Small initial segments and consistency

Zofia Adamowicz

Institute of Mathematics, Polish Academy of Science

Model Theory and Proof Theory of Arithmetic A Memorial Conference in Honor of Henryk Kotlarski and Zygmunt Ratajczyk

Introduction and motivation

The main association a mathematician has with the word consistency is probably the Gödel Second Incompleteness Theorem.

 $T \not\vdash Cons(T)$.

However, this does not always hold. There are some restrictions on T (Willard), but also there are some requirements of the predicate *Cons* we use (Pudlak). For instance

$$I\Delta_0 \vdash HCons^J(I\Delta_0),$$

where J is some definable initial segment (e.g. log log log). Our focuss will be on $Cons^{J}(\cdot)$ (consistency relativized to J), for some definable initial segment J.

Assume T is recursive, consistent and contains $I\Delta_0 + B\Sigma_1$.

- We consider initial segments $J = J_T$ depending on T. The definition of T is built into the definition of J_T .
- We assume that J is a Σ_1 or Π_1 formula. We shall identify J with the set definable by the formula J.
- We are interested in the following properties of J:

When an initial segment is small? Key properties

- J is an initial segment provably in T,
- $\mathbb{N} \subseteq J$ provably in T
- J is \mathbb{N} in some non standard models of T.

Is there a non trivial Σ_1 or Π_1 definable J with the above properties?

The amount of consistency of T

Let $Cons(\cdot)$ denote the Hilbert or the Herbrand consistency predicate. Let $Cons(\cdot)^x$ express the meaning that there is no inconsistency proof which is $\leq x$.

Consider the following definable initial segment J: let $x \in J$ iff $Cons^{x}(T)$.

Note that the definition of J depends on the formula defining T. Thus, we should write J_T .

We shall call J_T the amount of consistency of T.

• $x \in J_T$ iff $Cons^x(T)$

Evidently, J has the non Gödel property:

 $T \vdash Cons^{J_T}(T).$

Note that J_T has the following properties:

- J_T is an initial segment provably in T,
- N ⊆ J_T provably in T However, J_T is not N in non standard models of T (is not small).

Let $Pr_T(\cdot)$ be defined as $\neg Cons(T + \neg \cdot)$. We have:

• If $Pr_T^x(\phi)$, then $Cons^{x+y}(T)$ implies $Cons^y(T+\phi)$.

Question

For what ϕ , y, $Cons^{x+y}(T)$ implies $Cons^{x}(T + \phi)$? Candidate $\neg Cons(T)$.

The amount of consistency of T. Questions

In the classical case we have:

$$Cons(T) \Rightarrow Cons(T + \neg Cons(T))$$

Question

$$Cons^{x}(T) \Rightarrow Cons^{x}(T + \neg Cons(T))?$$

Question

For what ϕ

$$Pr_T^x(\phi)) \Rightarrow Pr_T^x(0=1)?$$

Candidate: Cons(T).

The amount of consistency of the Π_1 or Σ_1 truth

By $Cons^{x}(T + \Sigma_{1})$ we shall mean the sentence stating the following: for every Σ_{1} sentence η if $Sat_{\Sigma_{1}}(\eta)$ holds and $\eta \leq x$, then $Cons^{x}(T + \eta)$ holds.

By $Cons^{*}(T + \Pi_{1})$ we shall mean the sentence stating the following: for every Π_{1} sentence η if $Sat_{\Pi_{1}}(\eta)$ holds and $\eta \leq x$, then $Cons^{*}(T + \eta)$ holds.

The amount of consistency of the Π_1 or Σ_1 truth Assume $T \supseteq I\Delta_0 + exp$ and $\mathbb{N} \models T$.

Consider the following definable initial segment J_T : let $x \in J_T$ iff $Cons^x(T + \Pi_1)$. This initial segment is Σ_1 definable. We shall call J_T the amount of consistency of Π_1 -truth.

Dual

Consider the following definable initial segment J_T : let $x \in J_T$ iff $Cons^x(T + \Sigma_1)$. This initial segment is Π_1 definable. We shall call J_T the amount of consistency of Σ_1 -truth.

The amount of consistency of the Π_1 or Σ_1 truth

Is there a non standard model of T in which $J_T = \mathbb{N}$, i.e. is J_T small?

