Polish G-spaces similar to logic G-spaces of continuous structures

Aleksander Ivanov and Barbara Majcher-Iwanow

Institute of Mathematics
University of Wrocław

July 23, 2012
Logic S_∞-space

Let $L = (R_i^{n_i})_{i \in I}$ be a countable relational language and

$$X_L = \prod_{i \in I} 2^{\omega^{n_i}}$$

be the corresponding topol. space under the product topology τ.

We view X_L as the space of all L-structures on ω identifying every $x = (\ldots x_i \ldots) \in X_L$ with the structure $(\omega, R_i)_{i \in I}$ where R_i is the n_i-ary relation defined by the characteristic function $x_i : \omega^{n_i} \to 2$.

The logic action of the group S_∞ of all permutations of ω is defined on X_L by the rule:

$$g \circ x = y \iff \forall i \forall \bar{s}(y_i(\bar{s})) = x_i(g^{-1}(\bar{s})).$$
Let $L = (R_{i}^{n_{i}})_{i \in I}$ be a countable relational language and

$$X_{L} = \prod_{i \in I} 2^{\omega^{n_{i}}}$$

be the corresponding topol. space under the product topology τ.

We view X_{L} as the space of all L-structures on ω identifying every $x = (x_{i}) \in X_{L}$ with the structure $(\omega, R_{i})_{i \in I}$ where R_{i} is the n_{i}-ary relatn defined by the charactrstc functn $x_{i} : \omega^{n_{i}} \rightarrow 2$.

The logic action of the group S_{∞} of all permutations of ω is defined on X_{L} by the rule:

$$g \circ x = y \iff \forall i \forall \bar{s} (y_{i}(\bar{s}) = x_{i}(g^{-1}(\bar{s}))).$$
Logic S_∞-space

Let $L = (R^{n_i}_i)_{i \in I}$ be a countable relational language and

$$X_L = \prod_{i \in I} 2^{\omega^{n_i}}$$

be the corresponding topol. space under the product topology τ.

We view X_L as the space of all L-structures on ω identifying every $x = (\ldots x_i \ldots) \in X_L$ with the structure $(\omega, R_i)_{i \in I}$ where R_i is the n_i-ary relatn defined by the charactrstriic functn $x_i : \omega^{n_i} \to 2$.

The logic action of the group S_∞ of all permutations of ω is defined on X_L by the rule:

$$g \circ x = y \iff \forall i \forall \bar{s} (y_i(\bar{s}) = x_i(g^{-1}(\bar{s}))).$$
Let $(\langle X, \tau \rangle, G)$ be a Polish G-space with a countable basis $\{C_j\}$.

H. Becker: there exists a unique partition of X,

$$X = \bigcup \{ Y_t : t \in T \}$$

into invariant G_δ-sets Y_t s. t. every orbit from Y_t is dense in Y_t.

To construct it take $\{C_j\}$ and for any $t \in 2^\mathbb{N}$ define

$$Y_t = (\bigcap \{ GC_j : t(j) = 1 \}) \cap (\bigcap \{ X \setminus GC_j : t(j) = 0 \})$$

and take $T = \{ t \in 2^\mathbb{N} : Y_t \neq \emptyset \}$.

In the case of the logic action of S_∞ on the space X_L each piece consists of structures which satisfy the same \forall-sentences and \exists-sentences.
Canonical partition

Let \((\langle X, \tau \rangle, G) \) be a Polish \(G \)-space with a countable basis \(\{C_j\} \).

H. Becker: there exists a unique partition of \(X \),
\[X = \bigcup \{Y_t : t \in T\} \]
into invariant \(G_\delta \)-sets \(Y_t \) s. t. every orbit from \(Y_t \) is dense in \(Y_t \).

To construct it take \(\{C_j\} \) and for any \(t \in 2^\mathbb{N} \) define
\[Y_t = (\bigcap \{G C_j : t(j) = 1\}) \cap (\bigcap \{X \setminus G C_j : t(j) = 0\}) \]
and take \(T = \{ t \in 2^\mathbb{N} : Y_t \neq \emptyset \} \).

In the case of the logic action of \(S_\infty \) on the space \(X_L \) each piece consists of structures which satisfy the same \(\forall \)-sentences and \(\exists \)-sentences.
Canonical partition

Let $(\langle X, \tau \rangle, G)$ be a Polish G-space with a countable basis $\{C_j\}$.

H. Becker: there exists a unique partition of X,

$$X = \bigcup \{Y_t : t \in T\}$$

into invariant G_δ-sets Y_t s. t. every orbit from Y_t is dense in Y_t.

To construct it take $\{C_j\}$ and for any $t \in 2^\mathbb{N}$ define

$$Y_t = (\bigcap \{GC_j : t(j) = 1\}) \cap (\bigcap \{X \setminus GC_j : t(j) = 0\})$$

and take $T = \{t \in 2^\mathbb{N} : Y_t \neq \emptyset\}$.

In the case of the logic action of S_∞ on the space X_L each piece consists of structures which satisfy the same \forall-sentences and \exists-sentences.
Canonical partition

Let \((\langle X, \tau \rangle, G)\) be a Polish \(G\)-space with a countable basis \(\{C_j\}\).

H. Becker: there exists a unique partition of \(X\),
\[X = \bigcup\{Y_t : t \in T\} \]
into invariant \(G_\delta\)-sets \(Y_t\) s. t. every orbit from \(Y_t\) is dense in \(Y_t\).

To construct it take \(\{C_j\}\) and for any \(t \in 2^\mathbb{N}\) define
\[Y_t = \left(\bigcap \{GC_j : t(j) = 1\} \right) \cap \left(\bigcap \{X \setminus GC_j : t(j) = 0\} \right) \]
and take \(T = \{t \in 2^\mathbb{N} : Y_t \neq \emptyset\}\).

In the case of the logic action of \(S_\infty\) on the space \(X_L\) each piece consists of structures which satisfy the same \(\forall\)-sentences and \(\exists\)-sentences.
Vaught transforms

Let X be a Polish G-space, $B \subseteq X$ and $u \subseteq G$ is open.

Vaught transforms:

$$B^u = \{ x \in X : \{ g \in u : gx \in B \} \text{ is comeagre in } u \}$$

$$B^\Delta u = \{ x \in X : \{ g \in u : gx \in B \} \text{ is not meagre in } u \}.$$

In the case of the **logic action** of S_∞ on the space X_L if

$$B = \{ M \in X_L : M \models \phi(s) \} \text{ with } s \in \omega$$

then

$$B^{S_\infty} = \{ M \in X_L : M \models \forall x \phi(x) \}.$$
Vaught transforms

Let X be a Polish G-space, $B \subset X$ and $u \subset G$ is open.

