨ) (ヨ)

## Graded subsets of $\mathbf{Y}_L$

For  $\bar{c}$  from  $(\mathbf{Y}, d)$  and a linear  $\delta$  with  $\delta(0) = 0$ graded subgroup  $H_{\delta,\bar{c}} \sqsubseteq Iso(\mathbf{Y})$ :

$$H_{\delta,\overline{c}}(g) = \delta(max(d(c_1,g(c_1)),...,d(c_n,g(c_n)))), ext{ where } g \in Iso(\mathbf{Y}).$$

A **continuous formula** is an expression built from 0,1 and atomic formulas by applications of the following functions:

$$x/2$$
 ,  $\dot{x-y} = max(x-y,0)$  ,  $min(x,y)$  ,  $max(x,y)$  ,  $|x-y|$  ,

$$eg (x) = 1 - x$$
 ,  $\dot{x+y} = min(x+y,1)$  ,  $sup_x$  and  $inf_x$ .

Any continuous sentence  $\phi(\bar{c})$  defines a graded subset of  $\mathbf{Y}_L$  which belongs to  $\boldsymbol{\Sigma}_n$  for some n:

$$\phi(\bar{c})$$
 takes  $M$  to the value  $\phi^{M}(\bar{c})$ .

・ 同 ト ・ ヨ ト ・ ヨ ト …

## Invariant graded subsets

Assuming that continuity moduli of *L*-symbols are **id** for any  $\phi(\bar{x})$  as above we find a linear function  $\delta$  such that the graded subgroup

$$H_{\delta,\overline{c}}(g) = \delta(max(d(c_1, g(c_1)), ..., d(c_n, g(c_n)))), \text{ where } g \in Iso(\mathbf{Y}).$$

and the graded subset  $\phi(\bar{c}) \sqsubseteq \mathbf{Y}_L$  satisfy

$$\phi^{g(M)}(\bar{c}) \leq \phi^{M}(\bar{c}) + H_{\delta,\bar{c}}(g).$$

### Definition

Let **X** be a continuous *G*-space. A graded subset  $\phi \sqsubseteq \mathbf{X}$  is called invariant with respect to a graded subgroup  $H \sqsubseteq G$  if for any  $g \in G$  we have  $\phi(g(x)) \le \phi(x) + H(g)$ .

Aleksander Ivanov and Barbara Majcher-Iwanow Polish G-spaces similar to logic G-spaces of continuous structure

## Invariant graded subsets

Assuming that continuity moduli of *L*-symbols are **id** for any  $\phi(\bar{x})$  as above we find a linear function  $\delta$  such that the graded subgroup

$$H_{\delta,\overline{c}}(g) = \delta(max(d(c_1, g(c_1)), ..., d(c_n, g(c_n)))), \text{ where } g \in Iso(\mathbf{Y}).$$

and the graded subset  $\phi(\bar{c}) \sqsubseteq \mathbf{Y}_L$  satisfy

$$\phi^{g(M)}(\bar{c}) \leq \phi^{M}(\bar{c}) + H_{\delta,\bar{c}}(g).$$

### Definition

Let **X** be a continuous *G*-space. A graded subset  $\phi \sqsubseteq \mathbf{X}$  is called invariant with respect to a graded subgroup  $H \sqsubseteq G$  if for any  $g \in G$  we have  $\phi(g(x)) \le \phi(x) + H(g)$ .

Aleksander Ivanov and Barbara Majcher-Iwanow Polish G-spaces similar to logic G-spaces of continuous structure

## Vaught transforms 3

For any non-empty open  $J \sqsubseteq G$  let

$$\phi^{\Delta J}(x) = \inf\{r + s : \{h : \phi(h(x)) < r\} \text{ is not meagre in } J_{  
$$\phi^{*J}(x) = \sup\{r - s : \{h : \phi(h(x)) \le r\} \text{ is not comeagre in } J_{$$$$

#### Theorem

• 
$$\phi^{*J}(x) = 1 - (1 - \phi)^{\Delta J}(x)$$
 for all  $x \in \mathbf{X}$ .

• 
$$\phi^{\Delta J}(x) \le \phi^{*J}(x)$$
 for all  $x \in \mathbf{X}$ .

