
Small initial segments and consistency

Zofia Adamowicz

Institute of Mathematics, Polish Academy of Science

Model Theory and Proof Theory of Arithmetic
A Memorial Conference in Honor of Henryk Kotlarski and

Zygmunt Ratajczyk

Zofia Adamowicz Small initial segments and consistency



Introduction and motivation

The main association a mathematician has with the word
consistency is probably the Gödel Second Incompleteness
Theorem.

T 6` Cons(T ).

However, this does not always hold. There are some
restrictions on T (Willard), but also there are some
requirements of the predicate Cons we use (Pudlak). For
instance

I∆0 ` HConsJ(I∆0),

where J is some definable initial segment (e.g. log log log).
Our focuss will be on ConsJ(·) (consistency relativized to J),
for some definable initial segment J .
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Introduction and motivation

Assume T is recursive, consistent and contains I∆0 + BΣ1.
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Small initial segments

We consider initial segments J = JT depending on T . The
definition of T is built into the definition of JT .

We assume that J is a Σ1 or Π1 formula. We shall identify J
with the set definable by the formula J .
We are interested in the following properties of J :
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Small initial segments

When an initial segment is small? Key properties

I J is an initial segment provably in T ,

I N ⊆ J provably in T

I J is N in some non standard models of T .

Is there a non trivial Σ1 or Π1 definable J with the above
properties?
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What J can be

The amount of consistency of T

Let Cons(·) denote the Hilbert or the Herbrand consistency
predicate. Let Cons(·)x express the meaning that there is no
inconsistency proof which is ≤ x .

Consider the following definable initial segment J : let x ∈ J iff
Consx(T ).

Note that the definition of J depends on the formula defining
T . Thus, we should write JT .

We shall call JT the amount of consistency of T .
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The amount of consistency of T

I x ∈ JT iff Consx(T )

Evidently, J has the non Gödel property:

T ` ConsJT (T ).

Note that JT has the following properties:

I JT is an initial segment provably in T ,

I N ⊆ JT provably in T
However, JT is not N in non standard models of T (is not
small).
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The amount of consistency of T . Questions

Let PrT (·) be defined as ¬Cons(T + ¬·).
We have:

I If Pr x
T (φ), then Consx+y (T ) implies Consy (T + φ).

Question
For what φ, y , Consx+y (T ) implies Consx(T + φ)?
Candidate ¬Cons(T ).
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The amount of consistency of T . Questions

In the classical case we have:

Cons(T ) ⇒ Cons(T + ¬Cons(T ))

Question

Consx(T ) ⇒ Consx(T + ¬Cons(T ))?

Question
For what φ

Pr x
T (φ)) ⇒ Pr x

T (0 = 1)?

Candidate: Cons(T ).
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What JT can be

The amount of consistency of the Π1 or Σ1 truth

By Consx(T + Σ1) we shall mean the sentence stating the
following: for every Σ1 sentence η if SatΣ1(η) holds and
η ≤ x , then Consx(T + η) holds.

By Consx(T + Π1) we shall mean the sentence stating the
following: for every Π1 sentence η if SatΠ1(η) holds and η ≤ x ,
then Consx(T + η) holds.

Zofia Adamowicz Small initial segments and consistency



What JT can be

The amount of consistency of the Π1 or Σ1 truth
Assume T ⊇ I∆0 + exp and N |= T .

Consider the following definable initial segment JT : let x ∈ JT

iff Consx(T + Π1). This initial segment is Σ1 definable.
We shall call JT the amount of consistency of Π1-truth.

Dual
Consider the following definable initial segment JT : let x ∈ JT

iff Consx(T + Σ1). This initial segment is Π1 definable.
We shall call JT the amount of consistency of Σ1-truth.
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The amount of consistency of the Π1 or Σ1 truth

Is there a non standard model of T in which JT = N, i.e. is
JT small?