Can J_T be a closed under successor (be a cut)?

&t

Consider the following formula $\mathbb{N}_{T,\Pi_1}(x)$ expressing the meaning that there is a set (i.e. a characteristic function of a set) of size x consisting of Π_1 sentences containing all true Π_1 sentences and x-consistent with T:

$$\exists t \in \{0,1\}^{\times} \Big(\forall \varphi < x \big(\mathsf{Sat}_{\Pi_1}(\varphi) \Rightarrow t(\varphi) = 1 \big)$$

he theory $\{\varphi < x : t(\varphi) = 1\}$ is x-consistent with $T \Big)$

We may call $\mathbb{N}_{T,\Pi_1}(x)$, the amount of codability of the Π_1 truth. This is Σ_1 .

Dual

Consider the following formula $\mathbb{N}_{\mathcal{T},\Sigma_1}(x)$ expressing the meaning that there is a set (i.e. a characteristic function of a set) of size x consisting of Σ_1 sentences containing all true Σ_1 sentences and x-consistent with \mathcal{T} :

$$\exists t \in \{0,1\}^{\times} \Big(\forall \varphi < x \big(Sat_{\Sigma_1}(\varphi) \Rightarrow t(\varphi) = 1 \big)$$
 &the theory $\{ \varphi < x : t(\varphi) = 1 \}$ is x-consistent with $T \Big)$ that is

$$\forall \mathsf{y} \exists t \in \{0,1\}^{\mathsf{x}} \Big(\forall \varphi < \mathsf{x} \big(\mathsf{Sat}_{\Sigma_1}(\varphi^{\mathsf{y}}) \Rightarrow t(\varphi) = 1 \big)$$

&the theory $\{\varphi < x : t(\varphi) = 1\}$ is x-consistent with T

We may call $\mathbb{N}_{T,\Sigma_1}(x)$, the amount of the codability of the Σ_1 truth. This is Π_1 .

- ▶ $\mathbb{N}_{\mathcal{T},\forall \Sigma_m^b}$ = the amount of codability of $\forall \Sigma_m^b$ truth
- ▶ $\mathbb{N}_{\mathcal{T},\exists\Pi_m^b}$ = the amount of codability of $\exists\Pi_m^b$ truth
- the amount of consistency of $\exists \Pi_m^b$ truth
- the amount of consistency of $\forall \Sigma_m^b$ truth

The amount of codability of the Π_1 or Σ_1 truth. Questions

For what T,

- ℕ_{T,Π1}, ℕ_{T,Σ1} are small, i.e. = ℕ in some non standard model of T?
- ▶ $\mathbb{N}_{T,\Pi_1} = \mathbb{N}_{T,\Sigma_1}$ in some non standard model of *T*?
- $\mathbb{N}_{T,\Sigma_1} < \mathbb{N}_{T,\Pi_1}$ in some model of *T*?
- ► $\mathbb{N}_{T,\Pi_1} < \mathbb{N}_{T,\Sigma_1}$ in some model of *T*?

The amount of codability of the Π_1 or Σ_1 truth. Questions

- The most interesting is $\mathbb{N}_{\mathcal{T},\Pi_1}$.
- Can $\mathbb{N}_{\mathcal{T},\Pi_1}$ be non standard and closed under successor (be a cut)?
- Can $\mathbb{N}_{\mathcal{T},\Pi_1}$ be a non standard model of $I\Delta_0$?
- Can \mathbb{N}_{T,Π_1} be a non standard model of $I\Delta_0 + exp$?
- We may also consider \mathbb{N}_{T,Π_1} in a model of a theory which is weaker than T, e.g. $\mathbb{N}_{I\Delta_0,\Pi_1}$ in a model of Q or $\mathbb{N}_{I\Delta_0+exp,\Pi_1}$ in a model of $I\Delta_0$.