Vaught transforms:

$$B^*u = \{ x \in X : \{ g \in u : gx \in B \} \text{ is comeagre in } u \}$$

$$B^{\Delta u} = \{ x \in X : \{ g \in u : gx \in B \} \text{ is not meagre in } u \}.$$

In the case of the logic action of S_∞ on the space X_L if

$$B = \{ M \in X_L : M \models \phi(s) \} \text{ with } s \in \omega$$

then

$$B^{*S_\infty} = \{ M \in X_L : M \models \forall x \phi(x) \}.$$
Let X be a Polish G-space, $B \subset X$ and $u \subset G$ is open.

Vaught transforms:

$$B^*u = \{ x \in X : \{ g \in u : gx \in B \} \text{ is comeagre in } u \}$$

$$B^{\Delta u} = \{ x \in X : \{ g \in u : gx \in B \} \text{ is not meagre in } u \}.$$

In the case of the logic action of S_∞ on the space X_L if

$$B = \{ M \in X_L : M \models \phi(s) \} \text{ with } s \in \omega$$

then

$$B^{*S_\infty} = \{ M \in X_L : M \models \forall x \phi(x) \}.$$
If $B \in \Sigma_\alpha$, then $B^{\Delta H} \in \Sigma_\alpha$ and
if $B \in \Pi_\alpha$, then $B^{*H} \in \Pi_\alpha$.

For any open $B \subseteq X$ and any open $K < G$ we have $B^{\Delta K} = KB$, where $KB = \{gx : g \in K, x \in B\}$.
If $B \in \Sigma_\alpha$, then $B^{\Delta H} \in \Sigma_\alpha$ and
if $B \in \Pi_\alpha$, then $B^{*H} \in \Pi_\alpha$.

For any open $B \subseteq X$ and any open $K < G$ we have
$B^{\Delta K} = KB$, where $KB = \{gx : g \in K, x \in B\}$.
Let G be a closed subgroup of S_∞. Let \mathcal{N}^G be the standard basis of the topology of G consisting of cosets of pointwise stabilisers of finite subsets of ω.

Let $(\langle X, \tau \rangle, G)$ be a Polish G-space with a countable basis \mathcal{A}. Along with τ we shall consider another topology on X.

Nice topology:
Let G be a closed subgroup of S_∞.

Let \mathcal{N}^G be the standard basis of the topology of G consisting of cosets of pointwise stabilisers of finite subsets of ω.

Let $(\langle X, \tau \rangle, G)$ be a Polish G-space with a countable basis A.
Along with τ we shall consider another topology on X.

Nice topology:
Let G be a closed subgroup of S_∞.
Let \mathcal{N}^G be the standard basis of the topology of G consisting of cosets of pointwise stabilisers of finite subsets of ω.

Let $(\langle X, \tau \rangle, G)$ be a Polish G-space with a countable basis \mathcal{A}. Along with τ we shall consider another topology on X.

Nice topology:
Nice topology

Definition (H. Becker) A topology t on X is nice for the G-space $(\langle X, \tau \rangle, G)$ if the following conditions are satisfied.

(A) t is a Polish topology, t is finer than τ and the G-action remains continuous with respect to t.

(B) There exists a basis B for t (called nice) such that:

1. B is countable;
2. for all $B_1, B_2 \in B$, $B_1 \cap B_2 \in B$;
3. for all $B \in B$, $X \setminus B \in B$;
4. for all $B \in B$ and $u \in \mathcal{N}^G$, $B^{\Delta u}, B^{*u} \in B$;
5. for any $B \in B$ there exists an open subgroup $H < G$ such that B is invariant under the corresponding H-action.
For any countable fragment F of $L_{\omega_1\omega}$, which is closed under quantifiers, all sets

$$\text{Mod}(\phi, \bar{s}) = \{ M \in X_L : M \models \phi(\bar{s}) \} \text{ with } \bar{s} \subset \omega$$

form a nice basis defining a nice topology (denoted by t_F) of the S_∞-space X_L.

Each piece of the canonical partition corresponding to t_F consists of structures which satisfy the same F-sentences (without parameters).
Logic action

For any countable fragment F of $L_{\omega_1\omega}$, which is closed under quantifiers, all sets $\text{Mod}(\phi, \bar{s}) = \{ M \in X_L : M \models \phi(\bar{s}) \}$ with $\bar{s} \subset \omega$

form a nice basis defining a nice topology (denoted by t_F) of the S_∞-space X_L.

Each piece of the canonical partition corresponding to t_F consists of structures which satisfy the same F-sentences (without parameters).
Example and illustration

Let G be a closed subgroup of S_∞ and (X, τ) be a Polish G-space. Let t be a nice topology for $\langle X, \tau \rangle, G$.

A generalized version of Lindström’s model completeness theorem:

Theorem (B.M-I)

For any $x_1 \in X$ if $X_1 = Gx_1$ is a G_δ-subset of X, then both topologies τ and t coincide on X_1.

Example and illustration

Let G be a closed subgroup of S_∞ and (X, τ) be a Polish G-space. Let t be a nice topology for $(\langle X, \tau \rangle, G)$.

A generalized version of Lindström’s model completeness theorem:

Theorem (B.M-I)

For any $x_1 \in X$ if $X_1 = Gx_1$ is a G_δ-subset of X, then both topologies τ and t coincide on X_1.

Let G be a closed subgroup of S_∞ and (X, τ) be a Polish G-space. Let t be a nice topology for $\langle X, \tau \rangle$, G.

A generalized version of Lindström’s model completeness theorem:

Theorem (B.M-I)

For any $x_1 \in X$ if $X_1 = Gx_1$ is a G_δ-subset of X, then both topologies τ and t coincide on X_1.

Existence

Theorem

(H.Becker) Let G be a closed subgroup of S_∞ and (X, τ) be a Polish G-space.

Let \mathfrak{t}' be a topology on X finer than τ, such that the action remains continuous with respect to \mathfrak{t}'.

Then there is a nice topology \mathfrak{t} for $(\langle X, \tau \rangle, G)$ such that \mathfrak{t} is finer than \mathfrak{t}'.

Remark: All elements of \mathfrak{t} are τ-Borel.
Question:
Is it possible to extend the generalised model theory of H. Becker to actions of Polish groups (without the assumption $G \leq S_\infty$)?
Continuous structures

A countable continuous signature:

\[L = \{ d, R_1, ..., R_k, ..., F_1, ..., F_l, ... \}. \]

Definition

A **metric \(L \)-structure** is a complete metric space \((M, d)\) with \(d\) bounded by 1, along with a family of uniformly continuous operations \(F_k\) on \(M\) and a family of predicates \(R_l\), i.e. uniformly continuous maps from appropriate \(M^{k_l}\) to \([0, 1]\).