Can JT be a closed under successor (be a cut)?
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What JT can be

Consider the following formula NT ,Π1(x) expressing the
meaning that there is a set (i.e. a characteristic function of a
set) of size x consisting of Π1 sentences containing all true Π1

sentences and x-consistent with T :

∃t ∈ {0, 1}x
(
∀ϕ < x

(
SatΠ1(ϕ) ⇒ t(ϕ) = 1

)

&the theory {ϕ < x : t(ϕ) = 1} is x-consistent with T
)

We may call NT ,Π1(x), the amount of codability of the Π1

truth. This is Σ1.
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Dual

Consider the following formula NT ,Σ1(x) expressing the
meaning that there is a set (i.e. a characteristic function of a
set) of size x consisting of Σ1 sentences containing all true Σ1

sentences and x-consistent with T :

∃t ∈ {0, 1}x
(
∀ϕ < x

(
SatΣ1(ϕ) ⇒ t(ϕ) = 1

)

&the theory {ϕ < x : t(ϕ) = 1} is x-consistent with T
)

that is

∀y∃t ∈ {0, 1}x
(
∀ϕ < x

(
SatΣ1(ϕ

y ) ⇒ t(ϕ) = 1
)

&the theory {ϕ < x : t(ϕ) = 1} is x-consistent with T
)

We may call NT ,Σ1(x), the amount of the codability of the Σ1

truth. This is Π1.
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Without exponentiation

I NT ,∀Σb
m

= the amount of codability of ∀Σb
m truth

I NT ,∃Πb
m

= the amount of codability of ∃Πb
m truth

I the amount of consistency of ∃Πb
m truth

I the amount of consistency of ∀Σb
m truth
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The amount of codability of the Π1 or Σ1 truth.

Questions

For what T ,

I NT ,Π1 , NT ,Σ1 are small, i.e. = N in some non standard
model of T?

I NT ,Π1 = NT ,Σ1 in some non standard model of T?

I NT ,Σ1 < NT ,Π1 in some model of T?

I NT ,Π1 < NT ,Σ1 in some model of T?
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The amount of codability of the Π1 or Σ1 truth.

Questions

The most interesting is NT ,Π1 .
Can NT ,Π1 be non standard and closed under successor (be a
cut)?
Can NT ,Π1 be a non standard model of I∆0?
Can NT ,Π1 be a non standard model of I∆0 + exp?
We may also consider NT ,Π1 in a model of a theory which is
weaker than T , e.g. NI∆0,Π1 in a model of Q or NI∆0+exp,Π1 in
a model of I∆0.

Zofia Adamowicz Small initial segments and consistency



Definition

Recall:

ω0(x) = x2,

ω1(x) = 2(log x)2 ,

ω2(x) = 22(log log x)2

,

ωi+1(x) = 2ωi (log x).

Ωi : ∀x∃y y = ωi(x).

log0(x) = x , logi+1(x) = log logi(x).
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logi+2

We have

I∆0 + Ωi 6` ∀x∃ωlogi+2 x
i (x)

I∆0 + Ωi+1 ` ∀x∃ωlogi+2 x
1 (x).

For, the following formula is easy to be checked by induction:

ωn
1(x) = 2(log x)2

n

,

for n ≥ 1.
Hence, for instance,

ωlog3 x
1 (x) = 2(log x)2

log3 x

== 2(log x)log log x

= 22(log log x)2

= ω2(x).
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Examples

Assume T = I∆0 + Ωi , i ≥ 0. Then

T ` HCons logi+3(T )

and if I∆0 is finitely axiomatizable,

T ` HCons logi+2(T ).

Hence, if our Cons is Hcons, then

I the amount of consistency of T ⊇ logi+3.

and if I∆0 is finitely axiomatizable,

I the amount of consistency of T ⊇ logi+2.