Definition

Recall:

$$\begin{split} \omega_0(x) &= x^2, \\ \omega_1(x) &= 2^{(\log x)^2}, \\ \omega_2(x) &= 2^{2^{(\log \log x)^2}}, \end{split}$$

$$\omega_{i+1}(x) = 2^{\omega_i(\log x)}.$$

$$\Omega_i: \ orall x \exists y \ y = \omega_i(x),$$
 $\log_0(x) = x, \ \log_{i+1}(x) = \log\log_i(x).$

We have

$$I\Delta_0 + \Omega_i \not\vdash \forall x \exists \omega_i^{\log_{i+2} x}(x)$$

$$I\Delta_0 + \Omega_{i+1} \vdash \forall x \exists \omega_1^{\log_{i+2} x}(x).$$

For, the following formula is easy to be checked by induction:

$$\omega_1^n(x) = 2^{(\log x)^{2^n}},$$

for $n \ge 1$. Hence, for instance,

$$\omega_1^{\log^3 x}(x) = 2^{(\log x)^{2^{\log^3 x}}} == 2^{(\log x)^{\log \log x}} = 2^{2^{(\log \log x)^2}} = \omega_2(x).$$

Assume $T = I\Delta_0 + \Omega_i$, $i \ge 0$. Then

 $T \vdash HCons^{\log_{i+3}}(T)$

and if $I\Delta_0$ is finitely axiomatizable,

 $T \vdash HCons^{\log_{i+2}}(T).$

Hence, if our Cons is Hcons, then

▶ the amount of consistency of $T \supseteq \log_{i+3}$.

and if $I\Delta_0$ is finitely axiomatizable,

• the amount of consistency of $T \supseteq \log_{i+2}$.

Examples

Assume that $I\Delta_0$ is finitely axiomatizable. Assume $T = I\Delta_0 + \Omega_i$, $i \ge 0$. Then Let $T^{\#} \subseteq \Sigma_1$ be maximal consistent with T. Assume that elements Σ_1 definable are downward cofinal in M above \mathbb{N} . Suppose that in M the amount of consistency of Σ_1 truth is $> \mathbb{N}$. Then $M \models Hcons^l(T + \Sigma_1)$ for an Σ_1 definable nonstandard I. But then, by maximality of $T^{\#}$, $Hcons^l(T + \phi)$ gives a Π_1 truth definition for Σ_1 sentences in M, contradiction.

Thus, in *M* we have:

• the amount of consistency of Σ_1 truth = \mathbb{N} .

Thus, J_T =the amount of consistency of Σ_1 truth, is small. What about the amount of consistency of Π_1 truth? Since

► the amount of consistency of Σ₁ truth ≥ the amount of codability of Σ₁ truth.

We have in *M*:

• the amount of consistency of Σ_1 truth = the amount of codability of Σ_1 truth= \mathbb{N} .

The same can be shown without the assumption that $I\Delta_0$ is finitely axiomatizable with $\exists \Pi_m^b$ in place of Σ_1 .

What about the amount of codability of Π_1 truth?

Assume that $I\Delta_0$ is finitely axiomatizable. Assume $T = I\Delta_0 + \Omega_i$, $i \ge 0$. Let $M \models I\Delta_0 + \Omega_{i+1}$. Then $M \models Hcons^{\log_{i+2}}(T + \Sigma_1)$ (by the fact that $\omega_{i+1}(x) = \omega_i^{\log_{i+2}(x)}(x)$). Hence

• the amount of consistency of Σ_1 truth $\supseteq \log_{i+2}$.

Assume $T = I\Delta_0 + \Omega_i$, $i \ge 0$. Let $T^{\#} \subseteq \exists \Pi_m^b$ be maximal consistent with $I\Delta_0 + \Omega_{i+1}$. Let $M \models I\Delta_0 + \Omega_{i+1} + T^{\#}$. Suppose $M \models Hcons^{\log_{i+2}}(T + \exists \Pi_m^b)$. Since $Hcons^{\log_{i+2}}(T + \phi)$ is not a truth definition for $\exists \Pi_m^b$ sentences in M, for some $\phi \in \exists \Pi_m^b, \phi \notin T^{\#}$, $M \models Hcons^{\log_{i+2}}(T + \phi)$. But then ϕ is consistent with T and inconsistent with $I\Delta_0 + \Omega_{i+1}$, by maximality of $T^{\#}$. Thus, if in M,

► the amount of consistency of $\exists \Pi_m^b$ truth $\supseteq \log_{i+2}$, then $I\Delta_0 + \Omega_{i+1}$ is not Π_1 conservative over $I\Delta_0 + \Omega_i$.

