The strength of Ramsey theorem for coloring ω -large sets

Konrad Zdanowski (join work with Lorenzo Carlucci, La Sapienza)

University of Cardinal Stefan Wyszyński, Warsaw

Kotlarski-Ratajczyk conference 2012

ヘロト 人間 ト ヘヨト ヘヨト

æ

Outline

- Ramsey principle for coloring n-tuples
- 3 Ramsey principle for coloring α -large sets

Open problems

イロト イポト イヨト イヨト

æ

Ramsey principle for coloring *n*-tuples Ramsey principle for coloring *α*-large sets Open problems Second order arithmetics Ordinals and large sets Recursion theory

イロト イポト イヨト イヨト

Outline

Basic notions

- Second order arithmetics
- Ordinals and large sets
- Recursion theory
- Ramsey principle for coloring *n*-tuples
 RT(*n*)
 ∀*n*RT(*n*)
 - $\forall n \operatorname{RT}(n)$
- 3 Ramsey principle for coloring lpha–large sets
 - Farmaki theorem
 - Coloring ω–large sets
 - Arithmetics with truth predicates
- Open problems

Ramsey principle for coloring *n*-tuples Ramsey principle for coloring *α*-large sets Open problems Second order arithmetics Ordinals and large sets Recursion theory

イロト イポト イヨト イヨト

Outline

Basic notions

- Second order arithmetics
- Ordinals and large sets
- Recursion theory
- Ramsey principle for coloring n-tuples
- \bigcirc Ramsey principle for coloring lpha-large sets

Open problems

Second order arithmetics Ordinals and large sets Recursion theory

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

- We consider theories of second order arithmetic.
- First order formulas in the usual hierarchy Σ_n^0 , Π_n^0 may contain second order parameters.
- Basic axioms:

•
$$n + 1 \neq 0$$
,
• $n + 1 = m + 1 \rightarrow n = m$,
• $m + 0 = m$,
• $m + (n + 1) = (m + n) + 1$,
• $m \cdot 0 = 0$,
• $m \cdot (n + 1) = (m \cdot n) + m$,
• $\neg m < 0$,
• $m < n + 1 \rightarrow (m < n \lor m = n)$.

Second order arithmetics Ordinals and large sets Recursion theory

ヘロト 人間 とくほとくほとう

ъ

 For a set of formulas *F*, by *F* comprehension scheme we define the set of formulas

$$\exists X \forall n (n \in X \leftrightarrow \varphi(n)),$$

for $\varphi \in \mathcal{F}$.

• By Δ_1^0 comprehension scheme we define

$$\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n(n \in X \leftrightarrow \varphi(n)),$$

for $\varphi \in \Sigma_1^0, \psi \in \Pi_1^0.$

Ramsey principle for coloring *n*–tuples Ramsey principle for coloring *α*–large sets Open problems Second order arithmetics Ordinals and large sets Recursion theory

イロン イボン イヨン イヨン

Definition 1

By RCA₀ we denote arithmetic containing basic axioms, Σ_1^0 induction and Δ_1^0 comprehension.

Definition 2

By ACA₀ we denote RCA₀ extended by first order comprehension.

Definition 3

By ATR_0 we denote RCA_0 extended by definitions of sets by transfinite recursion.

Ramsey principle for coloring *n*-tuples Ramsey principle for coloring *α*-large sets Open problems Second order arithmetic Ordinals and large sets Recursion theory

イロト イポト イヨト イヨト

Outline

- Second order arithmetics
- Ordinals and large sets
- Recursion theory
- 2 Ramsey principle for coloring n-tuples
- 3 Ramsey principle for coloring lpha–large sets

Open problems

Ramsey principle for coloring *n*-tuples Ramsey principle for coloring *α*-large sets Open problems Second order arithmetics Ordinals and large sets Recursion theory

イロト 不得 とくほ とくほとう

ъ

Definition 4

For each ordinal $\alpha < \omega_1$ let us fixed a sequence $\{\alpha\}(x)$, for $x \in \omega$ such that

•
$$\{\beta+1\}(x)=\beta$$
,

•
$$\{\alpha\}(x) \le \{\alpha\}(y), \text{ for } x \le y,$$

•
$$\lim_{x \in \omega} {alpha}(x) = \alpha$$
.