Zofia Adamowicz Small initial segments and consistency



Examples

Assume that I∆0 is finitely axiomatizable. Assume
T = I∆0 + Ωi , i ≥ 0. Then
Let T# ⊆ Σ1 be maximal consistent with T . Assume that
elements Σ1 definable are downward cofinal in M above N.
Suppose that in M the amount of consistency of Σ1 truth is
> N. Then M |= Hcons l(T + Σ1) for an Σ1 definable
nonstandard l . But then, by maximality of T#,
Hcons l(T + φ) gives a Π1 truth definition for Σ1 sentences in
M , contradiction.
Thus, in M we have:

I the amount of consistency of Σ1 truth = N.

Thus, JT=the amount of consistency of Σ1 truth, is small.
What about the amount of consistency of Π1 truth?
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Examples

Since

I the amount of consistency of Σ1 truth ≥ the amount of
codabiltiy of Σ1 truth.

We have in M :

I the amount of consistency of Σ1 truth = the amount of
codabiltiy of Σ1 truth= N.

The same can be shown without the assumption that I∆0 is
finitely axiomatizable with ∃Πb

m in place of Σ1.

What about the amount of codability of Π1 truth?
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Examples

Assume that I∆0 is finitely axiomatizable. Assume
T = I∆0 + Ωi , i ≥ 0. Let M |= I∆0 + Ωi+1. Then
M |= Hcons logi+2(T + Σ1) (by the fact that

ωi+1(x) = ω
logi+2(x)
i (x)). Hence

I the amount of consistency of Σ1 truth ⊇ logi+2.
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Examples

Assume T = I∆0 + Ωi , i ≥ 0.
Let T# ⊆ ∃Πb

m be maximal consistent with I∆0 + Ωi+1. Let
M |= I∆0 + Ωi+1 + T#. Suppose M |= Hcons logi+2(T + ∃Πb

m).
Since Hcons logi+2(T + φ) is not a truth definition for ∃Πb

m

sentences in M , for some φ ∈ ∃Πb
m, φ 6∈ T#,

M |= Hcons logi+2(T + φ). But then φ is consistent with T and
inconsistent with I∆0 + Ωi+1, by maximality of T#. Thus, if
in M ,

I the amount of consistency of ∃Πb
m truth ⊇ logi+2,

then I∆0 + Ωi+1 is not Π1 conservative over I∆0 + Ωi .
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Consistency

Recall By ConsJ(T + Σ1) we shall mean the sentence stating

the following: for every Σ1 sentence η if SatΣ1(η) holds and
η ∈ J , then ConsJ(T + η) holds.

By ConsJ(T + Π1) we shall mean the sentence stating the
following: for every Π1 sentence η if SatΠ1(η) holds and η ∈ J ,
then ConsJ(T + η) holds.
For JT = NT ,Π1 or JT = NT ,Σ1 , by definition we have the non
Gödel property:

T ` ConsNT ,Π1 (T + Π1),

T ` ConsNT ,Σ1 (T + Σ1).
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Questions

T + Π1-truth ` ConsNT ,Σ1 (T + Π1)?

T + Σ1-truth ` ConsNT ,Π1 (T + Σ1)?

The answer is NO, even without exponentiation (for ∃Πb
m and

∀Σb
m instead of Σ1, Π1).

Thus, we have the Gödel property.
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Consistency

Usually a predicate Cons(·) is considered as expressing
consistency if

T is consistent iff N |= Cons(T ).
Some other properties are usually expected, e.g. the Hilbert
Bernays derivability conditions:

I T ` φ implies T ` PrT (φ)

I T ` (
PrT (φ) ⇒ PrT (PrT (φ))

)

I T `
((

PrT (φ)&PrT (φ ⇒ ψ)
) ⇒ PrT (ψ)

)
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Consistency

Note two other useful properties:
Cons(T )&PrT (φ) implies Cons(T + φ).
If ConsJ(·) denotes Cons relativized to a definable initial
segment J , then
Cons2J(T )&Pr J

T (φ) implies ConsJ(T + φ).
We shall call the above properties basic.