Consistency

Recall By $Cons^{J}(T + \Sigma_{1})$ we shall mean the sentence stating the following: for every Σ_{1} sentence η if $Sat_{\Sigma_{1}}(\eta)$ holds and $\eta \in J$, then $Cons^{J}(T + \eta)$ holds.

By $Cons^{J}(T + \Pi_{1})$ we shall mean the sentence stating the following: for every Π_{1} sentence η if $Sat_{\Pi_{1}}(\eta)$ holds and $\eta \in J$, then $Cons^{J}(T + \eta)$ holds. For $J_{T} = \mathbb{N}_{T,\Pi_{1}}$ or $J_{T} = \mathbb{N}_{T,\Sigma_{1}}$, by definition we have the non Gödel property:

$$T \vdash Cons^{\mathbb{N}_{T,\Pi_1}}(T + \Pi_1),$$

$$T \vdash Cons^{\mathbb{N}_{T,\Sigma_1}}(T + \Sigma_1).$$

$$T + \Pi_1$$
-truth $\vdash Cons^{\mathbb{N}_{T,\Sigma_1}}(T + \Pi_1)?$

$$T + \Sigma_1$$
-truth $\vdash Cons^{\mathbb{N}_{T,\Pi_1}}(T + \Sigma_1)$?

The answer is NO, even without exponentiation (for $\exists \Pi_m^b$ and $\forall \Sigma_m^b$ instead of Σ_1 , Π_1). Thus, we have the Gödel property. Usually a predicate $Cons(\cdot)$ is considered as expressing consistency if

T is consistent iff $\mathbb{N} \models Cons(T)$. Some other properties are usually expected, e.g. the Hilbert Bernays derivability conditions:

•
$$T \vdash \phi$$
 implies $T \vdash Pr_T(\phi)$
• $T \vdash (Pr_T(\phi) \Rightarrow Pr_T(Pr_T(\phi)))$
• $T \vdash ((Pr_T(\phi) \& Pr_T(\phi \Rightarrow \psi)) \Rightarrow Pr_T(\psi))$

Note two other useful properties: $Cons(T)\&Pr_T(\phi)$ implies $Cons(T + \phi)$. If $Cons^J(\cdot)$ denotes Cons relativized to a definable initial segment J, then $Cons^{2J}(T)\&Pr_T^J(\phi)$ implies $Cons^J(T + \phi)$. We shall call the above properties **basic**.

Later we shall consider some unusual consistency predicates $Cons^{J}(\cdot)$, for some initial segments J, having the basic properties.

- **1.** $Cons(\cdot)$ is Π_1
- **2.** Σ_1 completeness:
 - ► (a) $T \vdash (\eta \Rightarrow Pr_T(\eta))$ for $\eta \in \Sigma_1$
 - ▶ (b) $T + Cons(T) \vdash (Pr_T(\eta) \Rightarrow \eta)$ for $\eta \in \Pi_1$
 - (c) $Cons(T) \Leftrightarrow Cons(T + \Sigma_1)$

Remarks:

(a) implies the first Hilbert Bernays condition. From (a) Cons(T) is provably equivalent to $Cons(T + \Sigma_1)$; Proof of (b): Suppose $T + Cons(T) + Pr_T(\eta) + \neg \eta$. Then, by (a), $Pr_T(\neg \eta)$, whence $Pr_T(\neg \eta) \& Pr_T(\neg \eta)$, contradicting Cons(T). If we consider $Cons(T + \Sigma_1 + \cdot)$, then (a):

$$T \vdash (\eta \Rightarrow Pr_{T+\Sigma_1}(\eta))$$

for $\eta \in \Sigma_1$, is for free.

- Consider Cons^{J_T}($T + \Sigma_1 + \cdot$), where $J_T = \mathbb{N}_{T,\Pi_1}$.
- **1.** $Cons^{J_{T}}(T + \Sigma_{1} + \cdot)$ is Π_{1} (remark: $Cons^{\mathbb{N}_{T},\Sigma_{1}}(T + \Pi_{1} + \cdot)$ is Σ_{1})
- 2. Σ_1 completeness for free
 - $T \vdash (\eta \Rightarrow Pr_{T+\Sigma_1}^{J_T}(\eta))$ for $\eta \in \Sigma_1$ • $T + Cons^{2J_T}(T) \vdash (Pr_{T+\Sigma_1}^{J_T}(\eta) \Rightarrow \eta)$ for $\eta \in \Pi_1$ • * $Cons^{J_T}(T) \Leftrightarrow Cons^{J_T}(T+\Sigma_1)$

