Self-Embeddings of Models of Arithmetic, Redux

Ali Enayat (Report of Joint work with V. Yu. Shavrukov)

Model Theory and Proof Theory of Arithemtic A Memorial Conference in Honor of Henryk Kotlarski and Zygmunt Ratajczyk

July 25, 2012, Bedlewo

4 3 5 4

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

/□ ▶ < 글 ▶ < 글

æ

• **1962.** In answer to a question of Dana Scott, in the mid 1950's Robert Vaught shows that there is a model of true arithmetic that is isomorphic to a proper initial segment of itself. This result is later included in a joint paper of Vaught and Morley.

- **1962.** In answer to a question of Dana Scott, in the mid 1950's Robert Vaught shows that there is a model of true arithmetic that is isomorphic to a proper initial segment of itself. This result is later included in a joint paper of Vaught and Morley.
- **1973.** Harvey Friedman's landmark paper contains a proof of the striking result that *every* countable nonstandard model of PA is isomorphic to a proper initial segment of itself.

- **1962.** In answer to a question of Dana Scott, in the mid 1950's Robert Vaught shows that there is a model of true arithmetic that is isomorphic to a proper initial segment of itself. This result is later included in a joint paper of Vaught and Morley.
- **1973.** Harvey Friedman's landmark paper contains a proof of the striking result that *every* countable nonstandard model of PA is isomorphic to a proper initial segment of itself.
- 1977. Alex Wilkie shows that if \mathcal{M} and \mathcal{N} are countable nonstandard models of PA, then $\operatorname{Th}_{\Pi_2}(\mathcal{M}) \subseteq \operatorname{Th}_{\Pi_2}(\mathcal{N})$ iff there are arbitrarily high initial segment of \mathcal{N} that are isomorphic to \mathcal{M} .

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

/□ ▶ < 글 ▶ < 글

æ

• 1978. Hamid Lessan shows that a countable model \mathcal{M} of Π_2^{PA} is isomorphic to a proper initial segment of itself iff \mathcal{M} is 1-tall and 1-extendible, where 1-tall means that the set of Σ_1 -definable elements of \mathcal{M} is not cofinal in \mathcal{M} , and 1-extendible means that there is an end extension \mathcal{M}^* of \mathcal{M} that satisfies $I\Delta_0$ and $\operatorname{Th}_{\Sigma_1}(\mathcal{M}) = \operatorname{Th}_{\Sigma_1}(\mathcal{M}^*)$.

- 1978. Hamid Lessan shows that a countable model \mathcal{M} of Π_2^{PA} is isomorphic to a proper initial segment of itself iff \mathcal{M} is 1-tall and 1-extendible, where 1-tall means that the set of Σ_1 -definable elements of \mathcal{M} is not cofinal in \mathcal{M} , and 1-extendible means that there is an end extension \mathcal{M}^* of \mathcal{M} that satisfies $|\Delta_0|$ and $\operatorname{Th}_{\Sigma_1}(\mathcal{M}) = \operatorname{Th}_{\Sigma_1}(\mathcal{M}^*)$.
- **1978.** With the introduction of the key concepts of recursive saturation and resplendence (in the 1970's), Vaught's result was reclothed by John Schlipf as asserting that every *resplendent* model of PA is isomorphic to a proper *elementary* initial segment of itself.

通 と イ ヨ と イ ヨ と

- 1978. Hamid Lessan shows that a countable model \mathcal{M} of Π_2^{PA} is isomorphic to a proper initial segment of itself iff \mathcal{M} is 1-tall and 1-extendible, where 1-tall means that the set of Σ_1 -definable elements of \mathcal{M} is not cofinal in \mathcal{M} , and 1-extendible means that there is an end extension \mathcal{M}^* of \mathcal{M} that satisfies $|\Delta_0|$ and $\operatorname{Th}_{\Sigma_1}(\mathcal{M}) = \operatorname{Th}_{\Sigma_1}(\mathcal{M}^*)$.
- **1978.** With the introduction of the key concepts of recursive saturation and resplendence (in the 1970's), Vaught's result was reclothed by John Schlipf as asserting that every *resplendent* model of PA is isomorphic to a proper *elementary* initial segment of itself.
- **1978.** Craig Smorynski's influential lectures and expositions systematize and extend Friedman-style embedding theorems around the key concept of (partial) recursive saturation.

伺 ト イ ヨ ト イ ヨ ト

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

□ ► < E ► < E</p>

æ

• **1979.** Leonard Lipshitz uses the Friedman embedding theorem and the MRDP theorem to show that a countable nonstandard model of PA is Diophantine correct iff it can be embedded into arbitrarily low nonstandard initial segments of itself (the result was suggested by Stanley Tennenbaum).