Definition 5

Let λ be limit and let $\lambda_0 = {\lambda}(a)$, $\lambda_{i+1} = {\lambda_i}(a)$. By ${\lambda}^*(a)$ we denote the first successor ordinal in the sequence $\lambda_0, \lambda_1, \ldots$

Ramsey principle for coloring *n*-tuples Ramsey principle for coloring *α*-large sets Open problems Second order arithmetics Ordinals and large sets Recursion theory

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔄

Example

•
$$\{\omega\}(a) = a$$
,
• $\{\omega \mid \beta\}(a) = \alpha + \beta$

•
$$\{\alpha + \beta\}(a) = \alpha + \{\beta\}(a),$$

•
$$\{\omega^{\alpha+1}\}(a) = \omega^{\alpha}a,$$

•
$$\{\omega^{\lambda}\}(a) = \omega^{\{\lambda\}(a)}.$$

Second order arithmetics Ordinals and large sets Recursion theory

イロト 不得 とくほと くほとう

3

Let *h* be a, possibly finite, function from \mathbb{N} to \mathbb{N} . We define the Hardy hierarchy of functions:

•
$$h_0(x) = x$$
,

•
$$h_{\alpha+1}(x) = h_{\alpha}(h(x)),$$

•
$$h_{\lambda}(x) = h_{\{\lambda\}(x)}(x) = h_{\{\lambda\}^*(x)-1}(h(x)).$$

Ramsey principle for coloring *n*-tuples Ramsey principle for coloring *α*-large sets Open problems Second order arithmetics Ordinals and large sets Recursion theory

ヘロト 人間 とくほとく ほとう

∃ <2 <</p>

Example

Let
$$h(x) = x + 1$$
.
• $h_n(x) = h^n(x)$,
• $h_{\omega}(x) = h_x(x) = 2x$,
• $h_{\omega^2}(x) = h_{\omega+x}(x) = h_{\omega}(2x) = 2^2 x$,
• $h_{\omega^2}(x) = h_{\omega x}(x) = 2^x x$,
• $h_{\omega^{\omega}}(x)$ is ackermanian.

Second order arithmetics Ordinals and large sets Recursion theory

・ロト ・ 理 ト ・ ヨ ト ・

Let $X = \{x_0, \ldots, x_k\}$. Let *h* be a successor in the sense of *X*:

 $h(x_i)=x_{i+1}.$

Thus, $h(\max X)$ is undefined.

Definition 6

We say that X is α -large if $h_{\alpha}(\min X)$ is defined.

We say that X is exactly α -large if $h_{\alpha}(\min X) = \max(X)$.

Definition 7

For a given X, by $[X]^{!\alpha}$ we denote its exactly α -large subsets.

Ramsey principle for coloring *n*-tuples Ramsey principle for coloring *α*-large sets Open problems Second order arithmetics Ordinals and large sets Recursion theory

ヘロト ヘアト ヘビト ヘビト

æ

Example

Let X be a finite set.

- X is 0–large if $h_0(\min X)\downarrow$, X is nonempty,
- X is *n*-large if $h_n(\min X)\downarrow$, X has n + 1 elements,
- X is ω-large if h_ω(min X) = h_x(min X)↓, X has min(X) + 1 elements.

Ramsey principle for coloring *n*-tuples Ramsey principle for coloring *α*-large sets Open problems Second order arithmetics Ordinals and large sets Recursion theory

イロト イポト イヨト イヨト

Outline

- Second order arithmetics
- Ordinals and large sets
- Recursion theory
- 2 Ramsey principle for coloring n-tuples
- \bigcirc Ramsey principle for coloring lpha-large sets

Open problems

Ramsey principle for coloring *n*-tuples Ramsey principle for coloring *α*-large sets Open problems Second order arithmetics Ordinals and large sets Recursion theory

イロト イポト イヨト イヨト

ъ

Definition 8

For a Turing machine e, by $\{e\}(x)\downarrow$ we denote the fact that e stops on the input x.