3. Π_1 conservativeness

• (a) $T + \neg Cons(T)$ is Π_1 conservative over T

▶ (b)
$$T + \eta \not\vdash Cons(T)$$
, for $\eta \in \Sigma_1$

• (c) If $T^{\#} \subseteq \Sigma_1$ is maximal consistent with T, then " $\neg Cons(T)$ " $\in T^{\#}$

Proof of (a): Let $\eta \in \Sigma_1$ and assume that $T + \eta$ is consistent. Suppose $T + \eta \vdash Cons(T)$. Then $T + \eta \vdash Cons(T) \& Pr_T(\eta)$, whence $T + \eta \vdash Cons(T + \eta)$, which contradicts the Gödel theorem for $T + \eta$. Proof of (b): similar. Proof of (c): Let $\eta \in \Sigma_1$ and assume that $T + \eta$ is consistent. if $T + \eta \vdash Cons(T)$, then $T + \eta \vdash Cons(T + \eta)$, which contradicts the Gödel theorem for $T + \eta$. Thus $T + \neg Cons(T)$ is consistent.

If
$$J_{\mathcal{T}} = \mathbb{N}_{\mathcal{T}, \Pi_1}$$
,
3. Π_1 conservativeness

•
$$T + \neg Cons^{J_T}(T + \Sigma_1)$$
 is Π_1 conservative over T

•
$$T + \eta \not\vdash Cons^{J_T}(T + \Sigma_1)$$
, for $\eta \in \Sigma_1$

► If
$$T^{\#} \subseteq \Sigma_1$$
 is maximal consistent with *T*, then
" $\neg Cons^{J_T}(T + \Sigma_1)$ " $\in T^{\#}$

4. Gödel:

- (a) $T \not\vdash Cons(T)$;
- ▶ (b) If T is true then $T \not\vdash \neg Cons(T)$ (note that $T + \neg Cons(T) \vdash \neg Cons(T + \neg Cons(T))$
- (c) If $\theta \Leftrightarrow Cons(T + \neg \theta)$ provably in *T*, then $\theta \Leftrightarrow Cons(T)$ provably in *T*
- ► (d) $T + Cons(T) \vdash Cons(T + \neg Cons(T))$

Proof of (c): Work in *T*. Assume θ . Then $Cons(T + \neg \theta)$, whence, in particular, Cons(T). Assume Cons(T). Suppose $\neg \theta$. Since $\neg \theta$ is Σ_1 we infer $Cons(T + \neg \theta)$, whence θ . Proof of (d): Let θ be as in (c). Then, by (c), $T + Cons(T) \vdash \theta$, whence, by (c), $T + Cons(T) \vdash Cons(T + \neg \theta)$.

4.Gödel: If $J_T = \mathbb{N}_{T,\Pi_1}$, • $T \not\vdash Cons^{J_T}(T + \Sigma_1)$ • $* T \not\vdash \neg Cons^{J_T}(T + \Sigma_1)$ (this means that $J_{T+\neg Cons^{J_T}(T + \Sigma_1)} \neq J_T$) • If $\theta \Leftrightarrow Cons^{J_T}(T + \Sigma_1 + \neg \theta)$ provably in T, then $\theta \Leftrightarrow Cons^{J_T}(T + \Sigma_1)$ provably in T

 $T + Cons^{2J_{T}}(T + \Sigma_{1}) \vdash Cons^{J_{T}}(T + \neg Cons^{J_{T}}(T + \Sigma_{1}))$

Special

5. If $J_T = \mathbb{N}_{T,\Pi_1}$ and the set of true Π_1 sentences is maximal consistent with T and is not coded, then $Cons^{J_T}(T + \Sigma_1)$ (consistency holds in short models)

- **6.** $T \vdash Cons^{J_T}(T + \Pi_1)$
- 7. $T + Cons^{2J_T}(T + \Sigma_1)$ is Σ_1 conservative over T

- Let T denote a Π_2 axiomatizable consistent recursive theory. E.g. $I\Delta_0 + exp$, $I\Delta_0 + \Omega_1$.
 - T has pointwise Σ₁ definable models. Every model of T has a Σ₁ elementary submodel pointwise Σ₁ definable models.
 - T has models in which the set Σ₁(M) of true Σ₁ sentences is not coded.

