Automorphisms and cofinal extensions

Roman Kossak City University of New York

> Będlewo July 27th, 2012

Roman Kossak City University of New York Automorphisms and cofinal extensions

< ∃⇒

・ロ・・(四・・モ・・モ・・ 田

- Results on automorphisms of recursively saturated models of arithmetic, Fundamenta Mathematicae, vol 129, pp. 9-15, 1988.
- On extending automorphisms of models of Peano Arithmetic, Fundamenta Mathematicae, vol. 149, pp. 245-263, 1996.
- More on extending automorphisms of recursively saturated models of PA, Fundamenta Mathematicae 200, pp. 133-143, 2008.

伺 ト イヨト イヨト

All models in this talk are countable recursively saturated models of PA

For $X \subseteq M$, let $\mathfrak{A}(X) = |\{f(X) : f \in Aut(M)\}|$.

Let $M \prec N$. Then $\operatorname{Cod}(N/M) = \{a \cap M : a \in N\}$.

크

All models in this talk are countable recursively saturated models of PA

For $X \subseteq M$, let $\mathfrak{A}(X) = |\{f(X) : f \in Aut(M)\}|$.

Let $M \prec N$. Then $\operatorname{Cod}(N/M) = \{a \cap M : a \in N\}$.

イロト イヨト イヨト イヨト

Э

All models in this talk are countable recursively saturated models of PA

For $X \subseteq M$, let $\mathfrak{A}(X) = |\{f(X) : f \in Aut(M)\}|$.

Let $M \prec N$. Then $\operatorname{Cod}(N/M) = \{a \cap M : a \in N\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Э

- (Krajewski) Let $S \subseteq M$ be a partial inductive satisfaction class. Then $\mathfrak{A}(S) = 2^{\aleph_0}$
- (RK, Kotlarski) If M ≺_{end} N and X ∈ Cod(N/M) \ Def(M), then 𝔅(X) = 2^{ℵ₀}.
- (Schmerl) If $X \in Class(M) \setminus Def(M)$, then $\mathfrak{A}(X) = 2^{\aleph_0}$.

- (Krajewski) Let $S \subseteq M$ be a partial inductive satisfaction class. Then $\mathfrak{A}(S) = 2^{\aleph_0}$
- (RK, Kotlarski) If $M \prec_{end} N$ and $X \in Cod(N/M) \setminus Def(M)$, then $\mathfrak{A}(X) = 2^{\aleph_0}$.

• (Schmerl) If $X \in \text{Class}(M) \setminus \text{Def}(M)$, then $\mathfrak{A}(X) = 2^{\aleph_0}$.

イロト イボト イヨト

- (Krajewski) Let $S \subseteq M$ be a partial inductive satisfaction class. Then $\mathfrak{A}(S) = 2^{\aleph_0}$
- (RK, Kotlarski) If $M \prec_{end} N$ and $X \in Cod(N/M) \setminus Def(M)$, then $\mathfrak{A}(X) = 2^{\aleph_0}$.
- (Schmerl) If $X \in Class(M) \setminus Def(M)$, then $\mathfrak{A}(X) = 2^{\aleph_0}$.

(日本) (日本) (日本)

If $M \prec N$ and $f \in Aut(M)$, does f extend to N, i.e. is there a $g \in Aut(N)$ such that $f \subseteq g$?

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Extending to a given end extension

- (RK, Kotlarski) If $M \prec_{end} N$, then 2^{\aleph_0} automorphisms of M do not extend to N.
- (RK) For every *M* there is an *N* such that *M* ≺_{end} *N* and identity is the only automorphism of *M* that extends to *N*.
- (Schmerl) Let \mathfrak{A} be a countable linearly ordered structure. For every M there is an N such that $M \prec_{end} N$ and

 $\operatorname{Aut}(N)_{\{M\}} / \operatorname{Aut}(N)_{(M)} \cong \operatorname{Aut}(\mathfrak{A})$

イロト イボト イヨト イヨト

- (RK, Kotlarski) If $M \prec_{end} N$, then 2^{\aleph_0} automorphisms of M do not extend to N.
- (RK) For every *M* there is an *N* such that *M* ≺_{end} *N* and identity is the only automorphism of *M* that extends to *N*.