It is usually assumed that to a predicate symbol \(R_i\) a continuity modulus \(\gamma_i\) is assigned so that when \(d(x_j, x_j') < \gamma_i(\varepsilon)\) with \(1 \leq j \leq k_i\) the corresponding predicate of \(M\) satisfies

\[|R_i(x_1, ..., x_j, ..., x_{k_i}) - R_i(x_1, ..., x_j', ..., x_{k_i})| < \varepsilon. \]
A countable continuous signature:

\[L = \{ d, R_1, ..., R_k, ..., F_1, ..., F_l, ... \}. \]

Definition

A **metric** \(L \)-**structure** is a complete metric space \((M, d)\) with \(d \) bounded by 1, along with a family of uniformly continuous operations \(F_k \) on \(M \) and a family of predicates \(R_l \), i.e. uniformly continuous maps from appropriate \(M^{k_l} \) to \([0, 1]\).

It is usually assumed that to a predicate symbol \(R_i \) a continuity modulus \(\gamma_i \) is assigned so that when \(d(x_j, x_j') < \gamma_i(\varepsilon) \) with \(1 \leq j \leq k_i \) the corresponding predicate of \(M \) satisfies

\[
|R_i(x_1, ..., x_j, ..., x_{k_i}) - R_i(x_1, ..., x_j', ..., x_{k_i})| < \varepsilon.
\]
Let \((G, d)\) be a Polish group with a left invariant metric \(\leq 1\). If \((X, d)\) is its completion, then \(G \leq Iso(X)\). Let \(S\) be a countable dense subset of \(X\). Enumerate all orbits of \(G\) of finite tuples of \(S\).

For the closure of such an \(n\)-orbit \(C\) define a predicate \(R_{\overline{C}}\) on \((X, d)\) by

\[
R_{\overline{C}}(y_1, ..., y_n) = d((y_1, ..., y_n), \overline{C}) \text{ (i.e. } \inf \{d(\overline{y}, \overline{c}) : \overline{c} \in \overline{C}\}).
\]

It is observed by J. Melleray that \(G\) is the automorphism group of the continuous structure \(M\) of all these predicates on \(X\), with continuous moduli = \(id\).
Let \((G, d)\) be a Polish group with a left invariant metric \(\leq 1\). If \((X, d)\) is its completion, then \(G \leq \text{Iso}(X)\).

Let \(S\) be a countable dense subset of \(X\). Enumerate all orbits of \(G\) of finite tuples of \(S\).

For the closure of such an \(n\)-orbit \(C\) define a predicate \(R_C\) on \((X, d)\) by

\[
R_C(y_1, \ldots, y_n) = d((y_1, \ldots, y_n), \overline{C}) \quad (\text{i.e. } \inf \{d(\bar{y}, \bar{c}) : \bar{c} \in \overline{C}\}).
\]

It is observed by J.Melleray that \(G\) is the automorphism group of the continuous structure \(M\) of all these predicates on \(X\), with continuous moduli = \(id\).
The space of continuous structures

Fix a relational continuous signature L and a Polish space (\mathcal{Y}, d). Let S be a dense countable subset of \mathcal{Y}.

Define the space \mathcal{Y}_L of continuous L-structures on (\mathcal{Y}, d) as follows.

Metric on the set of L-structures: Enumerate all tuples of the form (j, \bar{s}), where \bar{s} is a tuple $\in S$ of the length of the arity of R_j. For L-structures M and N on \mathcal{Y} let

$$\delta(M, N) = \sum_{i=1}^{\infty} \{2^{-i} |R_j^M(\bar{s}) - R_j^N(\bar{s})| : i \text{ is the number of } (j, \bar{s})\}.$$

Logic action

- the space \mathcal{Y}_L is Polish;
- the Polish group $Iso(\mathcal{Y})$ acts on \mathcal{Y}_L continuously.
The space of continuous structures

Fix a relational continuous signature L and a Polish space (Y, d). Let S be a dense countable subset of Y.

Define the space Y_L of continuous L-structures on (Y, d) as follows. **Metric on the set of L-structures:** Enumerate all tuples of the form (j, \bar{s}), where \bar{s} is a tuple $\in S$ of the length of the arity of R_j. For L-structures M and N on Y let

$$\delta(M, N) = \sum_{i=1}^{\infty} \{2^{-i} | R_j^M(\bar{s}) - R_j^N(\bar{s})| : i \text{ is the number of } (j, \bar{s})\}.$$
The space of continuous structures

Fix a relational continuous signature \(L \) and a Polish space \((Y, d)\). Let \(S \) be a dense countable subset of \(Y \).

Define the space \(Y_L \) of continuous \(L \)-structures on \((Y, d)\) as follows. **Metric on the set of \(L \)-structures:** Enumerate all tuples of the form \((j, \bar{s})\), where \(\bar{s} \) is a tuple \(\in S \) of the length of the arity of \(R_j \). For \(L \)-structures \(M \) and \(N \) on \(Y \) let

\[
\delta(M, N) = \sum_{i=1}^{\infty} \{2^{-i} | R_j^M(\bar{s}) - R_j^N(\bar{s})| : i \text{ is the number of } (j, \bar{s})\}.
\]

Logic action

- the space \(Y_L \) is Polish;
- the Polish group \(Iso(Y) \) acts on \(Y_L \) continuously.
Theorem

For any Polish group G there is a Polish space (\mathcal{Y}, d) and a continuous relational signature L such that

1. $G < \text{Iso(} \mathcal{Y} \text{)}$
2. for any Polish G-space \mathcal{X} there is a Borel 1-1-map $\mathcal{M} : \mathcal{X} \rightarrow \mathcal{Y}_L$ such that for any $x, x' \in \mathcal{X}$ structures $\mathcal{M}(x)$ and $\mathcal{M}(x')$ are isomorphic if and only if x and x' are in the same G-orbit,

The map \mathcal{M} is a Borel G-invariant 1-1-reduction of the G-orbit equivalence relation on \mathcal{X} to the $\text{Iso(} \mathcal{Y} \text{)}$-orbit equivalence relation on the space \mathcal{Y}_L of all L-structures.
A **graded subset** of X, denoted $\phi \subseteq X$, is a function $X \rightarrow [0, 1]$.

It is **open** (**closed**), $\phi \in \Sigma_1$ (**resp.** $\phi \in \Pi_1$), if it is upper (**lower**) semi-continuous, i.e. the set $\phi <_r$ (**resp.** $\phi >_r$) is open for all $r \in [0, 1]$ (**here** $\phi <_r = \{z \in X : \phi(z) < r\}$).

