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On Tarski(S,F)

Given a base theory B we wish to define certain canonical
associated satisfaction theories here denoted BFS, BIS, and
BFIS, all of which are formulated in an expansion of the
language LB by adding a new binary predicate S(x , y).

Tarski(S,F) consists of the following axioms:

tarski0(S,F) :=
(F(x)→ Form(x)) ∧ (S(x , α)→ F(x) ∧ Asn(α, x)) .

tarski1,R(S,F) :=

(F(x) ∧ (x = pR (t0, · · ·, tn−1)q) ∧ Asn(α, x))→(
S(x , α)↔ R

(
[α]t0 · ··, [α]tn−1

))
.
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On Tarski(S,F), continued

tarski2(S,F) :=

(
F(x) ∧ (x = p¬yq)∧

Asn(α, x)

)
→

(S(x , α)↔ ¬S(y , α)) .

tarski3(S,F) :=(
F(x) ∧ (x = py1 ∨ y2q)∧

Asn(α, x)

)
→(

S(x , α)↔
(

S (y1, α � FV(y1))∨
S (y2, α � FV(y2))

))
.

tarski4(S,F) :=(
F(x) ∧ (x = p∃vi yq)∧

Asn(α, x)

)
→(

S(x , α)↔
∃α′ (α ∼vi α

′ ∧ S(y , α′))

)
.
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BFS, BIS, and BFIS

BFS := B ∪ Tarski (S,Form) .

BIS := B ∪ {Tarski (S,Formn) : n ∈ ω} ∪ Ind(S), where Formn

is the collection of formulas LB with quantifier alternation
depth at most n and Ind(S) is the full scheme of induction on
N in the language LB(S) := LB ∪ {S}.

BFIS := BFS ∪ Ind(S) = BFS ∪ BIS.
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Satisfaction Classes

Suppose M |= B, F ⊆ FormM, where F is closed under direct
subformulas, and let S be a binary relation on M.

S is an F -satisfaction class if (M,S ,F ) |= Tarski(S,F).
If F=FormM ∩ ω, then we say that F is the set of standard
LB-formulas of M. In this case there is a unique
F -satisfaction class on M, which we refer to as the Tarskian
satisfaction class on M.
S is a full satisfaction class on M if S is an F -satisfaction
class for F := FormM. This is equivalent to (M,S) |= BFS.

S is a satisfaction class on M, if either (i) M is ω-standard
and S is the usual Tarskian satisfaction relation SatM on M;
or M is not ω-standard and there is some nonstandard
integer c of M such that the expansion
(M,S ,F≤c) |= Tarski(S,F).
A satisfaction class S on M is said to be an inductive
satisfaction class on M if (M,S) |= BIS.
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Strongly Reflexive Base Theories (1)

A base theory B is strongly reflexive if B is bi-interpretable
with the theory TB formulated in the language of set theory
{∈} such that T satisfies the following two properties; note
that property (a) implies that B is an inductive base theory.

(a) TB ` KP + Ind + Infinity, where KP is Kripke-Platek set
theory.

(b) For each sentence ϕ in the language of set theory, TB

proves the implication

ϕ→ ∃x ϕ(x),

where x does not occur in ϕ and ϕ(x) is the formula obtained
by relativizing all of the quantifiers of ϕ to x .
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Strongly Reflexive Base Theories (2)

Examples. Any extension (in the same language) of the
following theories is strongly reflexive.

Zermelo-Fraenkel set theory ZF.

Second Order Arithmetic Z2 augmented with the full scheme
Π1
∞-DC of dependent choice.

Kelley-Morse theory of classes KM augmented with the full
scheme Π1

∞-DC of dependent choice.

Theorem. Every model M of a strongly reflexive theory base
theory B is elementarily equivalent to a model N that carries
a full inductive satisfaction class S .

Albert Visser + Ali Enayat Full Satisfaction Classes in a General Setting



Strongly Reflexive Base Theories (2)

Examples. Any extension (in the same language) of the
following theories is strongly reflexive.

Zermelo-Fraenkel set theory ZF.