- If φ is a graded Σ<sub>α</sub>-subset, then φ<sup>ΔJ</sup> is also Σ<sub>α</sub>.
   If φ is a graded Π<sub>α</sub>-subset, then φ<sup>\*J</sup>(x) is also Π<sub>α</sub>
- Vaught transforms of Borel graded subsets are Borel.

## Vaught transforms 3

For any non-empty open  $J \sqsubseteq G$  let

$$\phi^{\Delta J}(x) = \inf\{r + s : \{h : \phi(h(x)) < r\} \text{ is not meagre in } J_{< s}\}.$$
  
$$\phi^{*J}(x) = \sup\{r - s : \{h : \phi(h(x)) \le r\} \text{ is not comeagre in } J_{< s}\}.$$

### Theorem

• 
$$\phi^{*J}(x) = 1 - (1 - \phi)^{\Delta J}(x)$$
 for all  $x \in X$ .

• 
$$\phi^{\Delta J}(x) \leq \phi^{*J}(x)$$
 for all  $x \in \mathbf{X}$ .

- If φ is a graded Σ<sub>α</sub>-subset, then φ<sup>ΔJ</sup> is also Σ<sub>α</sub>.
   If φ is a graded Π<sub>α</sub>-subset, then φ<sup>\*J</sup>(x) is also Π<sub>α</sub>.
- Vaught transforms of Borel graded subsets are Borel.

・ロト ・同ト ・ヨト ・ヨト

## Vaught transforms 4

### Theorem

M

If H is a graded subgroup of G, then both  $\phi^{*H}(x)$  and  $\phi^{\Delta H}(x)$  are H-invariant:

$$\phi^{*H}(x) \dot{-} H(h) \leq \phi^{*H}(h(x)) \leq \phi^{*H}(x) \dot{+} H(h) \text{ and}$$
  
$$\phi^{\Delta H}(x) \dot{-} H(h) \leq \phi^{\Delta H}(h(x)) \leq \phi^{\Delta H}(x) \dot{+} H(h).$$
  
oreover if  $\phi(x) \leq \phi(h(x)) \dot{+} H(h)$  for all x and h, then  
$$\phi^{*H}(x) = \phi(x) = \phi^{\Delta H}(x).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

## Graded bases

We consider G together with a distinguished countable family of open graded subsets  $\mathcal{R}$  so that all  $\rho_{< r}$  for  $\rho \in \mathcal{R}$  and  $r \in \mathbb{Q}$ , form a basis of the topology of G.

We usually assume that  $\mathcal{R}$  consists of **graded cosets**, i.e. for such  $\rho \in \mathcal{R}$  there is a graded subgroup  $H \in \mathcal{R}$  and an element  $g_0 \in G$  so that for any  $g \in G$ ,  $\rho(g) = H(gg_0^{-1})$ . (For every Polish group G there is a countable family of open graded subsets  $\mathcal{R}$  as above.)

Considering a  $(G, \mathcal{R})$ -space **X** we distinguish a similar family too: a cntble family  $\mathcal{U}$  of open graded sbsts of **X** generating the topol.

## Graded bases

We consider G together with a distinguished countable family of open graded subsets  $\mathcal{R}$  so that all  $\rho_{< r}$  for  $\rho \in \mathcal{R}$  and  $r \in \mathbb{Q}$ , form a basis of the topology of G.

We usually assume that  $\mathcal{R}$  consists of **graded cosets**, i.e. for such  $\rho \in \mathcal{R}$  there is a graded subgroup  $H \in \mathcal{R}$  and an element  $g_0 \in G$  so that for any  $g \in G$ ,  $\rho(g) = H(gg_0^{-1})$ . (For every Polish group G there is a countable family of open graded subsets  $\mathcal{R}$  as above.)

Considering a  $(G, \mathcal{R})$ -space **X** we distinguish a similar family too: a cntble family  $\mathcal{U}$  of open graded sbsts of **X** generating the topol.

(日)

## Graded bases

We consider G together with a distinguished countable family of open graded subsets  $\mathcal{R}$  so that all  $\rho_{< r}$  for  $\rho \in \mathcal{R}$  and  $r \in \mathbb{Q}$ , form a basis of the topology of G.