- **1979.** Leonard Lipshitz uses the Friedman embedding theorem and the MRDP theorem to show that a countable nonstandard model of PA is Diophantine correct iff it can be embedded into arbitrarily low nonstandard initial segments of itself (the result was suggested by Stanley Tennenbaum).
- 1980. Petr Hájek and Pavel Pudlák show that if *I* is a cut closed under exponentiation that is shared by two nonstandard models *M* and *N* of PA such that *M* and *N* have the same *I*-standard system, and Th_{Σ1}(*M*, *i*)_{*i*∈*I*} ⊆ Th_{Σ1}(*N*, *i*)_{*i*∈*I*}, then there is an embedding *j* of *M* onto a proper initial segment of *N* such that *j*(*i*) = *i* for all *i* ∈ *I*.

- **1979.** Leonard Lipshitz uses the Friedman embedding theorem and the MRDP theorem to show that a countable nonstandard model of PA is Diophantine correct iff it can be embedded into arbitrarily low nonstandard initial segments of itself (the result was suggested by Stanley Tennenbaum).
- 1980. Petr Hájek and Pavel Pudlák show that if *I* is a cut closed under exponentiation that is shared by two nonstandard models *M* and *N* of PA such that *M* and *N* have the same *I*-standard system, and Th_{Σ1}(*M*, *i*)_{*i*∈*I*} ⊆ Th_{Σ1}(*N*, *i*)_{*i*∈*I*}, then there is an embedding *j* of *M* onto a proper initial segment of *N* such that *j*(*i*) = *i* for all *i* ∈ *I*.
- 1981. Jeff Paris notes that an unpublished construction of Robert Solovay shows that every countable recursively saturated model of $I\Delta_0 + \mathrm{B}\Sigma_1$ is isomorphic to a proper initial segment of itself.

伺 ト イ ヨ ト イ ヨ ト

□ ► < E ► < E</p>

æ

1983. Žarko Mijajlović shows that if *M* is a countable model of PA and a ∉ Δ₁^{*M*}, then there is a self-embedding of *M* onto a submodel *N* (where *N* is not necessarily an initial segment of *M*) such that a ∉ N. He also shows that *N* can be arranged to be an initial segment of *M* if there is no b > a with b ∈ Δ₁^{*M*} (he attributes this latter result to Marker and Wilkie).

- 1983. Žarko Mijajlović shows that if *M* is a countable model of PA and a ∉ Δ₁^{*M*}, then there is a self-embedding of *M* onto a submodel *N* (where *N* is not necessarily an initial segment of *M*) such that a ∉ N. He also shows that *N* can be arranged to be an initial segment of *M* if there is no b > a with b ∈ Δ₁^{*M*} (he attributes this latter result to Marker and Wilkie).
- 1985. Costas Dimitracopoulos shows that every countable nonstandard model of $I\Delta_0 + B\Sigma_2$ is isomorphic to a proper initial segment of itself.

- 1983. Žarko Mijajlović shows that if *M* is a countable model of PA and a ∉ Δ₁^{*M*}, then there is a self-embedding of *M* onto a submodel *N* (where *N* is not necessarily an initial segment of *M*) such that a ∉ N. He also shows that *N* can be arranged to be an initial segment of *M* if there is no b > a with b ∈ Δ₁^{*M*} (he attributes this latter result to Marker and Wilkie).
- 1985. Costas Dimitracopoulos shows that every countable nonstandard model of $I\Delta_0 + B\Sigma_2$ is isomorphic to a proper initial segment of itself.
- **1986.** Aleksandar Ignjatović refines the aforementioned work of Mijajlović.

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

□ ► < E ► < E</p>

æ

• 1987. Jean-Pierre Ressayre proves an optimal result: for every countable nonstandard model \mathcal{M} of $|\Sigma_1|$ and for every $a \in \mathcal{M}$ there is an embedding j of \mathcal{M} onto a proper initial segment of itself such that j(x) = x for all $x \leq a$; moreover, this property characterizes countable models of $|\Sigma_1|$ among countable models of $|\Delta_0|$.

- 1987. Jean-Pierre Ressayre proves an optimal result: for every countable nonstandard model \mathcal{M} of $I\Sigma_1$ and for every $a \in \mathcal{M}$ there is an embedding j of \mathcal{M} onto a proper initial segment of itself such that j(x) = x for all $x \leq a$; moreover, this property characterizes countable models of $I\Sigma_1$ among countable models of $I\Delta_0$.
- 1987. Bonnie Gold refines Lipshitz's aforementioned result by showing that if *M* and *N* are models of PA with *M* ⊆_{end} *N*, then *N* is Diophantine correct relative to *M* iff for every *a* ∈ *N**M* there is an embedding *j* : *N* → *N* such that *j*(*N*) < *a* and *j*(*m*) = *m* for all *m* ∈ *M*.