Lemma 2.1. For every $n \in \mathbb{N}$ and every model M of T, $M \models \mathbb{N}_{T,\Pi_1}(n)$, $M \models \mathbb{N}_{T,\Sigma_1}(n)$.

Lemma 2.2. For every theory $T^{\#} \subseteq \Pi_1$ which is is maximal consistent w.r.t. T and every model M of $T + T^{\#}$ having the property that $T^{\#}$ is not coded in M, \mathbb{N}_{T,Π_1} defines \mathbb{N} in M. For every theory $T^{\#} \subseteq \Sigma_1$ which is is maximal consistent w.r.t. T and every model M of $T + T^{\#}$ having the property that $T^{\#}$ is not coded in M, \mathbb{N}_{T,Σ_1} defines \mathbb{N} in M.

The key properties of $\mathbb{N}_{\mathcal{T},\Pi_1}$, $\mathbb{N}_{\mathcal{T},\Sigma_1}$

Proof. Let M satisfy the requirements of the lemma. We shall show that \mathbb{N}_{T,Σ_1} defines \mathbb{N} in M. For, assume $x \in \mathbb{N}$. Let $t \in \{0,1\}^{\times}$ be such that

$$t(\varphi) = 1$$
 iff $M \models Sat_{\Sigma_1}(\varphi)$.

Then t is as required in $\mathbb{N}_{\mathcal{T},\Sigma_1}$. Assume now $\mathbb{N}_{\mathcal{T},\Sigma_1}(x)$ and suppose $x > \mathbb{N}$. Take the $t \in M$ existing by $\mathbb{N}_{\mathcal{T},\Sigma_1}$. Then the theory

$$\{\varphi: M \models t(\varphi) = 1\}$$

is consistent with T since

$$M \models$$
 the theory $\{ \varphi < x : t(\varphi) = 1 \}$ is x-consistent with T.

On the other hand this theory contains $T^{\#}$, since whenever φ is true i.e. $M \models Sat_{\Sigma_1}(\varphi)$, then $t(\varphi) = 1$. So, by the maximality of $T^{\#}$, the theory

$$\{\varphi: M \models t(\varphi) = 1\}$$

equals $T^{\#}$. But so, t is its code on M. Contradiction.

Theorem 2.3. If $M \models T$ is pointwise Σ_1 definable then $\Sigma_1(M)$ is not coded in M.

Proof. Suppose the converse. Let $x \in M$ be a code for $\Sigma_1(M)$. Let η be the Σ_1 definition of X. Then we have for ϕ running over Σ_1 sentences:

$$\phi \text{ iff } \forall x \big(\eta(x) \Rightarrow \phi \in x \big).$$

This gives a Π_1 definition of the Σ_1 truth. Contradiction with the Tarski theorem.

Existence of models whose Σ_1 or $\exists \Pi_m^b$ truth is not coded

Theorem 2.4. Every model for $I\Delta_0$ has a Σ_1 elementary submodel satisfying $I\Delta_0 + B\Sigma_1$ whose Σ_1 truth is not coded.

(A. J. Wilkie and J. B. Paris, On the existence of end extensions of models of bounded induction, in: Proceedings of the International Congress of Logic, Philosophy and Methodology of Sciences, Moscow 1987.)

Let J_T be Π_1 definable.

Lemma 3.1. Let θ be the diagonal sentence such that

$$T \vdash (\theta \Leftrightarrow Cons^{J_{T}}(T + \Pi_{1} + \neg \theta)).$$

Call θ the Gödel sentence. Then

$$T \vdash (\theta \Leftrightarrow Cons^{J_{T}}(T + \Pi_{1})).$$

Proof. Work in *T*. Assume θ . Then, in particular, $Cons^{J_T}(T + \Pi_1)$. Assume now $Cons^{J_T}(T + \Pi_1)$. Suppose $\neg \theta$. Since $\neg \theta$ is Π_1 we infer $Cons^{J_T}(T + \Pi_1 + \neg \theta)$. Hence θ . **Lemma 3.2.** Let θ be the diagonal sentence such that

$$T \vdash (\theta \Leftrightarrow Cons(T + \Sigma_1 + \neg \theta)).$$

Call θ the Gödel sentence. Then

$$T \vdash (\theta \Leftrightarrow Cons(T + \Sigma_1)).$$

Proof.

