Full Satisfaction Classes in a General Setting

Albert Visser + Ali Enayat

Model Theory and Proof Theory of Arithemtic A Memorial Conference in Honor of Henryk Kotlarski and Zygmunt Ratajczyk

July 24, 2012, Bedlewo

æ

□ ▶ ▲ 臣 ▶ ▲ 臣

• Given a base theory B we wish to define certain canonical associated *satisfaction* theories here denoted B^{FS}, B^{IS}, and B^{FIS}, all of which are formulated in an *expansion* of the language \mathcal{L}_{B} by adding a new *binary* predicate S(*x*, *y*).

- Given a base theory B we wish to define certain canonical associated *satisfaction* theories here denoted B^{FS}, B^{IS}, and B^{FIS}, all of which are formulated in an *expansion* of the language \mathcal{L}_{B} by adding a new *binary* predicate S(*x*, *y*).
- Tarski(S, F) consists of the following axioms:

- Given a base theory B we wish to define certain canonical associated *satisfaction* theories here denoted B^{FS}, B^{IS}, and B^{FIS}, all of which are formulated in an *expansion* of the language \mathcal{L}_{B} by adding a new *binary* predicate S(*x*, *y*).
- Tarski(S, F) consists of the following axioms:
- tarski₀(S, F) := (F(x) \rightarrow Form(x)) \land (S(x, α) \rightarrow F(x) \land Asn(α , x)).

- Given a base theory B we wish to define certain canonical associated *satisfaction* theories here denoted B^{FS}, B^{IS}, and B^{FIS}, all of which are formulated in an *expansion* of the language \mathcal{L}_{B} by adding a new *binary* predicate S(*x*, *y*).
- Tarski(S, F) consists of the following axioms:
- tarski₀(S, F) := (F(x) \rightarrow Form(x)) \land (S(x, α) \rightarrow F(x) \land Asn(α , x)).
- $tarski_{1,R}(S,F) :=$

$$(\mathsf{F}(x) \land (x = \ulcorner R(t_0, \cdots, t_{n-1}) \urcorner) \land \mathsf{Asn}(\alpha, x)) \rightarrow \\ (\mathsf{S}(x, \alpha) \leftrightarrow R([\alpha]_{t_0} \cdots, [\alpha]_{t_{n-1}})) .$$

Albert Visser + Ali Enayat Full Satisfaction Classes in a General Setting

æ

□ ▶ ▲ 臣 ▶ ▲ 臣

• tarski₂(S, F) :=
$$\begin{pmatrix} F(x) \land (x = \neg y \neg) \land \\ Asn(\alpha, x) \end{pmatrix} \rightarrow (S(x, \alpha) \leftrightarrow \neg S(y, \alpha)).$$

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

• tarski₂(S, F) :=
$$\begin{pmatrix} F(x) \land (x = \neg y \neg) \land \\ Asn(\alpha, x) \end{pmatrix} \rightarrow (S(x, \alpha) \leftrightarrow \neg S(y, \alpha)).$$

 $\bullet \ \mathsf{tarski}_3(\mathsf{S},\mathsf{F}) :=$

$$\begin{pmatrix} \mathsf{F}(x) \land (x = \ulcorner y_1 \lor y_2 \urcorner) \land \\ \mathsf{Asn}(\alpha, x) \end{pmatrix} \rightarrow \\ \begin{pmatrix} \mathsf{S}(x, \alpha) \leftrightarrow \begin{pmatrix} \mathsf{S}(y_1, \alpha \upharpoonright \mathsf{FV}(y_1)) \lor \\ \mathsf{S}(y_2, \alpha \upharpoonright \mathsf{FV}(y_2)) \end{pmatrix} \end{pmatrix}.$$

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

• tarski₂(S, F) :=
$$\begin{pmatrix} F(x) \land (x = \neg y \neg) \land \\ Asn(\alpha, x) \end{pmatrix} \rightarrow (S(x, \alpha) \leftrightarrow \neg S(y, \alpha)).$$

• $tarski_3(S, F) :=$

$$\begin{pmatrix} \mathsf{F}(x) \land (x = \ulcorner y_1 \lor y_2 \urcorner) \land \\ \mathsf{Asn}(\alpha, x) \end{pmatrix} \rightarrow \\ \left(\mathsf{S}(x, \alpha) \leftrightarrow \begin{pmatrix} \mathsf{S}(y_1, \alpha \upharpoonright \mathsf{FV}(y_1)) \lor \\ \mathsf{S}(y_2, \alpha \upharpoonright \mathsf{FV}(y_2)) \end{pmatrix} \right).$$