When G is a Polish group, then a graded subset $H \subseteq G$ is called a **graded subgroup** if $H(1) = 0$, $\forall g \in G(H(g) = H(g^{-1}))$ and $\forall g, g' \in G(H(gg') \leq H(g) + H(g'))$.

We also define Borel classes Σ_α, Π_α so that ϕ is Σ_α if $\phi = \inf \Phi$ for some countable $\Phi \subseteq \bigcup \{\Pi_\gamma : \gamma < \alpha\}$ and $\Pi_\alpha = \{1 - \phi : \phi \in \Sigma_\alpha\}$.
A graded subset of X, denoted $\phi \subseteq X$, is a function $X \to [0, 1]$.

It is open (closed), $\phi \in \Sigma_1$ (resp. $\phi \in \Pi_1$), if it is upper (lower) semi-continuous, i.e. the set $\phi < r$ (resp. $\phi > r$) is open for all $r \in [0, 1]$ (here $\phi < r = \{z \in X : \phi(z) < r\}$).

When G is a Polish group, then a graded subset $H \subseteq G$ is called a graded subgroup if $H(1) = 0$, $\forall g \in G(H(g) = H(g^{-1}))$ and $\forall g, g' \in G(H(gg') \leq H(g) + H(g'))$.

We also define Borel classes Σ_α, Π_α so that ϕ is Σ_α if $\phi = \inf \Phi$ for some countable $\Phi \subseteq \bigcup \{\Pi_\gamma : \gamma < \alpha\}$ and $\Pi_\alpha = \{1 - \phi : \phi \in \Sigma_\alpha\}$.
A **graded subset** of X, denoted $\phi \subseteq X$, is a function $X \to [0,1]$.

It is **open (closed)**, $\phi \in \Sigma_1$ (resp. $\phi \in \Pi_1$), if it is upper (lower) semi-continuous, i.e. the set $\phi_r < r$ (resp. $\phi_r > r$) is open for all $r \in [0,1]$ (here $\phi_r < r = \{ z \in X : \phi(z) < r \}$).

When G is a Polish group, then a graded subset $H \subseteq G$ is called a **graded subgroup** if $H(1) = 0$, $\forall g \in G(H(g) = H(g^{-1}))$ and $\forall g, g' \in G(H(gg') \leq H(g) + H(g'))$.

We also define Borel classes $\Sigma_\alpha, \Pi_\alpha$ so that ϕ is Σ_α if $\phi = \inf \Phi$ for some countable $\Phi \subseteq \bigcup \{ \Pi_\gamma : \gamma < \alpha \}$ and $\Pi_\alpha = \{ 1 - \phi : \phi \in \Sigma_\alpha \}$.
A graded subset of X, denoted $\phi \sqsubseteq X$, is a function $X \rightarrow [0, 1]$. It is open (closed), $\phi \in \Sigma_1$ (resp. $\phi \in \Pi_1$), if it is upper (lower) semi-continuous, i.e. the set $\phi < r$ (resp. $\phi > r$) is open for all $r \in [0, 1]$ (here $\phi < r = \{ z \in X : \phi(z) < r \}$).

When G is a Polish group, then a graded subset $H \sqsubseteq G$ is called a graded subgroup if $H(1) = 0$, $\forall g \in G (H(g) = H(g^{-1}))$ and $\forall g, g' \in G (H(gg') \leq H(g) + H(g'))$.

We also define Borel classes Σ_α, Π_α so that ϕ is Σ_α if $\phi = \inf \Phi$ for some countable $\Phi \subset \bigcup \{ \Pi_\gamma : \gamma < \alpha \}$ and $\Pi_\alpha = \{ 1 - \phi : \phi \in \Sigma_\alpha \}$.
Graded subsets of \mathcal{Y}_L

For \bar{c} from (\mathcal{Y}, d) and a linear δ with $\delta(0) = 0$ graded subgroup $H_{\delta, \bar{c}} \subseteq Iso(\mathcal{Y})$:

$$H_{\delta, \bar{c}}(g) = \delta\left(\max(d(c_1, g(c_1)), \ldots, d(c_n, g(c_n))))\right),$$

where $g \in Iso(\mathcal{Y})$.

A continuous formula is an expression built from 0, 1 and atomic formulas by applications of the following functions:

$$\frac{x}{2}, x \cdot y = \max(x - y, 0), \min(x, y), \max(x, y), |x - y|,$$

$$\neg(x) = 1 - x, x \check{+} y = \min(x + y, 1), \sup_x \text{ and } \inf_x.$$

Any continuous sentence $\phi(\bar{c})$ defines a graded subset of \mathcal{Y}_L which belongs to Σ_n for some n:

$$\phi(\bar{c}) \text{ takes } M \text{ to the value } \phi^M(\bar{c}).$$
Graded subsets of \mathbf{Y}_L

For \bar{c} from (\mathbf{Y}, d) and a linear δ with $\delta(0) = 0$
graded subgroup $H_{\delta, \bar{c}} \subseteq Iso(\mathbf{Y})$:

$$H_{\delta, \bar{c}}(g) = \delta(max(d(c_1, g(c_1)), \ldots, d(c_n, g(c_n))))$$

where $g \in Iso(\mathbf{Y})$.

A continuous formula is an expression built from 0,1 and atomic
formulas by applications of the following functions:

$$x/2, x\cdot y = max(x - y, 0), min(x, y), max(x, y), |x - y|,$$

$$\neg(x) = 1 - x, x\cdot+ y = min(x + y, 1), sup_x$$ and inf_x.

Any continuous sentence $\phi(\bar{c})$ defines a graded subset of \mathbf{Y}_L which
belongs to Σ_n for some n:

$\phi(\bar{c})$ takes M to the value $\phi^M(\bar{c})$.
Graded subsets of \mathbf{Y}_L

For \bar{c} from (\mathbf{Y}, d) and a linear δ with $\delta(0) = 0$
graded subgroup $H_{\delta, \bar{c}} \subseteq Iso(\mathbf{Y})$:

$$H_{\delta, \bar{c}}(g) = \delta(\max(d(c_1, g(c_1)), \ldots, d(c_n, g(c_n))))$$, where $g \in Iso(\mathbf{Y})$.