• (Schmerl) Let \mathfrak{A} be a countable linearly ordered structure. For every M there is an N such that $M \prec_{end} N$ and

 $\operatorname{Aut}(N)_{\{M\}} / \operatorname{Aut}(N)_{(M)} \cong \operatorname{Aut}(\mathfrak{A})$

- (RK, Kotlarski) If $M \prec_{end} N$, then 2^{\aleph_0} automorphisms of M do not extend to N.
- (RK) For every *M* there is an *N* such that *M* ≺_{end} *N* and identity is the only automorphism of *M* that extends to *N*.
- (Schmerl) Let \mathfrak{A} be a countable linearly ordered structure. For every M there is an N such that $M \prec_{end} N$ and

$$\operatorname{Aut}(N)_{\{M\}} / \operatorname{Aut}(N)_{(M)} \cong \operatorname{Aut}(\mathfrak{A})$$

伺 ト イヨト イヨト

- Let f ∈ Aut(M) be given. Is there an N such that M ≺_{end} N and f extends to N? Could there be an f that is not extendible to any elementary end extension?
- If there is a partial inductive satisfaction class S such that f ∈ Aut(M, S), then there is an N such that M ≺_{end} N and f extends to N.
- If M is arithmetically saturated then there are $f \in Aut(M)$ such that $f \notin Aut(M, S)$ for all partial inductive satisfaction classes S.

- Let f ∈ Aut(M) be given. Is there an N such that M ≺_{end} N and f extends to N? Could there be an f that is not extendible to any elementary end extension?
- If there is a partial inductive satisfaction class S such that f ∈ Aut(M, S), then there is an N such that M ≺_{end} N and f extends to N.
- If M is arithmetically saturated then there are $f \in Aut(M)$ such that $f \notin Aut(M, S)$ for all partial inductive satisfaction classes S.

・日・ ・ ヨ・ ・ ヨ・

- Let f ∈ Aut(M) be given. Is there an N such that M ≺_{end} N and f extends to N? Could there be an f that is not extendible to any elementary end extension?
- If there is a partial inductive satisfaction class S such that f ∈ Aut(M, S), then there is an N such that M ≺_{end} N and f extends to N.
- If M is arithmetically saturated then there are f ∈ Aut(M) such that f ∉ Aut(M, S) for all partial inductive satisfaction classes S.

- (RK, Kotlarski) If M ≺_{end} N and there are no a ∈ N coding decreasing infinite sequences such that M = inf{(a)_i : i < ω} then every f ∈ Aut(M, Cod(N/M)) extends to N.
- (RK) If $M \prec_{end} N$ and M is strong in N, then for every $f \in Aut(M, Cod(N/M))$, there is a $g \in Aut(N)$ such that $f \subseteq g$ and fix(f) = fix(g).

- (RK, Kotlarski) If M ≺_{end} N and there are no a ∈ N coding decreasing infinite sequences such that M = inf{(a)_i : i < ω} then every f ∈ Aut(M, Cod(N/M)) extends to N.
- (RK) If $M \prec_{end} N$ and M is strong in N, then for every $f \in Aut(M, Cod(N/M))$, there is a $g \in Aut(N)$ such that $f \subseteq g$ and fix(f) = fix(g).

The extension $M \prec_{cof} N$ has the description property if for every $a \in N \setminus M$ there is a coded in N nested sequence $\langle A_i : i < \omega \rangle$ of M-finite sets such that

1. $N \models a \in A_i$ for all $i < \omega$;

2. For each *M*-finite *B* such that $a \in B$, there is an $i < \omega$ such that $A_i \subseteq B$.

Theorem

(*RK*, Kotlarski) For each *M*, there are *K* and, *N* such that $K \prec_{cof} M \prec_{cof} N$ and both extensions have the description property.