We usually assume that  $\mathcal{R}$  consists of **graded cosets**, i.e. for such  $\rho \in \mathcal{R}$  there is a graded subgroup  $H \in \mathcal{R}$  and an element  $g_0 \in G$  so that for any  $g \in G$ ,  $\rho(g) = H(gg_0^{-1})$ . (For every Polish group G there is a countable family of open graded subsets  $\mathcal{R}$  as above.)

Considering a  $(G, \mathcal{R})$ -space **X** we distinguish a similar family too: a cntble family  $\mathcal{U}$  of open graded sbsts of **X** generating the topol.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

## Graded bases

We consider G together with a distinguished countable family of open graded subsets  $\mathcal{R}$  so that all  $\rho_{< r}$  for  $\rho \in \mathcal{R}$  and  $r \in \mathbb{Q}$ , form a basis of the topology of G.

We usually assume that  $\mathcal{R}$  consists of **graded cosets**, i.e. for such  $\rho \in \mathcal{R}$  there is a graded subgroup  $H \in \mathcal{R}$  and an element  $g_0 \in G$  so that for any  $g \in G$ ,  $\rho(g) = H(gg_0^{-1})$ . (For every Polish group G there is a countable family of open graded subsets  $\mathcal{R}$  as above.)

Considering a  $(G, \mathcal{R})$ -space **X** we distinguish a similar family too: a cntble family  $\mathcal{U}$  of open graded sbsts of **X** generating the topol.

# Nice basis

**Definition.** A family  $\mathcal{B}$  of Borel graded subsets of the *G*-space **X** is a **nice basis** w.r.to  $\mathcal{R}$  if:

- $\mathcal B$  is countable and generates the topol. finer than au;
- for all  $\phi_1, \phi_2 \in \mathcal{B}$ , the functions  $\min(\phi_1, \phi_2)$ ,  $\max(\phi_1, \phi_2)$ ,  $|\phi_1 \phi_2|$ ,  $\phi_1 \phi_2 \phi_1 + \phi_2$  belong to  $\mathcal{B}$ ;
- for all  $\phi \in \mathcal{B}$  and rational  $r \in [0, 1]$ ,  $r\phi$  and  $1 \phi \in \mathcal{B}$ ;
- for all  $\phi \in \mathcal{B}$  and  $\rho \in \mathcal{R}$ ,  $\phi^{*\rho}, \phi^{\Delta \rho} \in \mathcal{B}$ ;
- for any φ ∈ B there exists an open graded subgroup H ∈ R such that φ is invariant under the corresponding H-action.

A topology **t** on **X** is  $\mathcal{R}$ -nice for the *G*-space  $\langle \mathbf{X}, \tau \rangle$  if: (a) **t** is a Polish topology, **t** is finer than  $\tau$  and the *G*-action remains continuous with respect to **t**; (b) there exists a nice basis  $\mathcal{B}$  so that **t** is generated by all  $\phi_{<q}$  with  $\phi \in \mathcal{B}$  and  $q \in \mathbb{Q} \cap (0, 1]$ .

# Nice basis

**Definition.** A family  $\mathcal{B}$  of Borel graded subsets of the *G*-space **X** is a **nice basis** w.r.to  $\mathcal{R}$  if:

- $\mathcal B$  is countable and generates the topol. finer than au;
- for all  $\phi_1, \phi_2 \in \mathcal{B}$ , the functions  $\min(\phi_1, \phi_2)$ ,  $\max(\phi_1, \phi_2)$ ,  $|\phi_1 \phi_2|$ ,  $\phi_1 \phi_2 \phi_1 + \phi_2$  belong to  $\mathcal{B}$ ;
- for all  $\phi \in \mathcal{B}$  and rational  $r \in [0, 1]$ ,  $r\phi$  and  $1 \phi \in \mathcal{B}$ ;
- for all  $\phi \in \mathcal{B}$  and  $\rho \in \mathcal{R}$ ,  $\phi^{*\rho}, \phi^{\Delta \rho} \in \mathcal{B}$ ;
- for any φ ∈ B there exists an open graded subgroup H ∈ R such that φ is invariant under the corresponding H-action.