By $\{e\}_z(x)\downarrow$ we denote the fact that e stops on the input x with a computation less than z.

Ramsey principle for coloring *n*-tuples Ramsey principle for coloring *α*-large sets Open problems Second order arithmetics Ordinals and large sets Recursion theory

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

1

Definition 9

The jump of the set X is defined as

$$X' = \{ e \colon \{ e \}^X(0) \downarrow \}.$$

The (n + 1)-th jump of X is defined as $X^{(n+1)} = (X^{(n)})'$. The ω -jump of X is defined as

$$\boldsymbol{X}^{\omega} = \{(i,j) \colon j \in \boldsymbol{X}^{(i)}\}.$$

The above notions can be easily generalized to higher ordinals α 's provided (recursive) fundamental sequences up to α are fixed.

Ramsey principle for coloring *n*-tuples Ramsey principle for coloring *α*-large sets Open problems Second order arithmetics Ordinals and large sets Recursion theory

イロト 不得 とくほ とくほ とう

3

Theorem 10

ACA₀ can be characterized as $RCA_0 + \forall X X'$ exists..

Definition 11

 ACA_0^+ is $RCA_0 + \forall X X^{\omega}$ exists..

RT(*n*) ∀*n*RT(*n*)

くロト (過) (目) (日)

Outline

Basic notions

- Second order arithmetics
- Ordinals and large sets
- Recursion theory
- Ramsey principle for coloring *n*-tuples
 RT(*n*)
 ∀*n*RT(*n*)
- ${}^{\textcircled{3}}$ Ramsey principle for coloring lpha–large sets
 - Farmaki theorem
 - Coloring ω–large sets
 - Arithmetics with truth predicates
- Open problems

RT(n) ∀*n*RT(n)

・ロット (雪) () () () ()

ъ

Outline

Ramsey principle for coloring *n*-tuples RT(*n*) \(\nn\)RT(*n*)

3 Ramsey principle for coloring lpha–large sets

Open problems

RT(*n***)** ∀*n*RT(*n*)

Theorem 12 (RT(n))

For each coloring $C: [\mathbb{N}]^n \to \{0, 1\}$ there exists an infinite set $X \subseteq \mathbb{N}$ such that all tuples from $[X]^n$ have the same color under *C*.

イロト イポト イヨト イヨト 一臣

Such an *X* will be called *C*–homogeneous.

RT(*n***)** ∀*n*RT(*n*)

イロト 不得 とくほ とくほ とう

3

Theorem 13 (Jockush'72)

For each $n \ge 2$ there exists a recursive coloring *C*: $[\mathbb{N}]^n \to \{0, 1\}$ such that there each *C*-homogeneous set computes $0^{(n)}$.

Theorem 14

The following are equivalent over RCA₀:

- RT(3),
- $\mathsf{RT}(n)$, for any $n \geq 3$,
- for each X there exists jump of X,
- ACA₀.

RT(*n***)** ∀*n*RT(*n*)

Theorem 15 (Cholak, Jockush and Slaman'01)

 $I\Sigma_2^0 + RT(2)$ is Π_1^1 conservative over $I\Sigma_2^0$.

Theorem 16 (Hirst'87)

 $RCA_0 + RT(2)$ proves $B\Sigma_2^0$, hence is not Σ_3^0 conservative over RCA_0 .

Theorem 17 (Liu' 12)

 $RCA_0 + RT(2)$ does not proves $RCA_0 + WKL_0$.

It is a long standing open problem whether $RCA_0 + RT(2)$ is Π_2^0 conservative over RCA_0 .