A continuous formula is an expression built from 0,1 and atomic formulas by applications of the following functions:

$$x/2, \ x\dot{}-y = \max(x - y, 0), \ min(x, y), \ max(x, y), |x - y|, \neg(x) = 1 - x, \ x\dot{}+y = \min(x + y, 1), \sup_x \text{ and } \inf_x.$$

Any continuous sentence $\phi(\bar{c})$ defines a graded subset of \mathbf{Y}_L which belongs to Σ_n for some n:

$$\phi(\bar{c}) \text{ takes } M \text{ to the value } \phi^M(\bar{c}).$$
Invariant graded subsets

Assuming that continuity moduli of L-symbols are id for any $\phi(\bar{x})$ as above we find a linear function δ such that the graded subgroup

$$H_{\delta,\bar{c}}(g) = \delta(\max(d(c_1, g(c_1)), \ldots, d(c_n, g(c_n)))),$$

where $g \in \text{Iso}(Y)$.

and the graded subset $\phi(\bar{c}) \sqsubseteq Y_L$ satisfy

$$\phi^{g(M)}(\bar{c}) \leq \phi^M(\bar{c}) + H_{\delta,\bar{c}}(g).$$

Definition

Let X be a continuous G-space. A graded subset $\phi \sqsubseteq X$ is called invariant with respect to a graded subgroup $H \sqsubseteq G$ if for any $g \in G$ we have $\phi(g(x)) \leq \phi(x) + H(g)$.
Invariant graded subsets

Assuming that continuity moduli of \(L \)-symbols are \(\text{id} \) for any \(\phi(\bar{x}) \) as above we find a linear function \(\delta \) such that the graded subgroup

\[
H_{\delta,\bar{c}}(g) = \delta(\max(d(c_1, g(c_1)), \ldots, d(c_n, g(c_n))))
\]

where \(g \in \text{Iso}(\mathcal{Y}) \).

and the graded subset \(\phi(\bar{c}) \subseteq \mathcal{Y}_L \) satisfy

\[
\phi^{g(M)}(\bar{c}) \leq \phi^{M}(\bar{c}) + H_{\delta,\bar{c}}(g).
\]

Definition

Let \(X \) be a continuous \(G \)-space. A graded subset \(\phi \subseteq X \) is called invariant with respect to a graded subgroup \(H \subseteq G \) if for any \(g \in G \) we have \(\phi(g(x)) \leq \phi(x) + H(g) \).
Vaught transforms 3

For any non-empty open $J \subseteq G$ let

$$\phi^{\Delta J}(x) = \inf \{ r \dot{+} s : \{ h : \phi(h(x)) < r \} \text{ is not meagre in } J_{<s} \}. $$

$$\phi^{*J}(x) = \sup \{ r \dot{-} s : \{ h : \phi(h(x)) \leq r \} \text{ is not comeagre in } J_{<s} \},$$

Theorem

- $\phi^{*J}(x) = 1 - (1 - \phi)^{\Delta J}(x)$ for all $x \in X$.
- $\phi^{\Delta J}(x) \leq \phi^{*J}(x)$ for all $x \in X$.
- If ϕ is a graded Σ_α-subset, then $\phi^{\Delta J}$ is also Σ_α.
- If ϕ is a graded Π_α-subset, then $\phi^{*J}(x)$ is also Π_α.
- Vaught transforms of Borel graded subsets are Borel.
For any non-empty open $J \subseteq G$ let

\[\phi^\Delta J(x) = \inf \{ r + s : \{ h : \phi(h(x)) < r \} \text{ is not meagre in } J_{<s} \} \]

\[\phi^* J(x) = \sup \{ r - s : \{ h : \phi(h(x)) \leq r \} \text{ is not comeagre in } J_{<s} \} \]

Theorem

- \[\phi^* J(x) = 1 - (1 - \phi)^\Delta J(x) \text{ for all } x \in X. \]
- \[\phi^\Delta J(x) \leq \phi^* J(x) \text{ for all } x \in X. \]

- If ϕ is a graded Σ_α-subset, then $\phi^\Delta J$ is also Σ_α.

 If ϕ is a graded Π_α-subset, then $\phi^* J(x)$ is also Π_α.

- Vaught transforms of Borel graded subsets are Borel.
Theorem

If H is a graded subgroup of G, then both $\phi^*H(x)$ and $\phi^{\Delta H}(x)$ are H-invariant:

$$\phi^*H(x) - H(h) \leq \phi^*H(h(x)) \leq \phi^*H(x) + H(h) \text{ and}$$

$$\phi^{\Delta H}(x) - H(h) \leq \phi^{\Delta H}(h(x)) \leq \phi^{\Delta H}(x) + H(h).$$

Moreover if $\phi(x) \leq \phi(h(x)) + H(h)$ for all x and h, then

$$\phi^*H(x) = \phi(x) = \phi^{\Delta H}(x).$$
We consider G together with a distinguished countable family of open graded subsets \mathcal{R} so that all $\rho < r$ for $\rho \in \mathcal{R}$ and $r \in \mathbb{Q}$, form a basis of the topology of G.

We usually assume that \mathcal{R} consists of graded cosets, i.e. for such $\rho \in \mathcal{R}$ there is a graded subgroup $H \in \mathcal{R}$ and an element $g_0 \in G$ so that for any $g \in G$, $\rho(g) = H(gg_0^{-1})$. (For every Polish group G there is a countable family of open graded subsets \mathcal{R} as above.)

Considering a (G, \mathcal{R})-space X we distinguish a similar family too: a countable family \mathcal{U} of open graded subsets of X generating the topology.
We consider G together with a distinguished countable family of open graded subsets \mathcal{R} so that all $\rho < r$ for $\rho \in \mathcal{R}$ and $r \in \mathbb{Q}$, form a basis of the topology of G.

We usually assume that \mathcal{R} consists of graded cosets, i.e. for such $\rho \in \mathcal{R}$ there is a graded subgroup $H \in \mathcal{R}$ and an element $g_0 \in G$ so that for any $g \in G$, $\rho(g) = H(gg_0^{-1})$.

(For every Polish group G there is a countable family of open graded subsets \mathcal{R} as above.)

Considering a (G, \mathcal{R})-space X we distinguish a similar family too: a cntble family \mathcal{U} of open graded sbsts of X generating the topol.
Graded bases

We consider G together with a distinguished countable family of open graded subsets \mathcal{R} so that all $\rho < r$ for $\rho \in \mathcal{R}$ and $r \in \mathbb{Q}$, form a basis of the topology of G.

We usually assume that \mathcal{R} consists of graded cosets, i.e. for such $\rho \in \mathcal{R}$ there is a graded subgroup $H \in \mathcal{R}$ and an element $g_0 \in G$ so that for any $g \in G$, $\rho(g) = H(gg_0^{-1})$.

(For every Polish group G there is a countable family of open graded subsets \mathcal{R} as above.)