Second Order Arithmetic Z2 augmented with the full scheme
Π1
∞-DC of dependent choice.

Kelley-Morse theory of classes KM augmented with the full
scheme Π1

∞-DC of dependent choice.

Theorem. Every model M of a strongly reflexive theory base
theory B is elementarily equivalent to a model N that carries
a full inductive satisfaction class S .

Albert Visser + Ali Enayat Full Satisfaction Classes in a General Setting



Strongly Reflexive Base Theories (2)

Examples. Any extension (in the same language) of the
following theories is strongly reflexive.

Zermelo-Fraenkel set theory ZF.

Second Order Arithmetic Z2 augmented with the full scheme
Π1
∞-DC of dependent choice.

Kelley-Morse theory of classes KM augmented with the full
scheme Π1

∞-DC of dependent choice.

Theorem. Every model M of a strongly reflexive theory base
theory B is elementarily equivalent to a model N that carries
a full inductive satisfaction class S .

Albert Visser + Ali Enayat Full Satisfaction Classes in a General Setting



Strongly Reflexive Base Theories (2)

Examples. Any extension (in the same language) of the
following theories is strongly reflexive.

Zermelo-Fraenkel set theory ZF.

Second Order Arithmetic Z2 augmented with the full scheme
Π1
∞-DC of dependent choice.

Kelley-Morse theory of classes KM augmented with the full
scheme Π1

∞-DC of dependent choice.

Theorem. Every model M of a strongly reflexive theory base
theory B is elementarily equivalent to a model N that carries
a full inductive satisfaction class S .

Albert Visser + Ali Enayat Full Satisfaction Classes in a General Setting



Strongly Reflexive Base Theories (2)

Examples. Any extension (in the same language) of the
following theories is strongly reflexive.

Zermelo-Fraenkel set theory ZF.

Second Order Arithmetic Z2 augmented with the full scheme
Π1
∞-DC of dependent choice.

Kelley-Morse theory of classes KM augmented with the full
scheme Π1

∞-DC of dependent choice.

Theorem. Every model M of a strongly reflexive theory base
theory B is elementarily equivalent to a model N that carries
a full inductive satisfaction class S .

Albert Visser + Ali Enayat Full Satisfaction Classes in a General Setting



Strongly Reflexive Base Theories (2)

Examples. Any extension (in the same language) of the
following theories is strongly reflexive.

Zermelo-Fraenkel set theory ZF.

Second Order Arithmetic Z2 augmented with the full scheme
Π1
∞-DC of dependent choice.

Kelley-Morse theory of classes KM augmented with the full
scheme Π1

∞-DC of dependent choice.

Theorem. Every model M of a strongly reflexive theory base
theory B is elementarily equivalent to a model N that carries
a full inductive satisfaction class S .

Albert Visser + Ali Enayat Full Satisfaction Classes in a General Setting



Strongly Reflexive Base Theories (3)

Corollary. Every countable recursively saturated model of a
strongly reflexive base theory carries an inductive full
satisfaction class.

Corollary (Conservativity Results).
(a) BFS + Ind(S) is conservative over B for every strongly
reflexive base theory B.

(b) ZFFS + Sep(S) is a conservative extension of ZF.
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The Core Construction (1)

Core Lemma. Let N0 |= B and suppose S0 is an
F0-satisfaction class, where F0 ⊆ F1 := FormN0 . Then there
is an elementary extension N1 of N0 that carries an
F1-satisfaction class S1 ⊇ S0.

Proof: Let L+B (N0) be the language obtained by enriching
LB with constant symbols for each member of N0, and new
unary predicates Uc for each c ∈ FormN0 .
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The Core Construction (2)

If R ∈ LB and N0 |= c = pR(t0, · · ·, tn−1)q, then

θc := ∀α
(

Uc(α)↔ α ∈ Ac ∧ R([α]t0 , · · ·, [α]tn−1
)
)

.

If N |= c = p¬dq then

θc := ∀α (Uc(α)↔ α ∈ Ac ∧ ¬Ud(α)) .