The extension $M \prec_{cof} N$ has the description property if for every $a \in N \setminus M$ there is a coded in N nested sequence $\langle A_i : i < \omega \rangle$ of M-finite sets such that

1. $N \models a \in A_i$ for all $i < \omega$;

2. For each *M*-finite *B* such that $a \in B$, there is an $i < \omega$ such that $A_i \subseteq B$.

Theorem

(RK, Kotlarski) For each M, there are K and, N such that $K \prec_{cof} M \prec_{cof} N$ and both extensions have the description property.

Question

For a given M is there an N such that $M \prec_{cof} N$ has the description property and SSy(M) = SSy(N)?

Theorem

(*RK*, Kotlarski) If $M \prec_{cof} N$, $f \in Aut(M, Cod(N/M))$, and the extension $M \prec_{cof} N$ has the the description property, then f extends to N.

Question

For a given M is there an N such that $M \prec_{cof} N$ has the description property and SSy(M) = SSy(N)?

Theorem

(RK, Kotlarski) If $M \prec_{cof} N$, $f \in Aut(M, Cod(N/M))$, and the extension $M \prec_{cof} N$ has the the description property, then f extends to N.

Theorem If M is recursively saturated M and N are countable and $M \prec_{cof} N$, then $M \cong N$ iff SSy(M) = SSy(N).

Definition For $a \in M$

$gap(a) = \bigcap \{ K \prec_{end} M : a \in K \} \setminus \bigcup \{ K \prec_{end} M : a \notin K \}$

Theorem

(Moving Gaps Lemma) For each $a \in M$ there are (cofinally many) b such that for all $c \in gap(b)$, $a \in Scl(c)$.

Corollary

For every proper extension $M \prec_{cof} N$ there (cofinally many) are new gaps, i.e. there are cofinally many $c \in N$ such that $gap(c) \cap M = \emptyset$.

< ロ > < 同 > < 三 > < 三 >

Definition For $a \in M$

$$gap(a) = \bigcap \{ K \prec_{end} M : a \in K \} \setminus \bigcup \{ K \prec_{end} M : a \notin K \}$$

Theorem

(Moving Gaps Lemma) For each $a \in M$ there are (cofinally many) b such that for all $c \in gap(b)$, $a \in Scl(c)$.

Corollary

For every proper extension $M \prec_{cof} N$ there (cofinally many) are new gaps, i.e. there are cofinally many $c \in N$ such that $gap(c) \cap M = \emptyset$.

(4月) トイヨト イヨト

Definition For $a \in M$

$$gap(a) = \bigcap \{ K \prec_{end} M : a \in K \} \setminus \bigcup \{ K \prec_{end} M : a \notin K \}$$

Theorem

(Moving Gaps Lemma) For each $a \in M$ there are (cofinally many) b such that for all $c \in gap(b)$, $a \in Scl(c)$.

Corollary

For every proper extension $M \prec_{cof} N$ there (cofinally many) are new gaps, i.e. there are cofinally many $c \in N$ such that $gap(c) \cap M = \emptyset$.

If $M \prec_{cof} N$ and $b \in N \setminus M$, then $gap^N(b)$ is non-isolated if there are $d < gap(b) < e \in N$ such that $[d, e] \cap M = \emptyset$

Theorem (RK, Kotlarski) Every cofinal extension has non-isolated gaps

Theorem

(RK, Kotlarski) No extension with the description property has isolated gaps.

Question

Are there cofinal extensions with isolated gaps?

A (10) × (10) × (10) ×

If $M \prec_{cof} N$ and $b \in N \setminus M$, then $gap^N(b)$ is non-isolated if there are $d < gap(b) < e \in N$ such that $[d, e] \cap M = \emptyset$

Theorem

(RK, Kotlarski) Every cofinal extension has non-isolated gaps.

Theorem

(RK, Kotlarski) No extension with the description property has isolated gaps.

Question

Are there cofinal extensions with isolated gaps?

If $M \prec_{cof} N$ and $b \in N \setminus M$, then $gap^N(b)$ is non-isolated if there are $d < gap(b) < e \in N$ such that $[d, e] \cap M = \emptyset$

Theorem

(RK, Kotlarski) Every cofinal extension has non-isolated gaps.