イロト イポト イヨト イヨト 三日

RT(*n*) ∀*n*RT(*n*)

・ロット (雪) () () () ()

ъ

Outline

Ramsey principle for coloring *n*-tuples RT(*n*) ∀*n*RT(*n*)

3 Ramsey principle for coloring lpha–large sets

Open problems

RT(*n*) ∀*n*RT(*n*)

イロン 不得 とくほ とくほ とうほ

Let $TJ(\alpha, X)$ be the α -th Turing jump of X.

Theorem 18 (McAloon'85)

The following are equivalent:

- $\mathsf{RCA}_0 + \forall n\mathsf{RT}(n)$,
- $\mathsf{RCA}_0 + \forall n \forall X TJ(n, X)$ exists.

Theorem 19 (McAloon'85)

The ordinal of $RCA_0 + \forall nRT(n)$ is ε_{ω} .

See also PhD's by Afshari (2009) and De Smet (2011).

Farmaki theorem Coloring ω –large sets Arithmetics with truth predicates

くロト (過) (目) (日)

Outline

Basic notions

- Second order arithmetics
- Ordinals and large sets
- Recursion theory
- Ramsey principle for coloring *n*-tuples
 RT(*n*)
 ∀*n*RT(*n*)
- 3 Ramsey principle for coloring α -large sets
 - Farmaki theorem
 - Coloring ω -large sets
 - Arithmetics with truth predicates

Open problems

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

イロト イポト イヨト イヨト

Outline

2 Ramsey principle for coloring n-tuples

3 Ramsey principle for coloring α -large sets

- Farmaki theorem
- Coloring ω–large sets
- Arithmetics with truth predicates

Open problems

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

イロン 不得 とくほ とくほ とうほ

Definition 20

Let $\alpha < \omega_1$. By $RT(\alpha)$ we denote the following statement:

for each infinite set $X \subseteq \mathbb{N}$, for each coloring $C \colon [X]^{!\alpha} \to \{0, 1\}$

there exists an infinite set $Y \subseteq X$ such that Y is C-homogeneous.

Theorem 21 (Pudlak and Rodl'82, see also Farmaki'98)

For each $\alpha < \omega_1$, $\mathsf{RT}(\alpha)$.

Let $RT(\alpha)$ be the statement of the theorem. Assume $RT(\beta)$, for $\beta < \alpha$ and let $C: [X]^{!\alpha} \to \{0, 1\}$.

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

For
$$a \in X$$
 let C_a : $[X]^{!(\{\alpha\}^*(a)-1)} \rightarrow \{0,1\}$ defined as

$$C_a(a_1,\ldots,a_k)=C(a,a_1,\ldots,a_k).$$

We construct a sequence $\{(a_i, Y_i)\}_{i \in \omega}$ such that

- $Y_0 = X$,
- $a_i = \min Y_i$,
- $Y_{i+1} \subseteq Y_i$ is infinite, C_{a_i} -homogeneous, $a_i \notin Y_{i+1}$.

The sequence $\{a_i\}_{i \in \omega}$ is infinite, *C*-homogeneous.

The amount of induction in the above proof is extravagant – Σ_1^1 .

Another proof

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

イロト 不得 とくほと くほとう

1

Let a function $f \colon \mathbb{N} \to \mathbb{N}$ code a set $\{f(i) \colon i \in \mathbb{N}\}$.

Definition 22

By Σ_1^0 -RT we denote the following scheme: for φ is Σ_1^0 ,

 $\exists g(\forall f\varphi(g \cdot f) \lor \forall f \neg \varphi(g \cdot f)).$

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Another proof

For $f: \mathbb{N} \to \mathbb{N}$ let f^{α} be the set $\{f(0), \ldots, f(k)\}$ which is exactly α -large. Let $C: [\mathbb{N}]^{!\alpha} \to \{0, 1\}$. Let g be such that $\forall f C((g \cdot f)^{\alpha}) = 0 \lor \forall f C((g \cdot f)^{\alpha}) = 1.$

Then, $\{g(i): i \in \mathbb{N}\}$ is *C*-homogeneous.