A topology **t** on **X** is  $\mathcal{R}$ -nice for the *G*-space  $\langle \mathbf{X}, \tau \rangle$  if: (a) **t** is a Polish topology, **t** is finer than  $\tau$  and the *G*-action remains continuous with respect to **t**; (b) there exists a nice basis  $\mathcal{B}$  so that **t** is generated by all  $\phi_{\leq q}$  with  $\phi \in \mathcal{B}$  and  $q \in \mathbb{Q} \cap (0, 1]$ .

## The case of $\mathbf{U}_L$

Let **U** be **Urysohn** spee of diameter 1: This is the unique Polish mtrc space which is universal and ultrahomogeneous, i.e. every isometry between fnte substs of **U** extends to an isometry of **U**.

There is a ctble family  $\mathcal{R}$  consisting of cosets of clopen graded subgroups of  $Iso(\mathbf{U})$  of the form

 $H_{\mathbf{s}}: g 
ightarrow d(g(\mathbf{s}), \mathbf{s}), \text{ where } \mathbf{s} \subset S \text{ (ctble,dense) },$ 

which generates the topology of Iso(U).

Let *L* be a continuous signature of continuity moduli *id*. Then the family of all continuous *L*-sentences

 $\phi(\mathbf{s}): M \to \phi^M(\mathbf{s}), \text{ where } \bar{\mathbf{s}} \in S,$ 

Aleksander Ivanov and Barbara Majcher-Iwanow Polish G-spaces similar to logic G-spaces of continuous structure

## The case of $\mathbf{U}_L$

Let **U** be **Urysohn** spce of diameter 1: This is the unique Polish mtrc space which is universal and ultrahomogeneous, i.e. every isometry between fnte substs of **U** extends to an isometry of **U**.

There is a ctble family  $\mathcal{R}$  consisting of cosets of clopen graded subgroups of  $Iso(\mathbf{U})$  of the form

 $H_{\mathbf{s}}: g 
ightarrow d(g(\mathbf{s}), \mathbf{s}), \text{ where } \mathbf{s} \subset S \text{ (ctble,dense) },$ 

which generates the topology of  $Iso(\mathbf{U})$ .

Let *L* be a continuous signature of continuity moduli *id*. Then the family of all continuous *L*-sentences

 $\phi(\mathbf{s}): M \to \phi^M(\mathbf{s}), \text{ where } \bar{\mathbf{s}} \in S,$ 

forms an  $\mathcal{R}$ -nice basis  $\mathcal{B}$  of the G-space  $U_{L, \mathbb{C}}$ 

Aleksander Ivanov and Barbara Majcher-Iwanow Polish G-spaces similar to logic G-spaces of continuous structure

500

## The case of $\mathbf{U}_L$

Let **U** be **Urysohn** spce of diameter 1: This is the unique Polish mtrc space which is universal and ultrahomogeneous, i.e. every isometry between fnte substs of **U** extends to an isometry of **U**.

There is a ctble family  $\mathcal{R}$  consisting of cosets of clopen graded subgroups of  $Iso(\mathbf{U})$  of the form

 $H_{\mathbf{s}}: g 
ightarrow d(g(\mathbf{s}), \mathbf{s}), \text{ where } \mathbf{s} \subset S \text{ (ctble,dense) },$ 

which generates the topology of Iso(U).

Let *L* be a continuous signature of continuity moduli *id*. Then the family of all continuous *L*-sentences

 $\phi(\mathbf{s}): M \to \phi^M(\mathbf{s}), \text{ where } \overline{\mathbf{s}} \in S,$ 

forms an  $\mathcal{R}$ -nice basis  $\mathcal{B}$  of the G-space  $U_{L, \{\mu\}}$ ,  $\{\mu\}$ ,

Aleksander Ivanov and Barbara Majcher-Iwanow Polish G-spaces similar to logic G-spaces of continuous structure

## The case of $\mathbf{U}_L$

Let **U** be **Urysohn** spce of diameter 1: This is the unique Polish mtrc space which is universal and ultrahomogeneous, i.e. every isometry between fnte substs of **U** extends to an isometry of **U**.