Later we shall consider some unusual consistency predicates
ConsJ(·), for some initial segments J , having the basic
properties.
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Usual properties of consistency

1. Cons(·) is Π1

2. Σ1 completeness:

I (a) T ` (
η ⇒ PrT (η)

)
for η ∈ Σ1

I (b) T + Cons(T ) ` (
PrT (η) ⇒ η

)
for η ∈ Π1

I (c) Cons(T ) ⇔ Cons(T + Σ1)

Zofia Adamowicz Small initial segments and consistency



Proofs

Remarks:
(a) implies the first Hilbert Bernays condition. From (a)
Cons(T ) is provably equivalent to Cons(T + Σ1);
Proof of (b):
Suppose T + Cons(T ) + PrT (η) + ¬η. Then, by (a),
PrT (¬η), whence PrT (¬η)&PrT (¬η), contradicting Cons(T ).
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Usual properties of consistency

If we consider Cons(T + Σ1 + ·), then (a):

T ` (
η ⇒ PrT+Σ1(η)

)

for η ∈ Σ1, is for free.
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ConsNT ,Π1(T + Σ1)

Consider ConsJT (T + Σ1 + ·), where JT = NT ,Π1 .

1. ConsJT (T + Σ1 + ·) is Π1 (remark: ConsNT ,Σ1 (T + Π1 + ·)
is Σ1)

2. Σ1 completeness for free

I T ` (
η ⇒ Pr JT

T+Σ1
(η)

)
for η ∈ Σ1

I T + Cons2JT (T ) ` (
Pr JT

T+Σ1
(η) ⇒ η

)
for η ∈ Π1

I * ConsJT (T ) 6⇔ ConsJT (T + Σ1)
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Usual properties

3. Π1 conservativeness

I (a) T + ¬Cons(T ) is Π1 conservative over T

I (b) T + η 6` Cons(T ), for η ∈ Σ1

I (c) If T# ⊆ Σ1 is maximal consistent with T , then
“¬Cons(T )” ∈ T#
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Proofs

Proof of (a):
Let η ∈ Σ1 and assume that T + η is consistent. Suppose
T + η ` Cons(T ). Then T + η ` Cons(T )&PrT (η), whence
T + η ` Cons(T + η), which contradicts the Gödel theorem
for T + η.
Proof of (b): similar.
Proof of (c):
Let η ∈ Σ1 and assume that T + η is consistent. if
T + η ` Cons(T ), then T + η ` Cons(T + η), which
contradicts the Gödel theorem for T + η. Thus
T + ¬Cons(T ) is consistent.
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ConsNT ,Π1(T + Σ1)

If JT = NT ,Π1 ,
3. Π1 conservativeness

I T + ¬ConsJT (T + Σ1) is Π1 conservative over T

I T + η 6` ConsJT (T + Σ1), for η ∈ Σ1

I If T# ⊆ Σ1 is maximal consistent with T , then
“¬ConsJT (T + Σ1)” ∈ T#
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Usual properties

4. Gödel:

I (a) T 6` Cons(T );

I (b) If T is true then T 6` ¬Cons(T ) (note that
T + ¬Cons(T ) ` ¬Cons(T + ¬Cons(T ))

I (c) If θ ⇔ Cons(T + ¬θ) provably in T , then
θ ⇔ Cons(T ) provably in T

I (d) T + Cons(T ) ` Cons(T + ¬Cons(T ))
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Proofs

Proof of (c): Work in T . Assume θ. Then Cons(T + ¬θ),
whence, in particular, Cons(T ). Assume Cons(T ). Suppose
¬θ. Since ¬θ is Σ1 we infer Cons(T + ¬θ), whence θ.
Proof of (d): Let θ be as in (c). Then, by (c),
T + Cons(T ) ` θ, whence, by (c),
T + Cons(T ) ` Cons(T + ¬θ).
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ConsNT ,Π1(T + Σ1)

4.Gödel:
If JT = NT ,Π1 ,

I T 6` ConsJT (T + Σ1)

I * T 6` ¬ConsJT (T + Σ1) (this means that
JT+¬ConsJT (T+Σ1)

6= JT )