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

イロト 不得 とくほと くほとう

3

The above proof can be done in ATR_0 .

While doing it in ATR_0 we should restrict ourselves to ordinals below Γ_0 .

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

イロト イポト イヨト イヨト

Outline

Basic notions

2 Ramsey principle for coloring n-tuples

3 Ramsey principle for coloring α -large sets

- Farmaki theorem
- Coloring ω -large sets
- Arithmetics with truth predicates

Open problems

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

イロト 不得 とくほと くほとう

1

Theorem 24

The following are equivalent over RCA₀:

- RT(ω),
- for each X there exists $TJ(\omega, X)$.

Assume $RT(\omega)$ and let *A* be an arbitrary set. For brevity we use "computable" to mean "computable in *A*".

・ロト ・ 理 ト ・ ヨ ト ・

We define family of computable colorings $C_n : [\mathbf{N}]^{n+1} \to \{0, 1\}$, for $n \in \mathbf{N}$ and $n \ge 2$, and Turing machines $M_n(x, y)$ such that for any $n \ge 2$,

- All infinite homogeneous sets for C_n have color 1.
- If X is an infinite homogeneous set for C_n then for any for any a₁ < ··· < a_{n+1} ∈ X it holds that if a is a code for a sequence (a₁,..., a_{n+1}) then M_n(x, a) decides 0⁽ⁿ⁻¹⁾ for machines with indices less than or equal to a₁.
- Solution Machines M_n are total. If their inputs are not from an infinite homogeneous set for C_n then we have no guarantee on the correctness of their output.

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

We define C_2 as

$$C_2(k, y, z) = \begin{cases} 1 & \text{if } \forall e \leq k(\{e\}_y^A(0)\downarrow \Leftrightarrow \{e\}_z^A(0)\downarrow) \\ 0 & \text{otherwise.} \end{cases}$$

Now, $M_2(e, (k, b, b'))$ searches for a computation of *e* below *b*, provided that $e \le k$.

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

We define $C_{n+1}(a_1,\ldots,a_{n+2})$ as

$$C_{n+1}(\ldots) = \begin{cases} 1 & \text{if } \{a_1, \ldots, a_{n+2}\} \text{ is } C_n\text{-homogeneous and} \\ & \text{and } \forall e \leq a_1(\{e\}_{a_2}^Y(0)\downarrow \Leftrightarrow \{e\}_{a_3}^Y(0)\downarrow), \text{where} \\ & Y = \{i \leq a_2 : M_n(i, (a_2, \ldots, a_{n+2})) \text{ accepts}, \} \\ 0 & \text{otherwise.} \end{cases}$$

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

イロン 不得 とくほ とくほ とうほ

We would like to replace the condition in the second line of the above definition by

$$\forall \boldsymbol{e} \leq \boldsymbol{a}_1(\{\boldsymbol{e}\}_{\boldsymbol{a}_2}^{\boldsymbol{\mathcal{A}}^{(n-1)}}(\boldsymbol{0}) \boldsymbol{\downarrow} \Leftrightarrow \{\boldsymbol{e}\}_{\boldsymbol{a}_3}^{\boldsymbol{\mathcal{A}}^{(n-1)}}(\boldsymbol{0}) \boldsymbol{\downarrow}.$$

We use approximations of these sets computed by machines M_n .

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

For each $a_1 < a_2$ from an infinite C_{n+1} -homogeneous set and for all $e < a_1$ we have

$$\{e\}_{a_1}^{A^{(n-1)}}(0) \downarrow \Leftrightarrow \{e\}_{a_2}^{A^{(n-1)}}(0) \downarrow$$

and consequently, by infinity of a given C_{n+1} -homogeneous set,

$$\{e\}_{a_1}^{\mathcal{A}^{(n-1)}}(0){\downarrow} \Leftrightarrow \{e\}^{\mathcal{A}^{(n-1)}}(0){\downarrow}.$$

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$$M_{n+1}(e, (a_1, \ldots, a_{n+2}))$$
 computes firstly the set

$$Y = \{i \le a_2 : M_n(i, (a_2, \dots, a_{n+1})) \text{ accepts}\}.$$

Then, it checks whether $\{e\}_{a_2}^{\gamma}(0)\downarrow$ and if this holds, M_{n+1} accepts.