There is a ctble family  $\mathcal{R}$  consisting of cosets of clopen graded subgroups of  $Iso(\mathbf{U})$  of the form

 $H_{\mathbf{s}}: g 
ightarrow d(g(\mathbf{s}), \mathbf{s}), \text{ where } \mathbf{s} \subset S \text{ (ctble,dense) },$ 

which generates the topology of Iso(U).

Let L be a continuous signature of continuity moduli *id*. Then the family of all continuous L-sentences

$$\phi(\mathbf{s}): \mathbf{M} \to \phi^{\mathbf{M}}(\mathbf{s}), \text{ where } \overline{\mathbf{s}} \in \mathbf{S},$$

forms an  $\mathcal{R}$ -nice basis  $\mathcal{B}$  of the G-space  $U_L$  and  $U_L$ 

## Existence 2

**Theorem.** Let  $(G, \mathcal{R})$  be a Polish group with  $\mathcal{R}$  satisfying (i) for every graded subgroup  $H \in \mathcal{R}$  if  $gH \in \mathcal{R}$ , then  $H^g \in \mathcal{R}$ ; (ii)  $\mathcal{R}$  is closed under **max** and multiplying by rationals.

Let  $\langle \mathbf{X}, \tau \rangle$  be a *G*-space and  $\mathcal{U}$  be a countable family of Borel graded subsets of  $\mathbf{X}$  generating a topology finer than  $\tau$ , so that each  $\phi \in \mathcal{U}$  is invariant with respect to some graded subgroup  $H \in \mathcal{R}$ .

Then there is an  $\mathcal{R}$ -nice topology for  $(\langle \mathbf{X}, \tau \rangle, G)$  so that  $\mathcal{U}$  consists of open graded subsets.

・ 同 ト ・ ヨ ト ・ ヨ ト

## Existence 2

**Theorem.** Let  $(G, \mathcal{R})$  be a Polish group with  $\mathcal{R}$  satisfying (i) for every graded subgroup  $H \in \mathcal{R}$  if  $gH \in \mathcal{R}$ , then  $H^g \in \mathcal{R}$ ; (ii)  $\mathcal{R}$  is closed under **max** and multiplying by rationals. Let  $\langle \mathbf{X}, \tau \rangle$  be a *G*-space and  $\mathcal{U}$  be a countable family of Borel graded subsets of  $\mathbf{X}$  generating a topology finer than  $\tau$ , so that each  $\phi \in \mathcal{U}$  is invariant with respect to some graded subgroup  $H \in \mathcal{R}$ .

Then there is an  $\mathcal{R}$ -nice topology for  $(\langle \mathbf{X}, \tau \rangle, G)$  so that  $\mathcal{U}$  consists of open graded subsets.

## Existence 2

**Theorem.** Let  $(G, \mathcal{R})$  be a Polish group with  $\mathcal{R}$  satisfying (i) for every graded subgroup  $H \in \mathcal{R}$  if  $gH \in \mathcal{R}$ , then  $H^g \in \mathcal{R}$ ; (ii)  $\mathcal{R}$  is closed under **max** and multiplying by rationals. Let  $\langle \mathbf{X}, \tau \rangle$  be a *G*-space and  $\mathcal{U}$  be a countable family of Borel graded subsets of  $\mathbf{X}$  generating a topology finer than  $\tau$ , so that each  $\phi \in \mathcal{U}$  is invariant with respect to some graded subgroup  $H \in \mathcal{R}$ .

Then there is an  $\mathcal{R}$ -nice topology for  $(\langle \mathbf{X}, \tau \rangle, G)$  so that  $\mathcal{U}$  consists of open graded subsets.

- 4 同 6 4 日 6 4 日 6 - 日

# Lindström

 ${\it G}$  is a Polish group with a graded basis  ${\cal R}$  consisting of graded cosets,

 $\langle \mathbf{X}, \tau \rangle$  is a Polish G-space, ect.

### Theorem

Let **t** be  $\mathcal{R}$ -nice. Let  $X = Gx_0$  for some (any)  $x_0 \in X$  and X be a  $G_{\delta}$ -subset of **X**. Then both topologies  $\tau$  and **t** are equal on X.