Theorem

(*RK*, Kotlarski) No extension with the description property has isolated gaps.

Question

Are there cofinal extensions with isolated gaps?

A (10) × (10) × (10) ×

If $M \prec_{cof} N$ and $b \in N \setminus M$, then $gap^N(b)$ is non-isolated if there are $d < gap(b) < e \in N$ such that $[d, e] \cap M = \emptyset$

Theorem

(RK, Kotlarski) Every cofinal extension has non-isolated gaps.

Theorem

(*RK*, Kotlarski) No extension with the description property has isolated gaps.

Question

Are there cofinal extensions with isolated gaps?

伺 ト イヨト イヨト

Definition For $M \prec_{cof} N$ and $b \in N \setminus M$, let $M_b = \sup([0, b] \cap M)$.

Definition

An extension $M \prec_{cof} N$ is conservative if, for each $b \in N \setminus M$ there is $a \in M$ such that $b \cap M_b = a \cap M_b$.

Question

Do conservative cofinal extensions exist?

Definition For $M \prec_{cof} N$ and $b \in N \setminus M$, let $M_b = sup([0, b] \cap M)$.

Definition

An extension $M \prec_{cof} N$ is conservative if, for each $b \in N \setminus M$ there is $a \in M$ such that $b \cap M_b = a \cap M_b$.

Question

Do conservative cofinal extensions exist?

伺 ト イヨト イヨト

For $M \prec_{cof} N$ and $b \in N \setminus M$, let $M_b = sup([0, b] \cap M)$.

Definition

An extension $M \prec_{cof} N$ is conservative if, for each $b \in N \setminus M$ there is $a \in M$ such that $b \cap M_b = a \cap M_b$.

Question

Do conservative cofinal extensions exist?

There is a $\mathcal{L}_{PA} \cup \{M\}$ -sentence σ such that for all $M \prec_{cof} N$ iff $(N, M) \models \sigma$.

Dowód. $\sigma = \exists x \forall y \exists z \in M(y = (x)_z)$

Lemma

Suppose that $M \prec_{cof} N \models PA$. Then, $Lt_0(N/M)$ is interpretable in (N, M).

Dowód.

In (N, M), the relation $R = \{\langle x, y \rangle \in N : M(x) \prec M(y)\}$ is definable by the formula $\forall u \in M \exists v \in M[(u)_x = (v)_y]$.

There is a $\mathcal{L}_{PA} \cup \{M\}$ -sentence σ such that for all $M \prec_{cof} N$ iff $(N, M) \models \sigma$.

Dowód. $\sigma = \exists x \forall y \exists z \in M(y = (x)_z).$

Lemma

Suppose that $M \prec_{cof} N \models PA$. Then, $Lt_0(N/M)$ is interpretable in (N, M).

Dowód.

In (N, M), the relation $R = \{\langle x, y \rangle \in N : M(x) \prec M(y)\}$ is definable by the formula $\forall u \in M \exists v \in M[(u)_x = (v)_y]$.

There is a $\mathcal{L}_{PA} \cup \{M\}$ -sentence σ such that for all $M \prec_{cof} N$ iff $(N, M) \models \sigma$.

Dowód.

$$\sigma = \exists x \forall y \exists z \in M(y = (x)_z).$$

Lemma

Suppose that $M \prec_{cof} N \models PA$. Then, $Lt_0(N/M)$ is interpretable in (N, M).

Dowód.

In (N, M), the relation $R = \{\langle x, y \rangle \in N : M(x) \prec M(y)\}$ is definable by the formula $\forall u \in M \exists v \in M[(u)_x = (v)_y]$.

There is a $\mathcal{L}_{PA} \cup \{M\}$ -sentence σ such that for all $M \prec_{cof} N$ iff $(N, M) \models \sigma$.

Dowód.

$$\sigma = \exists x \forall y \exists z \in M(y = (x)_z).$$

Lemma

Suppose that $M \prec_{cof} N \models PA$. Then, $Lt_0(N/M)$ is interpretable in (N, M).

Dowód.