通 と イ ヨ と イ ヨ と

- 1987. Jean-Pierre Ressayre proves an optimal result: for every countable nonstandard model \mathcal{M} of $|\Sigma_1|$ and for every $a \in \mathcal{M}$ there is an embedding j of \mathcal{M} onto a proper initial segment of itself such that j(x) = x for all $x \leq a$; moreover, this property characterizes countable models of $|\Sigma_1|$ among countable models of $|\Delta_0|$.
- 1987. Bonnie Gold refines Lipshitz's aforementioned result by showing that if *M* and *N* are models of PA with *M* ⊆_{end} *N*, then *N* is Diophantine correct relative to *M* iff for every *a* ∈ *N**M* there is an embedding *j* : *N* → *N* such that *j*(*N*) < *a* and *j*(*m*) = *m* for all *m* ∈ *M*.
- **1988.** Independently of Ressayre, Dimitracopoulos and Paris show that every countable nonstandard model of $I\Sigma_1$ is isomorphic to a proper initial segment of itself. They also generalize Lessan's aforementioned result by weakening Π_2^{PA} to $I\Delta_0 + exp + B\Sigma_1$.

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

□ ► < E ► < E</p>

æ

• **1991.** Richard Kaye's text presents a number of refinements of Friedman's theorem, including:

A B + A B +

- **1991.** Richard Kaye's text presents a number of refinements of Friedman's theorem, including:
- A necessary and sufficient condition for the existence of a Σ_n-elementary embedding j of a countable model M onto an initial segment I between two prescribed elements a < b of M such that j(a) = a;
- The existence of *continuum-many* initial segments of every countable nonstandard model of \mathcal{M} of PA that are isomorphic to \mathcal{M} .
- **1997**. Kazuyuki Tanaka extends Ressayre's aforementioned result to countable nonstandard models of WKL₀.

• • = • • = •

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

• Unless otherwise stated, all models are countable models of $\mathrm{I}\Sigma_1.$

A B + A B +

- Unless otherwise stated, all models are countable models of $\mathrm{I}\Sigma_1.$
- Definition. A partial function f from M to M is a partial M-recursive function if the graph of f is definable in M by a parameter-free Σ₁-formula.

- Unless otherwise stated, all models are countable models of $\mathrm{I}\Sigma_1.$
- Definition. A partial function f from M to M is a partial M-recursive function if the graph of f is definable in M by a parameter-free Σ₁-formula.
- **Theorem.** (Sharpened Friedman Theorem) Suppose $c \in M$, and $\{a, b\} \subseteq N$ with a < b. The following statements are equivalent:

(1) $SSy(\mathcal{M}) = SSy(\mathcal{N})$, and for every Δ_0 -formula $\delta(x, y)$ we have:

$$\mathcal{M} \models \exists y \ \delta(c, y) \Longrightarrow \mathcal{N} \models \exists y < b \ \delta(a, y).$$

- Unless otherwise stated, all models are countable models of $\mathrm{I}\Sigma_1.$
- Definition. A partial function f from M to M is a partial M-recursive function if the graph of f is definable in M by a parameter-free Σ₁-formula.
- Theorem. (Sharpened Friedman Theorem) Suppose c ∈ M, and {a, b} ⊆ N with a < b. The following statements are equivalent:

(1) $SSy(\mathcal{M}) = SSy(\mathcal{N})$, and for every Δ_0 -formula $\delta(x, y)$ we have:

$$\mathcal{M} \models \exists y \ \delta(c, y) \Longrightarrow \mathcal{N} \models \exists y < b \ \delta(a, y).$$

- 4 E b 4 E b

 (2) There is an initial embedding j : M → N with j(c) = a and a < j(M) < b.

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

• **Theorem.** Suppose {*a*, *b*} ⊆ *M* with *a* < *b*. The following statements are equivalent:

- **Theorem.** Suppose {*a*, *b*} ⊆ *M* with *a* < *b*. The following statements are equivalent:
- (1) There is an initial embedding j : M → M with j(a) = a and a < j(M) < b.

4 B K 4 B K

- **Theorem.** Suppose {*a*, *b*} ⊆ *M* with *a* < *b*. The following statements are equivalent:
- (1) There is an initial embedding j : M → M with j(a) = a and a < j(M) < b.
- (2) There is a cut I of \mathcal{M} with a < I < b and $\operatorname{Th}(\mathcal{M}, a) = \operatorname{Th}(I, a)$.