• tarski₄(S, F) :=

$$\begin{pmatrix} \mathsf{F}(x) \land (x = \ulcorner \exists v_i \ y \urcorner) \land \\ \mathsf{Asn}(\alpha, x) \end{pmatrix} \rightarrow \\ \begin{pmatrix} \mathsf{S}(x, \alpha) \leftrightarrow \\ \exists \alpha' (\alpha \sim_{v_i} \alpha' \land \mathsf{S}(y, \alpha')) \end{pmatrix}.$$

伺 ト イヨト イヨト

æ

$B^{FS},\ B^{IS},\ and\ \underline{B}^{FIS}$

・ロト ・回ト ・ヨト ・ヨト

æ

• $B^{FS} := B \cup Tarski(S, Form)$.

æ

- $B^{FS} := B \cup Tarski(S, Form)$.
- B^{IS} := B ∪ {Tarski (S, Form_n) : n ∈ ω} ∪ Ind(S), where Form_n is the collection of formulas L_B with quantifier alternation depth at most n and Ind(S) is the full scheme of induction on N in the language L_B(S) := L_B ∪ {S}.

- $B^{FS} := B \cup Tarski(S, Form)$.
- B^{IS} := B ∪ {Tarski (S, Form_n) : n ∈ ω} ∪ Ind(S), where Form_n is the collection of formulas L_B with quantifier alternation depth at most n and Ind(S) is the full scheme of induction on N in the language L_B(S) := L_B ∪ {S}.

•
$$B^{FIS} := B^{FS} \cup Ind(S) = B^{FS} \cup B^{IS}$$
.

Albert Visser + Ali Enayat Full Satisfaction Classes in a General Setting

æ

< ≝ ► < ≣

• Suppose $\mathcal{M} \models B$, $F \subseteq \text{Form}^{\mathcal{M}}$, where F is *closed under direct subformulas*, and let S be a binary relation on M.

- Suppose $\mathcal{M} \models B$, $F \subseteq Form^{\mathcal{M}}$, where F is closed under direct subformulas, and let S be a binary relation on M.
- S is an F-satisfaction class if $(\mathcal{M}, S, F) \models \text{Tarski}(S, F)$.

- Suppose *M* ⊨ B, *F* ⊆ Form^{*M*}, where *F* is closed under direct subformulas, and let *S* be a binary relation on *M*.
- S is an *F*-satisfaction class if $(\mathcal{M}, S, F) \models \text{Tarski}(S, F)$.
- If F=Form^M ∩ ω, then we say that F is the set of standard L_B-formulas of M. In this case there is a unique F-satisfaction class on M, which we refer to as the Tarskian satisfaction class on M.

- Suppose *M* ⊨ B, *F* ⊆ Form^{*M*}, where *F* is closed under direct subformulas, and let *S* be a binary relation on *M*.
- S is an *F*-satisfaction class if $(\mathcal{M}, S, F) \models \text{Tarski}(S, F)$.
- If F=Form^M ∩ ω, then we say that F is the set of standard L_B-formulas of M. In this case there is a unique F-satisfaction class on M, which we refer to as the Tarskian satisfaction class on M.
- S is a full satisfaction class on M if S is an F-satisfaction class for F := Form^M. This is equivalent to (M, S) ⊨ B^{FS}.

- Suppose *M* ⊨ B, *F* ⊆ Form^{*M*}, where *F* is closed under direct subformulas, and let *S* be a binary relation on *M*.
- S is an *F*-satisfaction class if $(\mathcal{M}, S, F) \models \text{Tarski}(S, F)$.
- If F=Form^M ∩ ω, then we say that F is the set of standard L_B-formulas of M. In this case there is a unique F-satisfaction class on M, which we refer to as the Tarskian satisfaction class on M.
- S is a full satisfaction class on M if S is an F-satisfaction class for F := Form^M. This is equivalent to (M, S) ⊨ B^{FS}.
- S is a satisfaction class on M, if either (i) M is ω-standard and S is the usual Tarskian satisfaction relation Sat_M on M; or M is not ω-standard and there is some nonstandard integer c of M such that the expansion (M, S, F_{≤c}) ⊨ Tarski(S, F).

- Suppose *M* ⊨ B, *F* ⊆ Form^{*M*}, where *F* is closed under direct subformulas, and let *S* be a binary relation on *M*.
- S is an F-satisfaction class if $(\mathcal{M}, S, F) \models \text{Tarski}(S, F)$.
- If F=Form^M ∩ ω, then we say that F is the set of standard L_B-formulas of M. In this case there is a unique F-satisfaction class on M, which we refer to as the Tarskian satisfaction class on M.
- S is a full satisfaction class on M if S is an F-satisfaction class for F := Form^M. This is equivalent to (M, S) ⊨ B^{FS}.
- S is a satisfaction class on M, if either (i) M is ω-standard and S is the usual Tarskian satisfaction relation Sat_M on M; or M is not ω-standard and there is some nonstandard integer c of M such that the expansion (M, S, F_{≤c}) ⊨ Tarski(S, F).
- A satisfaction class S on \mathcal{M} is said to be an *inductive* satisfaction class on \mathcal{M} if $(\mathcal{M}, S) \models B^{IS}$.