If N |= c = pd1 ∨ d2q, then

θc :=
∀α (Uc(α)↔ α ∈ Ac ∧ (Ud1(α � FV(d1)) ∨ Ud2(α � FV(d2)))) .

If N |= c = p∃va bq, then

θc := ∀α (Uc(α)↔ ∃α′ (α ∼va α
′ ∧ Ub(α′))) .

Let Γ := {Uc(α) : c ∈ F0 and (c, α) ∈ S0} and define

Th+(N0) := Th(N0, c)c∈N0 ∪Θ ∪ Γ.
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The Core Construction (3)

We now proceed to show that Th+(N0) is consistent by
demonstrating that each finite subset of Th+(N0) is
interpretable in (N0,S0) .
To this end, suppose T0 is a finite subset of Th+(N0) and let
C consist of the collection of constants c that appear in at
least one of the sentences in T0 ∩Θ. If C = ∅, T0 is readily
seen to be consistent, so we shall assume that C 6= ∅ for the
rest of the argument.

Our goal is to construct subsets {Uc : c ∈ C} of N0 such that
the following two conditions hold when Uc , is interpreted by
Uc :

(1) (N0,Uc)c∈C |= {θc : c ∈ C} and

(2) α ∈ Uc whenever c ∈ C ∩ F0 and (c, α) ∈ S0.

We shall construct {Uc : c ∈ C} in stages, beginning with the
simplest formulas in C , and working our way up using Tarski
rules for more complex ones.
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The Core Construction (4)

Let c C d express “c is a direct subformula of d”.

Define C∗ on C by:

c C∗ d iff (c C d)N0 and θd ∈ T0 ∩Θ.
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The Core Construction (5)

The finiteness of C implies that (C ,C∗) is well-founded,
which in turn helps us define a useful measure of complexity
for c ∈ C using the following recursive definition:

rankC (x) := sup{rankC (y) + 1 : x ∈ C and (y C∗ x)N0}.

Note that rankG (c) = 0 precisely when there is no x ∈ C such
that (x C∗ c)N0 .

Next,let

Ci := {x ∈ C : rankC (x)} ≤ i}.

Observe that since C is finite, C0 6= ∅, and c ∈ C0 iff c ∈ C
and C does not contain the code of any subformula of the
formula coded by c . Moreover, if c ∈ Ci+1, then the codes of
every immediate subformula of the formula coded by c are in
Ci . This observation ensures that the following recursive
clauses yield a well-defined Uc for each c ∈ C .
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The Core Construction (6)

If c ∈ C0 then Uc :=

{
{α : (c , α) ∈ S0}, if c ∈ F0;
Uc := ∅, if c /∈ F0.

If c ∈ Ci+1\Ci and pc = ¬dq, then

Uc := {α ∈ Ac : α /∈ Ud} .

If c ∈ Ci+1\Ci and c = pa ∨ bq, then

Uc := {α ∈ Ac : α � FV(a) ∈ Ua or α � FV(b) ∈ Ub} .

If c ∈ Ci+1\Ci and c = p∃va bq, then

Uc :=
{
α ∈ Ac : ∃α′ ∈ N (α ∼va α

′ and α ∈ Ub

}
.
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The Core Construction (7)

Core Theorem. Let M0 be a model of B of any cardinality.
There is an elementary extension M of M0 that admits a full
satisfaction class.

Proof: Let F0 be the set of atomic N -formulas and let S0 be
the obvious satisfaction predicate for F0. Then by the Lemma
there is an elementary extension M1 of M0 that carries a
FormM0

B satisfaction class. Thanks to Lemma 3.1, this
argument can be carried out countably many times to yield
two sequences 〈Mi : i ∈ ω〉 and 〈Si : i ∈ ω〉 that satisfy the
following two properties:

(1) Mi ≺Mi+1;

(2) Si+1 is a FormMi -satisfaction class on Mi+1 for each
i ∈ ω.

M :=
⋃
i∈ω
Mi , and S :=

⋃
i∈ω

Si .
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The Core Construction (8)

Corollary. BFS is a conservative extension of B for every base
theory B.