→ □ → → □ →

- **Theorem.** Suppose {*a*, *b*} ⊆ *M* with *a* < *b*. The following statements are equivalent:
- (1) There is an initial embedding j : M → M with j(a) = a and a < j(M) < b.
- (2) There is a cut I of \mathcal{M} with a < I < b and $\operatorname{Th}(\mathcal{M}, a) = \operatorname{Th}(I, a)$.
- (3) There is a cut I of \mathcal{M} with a < I < b and $\operatorname{Th}_{\Sigma_1}(\mathcal{M}, a) = \operatorname{Th}_{\Sigma_1}(I, a).$

ヨッ イヨッ イヨッ

- **Theorem.** Suppose {*a*, *b*} ⊆ *M* with *a* < *b*. The following statements are equivalent:
- (1) There is an initial embedding j : M → M with j(a) = a and a < j(M) < b.
- (2) There is a cut I of \mathcal{M} with a < I < b and $\operatorname{Th}(\mathcal{M}, a) = \operatorname{Th}(I, a)$.
- (3) There is a cut I of \mathcal{M} with a < I < b and $\operatorname{Th}_{\Sigma_1}(\mathcal{M}, a) = \operatorname{Th}_{\Sigma_1}(I, a).$
- (4) f(a) < b for all partial M-recursive functions.

• • = • • = •

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

A B > A B >

• **Definition.** Suppose $P \subseteq \mathcal{M}$ be a set of parameters. A partial function f from M to M is a P-partial \mathcal{M} -recursive function of \mathcal{M} if the graph of f is definable in \mathcal{M} by a Σ_1 -formula with parameters in P.

- **Definition.** Suppose $P \subseteq \mathcal{M}$ be a set of parameters. A partial function f from M to M is a P-partial \mathcal{M} -recursive function of \mathcal{M} if the graph of f is definable in \mathcal{M} by a Σ_1 -formula with parameters in P.
- Theorem. (Sharpened Hájek-Pudlák). Suppose I is a cut shared by M and N, and I is closed under exponentiation. Assume furthermore that c ∈ M, with I < c, and {a, b} ⊆ N with I < a < b. The following statements are equivalent:

- **Definition.** Suppose $P \subseteq \mathcal{M}$ be a set of parameters. A partial function f from M to M is a P-partial \mathcal{M} -recursive function of \mathcal{M} if the graph of f is definable in \mathcal{M} by a Σ_1 -formula with parameters in P.
- Theorem. (Sharpened Hájek-Pudlák). Suppose I is a cut shared by M and N, and I is closed under exponentiation. Assume furthermore that c ∈ M, with I < c, and {a, b} ⊆ N with I < a < b. The following statements are equivalent:
- (i) $SSy_I(\mathcal{M}) = SSy_I(\mathcal{N})$, and for every Δ_0 -formula $\delta(x, y, z)$, and all $i \in I$ we have:

$$\mathcal{M} \models \exists y \ \delta(c, y, i) \Longrightarrow \mathcal{N} \models \exists y < b \ \delta(a, y, i).$$

- **Definition.** Suppose $P \subseteq \mathcal{M}$ be a set of parameters. A partial function f from M to M is a P-partial \mathcal{M} -recursive function of \mathcal{M} if the graph of f is definable in \mathcal{M} by a Σ_1 -formula with parameters in P.
- Theorem. (Sharpened Hájek-Pudlák). Suppose I is a cut shared by M and N, and I is closed under exponentiation. Assume furthermore that c ∈ M, with I < c, and {a, b} ⊆ N with I < a < b. The following statements are equivalent:
- (i) $SSy_I(\mathcal{M}) = SSy_I(\mathcal{N})$, and for every Δ_0 -formula $\delta(x, y, z)$, and all $i \in I$ we have:

$$\mathcal{M} \models \exists y \ \delta(c, y, i) \Longrightarrow \mathcal{N} \models \exists y < b \ \delta(a, y, i).$$

• (ii) There is an initial embedding $j : \mathcal{M} \to \mathcal{N}$ such that j(c) = a, $a < j(\mathcal{M}) < b$, and j(i) = i for all $i \in I$.

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem. Suppose {a, b} ⊆ M with I < a < b, where I is a cut of M that is closed under exponentiation. The following statements are equivalent:

- Theorem. Suppose {a, b} ⊆ M with I < a < b, where I is a cut of M that is closed under exponentiation. The following statements are equivalent:
- (1) There is an initial embedding $j : \mathcal{M} \to \mathcal{M}$ with $a < j(\mathcal{M}) < b$, and $I \cup \{a\} \subseteq \operatorname{Fix}(j)$.