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

 A base theory B is strongly reflexive if B is bi-interpretable with the theory T_B formulated in the language of set theory {∈} such that T satisfies the following two properties; note that property (a) implies that B is an *inductive* base theory.

(a) $T_B \vdash KP + Ind + Infinity$, where KP is Kripke-Platek set theory.

(b) For each sentence φ in the language of set theory, $T_{\rm B}$ proves the implication

$$\varphi \to \exists x \ \varphi^{(x)},$$

where x does not occur in φ and $\varphi^{(x)}$ is the formula obtained by relativizing all of the quantifiers of φ to x.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

• **Examples.** Any extension (in the same language) of the following theories is strongly reflexive.

• • = • • = •

э

- **Examples.** Any extension (in the same language) of the following theories is strongly reflexive.
- Zermelo-Fraenkel set theory ZF.

- **Examples.** Any extension (in the same language) of the following theories is strongly reflexive.
- Zermelo-Fraenkel set theory ZF.
- Second Order Arithmetic Z_2 augmented with the full scheme Π^1_∞ -DC of dependent choice.

- **Examples.** Any extension (in the same language) of the following theories is strongly reflexive.
- Zermelo-Fraenkel set theory ZF.
- Second Order Arithmetic Z_2 augmented with the full scheme Π^1_∞ -DC of dependent choice.
- Kelley-Morse theory of classes KM augmented with the full scheme Π¹_∞-DC of dependent choice.

- **Examples.** Any extension (in the same language) of the following theories is strongly reflexive.
- Zermelo-Fraenkel set theory ZF.
- Second Order Arithmetic Z_2 augmented with the full scheme Π^1_∞ -DC of dependent choice.
- Kelley-Morse theory of classes KM augmented with the full scheme Π¹_∞-DC of dependent choice.
- **Theorem.** Every model \mathcal{M} of a strongly reflexive theory base theory B is elementarily equivalent to a model \mathcal{N} that carries a full **inductive** satisfaction class S.

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

• **Corollary.** Every countable recursively saturated model of a strongly reflexive base theory carries an inductive full satisfaction class.

- **Corollary.** Every countable recursively saturated model of a strongly reflexive base theory carries an inductive full satisfaction class.
- Corollary (Conservativity Results).
 (a) B^{FS} + Ind(S) is conservative over B for every strongly reflexive base theory B.

(b) $ZF^{FS} + Sep(S)$ is a conservative extension of ZF.

The Core Construction (1)

< ≝ ► < ≣

æ

The Core Construction (1)

• Core Lemma. Let $\mathcal{N}_0 \models B$ and suppose S_0 is an F_0 -satisfaction class, where $F_0 \subseteq F_1 := \text{Form}^{\mathcal{N}_0}$. Then there is an elementary extension \mathcal{N}_1 of \mathcal{N}_0 that carries an F_1 -satisfaction class $S_1 \supseteq S_0$.

- Core Lemma. Let $\mathcal{N}_0 \models B$ and suppose S_0 is an F_0 -satisfaction class, where $F_0 \subseteq F_1 := \text{Form}^{\mathcal{N}_0}$. Then there is an elementary extension \mathcal{N}_1 of \mathcal{N}_0 that carries an F_1 -satisfaction class $S_1 \supseteq S_0$.
- **Proof:** Let $\mathcal{L}_{B}^{+}(\mathcal{N}_{0})$ be the language obtained by enriching \mathcal{L}_{B} with constant symbols for each member of N_{0} , and new *unary* predicates U_{c} for each $c \in \text{Form}^{\mathcal{N}_{0}}$.