I If θ ⇔ ConsJT (T + Σ1 + ¬θ) provably in T , then
θ ⇔ ConsJT (T + Σ1) provably in T

I T + Cons2JT (T + Σ1) ` ConsJT (T + ¬ConsJT (T + Σ1))
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ConsNT ,Π1(T + Σ1)

Special

5. If JT = NT ,Π1 and the set of true Π1 sentences is maximal
consistent with T and is not coded, then ConsJT (T + Σ1)
(consistency holds in short models)

6. T ` ConsJT (T + Π1)

7. T + Cons2JT (T + Σ1) is Σ1 conservative over T
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For what T , NT ,Π1, NT ,Σ1 have the key properties?

Let T denote a Π2 axiomatizable consistent recursive theory.
E.g. I∆0 + exp, I∆0 + Ω1.

I T has pointwise Σ1 definable models. Every model of T
has a Σ1 elementary submodel pointwise Σ1 definable
models.

I T has models in which the set Σ1(M) of true Σ1

sentences is not coded.
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The key properties of NT ,Π1, NT ,Σ1

Lemma 2.1. For every n ∈ N and every model M of T ,
M |= NT ,Π1(n), M |= NT ,Σ1(n).

Lemma 2.2. For every theory T# ⊆ Π1 which is is maximal
consistent w.r.t. T and every model M of T + T# having the
property that T# is not coded in M, NT ,Π1 defines N in M.
For every theory T# ⊆ Σ1 which is is maximal consistent
w.r.t. T and every model M of T + T# having the property
that T# is not coded in M, NT ,Σ1 defines N in M.
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The key properties of NT ,Π1, NT ,Σ1

Proof. Let M satisfy the requirements of the lemma.
We shall show that NT ,Σ1 defines N in M .
For, assume x ∈ N. Let t ∈ {0, 1}x be such that

t(ϕ) = 1 iff M |= SatΣ1(ϕ).

Then t is as required in NT ,Σ1 .
Assume now NT ,Σ1(x) and suppose x > N. Take the t ∈ M
existing by NT ,Σ1 . Then the theory

{ϕ : M |= t(ϕ) = 1}

is consistent with T since

M |= the theory {ϕ < x : t(ϕ) = 1} is x-consistent with T .
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The key properties of NT ,Π1, NT ,Σ1

On the other hand this theory contains T#, since whenever ϕ
is true i.e. M |= SatΣ1(ϕ), then t(ϕ) = 1.
So, by the maximality of T#, the theory

{ϕ : M |= t(ϕ) = 1}

equals T#. But so, t is its code on M . Contradiction.
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Existence of models whose Σ1 truth is not coded

Theorem 2.3. If M |= T is pointwise Σ1 definable then
Σ1(M) is not coded in M.

Proof. Suppose the converse. Let x ∈ M be a code for
Σ1(M). Let η be the Σ1 definition of X . Then we have for φ
running over Σ1 sentences:

φ iff ∀x(
η(x) ⇒ φ ∈ x

)
.

This gives a Π1 definition of the Σ1 truth. Contradiction with
the Tarski theorem.
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Existence of models whose Σ1 or ∃Πb
m truth is not

coded

Theorem 2.4. Every model for I∆0 has a Σ1 elementary
submodel satisfying I∆0 + BΣ1 whose Σ1 truth is not coded.

(A. J. Wilkie and J. B. Paris, On the existence of end extensions of

models of bounded induction, in: Proceedings of the International

Congress of Logic, Philosophy and Methodology of Sciences,

Moscow 1987.)
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Lemmas

Let JT be Π1 definable.

Lemma 3.1. Let θ be the diagonal sentence such that

T ` (
θ ⇔ ConsJT (T + Π1 + ¬θ)

)
.

Call θ the Gödel sentence.
Then

T ` (
θ ⇔ ConsJT (T + Π1)

)
.