In (N, M), the relation $R = \{ \langle x, y \rangle \in N : M(x) \prec M(y) \}$ is definable by the formula $\forall u \in M \exists v \in M[(u)_x = (v)_y].$

- There are K_{α} , $\alpha < 2^{\aleph_0}$ such that $K_{\alpha} \prec_{cof} M$ and if $\alpha \neq \beta$, then $SSy(K_{\alpha}) \neq SSy(K_{\beta})$.
- (Smoryński) There are K_{α} , $\alpha < 2^{\aleph_0}$ such that $K_{\alpha} \prec_{cof} M$, $K_{\alpha} \cong M$, and if $\alpha \neq \beta$, then Th(GCIS (M, K_{α})) \neq Th(GCIS (M, K_{β})); hence Th $(M, K_{\alpha}) \neq$ Th (M, K_{β}) .
- (RK, Schmerl) For every J ⊆_{end} M that is closed under exponentiation, there are K_α, α < 2^{ℵ0} such that K_α ≺_{cof} M, for all α, GCIS(M, K_α) = J, and if α ≠ β, then Th(M, K_α) ≠ Th(M, K_β).

- There are K_{α} , $\alpha < 2^{\aleph_0}$ such that $K_{\alpha} \prec_{cof} M$ and if $\alpha \neq \beta$, then $SSy(K_{\alpha}) \neq SSy(K_{\beta})$.
- (Smoryński) There are K_{α} , $\alpha < 2^{\aleph_0}$ such that $K_{\alpha} \prec_{cof} M$, $K_{\alpha} \cong M$, and if $\alpha \neq \beta$, then Th(GCIS(M, K_{α})) \neq Th(GCIS(M, K_{β})); hence Th(M, K_{α}) \neq Th(M, K_{β}).
- (RK, Schmerl) For every J ⊆_{end} M that is closed under exponentiation, there are K_α, α < 2^{ℵ0} such that K_α ≺_{cof} M, for all α, GCIS(M, K_α) = J, and if α ≠ β, then Th(M, K_α) ≠ Th(M, K_β).

- There are K_{α} , $\alpha < 2^{\aleph_0}$ such that $K_{\alpha} \prec_{cof} M$ and if $\alpha \neq \beta$, then $SSy(K_{\alpha}) \neq SSy(K_{\beta})$.
- (Smoryński) There are K_{α} , $\alpha < 2^{\aleph_0}$ such that $K_{\alpha} \prec_{cof} M$, $K_{\alpha} \cong M$, and if $\alpha \neq \beta$, then Th(GCIS(M, K_{α})) \neq Th(GCIS(M, K_{β})); hence Th(M, K_{α}) \neq Th(M, K_{β}).
- (RK, Schmerl) For every $J \subseteq_{end} M$ that is closed under exponentiation, there are K_{α} , $\alpha < 2^{\aleph_0}$ such that $K_{\alpha} \prec_{cof} M$, for all α , GCIS $(M, K_{\alpha}) = J$, and if $\alpha \neq \beta$, then Th $(M, K_{\alpha}) \neq$ Th (M, K_{β}) .

- There are K_{α} , $\alpha < 2^{\aleph_0}$ such that $K_{\alpha} \prec_{cof} M$ and if $\alpha \neq \beta$, then $SSy(K_{\alpha}) \neq SSy(K_{\beta})$.
- (Smoryński) There are K_{α} , $\alpha < 2^{\aleph_0}$ such that $K_{\alpha} \prec_{cof} M$, $K_{\alpha} \cong M$, and if $\alpha \neq \beta$, then Th(GCIS(M, K_{α})) \neq Th(GCIS(M, K_{β})); hence Th(M, K_{α}) \neq Th(M, K_{β}).
- (RK, Schmerl) For every J ⊆_{end} M that is closed under exponentiation, there are K_α, α < 2^{ℵ0} such that K_α ≺_{cof} M, for all α, GCIS(M, K_α) = J, and if α ≠ β, then Th(M, K_α) ≠ Th(M, K_β).

イロト 不得 トイヨト イヨト