The Core Construction (2)

<> E ► < E</p>

æ
• If
$$R \in \mathcal{L}_{\mathsf{B}}$$
 and $\mathcal{N}_{0} \models c = \ulcorner R(t_{0}, \cdots, t_{n-1})\urcorner$, then
 $\theta_{c} := \forall \alpha \left(\mathsf{U}_{c}(\alpha) \leftrightarrow \alpha \in A_{c} \land R([\alpha]_{t_{0}}, \cdots, [\alpha]_{t_{n-1}}) \right).$

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

• If
$$R \in \mathcal{L}_{\mathsf{B}}$$
 and $\mathcal{N}_{\mathsf{0}} \models c = \lceil R(t_0, \cdots, t_{n-1}) \rceil$, then
 $\theta_c := \forall \alpha \left(\mathsf{U}_c(\alpha) \leftrightarrow \alpha \in A_c \land R([\alpha]_{t_0}, \cdots, [\alpha]_{t_{n-1}}) \right).$

• If $\mathcal{N} \models c = \ulcorner \neg d \urcorner$ then

$$\theta_{c} := \forall \alpha \left(\mathsf{U}_{c}(\alpha) \leftrightarrow \alpha \in \mathcal{A}_{c} \land \neg \mathsf{U}_{d}(\alpha) \right).$$

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ …

• If
$$R \in \mathcal{L}_{B}$$
 and $\mathcal{N}_{0} \models c = \lceil R(t_{0}, \dots, t_{n-1}) \rceil$, then
 $\theta_{c} := \forall \alpha \left(\bigcup_{c}(\alpha) \leftrightarrow \alpha \in A_{c} \land R([\alpha]_{t_{0}}, \dots, [\alpha]_{t_{n-1}}) \right).$
• If $\mathcal{N} \models c = \lceil \neg d \rceil$ then
 $\theta_{c} := \forall \alpha \left(\bigcup_{c}(\alpha) \leftrightarrow \alpha \in A_{c} \land \neg \bigcup_{d}(\alpha) \right).$
• If $\mathcal{N} \models c = \lceil d_{1} \lor d_{2} \rceil$, then
 $\theta_{c} :=$
 $\forall \alpha \left(\bigcup_{c}(\alpha) \leftrightarrow \alpha \in A_{c} \land \left(\bigcup_{d_{1}}(\alpha \upharpoonright \mathsf{FV}(d_{1})) \lor \bigcup_{d_{2}}(\alpha \upharpoonright \mathsf{FV}(d_{2})) \right) \right).$

< ∃ →

э

<> E ► < E</p>

< ≝ ► < ≣

 We now proceed to show that Th⁺(N₀) is consistent by demonstrating that each finite subset of Th⁺(N₀) is interpretable in (N₀, S₀).

- We now proceed to show that Th⁺(N₀) is consistent by demonstrating that each finite subset of Th⁺(N₀) is interpretable in (N₀, S₀).
- To this end, suppose T_0 is a finite subset of $Th^+(\mathcal{N}_0)$ and let C consist of the collection of constants c that appear in at least one of the sentences in $T_0 \cap \Theta$. If $C = \emptyset$, T_0 is readily seen to be consistent, so we shall assume that $C \neq \emptyset$ for the rest of the argument.

- We now proceed to show that Th⁺(N₀) is consistent by demonstrating that each finite subset of Th⁺(N₀) is interpretable in (N₀, S₀).
- To this end, suppose T_0 is a finite subset of $Th^+(\mathcal{N}_0)$ and let C consist of the collection of constants c that appear in at least one of the sentences in $T_0 \cap \Theta$. If $C = \emptyset$, T_0 is readily seen to be consistent, so we shall assume that $C \neq \emptyset$ for the rest of the argument.
- Our goal is to construct subsets {U_c : c ∈ C} of N₀ such that the following two conditions hold when U_c, is interpreted by U_c:

(1)
$$(\mathcal{N}_0, U_c)_{c \in C} \models \{\theta_c : c \in C\}$$
 and

(2)
$$\alpha \in U_c$$
 whenever $c \in C \cap F_0$ and $(c, \alpha) \in S_0$.

- We now proceed to show that Th⁺(N₀) is consistent by demonstrating that each finite subset of Th⁺(N₀) is interpretable in (N₀, S₀).
- To this end, suppose T_0 is a finite subset of $Th^+(\mathcal{N}_0)$ and let C consist of the collection of constants c that appear in at least one of the sentences in $T_0 \cap \Theta$. If $C = \emptyset$, T_0 is readily seen to be consistent, so we shall assume that $C \neq \emptyset$ for the rest of the argument.
- Our goal is to construct subsets {U_c : c ∈ C} of N₀ such that the following two conditions hold when U_c, is interpreted by U_c:

(1)
$$(\mathcal{N}_0, U_c)_{c \in C} \models \{\theta_c : c \in C\}$$
 and

(2) $\alpha \in U_c$ whenever $c \in C \cap F_0$ and $(c, \alpha) \in S_0$.

We shall construct {U_c : c ∈ C} in stages, beginning with the simplest formulas in C, and working our way up using Tarski rules for more complex ones.