Theorem. Let <L be a B-definable linear order on N in the
sense of B. Every model of B has an elementary extension to
a model that expands to BFS

L . Consequently, BFS
L is

conservative over B for every base theory.
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The Arithmetization of the Core Construction (1)

Definition.
(a) Suppose M is a model of some base theory, and N is a
structure in a finite language L. N is strongly interpretable in
M if M can interpret an isomorphic copy N0 of N ; and
moreover there is an M-definable F -satisfaction class S on
N0, where F is the collection of all L-formulas in the sense of
M.

(b) B strongly interprets BFS
0 , i.e., every model M |= B

strongly interprets a structure (N ,S) |= BFS
0 in a uniform

manner.

Theorem. Suppose B is an inductive base theory such that
B ` Con(B0), where B0 is some r.e. base theory. Then B
strongly interprets BFS

0 .
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0 in a uniform

manner.

Theorem. Suppose B is an inductive base theory such that
B ` Con(B0), where B0 is some r.e. base theory. Then B
strongly interprets BFS

0 .
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The Arithmetization of the Core Construction (2)

Corollary. If B is an inductive theory, then:

1. B ` Con(BFS
0 ) for every finitely axiomatized base theory

B0 ⊆ B.

2. BIS and BFS are not finitely axiomatizable for inductive
base theories B.
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The Arithmetization of the Core Construction (3)

Theorem. The following statement (∗) is provable within
WKL0 :

(∗) Every consistent base theory B has a model M that
carries a full satisfaction class S and which has the property
that the Tarskian satisfaction relation of (M,S) is coded by
some X ⊆ ω .

Theorem. PRA `“BFS is conservative over B” for every r.e.
base theory B.
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Pathological Satisfaction Classes

Definition. For any standard formula σ of LB, and for each
a ∈ NM, where M is some prescribed model of B, the
‘formula’ σa is defined by internal recursion in M0 via
σ0 := σ; and σn+1 := σn ∨ σn.

Theorem. Let σ := ∃v0 (v0 = v0) (or σ = any other logically
valid sentence), and M0 be a model of B of any cardinality .
Then M0 has an elementary extension M that carries a full
satisfaction class S such that

{a ∈ NM : σa is S-valid} = ω.
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Desirable Satisfaction Classes (1)

Theorem. Let M0 |= B, where B is a base theory. There is
an elementary extension M of M0 that carries full
satisfaction classes S1, S2, and S3 such that:

(1) : S1 is schematically correct;

(2) : S2 is both existentially and disjunctively correct; and

(3) : S3 is both extensional and alphabetically correct.
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Desirable Satisfaction Classes (2)

Moreover, if B is an inductive base theory, then M carries a
full satisfaction class S4 such that:

(4) : S4 is ΣB,∞-correct,

and there is a family {S5,s : s ∈ NM} of full satisfaction
classes on M such that for each s ∈ NM there is a cut I of
NM with I |= PA with s ∈ I such that:

(5s) : S5,s is I -deductively correct.
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Interpretability Issues (1)

Let ACA be the strengthening of ACA0 with the full scheme
of induction. It has been long known that ACA and PAFIS are
‘proof-theoretically equivalent’. The result below provides a
more precise relationship between the two theories.

Theorem. There is a sentence σ in the language of ACA0

such that PAFIS and ACA + σ are bi-interpretable.

Theorem. BIS and BFS are both interpretable in B for every
inductive recursively axiomatizable base theory B.
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Interpretability Issues (2)

Theorem (Interpretability among PA, PAIS, PAFS, and
ACA0).

(a) The theories {PA, PAIS, PAFS} are mutually
interpretable.

(b) Each of the theories {PA, PAIS, PAFS} is interpretable in
ACA0, but none of them interprets ACA0.

(c) No pair of the theories {PA, PAFS, PAIS,ACA0} are
bi-interpretable.
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Interpretability Issues (3)

Theorem. If B is a consistent finitely axiomatizable base
theory, then neither BIS nor BFS is interpretable in B.
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