イロト イポト イヨト イヨト

# Lindström

 ${\it G}$  is a Polish group with a graded basis  ${\cal R}$  consisting of graded cosets,

 $\langle \mathbf{X}, \tau \rangle$  is a Polish *G*-space, ect.

### Theorem

Let **t** be  $\mathcal{R}$ -nice. Let  $X = Gx_0$  for some (any)  $x_0 \in X$  and X be a  $G_{\delta}$ -subset of **X**. Then both topologies  $\tau$  and **t** are equal on X.

- 4 同 6 4 日 6 4 日 6

# Categoricity

Let  ${\mathcal B}$  be a nice basis defining  ${\mathcal R}\text{-nice } {\boldsymbol t},$ 

H be an open graded subgroup from  $\mathcal{R}$ ,

X be an invariant  $G_{\delta}$ -subset of **X** with respect to **t**.

(1) A family  $\mathcal{F}$  of subsets of the form  $\phi_{\leq r}$  with *H*-invariant  $\phi \in \mathcal{B}$  is called an *H*-**type** in *X*, if it is maximal w.r. to the condition  $X \cap \bigcap \mathcal{F} \neq \emptyset$ .

(2) An *H*-type  $\mathcal{F}$  is called **principal** if there is an *H*-invariant graded basic set  $\phi \in \mathcal{B}$  and there is *r* such that  $\phi_{< r} \in \mathcal{F}$  and  $\bigcap \{\overline{B} : B \in \mathcal{F}\} \cap X$  coincides with the closure of  $\phi_{< r} \cap X$ . Then we say that  $\phi_{< r}$  defines  $\mathcal{F}$ .

(4 回) トイラト イラト

# Categoricity

Let  $\mathcal{B}$  be a nice basis defining  $\mathcal{R}$ -nice  $\mathbf{t}$ ,

H be an open graded subgroup from  $\mathcal{R}$ ,

X be an invariant  $G_{\delta}$ -subset of **X** with respect to **t**.

(1) A family  $\mathcal{F}$  of subsets of the form  $\phi_{\leq r}$  with *H*-invariant  $\phi \in \mathcal{B}$  is called an *H*-**type** in *X*, if it is maximal w.r. to the condition  $X \cap \bigcap \mathcal{F} \neq \emptyset$ .

(2) An *H*-type  $\mathcal{F}$  is called **principal** if there is an *H*-invariant graded basic set  $\phi \in \mathcal{B}$  and there is *r* such that  $\phi_{< r} \in \mathcal{F}$  and  $\bigcap \{\overline{B} : B \in \mathcal{F}\} \cap X$  coincides with the closure of  $\phi_{< r} \cap X$ . Then we say that  $\phi_{< r}$  defines  $\mathcal{F}$ .

- 4 同 2 4 日 2 4 日 2 4

# Ryll-Nardzewski

# Let $\mathcal{R}$ consist of clopen graded cosets. Let $\mathcal{B}$ be an $\mathcal{R}$ -nice basis of a *G*-space $\langle \mathbf{X}, \tau \rangle$ and **t** be the corresponding nice topology,

### Theorem

Assume that the action satisfies the **approximation property** for graded subgroups.

A piece X of the canonical partition with respect to the topology **t** is a G-orbit if and only if for any basic open graded subgroup  $H \sqsubset G$  any H-type of X is principal.

(日) (同) (三) (三)

# Ryll-Nardzewski

Let  $\mathcal{R}$  consist of clopen graded cosets. Let  $\mathcal{B}$  be an  $\mathcal{R}$ -nice basis of a *G*-space  $\langle \mathbf{X}, \tau \rangle$  and **t** be the corresponding nice topology,

## Theorem

Assume that the action satisfies the **approximation property** for graded subgroups.

A piece X of the canonical partition with respect to the topology **t** is a G-orbit if and only if for any basic open graded subgroup  $H \sqsubset G$  any H-type of X is principal.