▶ < E ▶ < E</p>

• Let $c \triangleleft d$ express "*c* is a direct subformula of *d*".

- **→** → **→**

- 🔹 🖻

- Let $c \triangleleft d$ express "*c* is a direct subformula of *d*".
- Define \triangleleft^* on *C* by:

$$c \lhd^* d$$
 iff $(c \lhd d)^{\mathcal{N}_0}$ and $\theta_d \in T_0 \cap \Theta$.

- ∢ ⊒ →

/₽ ► < ∃ ►

< ≝ ► < ≣

 The finiteness of C implies that (C, ⊲*) is well-founded, which in turn helps us define a useful measure of complexity for c ∈ C using the following recursive definition:

 The finiteness of C implies that (C, ⊲*) is well-founded, which in turn helps us define a useful measure of complexity for c ∈ C using the following recursive definition:

• $\operatorname{rank}_{C}(x) := \sup \{ \operatorname{rank}_{C}(y) + 1 : x \in C \text{ and } (y \triangleleft^{*} x)^{\mathcal{N}_{0}} \}.$

 The finiteness of C implies that (C, ⊲*) is well-founded, which in turn helps us define a useful measure of complexity for c ∈ C using the following recursive definition:

• $\operatorname{rank}_{C}(x) := \sup \{ \operatorname{rank}_{C}(y) + 1 : x \in C \text{ and } (y \triangleleft^{*} x)^{\mathcal{N}_{0}} \}.$

• Note that rank_G(c) = 0 precisely when there is no $x \in C$ such that $(x \triangleleft^* c)^{\mathcal{N}_0}$.

 The finiteness of C implies that (C, ⊲*) is well-founded, which in turn helps us define a useful measure of complexity for c ∈ C using the following recursive definition:

• $\operatorname{rank}_{C}(x) := \sup \{ \operatorname{rank}_{C}(y) + 1 : x \in C \text{ and } (y \triangleleft^{*} x)^{\mathcal{N}_{0}} \}.$

- Note that rank_G(c) = 0 precisely when there is no $x \in C$ such that $(x \triangleleft^* c)^{\mathcal{N}_0}$.
- Next,let

$$C_i := \{x \in C : \mathsf{rank}_C(x)\} \le i\}.$$

 The finiteness of C implies that (C, ⊲*) is well-founded, which in turn helps us define a useful measure of complexity for c ∈ C using the following recursive definition:

• $\operatorname{rank}_{C}(x) := \sup \{ \operatorname{rank}_{C}(y) + 1 : x \in C \text{ and } (y \triangleleft^{*} x)^{\mathcal{N}_{0}} \}.$

- Note that rank_G(c) = 0 precisely when there is no $x \in C$ such that $(x \triangleleft^* c)^{\mathcal{N}_0}$.
- Next,let

$$C_i := \{x \in C : \operatorname{rank}_C(x)\} \le i\}.$$

• Observe that since C is finite, $C_0 \neq \emptyset$, and $c \in C_0$ iff $c \in C$ and C does not contain the code of any subformula of the formula coded by c. Moreover, if $c \in C_{i+1}$, then the codes of every immediate subformula of the formula coded by c are in C_i . This observation ensures that the following recursive clauses yield a well-defined U_c for each $c \in C$.

< ≝ ► < ≣

• If
$$c \in C_0$$
 then $U_c := \begin{cases} \{\alpha : (c, \alpha) \in S_0\}, \text{ if } c \in F_0; \\ U_c := \emptyset, \text{ if } c \notin F_0. \end{cases}$

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

• If
$$c \in C_0$$
 then $U_c := \begin{cases} \{\alpha : (c, \alpha) \in S_0\}, \text{ if } c \in F_0; \\ U_c := \emptyset, \text{ if } c \notin F_0. \end{cases}$

• If $c \in C_{i+1} \setminus C_i$ and $\ulcorner c = \neg d \urcorner$, then

$$U_{c} := \left\{ \alpha \in A_{c} : \alpha \notin U_{d} \right\}.$$

- ∢ ⊒ →

/₽ ► < ∃ ►

э

• If
$$c \in C_0$$
 then $U_c := \begin{cases} \{\alpha : (c, \alpha) \in S_0\}, \text{ if } c \in F_0; \\ U_c := \emptyset, \text{ if } c \notin F_0. \end{cases}$

• If $c \in C_{i+1} \setminus C_i$ and $\ulcorner c = \neg d \urcorner$, then

$$U_c := \{ \alpha \in A_c : \alpha \notin U_d \}.$$

• If $c \in C_{i+1} \setminus C_i$ and $c = \lceil a \lor b \rceil$, then

 $U_c := \{ \alpha \in A_c : \alpha \upharpoonright \mathsf{FV}(a) \in U_a \text{ or } \alpha \upharpoonright \mathsf{FV}(b) \in U_b \}.$