- Theorem. Suppose {a, b} ⊆ M with I < a < b, where I is a cut of M that is closed under exponentiation. The following statements are equivalent:
- (1) There is an initial embedding $j : \mathcal{M} \to \mathcal{M}$ with $a < j(\mathcal{M}) < b$, and $I \cup \{a\} \subseteq \operatorname{Fix}(j)$.
- (2) There is a cut I^{*} of M with a < I^{*} < b and Th (M, a, i)_{i∈I} = Th(I^{*}, a, i)_{i∈I}.

- Theorem. Suppose {a, b} ⊆ M with I < a < b, where I is a cut of M that is closed under exponentiation. The following statements are equivalent:
- (1) There is an initial embedding $j : \mathcal{M} \to \mathcal{M}$ with $a < j(\mathcal{M}) < b$, and $I \cup \{a\} \subseteq \operatorname{Fix}(j)$.
- (2) There is a cut I^{*} of M with a < I^{*} < b and Th (M, a, i)_{i∈I} = Th(I^{*}, a, i)_{i∈I}.
- (3) There is a cut I^* of \mathcal{M} with $a < I^* < b$ such that $\operatorname{Th}_{\Sigma_1}(\mathcal{M}, a, i)_{i \in I} = \operatorname{Th}_{\Sigma_1}(I^*, a, i)_{i \in I}$.

伺 ト イ ヨ ト イ ヨ ト

- Theorem. Suppose {a, b} ⊆ M with I < a < b, where I is a cut of M that is closed under exponentiation. The following statements are equivalent:
- (1) There is an initial embedding $j : \mathcal{M} \to \mathcal{M}$ with $a < j(\mathcal{M}) < b$, and $I \cup \{a\} \subseteq \operatorname{Fix}(j)$.
- (2) There is a cut I^* of \mathcal{M} with $a < I^* < b$ and $\operatorname{Th}(\mathcal{M}, a, i)_{i \in I} = \operatorname{Th}(I^*, a, i)_{i \in I}$.
- (3) There is a cut I^* of \mathcal{M} with $a < I^* < b$ such that $\operatorname{Th}_{\Sigma_1}(\mathcal{M}, a, i)_{i \in I} = \operatorname{Th}_{\Sigma_1}(I^*, a, i)_{i \in I}$.
- (4) f(a) < b for all I-partial M-recursive functions f.

伺 ト イ ヨ ト イ ヨ ト

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

A B > A B >

 Definition. A (total) function f from M to M is a total M-recursive function if the graph of f is definable in M by a parameter-free Σ₁-formula.

- **Definition.** A (total) function f from M to M is a *total* \mathcal{M} -recursive function if the graph of f is definable in \mathcal{M} by a parameter-free Σ_1 -formula.
- **Theorem.** Suppose {*a*, *b*} ⊆ *N* with *a* < *b*. The following statements are equivalent:

.

- Definition. A (total) function *f* from *M* to *M* is a *total M*-recursive function if the graph of *f* is definable in *M* by a parameter-free Σ₁-formula.
- **Theorem.** Suppose {*a*, *b*} ⊆ *N* with *a* < *b*. The following statements are equivalent:
- (1) $SSy(\mathcal{M}) = SSy(\mathcal{N})$, and for every parameter-free Δ_0 -formula $\delta(x, y)$ we have:

$$\mathcal{M} \models \forall x \exists y \ \delta(x, y) \Longrightarrow \mathcal{N} \models \exists y < b \ \delta(a, y).$$

通 と イ ヨ と イ ヨ と

- Definition. A (total) function f from M to M is a total M-recursive function if the graph of f is definable in M by a parameter-free Σ₁-formula.
- **Theorem.** Suppose {*a*, *b*} ⊆ *N* with *a* < *b*. The following statements are equivalent:
- (1) $SSy(\mathcal{M}) = SSy(\mathcal{N})$, and for every parameter-free Δ_0 -formula $\delta(x, y)$ we have:

$$\mathcal{M} \models \forall x \exists y \ \delta(x, y) \Longrightarrow \mathcal{N} \models \exists y < b \ \delta(a, y).$$

• (2) There is some $c \in M$ such that for every parameter-free Δ_0 -formula $\delta(x, y)$ we have:

$$\mathcal{M} \models \exists y \delta(c, y) \Longrightarrow \mathcal{N} \models \exists y < b \ \delta(a, y).$$

通 と イ ヨ と イ ヨ と

- **Definition.** A (total) function f from M to M is a *total* \mathcal{M} -recursive function if the graph of f is definable in \mathcal{M} by a parameter-free Σ_1 -formula.
- **Theorem.** Suppose {*a*, *b*} ⊆ *N* with *a* < *b*. The following statements are equivalent:
- (1) $SSy(\mathcal{M}) = SSy(\mathcal{N})$, and for every parameter-free Δ_0 -formula $\delta(x, y)$ we have:

$$\mathcal{M} \models \forall x \exists y \ \delta(x, y) \Longrightarrow \mathcal{N} \models \exists y < b \ \delta(a, y).$$

• (2) There is some $c \in M$ such that for every parameter-free Δ_0 -formula $\delta(x, y)$ we have:

$$\mathcal{M} \models \exists y \delta(c, y) \Longrightarrow \mathcal{N} \models \exists y < b \ \delta(a, y).$$

• (3) There is an initial embedding $j : \mathcal{M} \to \mathcal{N}$ with $a < j(\mathcal{M}) < b$.