Considering a (G, \mathcal{R})-space X we distinguish a similar family too: a cntble family \mathcal{U} of open graded sbsts of X generating the topol.
Graded bases

We consider G together with a distinguished countable family of open graded subsets \mathcal{R} so that all $\rho < r$ for $\rho \in \mathcal{R}$ and $r \in \mathbb{Q}$, form a basis of the topology of G.

We usually assume that \mathcal{R} consists of graded cosets, i.e. for such $\rho \in \mathcal{R}$ there is a graded subgroup $H \in \mathcal{R}$ and an element $g_0 \in G$ so that for any $g \in G$, $\rho(g) = H(gg_0^{-1})$.

(For every Polish group G there is a countable family of open graded subsets \mathcal{R} as above.)

Considering a (G, \mathcal{R})-space X we distinguish a similar family too: a countable family \mathcal{U} of open graded subsets of X generating the topology.
Definition. A family \mathcal{B} of Borel graded subsets of the G-space X is a **nice basis** w.r.to \mathcal{R} if:

- \mathcal{B} is countable and generates the topol. finer than τ;
- for all $\phi_1, \phi_2 \in \mathcal{B}$, the functions $\min(\phi_1, \phi_2)$, $\max(\phi_1, \phi_2)$, $|\phi_1 - \phi_2|$, $\phi_1 - \phi_2$, $\phi_1 + \phi_2$ belong to \mathcal{B};
- for all $\phi \in \mathcal{B}$ and rational $r \in [0, 1]$, $r\phi$ and $1 - \phi \in \mathcal{B}$;
- for all $\phi \in \mathcal{B}$ and $\rho \in \mathcal{R}$, $\phi^*\rho$, $\phi^\Delta\rho \in \mathcal{B}$;
- for any $\phi \in \mathcal{B}$ there exists an open graded subgroup $H \in \mathcal{R}$ such that ϕ is invariant under the corresponding H-action.

A topology \mathbf{t} on X is **\mathcal{R}-nice** for the G-space $\langle X, \tau \rangle$ if:

(a) \mathbf{t} is a Polish topology, \mathbf{t} is finer than τ and the G-action remains continuous with respect to \mathbf{t};
(b) there exists a nice basis \mathcal{B} so that \mathbf{t} is generated by all $\phi < q$ with $\phi \in \mathcal{B}$ and $q \in \mathbb{Q} \cap (0, 1]$.

Aleksander Ivanov and Barbara Majcher-Iwanow

Polish G-spaces similar to logic G-spaces of continuous structures
Definition. A family B of Borel graded subsets of the G-space X is a nice basis w.r.to \mathcal{R} if:

- B is countable and generates the topol. finer than τ;
- For all $\phi_1, \phi_2 \in B$, the functions $\min(\phi_1, \phi_2), \max(\phi_1, \phi_2), |\phi_1 - \phi_2|, \phi_1 - \phi_2, \phi_1 + \phi_2$ belong to B;
- For all $\phi \in B$ and rational $r \in [0, 1]$, $r\phi$ and $1 - \phi \in B$;
- For all $\phi \in B$ and $\rho \in \mathcal{R}$, $\phi^\rho, \phi^\Delta \rho \in B$;
- For any $\phi \in B$ there exists an open graded subgroup $H \in \mathcal{R}$ such that ϕ is invariant under the corresponding H-action.

A topology t on X is \mathcal{R}-nice for the G-space $\langle X, \tau \rangle$ if:

(a) t is a Polish topology, t is finer than τ and the G-action remains continuous with respect to t;
(b) there exists a nice basis B so that t is generated by all $\phi_{<q}$ with $\phi \in B$ and $q \in \mathbb{Q} \cap (0, 1]$.
The case of U_L

Let U be **Urysohn** space of diameter 1: This is the unique Polish metric space which is universal and ultrahomogeneous, i.e. every isometry between finite subssts of U extends to an isometry of U.

There is a ctble family R consisting of cosets of clopen graded subgroups of $Iso(U)$ of the form

$$H_s : g \rightarrow d(g(s), s), \text{ where } s \subseteq S \text{ (ctble,dense)} ,$$

which generates the topology of $Iso(U)$.

Let L be a continuous signature of continuity moduli id. Then the family of all continuous L-sentences

$$\phi(s) : M \rightarrow \phi^M(s), \text{ where } \bar{s} \in S,$$

forms an R-nice basis B of the G-space U_L.

Aleksander Ivanov and Barbara Majcher-Iwanow

Polish G-spaces similar to logic G-spaces of continuous structures
The case of U_L

Let U be Urysohn space of diameter 1: This is the unique Polish metric space which is universal and ultrahomogeneous, i.e. every isometry between finite substs of U extends to an isometry of U.

There is a ctble family \mathcal{R} consisting of cosets of clopen graded subgroups of $Iso(U)$ of the form

$$H_s : g \rightarrow d(g(s), s), \text{ where } s \subset S \text{ (ctble,dense)},$$

which generates the topology of $Iso(U)$.

Let L be a continuous signature of continuity moduli id. Then the family of all continuous L-sentences

$$\phi(s) : M \rightarrow \phi^M(s), \text{ where } \bar{s} \in S,$$

forms an \mathcal{R}-nice basis \mathcal{B} of the G-space U_L.
The case of U_L

Let U be **Urysohn** space of diameter 1: This is the unique Polish metric space which is universal and ultrahomogeneous, i.e. every isometry between finite subsets of U extends to an isometry of U.

There is a countable family \mathcal{R} consisting of cosets of clopen graded subgroups of $\text{Iso}(U)$ of the form

$$H_s : g \rightarrow d(g(s), s), \text{ where } s \subset S \text{ (ctble,dense)},$$

which generates the topology of $\text{Iso}(U)$.

Let L be a continuous signature of continuity moduli id.
Then the family of all continuous L-sentences

$$\phi(s) : M \rightarrow \phi^M(s), \text{ where } \bar{s} \in S,$$

forms an \mathcal{R}-nice basis \mathcal{B} of the G-space U_L.

Polish G-spaces similar to logic G-spaces of continuous structures
The case of U_L

Let U be \textbf{Urysohn} space of diameter 1: This is the unique Polish metric space which is universal and ultrahomogeneous, i.e. every isometry between finite substs of U extends to an isometry of U.

There is a ctble family \mathcal{R} consisting of cosets of clopen graded subgroups of $Iso(U)$ of the form

$$H_s : g \rightarrow d(g(s), s), \text{ where } s \subset S \text{ (ctble,dense)},$$

which generates the topology of $Iso(U)$.