Proof. Work in T . Assume θ. Then, in particular,
ConsJT (T + Π1). Assume now ConsJT (T + Π1). Suppose ¬θ.
Since ¬θ is Π1 we infer ConsJT (T + Π1 + ¬θ). Hence θ.
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Lemma 3.2. Let θ be the diagonal sentence such that

T ` (
θ ⇔ Cons(T + Σ1 + ¬θ)

)
.

Call θ the Gödel sentence.
Then

T ` (
θ ⇔ Cons(T + Σ1)

)
.

Proof.
Work in T . Assume θ. Then Cons(T + Σ1 + ¬θ), whence, in
particular, Cons(T + Σ1). Assume Cons(T + Σ1). Suppose
¬θ. Since ¬θ is Σ1 we infer Cons(T + Σ1 + ¬θ), whence θ.

Corollary
T 6` Cons(T + Σ1).
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Lemmas

Lemma 3.3. The sentence ConsJT (T + Π1) is independent
from T.

Proof. To see that the theory T + ConsJT (T + Π1) is
consistent it suffices to observe that is is true in every model
M of T in which JT

M = N.
We shall prove that T 6` ConsJT (T + Π1). Suppose the
converse. Let θ Gödel sentence. Then, by Lemma 3.1, T ` θ.
Let M be a model of T . Then M |= θ. Thus,
M |= ConsJT (T + Π1 + ¬θ). Since JT

M ⊇ N, the theory
T + ¬θ is consistent. But on the other hand T ` θ.
Contradiction.
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In weak arithmetic

Here we replace Σ1 by ∃Πb
m and Π by ∀Σb

m. In particular we
consider the ∀Σb

m formula NT ,∃Πb
m
. It has the key properties.

We let JT be NT ,∃Πb
m
.

1. Cons
N

T ,∃Πb
m (·+ ∀Σb

m) is ∃Πb
m

2. ∀Σb
m completeness

I T ` (
η ⇒ Pr

N
T ,∃Πb

m

T+∀Σb
m
(η)

)
for η ∈ ∀Σb

m

I T + Cons2∀Σb
m(T ) ` (

Pr
N

T ,∃Πb
m

T+∀Σb
m
(η) ⇒ η

)
for η ∈ ∃Πb

m

I * Cons
N

T ,∃Πb
m (T ) 6⇔ Cons

N
T ,∃Πb

m (T + ∀Σb
m)
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In weak arithmetic

3. ∃Πb
m conservativeness

I T + ¬Cons
N

T ,∃Πb
m (T + ∀Σb

m) is ∃Πb
m conservative over T

I T + η 6` Cons
N

T ,∃Πb
m (T + ∀Σb

m), for η ∈ ∀Σb
m

I If T# ⊆ ∀Σb
m is maximal consistent with T , then

“¬Cons
N

T ,∃Πb
m (T + ∀Σb

m)” ∈ T#
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In weak arithmetic

4. Gödel:

I T 6` Cons
N

T ,∃Πb
m (T + ∀Σb

m)

I * T 6` ¬Cons
N

T ,∃Πb
m (T + ∀Σb

m)
(this means that N

T+¬Cons
N

T ,∃Πb
m (T+∀Σb

m),∃Πb
m

6= NT ,∃Πb
m
)

I If θ ⇔ Cons
N

T ,∃Πb
m (T + ∀Σb

m + ¬θ) provably in T , then

θ ⇔ Cons
N

T ,∃Πb
m (T + ∀Σb

m) provably in T

I T + Cons2∀Σb
m(T + ∀Σb

m) `
Cons

N
T ,∃Πb

m (T + ¬Cons
N

T ,∃Πb
m (T + ∀Σb

m))
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In weak arithmetic

Special

5. If the set of true ∃Πb
m sentences is maximal consistent with

T and is not coded, then Cons
N

T ,∃Πb
m (T + ∀Σb

m)(consistency
holds in tall models)

6. T ` Cons
N

T ,∃Πb
m (T + ∃Πb

m)

7. T + Cons
2N

T ,∃Πb
m (T + ∀Σb

m) is ∀Σb
m conservative over T
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