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

A B > A B >

• Theorem (Wilkie) . \mathcal{M} is isomorphic to arbitrarily high initial segments of \mathcal{N} iff $SSy(\mathcal{M}) = SSy(\mathcal{N})$ and $Th_{\Pi_2}(\mathcal{M}) \subseteq Th_{\Pi_2}(\mathcal{N})$.

- **Theorem** (Wilkie) . \mathcal{M} is isomorphic to arbitrarily high initial segments of \mathcal{N} iff $SSy(\mathcal{M}) = SSy(\mathcal{N})$ and $Th_{\Pi_2}(\mathcal{M}) \subseteq Th_{\Pi_2}(\mathcal{N})$.
- **Theorem.** Suppose {*a*, *b*} ⊆ *M* with *a* < *b*. The following statements are equivalent:

- **Theorem** (Wilkie) . \mathcal{M} is isomorphic to arbitrarily high initial segments of \mathcal{N} iff $SSy(\mathcal{M}) = SSy(\mathcal{N})$ and $Th_{\Pi_2}(\mathcal{M}) \subseteq Th_{\Pi_2}(\mathcal{N})$.
- **Theorem.** Suppose {*a*, *b*} ⊆ *M* with *a* < *b*. The following statements are equivalent:
- (1) There is an initial embedding $j : \mathcal{M} \to \mathcal{M}$ with $a < j(\mathcal{M}) < b$.

- **Theorem** (Wilkie) . \mathcal{M} is isomorphic to arbitrarily high initial segments of \mathcal{N} iff $SSy(\mathcal{M}) = SSy(\mathcal{N})$ and $Th_{\Pi_2}(\mathcal{M}) \subseteq Th_{\Pi_2}(\mathcal{N})$.
- **Theorem.** Suppose {*a*, *b*} ⊆ *M* with *a* < *b*. The following statements are equivalent:
- (1) There is an initial embedding $j : \mathcal{M} \to \mathcal{M}$ with $a < j(\mathcal{M}) < b$.
- (2) There is a cut I of \mathcal{M} with a < I < b and $\operatorname{Th}(\mathcal{M}) = \operatorname{Th}(I)$.

- **Theorem** (Wilkie) . \mathcal{M} is isomorphic to arbitrarily high initial segments of \mathcal{N} iff $SSy(\mathcal{M}) = SSy(\mathcal{N})$ and $Th_{\Pi_2}(\mathcal{M}) \subseteq Th_{\Pi_2}(\mathcal{N})$.
- **Theorem.** Suppose {*a*, *b*} ⊆ *M* with *a* < *b*. The following statements are equivalent:
- (1) There is an initial embedding $j : \mathcal{M} \to \mathcal{M}$ with $a < j(\mathcal{M}) < b$.
- (2) There is a cut I of \mathcal{M} with a < I < b and $\operatorname{Th}(\mathcal{M}) = \operatorname{Th}(I)$.
- (3) f(a) < b for all M-recursive functions f.

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

3

 Theorem (Tanaka) Every countable nonstandard model of WKL₀ has a nontrivial self-embedding in the following sense: given (M, A) ⊨ WKL₀, there is a proper initial segment I of M such that

$$(\mathcal{M}, \mathcal{A}) \cong (I, \mathcal{A} \upharpoonright I),$$

where $\mathcal{A} \upharpoonright I := \{A \cap I : A \in \mathcal{A}\}.$

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

3

• Our new proof has three stages, as outlined below.

∃ ►

- Our new proof has three stages, as outlined below.
- Stage I: Given a countable nonstandard model (M, A) of WKL₀, and a ∈ M in this stage we will first use the muscles of IΣ₁ in the form of the strong Σ₁-collection to locate an element b in M such that f(a) < b for all M-partial recursive functions of M.

- Our new proof has three stages, as outlined below.
- Stage I: Given a countable nonstandard model (M, A) of WKL₀, and a ∈ M in this stage we will first use the muscles of IΣ₁ in the form of the strong Σ₁-collection to locate an element b in M such that f(a) < b for all M-partial recursive functions of M.
- Stage 2 Outline: We build an end extension N of M such that (1) N ⊨ BΣ₁ + exp, (2) N is recursively saturated, and (3) f(a) < b for all N-partial recursive functions of M, and (4) SSy_M(N) = A.