Let L be a continuous signature of continuity moduli id. Then the family of all continuous L-sentences

$$\phi(s) : M \rightarrow \phi^M(s), \text{ where } \bar{s} \in S,$$

forms an \mathcal{R}-nice basis \mathcal{B} of the G-space U_L.
Theorem. Let \((G, \mathcal{R})\) be a Polish group with \(\mathcal{R}\) satisfying
(i) for every graded subgroup \(H \in \mathcal{R}\) if \(gH \in \mathcal{R}\), then \(H^g \in \mathcal{R}\);
(ii) \(\mathcal{R}\) is closed under \textbf{max} and multiplying by rationals.
Let \(\langle X, \tau \rangle\) be a \(G\)-space and \(\mathcal{U}\) be a countable family of Borel
graded subsets of \(X\) generating a topology finer than \(\tau\), so that
each \(\phi \in \mathcal{U}\) is invariant with respect to some graded subgroup
\(H \in \mathcal{R}\).
Then there is an \(\mathcal{R}\)-nice topology for \((\langle X, \tau \rangle, G)\) so that \(\mathcal{U}\) consists
of open graded subsets.
Theorem. Let (G, \mathcal{R}) be a Polish group with \mathcal{R} satisfying
(i) for every graded subgroup $H \in \mathcal{R}$ if $gH \in \mathcal{R}$, then $H^g \in \mathcal{R}$;
(ii) \mathcal{R} is closed under max and multiplying by rationals.
Let $\langle X, \tau \rangle$ be a G-space and \mathcal{U} be a countable family of Borel graded subsets of X generating a topology finer than τ, so that each $\phi \in \mathcal{U}$ is invariant with respect to some graded subgroup $H \in \mathcal{R}$.
Then there is an \mathcal{R}-nice topology for $(\langle X, \tau \rangle, G)$ so that \mathcal{U} consists of open graded subsets.
Theorem. Let \((G, \mathcal{R})\) be a Polish group with \(\mathcal{R}\) satisfying
(i) for every graded subgroup \(H \in \mathcal{R}\) if \(gH \in \mathcal{R}\), then \(H^g \in \mathcal{R}\);
(ii) \(\mathcal{R}\) is closed under \(\text{max}\) and multiplying by rationals.
Let \(\langle X, \tau \rangle\) be a \(G\)-space and \(\mathcal{U}\) be a countable family of Borel
graded subsets of \(X\) generating a topology finer than \(\tau\), so that
each \(\phi \in \mathcal{U}\) is invariant with respect to some graded subgroup
\(H \in \mathcal{R}\).
Then there is an \(\mathcal{R}\)-nice topology for \((\langle X, \tau \rangle, G)\) so that \(\mathcal{U}\) consists
of open graded subsets.
Lindström

G is a Polish group with a graded basis \mathcal{R} consisting of graded cosets, $\langle X, \tau \rangle$ is a Polish G-space, etc.

Theorem

Let t be \mathcal{R}-nice. Let $X = Gx_0$ for some (any) $x_0 \in X$ and X be a G_δ-subset of X. Then both topologies τ and t are equal on X.

Aleksander Ivanov and Barbara Majcher-Iwanow

Polish G-spaces similar to logic G-spaces of continuous structures
G is a Polish group with a graded basis \mathcal{R} consisting of graded cosets,
$\langle X, \tau \rangle$ is a Polish G-space, ect.

Theorem

Let t be \mathcal{R}-nice.

*Let $X = Gx_0$ for some (any) $x_0 \in X$ and X be a G_δ-subset of X. Then both topologies τ and t are equal on X.***
Let \mathcal{B} be a nice basis defining \mathcal{R}-nice \mathbf{t}, H be an open graded subgroup from \mathcal{R}, X be an invariant G_δ-subset of X with respect to \mathbf{t}.

(1) A family \mathcal{F} of subsets of the form $\phi_{<r}$ with H-invariant $\phi \in \mathcal{B}$ is called an H-type in X, if it is maximal w.r. to the condition $X \cap \bigcap \mathcal{F} \neq \emptyset$.

(2) An H-type \mathcal{F} is called principal if there is an H-invariant graded basic set $\phi \in \mathcal{B}$ and there is r such that $\phi_{<r} \in \mathcal{F}$ and $\bigcap\{\overline{B} : B \in \mathcal{F}\} \cap X$ coincides with the closure of $\phi_{<r} \cap X$. Then we say that $\phi_{<r}$ defines \mathcal{F}.
Let \mathcal{B} be a nice basis defining \mathcal{R}-nice t, H be an open graded subgroup from \mathcal{R}, X be an invariant G_δ-subset of X with respect to t.

(1) A family \mathcal{F} of subsets of the form $\phi_{<r}$ with H-invariant $\phi \in \mathcal{B}$ is called an H-type in X, if it is maximal w.r. to the condition $X \cap \bigcap \mathcal{F} \neq \emptyset$.

(2) An H-type \mathcal{F} is called principal if there is an H-invariant graded basic set $\phi \in \mathcal{B}$ and there is r such that $\phi_{<r} \in \mathcal{F}$ and $\bigcap\{\overline{B} : B \in \mathcal{F}\} \cap X$ coincides with the closure of $\phi_{<r} \cap X$. Then we say that $\phi_{<r}$ defines \mathcal{F}.
Let \mathcal{R} consist of clopen graded cosets. Let \mathcal{B} be an \mathcal{R}-nice basis of a G-space $\langle X, \tau \rangle$ and t be the corresponding nice topology,

Theorem

Assume that the action satisfies the approximation property for graded subgroups.

A piece X of the canonical partition with respect to the topology t is a G-orbit if and only if for any basic open graded subgroup $H \trianglelefteq G$ any H-type of X is principal.
Let \mathcal{R} consist of clopen graded cosets. Let \mathcal{B} be an \mathcal{R}-nice basis of a G-space $\langle X, \tau \rangle$ and t be the corresponding nice topology,

Theorem

Assume that the action satisfies the **approximation property** for graded subgroups.

A piece X of the canonical partition with respect to the topology t is a G-orbit if and only if for any basic open graded subgroup $H \subseteq G$ any H-type of X is principal.
Let \mathcal{R} consist of clopen graded cosets. Let \mathcal{B} be an \mathcal{R}-nice basis of a G-space $\langle X, \tau \rangle$ and t be the corresponding nice topology,

Theorem

Assume that the action satisfies the **approximation property** for graded subgroups.

A piece X of the canonical partition with respect to the topology t is a G-orbit if and only if for any basic open graded subgroup $H \triangleleft G$ any H-type of X is principal.
Approximation property for graded subgroups

Definition

The \((G, \mathcal{R})\)-space \((X, \mathcal{U})\) has the **approximation property for graded subgroups** if for any \(\varepsilon > 0\)

for any graded subgroup \(H \in \mathcal{R}\), any \(c\) and \(c' \in X\) of the same \(G\)-orbit

if \(c, c'\) belong to the same subsets of the form \(\phi \leq t\) for \(H\)-invariant \(\phi \in \mathcal{U}\), then

\(c'\) can be approximated by the values \(g(c)\) with \(H(g) < \varepsilon\).