• If
$$c \in C_0$$
 then $U_c := \begin{cases} \{\alpha : (c, \alpha) \in S_0\}, \text{ if } c \in F_0; \\ U_c := \emptyset, \text{ if } c \notin F_0. \end{cases}$

• If $c \in C_{i+1} ackslash C_i$ and $\ulcorner c = \neg d \urcorner$, then

$$U_c := \{ \alpha \in A_c : \alpha \notin U_d \}.$$

• If
$$c \in C_{i+1} \setminus C_i$$
 and $c = \ulcorner a \lor b\urcorner$, then

$$U_c := \{ \alpha \in A_c : \alpha \upharpoonright \mathsf{FV}(a) \in U_a \text{ or } \alpha \upharpoonright \mathsf{FV}(b) \in U_b \}.$$

• If
$$c \in C_{i+1} \setminus C_i$$
 and $c = \lceil \exists v_a \ b \rceil$, then

$$U_{c} := \left\{ \alpha \in A_{c} : \exists \alpha' \in N \ (\alpha \sim_{v_{a}} \alpha' \text{ and } \alpha \in U_{b} \right\}.$$

- ∢ ⊒ →

/₽ ► < ∃ ►

э

< ≝ ► < ≣

• Core Theorem. Let \mathcal{M}_0 be a model of B of any cardinality. There is an elementary extension \mathcal{M} of \mathcal{M}_0 that admits a full satisfaction class.

- **Core Theorem.** Let \mathcal{M}_0 be a model of B of any cardinality. There is an elementary extension \mathcal{M} of \mathcal{M}_0 that admits a full satisfaction class.
- Proof: Let F₀ be the set of *atomic N*-formulas and let S₀ be the obvious satisfaction predicate for F₀. Then by the Lemma there is an elementary extension *M*₁ of *M*₀ that carries a Form^{M0}_B satisfaction class. Thanks to Lemma 3.1, this argument can be carried out countably many times to yield two sequences ⟨*M_i* : *i* ∈ ω⟩ and ⟨*S_i* : *i* ∈ ω⟩ that satisfy the following two properties:

- Core Theorem. Let \mathcal{M}_0 be a model of B of any cardinality. There is an elementary extension \mathcal{M} of \mathcal{M}_0 that admits a full satisfaction class.
- Proof: Let F₀ be the set of *atomic N*-formulas and let S₀ be the obvious satisfaction predicate for F₀. Then by the Lemma there is an elementary extension *M*₁ of *M*₀ that carries a Form^{M0}_B satisfaction class. Thanks to Lemma 3.1, this argument can be carried out countably many times to yield two sequences ⟨*M_i* : *i* ∈ ω⟩ and ⟨*S_i* : *i* ∈ ω⟩ that satisfy the following two properties:
- (1) $\mathcal{M}_i \prec \mathcal{M}_{i+1};$

- **Core Theorem.** Let \mathcal{M}_0 be a model of B of any cardinality. There is an elementary extension \mathcal{M} of \mathcal{M}_0 that admits a full satisfaction class.
- Proof: Let F₀ be the set of *atomic* N-formulas and let S₀ be the obvious satisfaction predicate for F₀. Then by the Lemma there is an elementary extension M₁ of M₀ that carries a Form^{M0}_B satisfaction class. Thanks to Lemma 3.1, this argument can be carried out countably many times to yield two sequences ⟨M_i : i ∈ ω⟩ and ⟨S_i : i ∈ ω⟩ that satisfy the following two properties:
- (1) $\mathcal{M}_i \prec \mathcal{M}_{i+1}$;
- (2) S_{i+1} is a Form^{M_i}-satisfaction class on M_{i+1} for each $i \in \omega$.

- Core Theorem. Let \mathcal{M}_0 be a model of B of any cardinality. There is an elementary extension \mathcal{M} of \mathcal{M}_0 that admits a full satisfaction class.
- Proof: Let F₀ be the set of *atomic* N-formulas and let S₀ be the obvious satisfaction predicate for F₀. Then by the Lemma there is an elementary extension M₁ of M₀ that carries a Form^{M0}_B satisfaction class. Thanks to Lemma 3.1, this argument can be carried out countably many times to yield two sequences ⟨M_i : i ∈ ω⟩ and ⟨S_i : i ∈ ω⟩ that satisfy the following two properties:
- (1) $\mathcal{M}_i \prec \mathcal{M}_{i+1}$;
- (2) S_{i+1} is a Form^{M_i}-satisfaction class on M_{i+1} for each $i \in \omega$.