- Our new proof has three stages, as outlined below.
- Stage I: Given a countable nonstandard model (M, A) of WKL₀, and a ∈ M in this stage we will first use the muscles of IΣ₁ in the form of the strong Σ₁-collection to locate an element b in M such that f(a) < b for all M-partial recursive functions of M.
- Stage 2 Outline: We build an end extension N of M such that (1) N ⊨ BΣ₁ + exp, (2) N is recursively saturated, and (3) f(a) < b for all N-partial recursive functions of M, and (4) SSy_M(N) = A.
- Stage 3 Outline: We use a fine-tuned version of Solovay's embedding theorem to embed N onto a proper initial segment J of M. By elementary considerations, this will yield a proper cut I of J with (M, A) ≅ (I, A ↾ I).

伺 ト イ ヨ ト イ ヨ ト

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

3

• Stage 2 Details: Fix some nonstandard $n^* \in M$ with $n^* >> b$ (e.g., $n^* = \operatorname{supexp}(b)$ is more than sufficient). Then by since \mathcal{M} satisfies $I\Sigma_1$ there is some element $c \in M$ that codes the fragment of $\mathbf{True}_{\Pi_1}^{\mathcal{M}}$ consisting of elements of $\mathbf{True}_{\Pi_1}^{\mathcal{M}}$ that are below n^* , i.e.,

$$c_E := \{ m \in M : m \in \mathbf{True}_{\Pi_1}^{\mathcal{M}} \text{ and } m < n^* \}.$$

 Stage 2 Details: Fix some nonstandard n^{*} ∈ M with n^{*} >> b (e.g., n^{*} = supexp(b) is more than sufficient). Then by since M satisfies IΣ₁ there is some element c ∈ M that codes the fragment of True^M_{Π1} consisting of elements of True^M_{Π1} that are below n^{*}, i.e.,

$$c_E := \{ m \in M : m \in \mathbf{True}_{\Pi_1}^{\mathcal{M}} \text{ and } m < n^* \}.$$

• We observe that c_E contains all sentences of the form $\exists y \ \delta(\overline{a}, y) \rightarrow \exists y < \overline{b} \ \delta(\overline{a}, y)$ that hold in \mathcal{M} , where δ is some Δ_0 -formula and \overline{a} and \overline{b} are names for a and b. Within \mathcal{M} , we define the "theory" T_0 by:

$$T_0 := \mathrm{I}\Delta_0 + \mathrm{B}\Sigma_1 + c.$$

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

3

• Next we rely on a result of Clote-Hájek-Paris that says $I\Sigma_1 \vdash Con(I\Delta_0 + B\Sigma_1 + True_{\Pi_1})$ in order to conclude: (*) $M \models Con(T_0)$.

4 B K 4 B K

- Next we rely on a result of Clote-Hájek-Paris that says IΣ₁ ⊢ Con(IΔ₀ + BΣ₁ + True_{Π1}) in order to conclude:
 (*) M ⊨ Con(T₀).
- We observe that T_0 has a Δ_1 -definition in \mathcal{M} . Hence by Δ_1^0 -comprehension available in WKL₀ we also have:

$$(**)$$
 $T_0 \in \mathcal{A}$.

A B > A B >

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

御下 ・ ヨト ・ ヨト

3

We wish to build a chain ⟨N_n : n ∈ ω⟩ of internal models within (M, A), i.e., the elementary diagram E_n := Th(N_n, a)_{a∈N_n} of each N_n is coded as a member of A; note that E_n has all sorts of nonstandard sentences. Enumerate A as ⟨A_n : n ∈ ω⟩. Our official requirements for ⟨N_n : n ∈ ω⟩ is that for each n ∈ ω we have:

(1)
$$\mathcal{N}_n \models T_0.$$

(2) $E_n \in \mathcal{A}.$
(3) $\mathcal{M} \subset_{\mathrm{end}} \mathcal{N}_n \prec \mathcal{N}_{n+1}.$
(4) $A_n \in \mathrm{SSy}_M(\mathcal{N}_{n+1}).$

- 4 E b 4 E b

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

• To begin with, we invoke (*), (**), and the completeness theorem for first order logic (available in WKL₀) to get hold of \mathcal{N}_0 .