(日) (同) (三) (三)

# Ryll-Nardzewski

Let  $\mathcal{R}$  consist of clopen graded cosets. Let  $\mathcal{B}$  be an  $\mathcal{R}$ -nice basis of a *G*-space  $\langle \mathbf{X}, \tau \rangle$  and **t** be the corresponding nice topology,

## Theorem

Assume that the action satisfies the **approximation property** for graded subgroups.

A piece X of the canonical partition with respect to the topology **t** is a G-orbit if and only if for any basic open graded subgroup  $H \sqsubset G$  any H-type of X is principal.

- 4 同 6 4 日 6 4 日 6

## Approximation property for graded subgroups

## Definition

The  $(G, \mathcal{R})$ -space  $(\mathbf{X}, \mathcal{U})$  has the approximation property for graded subgroups if for any  $\varepsilon > 0$ 

for any grded subgrp  $H \in \mathcal{R}$ , any c and  $c' \in \mathbf{X}$  of the same G-orbt

if c, c' belong to the same subsets of the form  $\phi_{\leq t}$  for *H*-invarnt  $\phi \in \mathcal{U}$ , then c' can be approximated by the values g(c) with  $H(g) < \varepsilon$ .

When G = Aut(M), where M is an approximately ultrahomogeneous separably categorical structure on **Y**, then this holds in the space of all *L*-expansions of M.

< ロ > < 同 > < 回 > < 回 > .

## Approximation property for graded subgroups

## Definition

The  $(G, \mathcal{R})$ -space  $(\mathbf{X}, \mathcal{U})$  has the **approximation property for graded subgroups** if for any  $\varepsilon > 0$ for any grded subgrp  $H \in \mathcal{R}$ , any c and  $c' \in \mathbf{X}$  of the same G-orbt

if c, c' belong to the same subsets of the form  $\phi_{\leq t}$  for *H*-invarnt  $\phi \in \mathcal{U}$ , then c' can be approximated by the values g(c) with  $H(g) < \varepsilon$ .

When G = Aut(M), where M is an approximately ultrahomogeneous separably categorical structure on  $\mathbf{Y}$ , then this holds in the space of all *L*-expansions of M.

イロン 不同 とくほう イロン

## Approximation property for graded subgroups

## Definition

The  $(G, \mathcal{R})$ -space  $(\mathbf{X}, \mathcal{U})$  has the **approximation property for graded subgroups** if for any  $\varepsilon > 0$ for any grded subgrp  $H \in \mathcal{R}$ , any c and  $c' \in \mathbf{X}$  of the same G-orbt

if c, c' belong to the same subsets of the form  $\phi_{\leq t}$  for *H*-invarnt  $\phi \in \mathcal{U}$ , then c' can be approximated by the values g(c) with  $H(g) < \varepsilon$ .

When G = Aut(M), where M is an approximately ultrahomogeneous separably categorical structure on  $\mathbf{Y}$ , then this holds in the space of all *L*-expansions of M.

イロト 不得 トイヨト イヨト 二日

## Approximation property for graded subgroups

## Definition

The  $(G, \mathcal{R})$ -space  $(\mathbf{X}, \mathcal{U})$  has the **approximation property for graded subgroups** if for any  $\varepsilon > 0$ for any grded subgrp  $H \in \mathcal{R}$ , any c and  $c' \in \mathbf{X}$  of the same G-orbt

if c, c' belong to the same subsets of the form  $\phi_{\leq t}$  for *H*-invarnt  $\phi \in \mathcal{U}$ , then c' can be approximated by the values g(c) with  $H(g) < \varepsilon$ .

When G = Aut(M), where M is an approximately ultrahomogeneous separably categorical structure on **Y**, then this holds in the space of all *L*-expansions of M.

イロト 不得 トイヨト イヨト 二日

# Ultrahomogenity

A relational continuous structure M is **approximately ultrahomogeneous** if for any *n*-tuples  $(a_1, ..., a_n)$  and  $(b_1, ..., b_n)$ with the same quantifier-free type (i.e. with the same values of predicates for corresponding subtuples) and any  $\varepsilon > 0$  there exists  $g \in Aut(M)$  such that

# $max\{d(g(a_j), b_j) : 1 \le j \le n\} \le \varepsilon.$

Any Polish group can be chosen as the automorphism group of a continuous metric structure which is approximately ultrahomogeneous.