•
$$\mathcal{M} := \bigcup_{i \in \omega} \mathcal{M}_i$$
, and $S := \bigcup_{i \in \omega} S_i$.

< ≝ ► < ≣

• **Corollary.** B^{FS} is a conservative extension of B for every base theory B.

- **Corollary.** B^{FS} is a conservative extension of B for every base theory B.
- Theorem. Let <_⊥ be a B-definable linear order on N in the sense of B. Every model of B has an elementary extension to a model that expands to B^{FS}_⊥. Consequently, B^{FS}_⊥ is conservative over B for every base theory.

The Arithmetization of the Core Construction (1)

- ∢ ⊒ →

< ∃ >

э

Definition.

(a) Suppose \mathcal{M} is a model of some base theory, and \mathcal{N} is a structure in a finite language \mathcal{L} . \mathcal{N} is strongly interpretable in \mathcal{M} if \mathcal{M} can interpret an isomorphic copy \mathcal{N}_0 of \mathcal{N} ; and moreover there is an \mathcal{M} -definable F-satisfaction class S on \mathcal{N}_0 , where F is the collection of all \mathcal{L} -formulas in the sense of \mathcal{M} .

Definition.

(a) Suppose \mathcal{M} is a model of some base theory, and \mathcal{N} is a structure in a finite language \mathcal{L} . \mathcal{N} is strongly interpretable in \mathcal{M} if \mathcal{M} can interpret an isomorphic copy \mathcal{N}_0 of \mathcal{N} ; and moreover there is an \mathcal{M} -definable *F*-satisfaction class *S* on \mathcal{N}_0 , where *F* is the collection of all \mathcal{L} -formulas in the sense of \mathcal{M} .

 (b) B strongly interprets B^{FS}₀, i.e., every model M ⊨ B strongly interprets a structure (N, S) ⊨ B^{FS}₀ in a uniform manner.
Definition.

(a) Suppose \mathcal{M} is a model of some base theory, and \mathcal{N} is a structure in a finite language \mathcal{L} . \mathcal{N} is *strongly interpretable* in \mathcal{M} if \mathcal{M} can interpret an isomorphic copy \mathcal{N}_0 of \mathcal{N} ; and moreover there is an \mathcal{M} -definable F-satisfaction class S on \mathcal{N}_0 , where F is the collection of all \mathcal{L} -formulas in the sense of \mathcal{M} .

- (b) B strongly interprets B^{FS}₀, i.e., every model M ⊨ B strongly interprets a structure (N, S) ⊨ B^{FS}₀ in a uniform manner.
- Theorem. Suppose B is an inductive base theory such that B ⊢ Con(B₀), where B₀ is some r.e. base theory. Then B strongly interprets B₀^{FS}.

The Arithmetization of the Core Construction (2)

- ∢ ⊒ →

∃ >

э

- Corollary. If B is an inductive theory, then:
 - 1. $B \vdash Con(B_0^{FS})$ for every finitely axiomatized base theory $B_0 \subseteq B$.

- Corollary. If B is an inductive theory, then:
 - 1. $B \vdash \mathsf{Con}(\mathsf{B}_0^{\mathsf{FS}})$ for every finitely axiomatized base theory $\mathsf{B}_0 \subseteq \mathsf{B}.$
- 2. B^{IS} and B^{FS} are not finitely axiomatizable for inductive base theories B.

The Arithmetization of the Core Construction (3)

- ∢ ⊒ →

< ∃ >

э

• **Theorem.** The following statement (*) is provable within WKL₀ :

(*) Every consistent base theory B has a model \mathcal{M} that carries a full satisfaction class S and which has the property that the Tarskian satisfaction relation of (\mathcal{M}, S) is coded by some $X \subseteq \omega$.

• **Theorem.** The following statement (*) is provable within WKL₀ :

(*) Every consistent base theory B has a model \mathcal{M} that carries a full satisfaction class S and which has the property that the Tarskian satisfaction relation of (\mathcal{M}, S) is coded by some $X \subseteq \omega$.

• **Theorem.** PRA ⊢ "B^{FS} is conservative over B" for every r.e. base theory B.

Pathological Satisfaction Classes

- ∢ ≣ ▶

- ∢ ≣ →

Pathological Satisfaction Classes

• **Definition.** For any standard formula σ of \mathcal{L}_B , and for each $a \in \mathbb{N}^{\mathcal{M}}$, where \mathcal{M} is some prescribed model of B, the 'formula' σ_a is defined by internal recursion in \mathcal{M}_0 via $\sigma_0 := \sigma$; and $\sigma_{n+1} := \sigma_n \vee \sigma_n$.