- To begin with, we invoke (*), (**), and the completeness theorem for first order logic (available in WKL_0) to get hold of \mathcal{N}_0 .
- Given \mathcal{N}_n , we note that the following theory $\mathcal{T}_{n+1} \in \mathcal{A}$ since \mathcal{A} is a Turing ideal and \mathcal{T}_{n+1} is Turing reducible to the join of E_n and \mathcal{A}_n (in what follows d is a new constant symbol, and \overline{t} is the numeral representing t in the ambient model)

$$T_{n+1} := E_n + \{\overline{t} \in_{\mathsf{Ack}} d : t \in A_n\} + \{\overline{t} \notin_{\mathsf{Ack}} d : t \notin A_n\}.$$

- To begin with, we invoke (*), (**), and the completeness theorem for first order logic (available in WKL₀) to get hold of \mathcal{N}_0 .
- Given \mathcal{N}_n , we note that the following theory $\mathcal{T}_{n+1} \in \mathcal{A}$ since \mathcal{A} is a Turing ideal and \mathcal{T}_{n+1} is Turing reducible to the join of E_n and \mathcal{A}_n (in what follows d is a new constant symbol, and \overline{t} is the numeral representing t in the ambient model)

$$T_{n+1} := E_n + \{\overline{t} \in_{\mathsf{Ack}} d : t \in A_n\} + \{\overline{t} \notin_{\mathsf{Ack}} d : t \notin A_n\}.$$

It is easy to see that T_{n+1} is consistent in the sense of (M, A) since (M, A) can verify that T_{n+1} is finitely interpretable in N_n. This allows us to get hold of the desired N_{n+1} using the compactness theorem for first order logic that is available in WKL₀. The recursive saturation of N_{n+1} follows immediately from (2), using a well-known argument.

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

 Let N := ∪_{n∈ω} N_n. We are finished with the second stage of the proof since:

- Let N := ⋃_{n∈ω} N_n. We are finished with the second stage of the proof since:
- $\mathcal{N} \models I\Delta_0 + B\Sigma_1$, \mathcal{N} is recursively saturated, and f(a) < b for all \mathcal{N} -partial recursive functions f.

4 B K 4 B K

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

• Stage 3 Details: Thanks to (5), and the following fine-tuned version of Solovay's theorem, there is a self-embedding ϕ of \mathcal{N} onto a cut between a and b.

- Stage 3 Details: Thanks to (5), and the following fine-tuned version of Solovay's theorem, there is a self-embedding φ of N onto a cut between a and b.
- Theorem Suppose \mathcal{N} is a countable model of $I\Sigma_0 + B\Sigma_1$ that is recursively saturated, and there are a < b in \mathcal{N} such that f(a) < b for every \mathcal{N} -partial recursive function f. Then there is an initial embedding $\phi : \mathcal{N} \to \mathcal{N}$ with $\phi(a) = a$ and $a < \phi(\mathcal{N}) < b$.

- Stage 3 Details: Thanks to (5), and the following fine-tuned version of Solovay's theorem, there is a self-embedding φ of N onto a cut between a and b.
- Theorem Suppose \mathcal{N} is a countable model of $I\Sigma_0 + B\Sigma_1$ that is recursively saturated, and there are a < b in \mathcal{N} such that f(a) < b for every \mathcal{N} -partial recursive function f. Then there is an initial embedding $\phi : \mathcal{N} \to \mathcal{N}$ with $\phi(a) = a$ and $a < \phi(\mathcal{N}) < b$.
- Let J := φ(N), and I := φ(M). Then I < J < M. It is now easy to see that φ induces an embedding

$$\widehat{\phi}$$
: $(\mathcal{M}, \mathcal{A}) \rightarrow (I, \mathcal{A} \upharpoonright I),$

Controlling Fixed points (1)

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

同 ト イ ヨ ト イ ヨ ト

э

- Theorem. Suppose I is proper cut of M. The following conditions are equivalent.
 (1) There is an initial self-embedding j : M → M such that I_{fix}(j) = I.
 - (2) I is closed under exponentiation.

Controlling Fixed points (2)

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

□ ▶ < □ ▶ < □</p>

э

• **Theorem**. Suppose I is proper initial segment of \mathcal{M} . The following conditions are equivalent.

(1) There is an initial self-embedding $j : \mathcal{M} \to \mathcal{M}$ such that Fix(j) = I.

(2) I is a strong cut of \mathcal{M} , and $I \prec_{\Sigma_1} \mathcal{M}$.

ヨッ イヨッ イヨッ

Controlling Fixed points (3)

Ali Enayat (Report of Joint work with V. Yu. Shavrukov) Self-Embeddings of Models of Arithmetic, Redux

同 ト イ ヨ ト イ ヨ ト

- Theorem. The following conditions are equivalent.
 (1) There is an initial self-embedding j : M → M such that Fix(j) = K¹(M).
 - (2) \mathbb{N} is a strong cut of \mathcal{M} .

.