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Three papers with Henryk

• Results on automorphisms of recursively saturated models of
arithmetic, Fundamenta Mathematicae, vol 129, pp. 9-15,
1988.

• On extending automorphisms of models of Peano Arithmetic,
Fundamenta Mathematicae, vol. 149, pp. 245-263, 1996.

• More on extending automorphisms of recursively saturated
models of PA, Fundamenta Mathematicae 200, pp. 133-143,
2008.
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All models in this talk are countable recursively saturated models
of PA

For X ⊆ M, let A(X ) = |{f (X ) : f ∈ Aut(M)}|.

Let M ≺ N. Then Cod(N/M) = {a ∩M : a ∈ N}.
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Counting automorphic images

• (Krajewski) Let S ⊆ M be a partial inductive satisfaction
class. Then A(S) = 2ℵ0

• (RK, Kotlarski) If M ≺endN and X ∈ Cod(N/M) \ Def(M),
then A(X ) = 2ℵ0 .

• (Schmerl) If X ∈ Class(M) \ Def(M), then A(X ) = 2ℵ0 .
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The question

If M ≺ N and f ∈ Aut(M), does f extend to N, i.e. is there a
g ∈ Aut(N) such that f ⊆ g?
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Extending to a given end extension

• (RK, Kotlarski) If M ≺endN, then 2ℵ0 automorphisms of M
do not extend to N.

• (RK) For every M there is an N such that M ≺endN and
identity is the only automorphism of M that extends to N.

• (Schmerl) Let A be a countable linearly ordered structure. For
every M there is an N such that M ≺endN and

Aut(N){M}/Aut(N)(M)
∼= Aut(A)
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Extendibility

• Let f ∈ Aut(M) be given. Is there an N such that M ≺endN
and f extends to N? Could there be an f that is not
extendible to any elementary end extension?

• If there is a partial inductive satisfaction class S such that
f ∈ Aut(M, S), then there is an N such that M ≺endN and f
extends to N.

• If M is arithmetically saturated then there are f ∈ Aut(M)
such that f /∈ Aut(M,S) for all partial inductive satisfaction
classes S .
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A condition for extendibility

• (RK, Kotlarski) If M ≺endN and there are no a ∈ N coding
decreasing infinite sequences such that M = inf{(a)i : i < ω}
then every f ∈ Aut(M,Cod(N/M)) extends to N.

• (RK) If M ≺endN and M is strong in N, then for every
f ∈ Aut(M,Cod(N/M)), there is a g ∈ Aut(N) such that
f ⊆ g and fix(f ) = fix(g).
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Description Property I

Definition
The extension M ≺cof N has the description property if for every
a ∈ N \M there is a coded in N nested sequence 〈Ai : i < ω〉 of
M-finite sets such that

1. N |= a ∈ Ai for all i < ω;

2. For each M-finite B such that a ∈ B, there is an i < ω such
that Ai ⊆ B.

Theorem
(RK, Kotlarski) For each M, there are K and, N such that
K ≺cof M ≺cof N and both extensions have the description property.
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Description Property II

Question
For a given M is there an N such that M ≺cof N has the
description property and SSy(M) = SSy(N)?

Theorem
(RK, Kotlarski) If M ≺cof N, f ∈ Aut(M,Cod(N/M)), and the
extension M ≺cof N has the the description property, then f
extends to N.
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Smoryński Stavi Theorem

Theorem
If M is recursively saturated M and N are countable and M ≺cof N,
then M ∼= N iff SSy(M) = SSy(N).
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Gaps

Definition
For a ∈ M

gap(a) =
⋂
{K ≺endM : a ∈ K} \

⋃
{K ≺endM : a /∈ K}

Theorem
(Moving Gaps Lemma) For each a ∈ M there are (cofinally many)
b such that for all c ∈ gap(b), a ∈ Scl(c).

Corollary
For every proper extension M ≺cof N there (cofinally many) are
new gaps, i.e. there are cofinally many c ∈ N such that
gap(c) ∩M = ∅.
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Isolated gaps

Definition
If M ≺cof N and b ∈ N \M, then gapN(b) is non-isolated if there
are d < gap(b) < e ∈ N such that [d , e] ∩M = ∅

Theorem
(RK, Kotlarski) Every cofinal extension has non-isolated gaps.

Theorem
(RK, Kotlarski) No extension with the description property has
isolated gaps.

Question
Are there cofinal extensions with isolated gaps?
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Conservative cofinal extensions?

Definition
For M ≺cof N and b ∈ N \M, let Mb = sup([0, b] ∩M).

Definition
An extension M ≺cof N is conservative if, for each b ∈ N \M there
is a ∈ M such that b ∩Mb = a ∩Mb.

Question
Do conservative cofinal extensions exist?
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Diversity in cofinal extensions (RK, Schmerl 2012)

Lemma
There is a LPA ∪ {M}-sentence σ such that for all M ≺cof N iff
(N,M) |= σ.

Dowód.
σ = ∃x∀y∃z ∈ M(y = (x)z). �

Lemma
Suppose that M ≺cof N |= PA. Then, Lt0(N/M) is interpretable in
(N,M).

Dowód.
In (N,M), the relation R = {〈x , y〉 ∈ N : M(x) ≺ M(y)} is
definable by the formula ∀u ∈ M∃v ∈ M[(u)x = (v)y ]. �
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Diversity in cofinal submodels

• There are Kα, α < 2ℵ0 such that Kα≺cof M and if α 6= β,
then SSy(Kα) 6= SSy(Kβ).

• (Smoryński) There are Kα, α < 2ℵ0 such that Kα≺cof M,
Kα ∼= M, and if α 6= β, then
Th(GCIS(M,Kα)) 6= Th(GCIS(M,Kβ)); hence
Th(M,Kα) 6= Th(M,Kβ).

• (RK, Schmerl) For every J ⊆endM that is closed under
exponentiation, there are Kα, α < 2ℵ0 such that Kα≺cof M,
for all α, GCIS(M,Kα) = J, and if α 6= β, then
Th(M,Kα) 6= Th(M,Kβ).
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