- 4 同 6 4 日 6 4 日 6

# Ultrahomogenity

A relational continuous structure M is **approximately ultrahomogeneous** if for any *n*-tuples  $(a_1, ..., a_n)$  and  $(b_1, ..., b_n)$ with the same quantifier-free type (i.e. with the same values of predicates for corresponding subtuples) and any  $\varepsilon > 0$  there exists  $g \in Aut(M)$  such that

$$max\{d(g(a_j), b_j) : 1 \le j \le n\} \le \varepsilon.$$

Any Polish group can be chosen as the automorphism group of a continuous metric structure which is approximately ultrahomogeneous.

・ 同 ト ・ ヨ ト ・ ヨ ト

## Complexity

## Let $(\mathbf{Y}, d)$ be a Polish space.

### Theorem

 There is a Borel subset SC ⊂ Y<sub>L</sub> of separably categorical continuous L-structures on (Y, d) so that any separably categorical continuous structure from Y<sub>L</sub> is isomorphic to a structure from SC.

There is a Borel subset SCU ⊂ Y<sub>L</sub> of separably categorical approximately ultahomogeneous continuous structures on Y so that any sep.cat., appr. ultrhom. structure from Y<sub>L</sub> is isomorphic to a structure from SCU.

(日) (同) (三) (三)

# Complexity

Let  $(\mathbf{Y}, d)$  be a Polish space.

### Theorem

There is a Borel subset SC ⊂ Y<sub>L</sub> of separably categorical continuous L-structures on (Y, d) so that any separably categorical continuous structure from Y<sub>L</sub> is isomorphic to a structure from SC.

 There is a Borel subset SCU ⊂ Y<sub>L</sub> of separably categorical approximately ultahomogeneous continuous structures on Y so that any sep.cat., appr. ultrhom. structure from Y<sub>L</sub> is isomorphic to a structure from SCU.

(日) (同) (三) (三)

# Complexity

Let  $(\mathbf{Y}, d)$  be a Polish space.

### Theorem

- There is a Borel subset SC ⊂ Y<sub>L</sub> of separably categorical continuous L-structures on (Y, d) so that any separably categorical continuous structure from Y<sub>L</sub> is isomorphic to a structure from SC.
- There is a Borel subset SCU ⊂ Y<sub>L</sub> of separably categorical approximately ultahomogeneous continuous structures on Y so that any sep.cat., appr. ultrhom. structure from Y<sub>L</sub> is isomorphic to a structure from SCU.

・ロト ・同ト ・ヨト ・ヨト

## **CLI** metrics

## Observation.

Let M be a Polish approximatly ultrahomogeneous continuous. Then Aut(M) admits a compatible complete left-invariant metric if and only if there is no proper embeding of M into itself.

The subset of  $\mathbf{Y}_L$  consisting of structures M so that Aut(M) admits compatible complete left-invariant metric, is coanalityc in any Borel subset of  $\mathbf{Y}_L$ . It does not have any member in SC

・ 同 ト ・ ヨ ト ・ ヨ ト

# **CLI** metrics

## **Observation**.

Let M be a Polish approximatly ultrahomogeneous continuous. Then Aut(M) admits a compatible complete left-invariant metric if and only if there is no proper embeding of M into itself.

The subset of  $\mathbf{Y}_L$  consisting of structures M so that Aut(M) admits compatible complete left-invariant metric, is coanalityc in any Borel subset of  $\mathbf{Y}_L$ .

It does not have any member in  $\mathcal{SC}$ .

周 ト イ ヨ ト イ ヨ ト

# **CLI** metrics

## Observation.

Let M be a Polish approximatly ultrahomogeneous continuous. Then Aut(M) admits a compatible complete left-invariant metric if and only if there is no proper embeding of M into itself.

The subset of  $\mathbf{Y}_L$  consisting of structures M so that Aut(M) admits compatible complete left-invariant metric, is coanalityc in any Borel subset of  $\mathbf{Y}_L$ .

It does not have any member in  $\mathcal{SC}$ .

伺 ト イ ヨ ト イ ヨ ト