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

イロン 不得 とくほ とくほ とうほ

Finally, we define C_{ω} as follows.

$$C_{\omega}(a_1,\ldots,a_k)=C_{a_1}(a_1,\ldots,a_k).$$

For a sequence $a = (a_1, \ldots, a_k)$, we define

$$M_{\omega}(e, a) = M_{a_1}(e, a).$$

If *a* comes from an infinite C_{ω} -homogeneous set, then $M_{\omega}(x, a)$ decides $TJ(a_1, A)$ for machines up to a_1 .

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

イロト 不得 とくほと くほとう

1

For the direction from the existence of $TJ(\omega, X)$ to $RT(\omega)$ one needs a lemma.

Lemma 25

Let $a \ge 1$. Let $C: [U]^a \to 2$. One can find effectively a machine f_a with oracle $(C \otimes U)^{(2a)}$ such that f_a computes a *C*-homogeneous set.

With some uniformity of a inductive construction one may replace all oracles by one $TJ(\omega, C_{\omega})$, for a given $C_{\omega} : [\mathbb{N}]^{!\omega} \to \{0, 1\}.$

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

イロト イポト イヨト イヨト

Regressive colorings

Definition 26

A coloring C is regressive if for every $S \subseteq \mathbf{N}$ of the appropriate type, $C(S) < \min(S)$, whenever $\min(S) > 0$.

Definition 27

By KM(n) we denote the statement that for every regressive coloring of n-tuples \mathbb{N} there exists a infinite homogeneous subset.

By KM(! ω) we denote the statement that for every regressive coloring of ω -large subsets of \mathbb{N} there exists a infinite homogeneous subset.

Farmaki theorem Coloring ω –large sets Arithmetics with truth predicates

イロト イポト イヨト イヨト

ъ

Proposition 28

Over RCA_0 , $KM(!\omega)$ and $RT(!\omega)$ are equivalent.

It is easy to reduce KM(d) to RT(d + 1). Having ω -large sets we have a lot of finite tuples at our disposal.

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

イロト イポト イヨト イヨト

Outline

Basic notions

2 Ramsey principle for coloring n-tuples

3 Ramsey principle for coloring α -large sets

- Farmaki theorem
- Coloring ω -large sets
- Arithmetics with truth predicates

Open problems

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

For an ordinal α , let L_{α} be a language of PA extended by predicates $\text{Tr}_{\beta}(x)$, for $\beta < \alpha$.

Let Tarski_{β} be a theory stating that Tr_{β}(*x*) is a truth predicate for L_{β} :

- $\operatorname{Tr}_{\beta}(\varphi) \leftrightarrow \varphi$, for each atomic $\varphi \in L_{\beta}$,
- $\forall \ulcorner \varphi \urcorner (\mathsf{Tr}_{\beta}(\ulcorner \neg \varphi \urcorner) \leftrightarrow \neg \mathsf{Tr}_{\beta}(\ulcorner \varphi \urcorner)),$
- $\forall \ulcorner \varphi \urcorner \forall \ulcorner \psi \urcorner (\mathsf{Tr}_{\beta}(\ulcorner \varphi \land \psi \urcorner) \leftrightarrow \mathsf{Tr}_{\beta}(\ulcorner \varphi \urcorner) \land \mathsf{Tr}_{\beta}(\ulcorner \psi \urcorner)),$
- $\forall \ulcorner x \urcorner \forall \ulcorner \varphi \urcorner (\mathsf{Tr}_{\beta}(\ulcorner \exists x \varphi \urcorner) \leftrightarrow \exists a \mathsf{Tr}_{\beta}(\ulcorner \varphi(a) \urcorner)).$

Let $PA(L_{\alpha})$ be PA with full induction in L_{α} and $Tarski_{\beta}$, for $\beta < \alpha$.