When \(G = Aut(M)\), where \(M\) is an approximately ultrahomogeneous separably categorical structure on \(\mathcal{Y}\), then this holds in the space of all \(L\)-expansions of \(M\).
Definition

The \((G, \mathcal{R})\)-space \((X, \mathcal{U})\) has the **approximation property for graded subgroups** if for any \(\varepsilon > 0\) for any graded subgroup \(H \in \mathcal{R}\), any \(c\) and \(c' \in X\) of the same \(G\)-orbit if \(c, c'\) belong to the same subsets of the form \(\phi \leq t\) for \(H\)-invariant \(\phi \in \mathcal{U}\), then \(c'\) can be approximated by the values \(g(c)\) with \(H(g) < \varepsilon\).

When \(G = Aut(M)\), where \(M\) is an approximately ultrahomogeneous separably categorical structure on \(Y\), then this holds in the space of all \(L\)-expansions of \(M\).
Definition

The \((G, \mathcal{R})\)-space \((X, \mathcal{U})\) has the **approximation property for graded subgroups** if for any \(\varepsilon > 0\)
for any graded subgroup \(H \in \mathcal{R}\), any \(c\) and \(c' \in X\) of the same \(G\)-orbit
if \(c, c'\) belong to the same subsets of the form \(\phi \leq t\) for \(H\)-invariant \(\phi \in \mathcal{U}\), then \(c'\) can be approximated by the values \(g(c)\) with \(H(g) < \varepsilon\).

When \(G = Aut(M)\), where \(M\) is an approximately ultrahomogeneous separably categorical structure on \(\mathcal{Y}\), then this holds in the space of all \(L\)-expansions of \(M\).
Definition

The \((G, \mathcal{R})\)-space \((X, \mathcal{U})\) has the \textit{approximation property for graded subgroups} if for any \(\varepsilon > 0\) for any graded subgroup \(H \in \mathcal{R}\), any \(c\) and \(c' \in X\) of the same \(G\)-orbit if \(c, c'\) belong to the same subsets of the form \(\phi \leq t\) for \(H\)-invariant \(\phi \in \mathcal{U}\), then \(c'\) can be approximated by the values \(g(c)\) with \(H(g) < \varepsilon\).

When \(G = Aut(M)\), where \(M\) is an approximately ultrahomogeneous separably categorical structure on \(Y\), then this holds in the space of all \(L\)-expansions of \(M\).
A relational continuous structure M is **approximately ultrahomogeneous** if for any n-tuples $(a_1,..,a_n)$ and $(b_1,..,b_n)$ with the same quantifier-free type (i.e. with the same values of predicates for corresponding subtuples) and any $\varepsilon > 0$ there exists $g \in Aut(M)$ such that

$$\max\{d(g(a_j), b_j) : 1 \leq j \leq n\} \leq \varepsilon.$$

Any Polish group can be chosen as the automorphism group of a continuous metric structure which is approximately ultrahomogeneous.
A relational continuous structure M is **approximately ultrahomogeneous** if for any n-tuples (a_1, \ldots, a_n) and (b_1, \ldots, b_n) with the same quantifier-free type (i.e. with the same values of predicates for corresponding subtuples) and any $\varepsilon > 0$ there exists $g \in Aut(M)$ such that

$$\max\{d(g(a_j), b_j) : 1 \leq j \leq n\} \leq \varepsilon.$$

Any Polish group can be chosen as the automorphism group of a continuous metric structure which is approximately ultrahomogeneous.
Let \((\mathcal{Y}, d)\) be a Polish space.

Theorem

- There is a Borel subset \(SC \subset \mathcal{Y}_L\) of separably categorical continuous \(L\)-structures on \((\mathcal{Y}, d)\) so that any separably categorical continuous structure from \(\mathcal{Y}_L\) is isomorphic to a structure from \(SC\).

- There is a Borel subset \(SCU \subset \mathcal{Y}_L\) of separably categorical approximately ultahomogeneous continuous structures on \(\mathcal{Y}\) so that any sep.cat., appr. ultrhom. structure from \(\mathcal{Y}_L\) is isomorphic to a structure from \(SCU\).
Let \((Y, d)\) be a Polish space.

Theorem

- There is a Borel subset \(SC \subset Y_L\) of separably categorical continuous \(L\)-structures on \((Y, d)\) so that any separably categorical continuous structure from \(Y_L\) is isomorphic to a structure from \(SC\).

- There is a Borel subset \(SCU \subset Y_L\) of separably categorical approximately ultahomogeneous continuous structures on \(Y\) so that any sep.cat., appr. ultrhom. structure from \(Y_L\) is isomorphic to a structure from \(SCU\).
Let (Y, d) be a Polish space.

Theorem

- There is a Borel subset $SC \subseteq Y_L$ of separably categorical continuous L-structures on (Y, d) so that any separably categorical continuous structure from Y_L is isomorphic to a structure from SC.

- There is a Borel subset $SCU \subseteq Y_L$ of separably categorical approximately ultrahomogeneous continuous structures on Y so that any sep.cat., appr. ultrhom. structure from Y_L is isomorphic to a structure from SCU.

Aleksander Ivanov and Barbara Majcher-Iwanow

Polish G-spaces similar to logic G-spaces of continuous structures
Observation.
Let M be a Polish approximately ultrahomogeneous continuous. Then $Aut(M)$ admits a compatible complete left-invariant metric if and only if there is no proper embedding of M into itself.

The subset of \mathcal{Y}_L consisting of structures M so that $Aut(M)$ admits compatible complete left-invariant metric, is coanalytic in any Borel subset of \mathcal{Y}_L. It does not have any member in \mathcal{SC}.
Observation.

Let M be a Polish approximately ultrahomogeneous continuous. Then $Aut(M)$ admits a compatible complete left-invariant metric if and only if there is no proper embedding of M into itself.

The subset of \mathcal{Y}_L consisting of structures M so that $Aut(M)$ admits compatible complete left-invariant metric, is coanalice in any Borel subset of \mathcal{Y}_L.

It does not have any member in SC.
Observation.
Let M be a Polish approximately ultrahomogeneous continuous. Then $Aut(M)$ admits a compatible complete left-invariant metric if and only if there is no proper embedding of M into itself.

The subset of Y_L consisting of structures M so that $Aut(M)$ admits compatible complete left-invariant metric, is coanalytic in any Borel subset of Y_L. It does not have any member in SC.