Work in *T*. Assume θ . Then $Cons(T + \Sigma_1 + \neg \theta)$, whence, in particular, $Cons(T + \Sigma_1)$. Assume $Cons(T + \Sigma_1)$. Suppose $\neg \theta$. Since $\neg \theta$ is Σ_1 we infer $Cons(T + \Sigma_1 + \neg \theta)$, whence θ .

Corollary $T \not\vdash Cons(T + \Sigma_1).$

Lemma 3.3. The sentence $Cons^{J_T}(T + \Pi_1)$ is independent from *T*.

Proof. To see that the theory $T + Cons^{J_T}(T + \Pi_1)$ is consistent it suffices to observe that is is true in every model M of T in which $J_T{}^M = \mathbb{N}$. We shall prove that $T \not\vdash Cons^{J_T}(T + \Pi_1)$. Suppose the converse. Let θ Gödel sentence. Then, by Lemma 3.1, $T \vdash \theta$. Let M be a model of T. Then $M \models \theta$. Thus, $M \models Cons^{J_T}(T + \Pi_1 + \neg \theta)$. Since $J_T{}^M \supseteq \mathbb{N}$, the theory $T + \neg \theta$ is consistent. But on the other hand $T \vdash \theta$. Contradiction. Here we replace Σ_1 by $\exists \Pi_m^b$ and Π by $\forall \Sigma_m^b$. In particular we consider the $\forall \Sigma_m^b$ formula $\mathbb{N}_{T, \exists \Pi_m^b}$. It has the key properties. We let J_T be $\mathbb{N}_{T, \exists \Pi_m^b}$. **1.** $Cons^{\mathbb{N}_{T, \exists \Pi_m^b}} (\cdot + \forall \Sigma_m^b)$ is $\exists \Pi_m^b$

2. $\forall \Sigma_m^b$ completeness

•
$$T \vdash (\eta \Rightarrow Pr_{T+\forall \Sigma_m^b}^{\mathbb{N}_{\tau,\exists \Pi_m^b}}(\eta))$$
 for $\eta \in \forall \Sigma_m^b$
• $T + Cons^{2\forall \Sigma_m^b}(T) \vdash (Pr_{T+\forall \Sigma_m^b}^{\mathbb{N}_{\tau,\exists \Pi_m^b}}(\eta) \Rightarrow \eta)$ for $\eta \in \exists \Pi_m^b$
• $* Cons^{\mathbb{N}_{\tau,\exists \Pi_m^b}}(T) \Leftrightarrow Cons^{\mathbb{N}_{\tau,\exists \Pi_m^b}}(T + \forall \Sigma_m^b)$

3. $\exists \Pi_m^b$ conservativeness

•
$$T + \neg Cons^{\mathbb{N}_{T, \exists n_m^b}} (T + \forall \Sigma_m^b)$$
 is $\exists \Pi_m^b$ conservative over T

►
$$T + \eta \not\vdash Cons^{\mathbb{N}_{T,\exists \Pi_m^b}}(T + \forall \Sigma_m^b)$$
, for $\eta \in \forall \Sigma_m^b$

▶ If
$$T^{\#} \subseteq \forall \Sigma_m^b$$
 is maximal consistent with T , then
"¬ $Cons^{\mathbb{N}_{T,\exists n_m^b}}(T + \forall \Sigma_m^b)$ " $\in T^{\#}$

In weak arithmetic

4. Gödel:

Special

5. If the set of true $\exists \Pi_m^b$ sentences is maximal consistent with T and is not coded, then $Cons^{\mathbb{N}_{T,\exists\Pi_m^b}}(T + \forall \Sigma_m^b)$ (consistency holds in tall models)

6.
$$T \vdash Cons^{\mathbb{N}_{T, \exists \Pi_m^b}}(T + \exists \Pi_m^b)$$

7. $T + Cons^{2\mathbb{N}_{T,\exists} n_m^b} (T + \forall \Sigma_m^b)$ is $\forall \Sigma_m^b$ conservative over T