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

ヘロト 人間 ト ヘヨト ヘヨト

Theorem 29 (Kotlarski–Ratajczyk)

The set of arithmetical consequences of $PA(L_1)$ is axiomatized by the scheme of transfinite induction up to $\varepsilon_{\varepsilon_0}$. The ordinal of $PA(L_1)$ is $\varepsilon_{\varepsilon_0}$.

One of the last Kotlarski's article on Pudlak's principle up to Γ_0 was intended, among other things, as a preparatory work for generalizing the above theorem to arithmetic with Γ_0 truth predicates.

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

イロト 不得 とくほ とくほ とうほ

Theorem 30

The following theories are equivalent over the language of PA,

- $\mathsf{RCA}_0 + \forall X \text{ there exists } TJ(\omega, X),$
- $PA(L_{\omega})$.

Let $M \models PA(L_{\omega})$ and let \mathcal{F}_i be the family of sets Δ_1^0 definable in the language L_i .

$$(M, \bigcup_{i \in \omega} \mathcal{F}_i) \models \mathsf{RCA}_0 + \forall X \text{ there exists } \mathsf{TJ}(\omega, X).$$

If $\varphi_1, \ldots, \varphi_n$ is a proof in PA(L_{i+1}) then we can replace the use of Tr₀, ..., Tr_i by $\emptyset^{\omega}, \emptyset^{\omega^2}, \ldots, \emptyset^{\omega(i-1)}$.

Farmaki theorem Coloring ω -large sets Arithmetics with truth predicates

イロン 不得 とくほ とくほ とうほ

The proof theoretic ordinal of $ACA_0 + \forall X$ there exists $TJ(\omega, X)$ is the limit of the sequence

 $\varepsilon_0, \varepsilon_{\varepsilon_0}, \varepsilon_{\varepsilon_{\varepsilon_0}}, \dots$

Konrad Zdanowski (join work with Lorenzo Carlucci, La Sapienza) Ramsey theorem for ω -large sets

Outline

Basic notions

- Second order arithmetics
- Ordinals and large sets
- Recursion theory
- Ramsey principle for coloring *n*-tuples
 RT(*n*)
 ∀*n*RT(*n*)
- 3 Ramsey principle for coloring α -large sets
 - Farmaki theorem
 - Coloring ω–large sets
 - Arithmetics with truth predicates

Open problems

イロト イポト イヨト イヨト

A very plausible conjecture

Conjecture 31

For each ordinal $\alpha < \varepsilon_0 (< \Gamma_0, ...)$, the following are equivalent

- $\mathsf{RCA}_0 + \mathsf{RT}(\alpha)$,
- $\mathsf{RCA}_0 + \forall X \text{ there exists } TJ(\alpha, X).$

Let us note, that we do not have a correspondence with $PA(L_{\alpha})$ since $RT(\omega + 1)$ is equivalent to $RT(\omega)$ while $PA(L_{\omega+1})$ is stronger than $PA(L_{\omega})$.

・ロト ・同ト ・ヨト ・ヨトー

Operations on well orderings

Various second order arithmetics may be characterized in terms of well ordering preserving operations, e.g.,

- $\forall X(WO(X) \implies WO(\omega^X))$ (equivalent to ACA₀),
- $\forall X(WO(X) \implies WO(\omega^X))$ (equivalent to ACA_0^+).

It would be good to prove these principles from corresponding Ramsey principles.

・ロト ・ 理 ト ・ ヨ ト ・

Thank you.

Konrad Zdanowski (join work with Lorenzo Carlucci, La Sapienza) Ramsey theorem for ω -large sets

・ロト ・聞ト ・ヨト ・ヨト

₹ 990