- **Definition.** For any standard formula σ of \mathcal{L}_B , and for each $a \in \mathbb{N}^{\mathcal{M}}$, where \mathcal{M} is some prescribed model of B, the 'formula' σ_a is defined by internal recursion in \mathcal{M}_0 via $\sigma_0 := \sigma$; and $\sigma_{n+1} := \sigma_n \vee \sigma_n$.
- Theorem. Let σ := ∃v₀ (v₀ = v₀) (or σ = any other logically valid sentence), and M₀ be a model of B of any cardinality. Then M₀ has an elementary extension M that carries a full satisfaction class S such that

$$\{a \in \mathbb{N}^{\mathcal{M}} : \sigma_a \text{ is } S\text{-valid}\} = \omega.$$

Desirable Satisfaction Classes (1)

< ∃ > < ∃ >

• **Theorem.** Let $M_0 \models B$, where B is a base theory. There is an elementary extension M of M_0 that carries full satisfaction classes S_1, S_2 , and S_3 such that:

- **Theorem.** Let $M_0 \models B$, where B is a base theory. There is an elementary extension M of M_0 that carries full satisfaction classes S_1, S_2 , and S_3 such that:
- (1): S₁ is schematically correct;

- **Theorem.** Let $M_0 \models B$, where B is a base theory. There is an elementary extension M of M_0 that carries full satisfaction classes S_1, S_2 , and S_3 such that:
- (1): S₁ is schematically correct;
- (2): S_2 is both existentially and disjunctively correct; and

- **Theorem.** Let $M_0 \models B$, where B is a base theory. There is an elementary extension M of M_0 that carries full satisfaction classes S_1, S_2 , and S_3 such that:
- (1): S₁ is schematically correct;
- (2): S_2 is both existentially and disjunctively correct; and
- (3): S_3 is both extensional and alphabetically correct.

Desirable Satisfaction Classes (2)

< ∃ > < ∃ >

• Moreover, if B is an **inductive** base theory, then M carries a full satisfaction class S₄ such that:

(4) : S_4 is $\Sigma_{B,\infty}$ -correct,

• Moreover, if B is an **inductive** base theory, then M carries a full satisfaction class S₄ such that:

(4) : S_4 is $\Sigma_{B,\infty}$ -correct,

and there is a family {S_{5,s} : s ∈ N^M} of full satisfaction classes on M such that for each s ∈ N^M there is a cut I of N^M with I ⊨ PA with s ∈ I such that:

 $(\mathbf{5}_{s})$: $S_{5,s}$ is *l*-deductively correct.

Interpretability Issues (1)

æ

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Let ACA be the strengthening of ACA_0 with the full scheme of induction. It has been long known that ACA and PA^{FIS} are 'proof-theoretically equivalent'. The result below provides a more precise relationship between the two theories.

- Let ACA be the strengthening of ACA_0 with the full scheme of induction. It has been long known that ACA and PA^{FIS} are 'proof-theoretically equivalent'. The result below provides a more precise relationship between the two theories.
- **Theorem.** There is a sentence σ in the language of ACA₀ such that PA^{FIS} and ACA + σ are bi-interpretable.

- Let ACA be the strengthening of ACA_0 with the full scheme of induction. It has been long known that ACA and PA^{FIS} are 'proof-theoretically equivalent'. The result below provides a more precise relationship between the two theories.
- **Theorem.** There is a sentence σ in the language of ACA₀ such that PA^{FIS} and ACA + σ are bi-interpretable.
- **Theorem.** B^{IS} and B^{FS} are both interpretable in B for every **inductive** recursively axiomatizable base theory B.

Interpretability Issues (2)

(E)

• Theorem (Interpretability among PA, PA^{IS} , PA^{FS} , and ACA_0).

▶ < ∃ ▶</p>

- ∢ ⊒ →

э

- Theorem (Interpretability among PA, PA^{IS} , PA^{FS} , and ACA_0).
- (a) The theories {PA, PA^{IS}, PA^{FS}} are mutually interpretable.

- Theorem (Interpretability among PA, PA^{IS} , PA^{FS} , and ACA_0).
- (a) The theories {PA, PA^{IS}, PA^{FS}} are mutually interpretable.
- (b) Each of the theories {PA, PA^{IS}, PA^{FS}} is interpretable in ACA₀, but none of them interprets ACA₀.
- (c) No pair of the theories {PA, PA^{FS}, PA^{IS}, ACA₀} are bi-interpretable.

Interpretability Issues (3)

æ

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• **Theorem.** If B is a consistent **finitely axiomatizable** base theory, then neither B^{IS} nor B^{FS} is interpretable in B.